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Abstract

Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy 6= yx for any two
distinct elements x and y in X . If |X | ≥ |Y | for any other set of pairwise noncommuting elements Y in G,
then X is said to be a maximal subset of pairwise noncommuting elements. In this paper we determine
the cardinality of a maximal subset of pairwise noncommuting elements for some p-groups of maximal
class. Specifically, we determine this cardinality for all 2-groups and 3-groups of maximal class.
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1. Introduction

Let G be a nonabelian group and let X be a maximal subset of pairwise noncommuting
elements of G. The cardinality of such a subset is denoted by ω(G). Also ω(G) is
the maximal clique size in the noncommuting graph of a group G. Let Z(G) be the
center of G. The noncommuting graph of a group G is a graph with G \ Z(G) as the
vertices and join all distinct vertices x and y such that xy 6= yx . By a famous result of
Neumann [8], answering a question of Erdős, the finiteness of ω(G) in G is equivalent
to the finiteness of the factor group G/Z(G). Chin [4] has obtained upper and lower
bounds for ω(G) for an extra-special p-group G, where p is an odd prime number.
For p = 2, it has been shown by Isaacs (see [3, p. 40]) that ω(G)= 2n + 1 for any
extra-special group G of order 22n+1. In [1, 2], ω(GL(n, q)) is given for n ∈ {2, 3}.

Let G be a p-group of maximal class and order pn , where p is a prime number.
In this paper we find ω(G) when G satisfies some extra conditions. On the other
hand, for these groups of maximal class we show that ω(G)= pn−2

+ 1 or ω(G)=
pn−2
+ p + 1 (Theorems 3.4 and 3.7). Then by the above observation we determine

ω(G) for all 2-groups and 3-groups G of maximal class. In particular, we show that
ω(G)= 2n−2

+ 1 for any 2-group G of maximal class and order 2n (Corollary 3.10).
Also for a 3-group G of maximal class and order 3n we show that ω(G)= 3n−2

+ 1
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when G possesses an abelian maximal subgroup, and ω(G)= 3n−2
+ 4 when G

possesses no abelian maximal subgroups (Corollary 3.11).
Throughout this paper we use the following notation. The letter p denotes a prime

number. The terms of the lower central series of G are denoted by γi = γi (G). A
group G is called an AC-group if the centralizer of every noncentral element of G is
abelian and CG(x) is the centralizer of an element x in a group G.

2. Some basic results

In this section we give some basic results that are needed for the main results of the
paper.

LEMMA 2.1. The following conditions on a group G are equivalent:

(i) G is an AC-group;
(ii) if [x, y] = 1 then CG(x)= CG(y), where x, y ∈ G \ Z(G).

PROOF. This is straightforward. See also [9, Lemma 3.2]. 2

LEMMA 2.2. Let G be an AC-group.

(i) If a, b ∈ G \ Z(G) with distinct centralizers, then CG(a) ∩ CG(b)= Z(G).
(ii) If G =

⋃k
i=1 CG(ai ), where CG(ai ) and CG(a j ) are distinct for 1≤ i < j ≤ k,

then {a1 · · · ak} is a maximal set of pairwise noncommuting elements in G.

PROOF. (i) We see that Z(G)≤ CG(a) ∩ CG(b). If Z(G) < CG(a) ∩ CG(b), then
there exists an element x in CG(a) ∩ CG(b) such that x /∈ Z(G). This means that
CG(a)= CG(x) and CG(b)= CG(x) by Lemma 2.1(ii), which is impossible.

(ii) By Lemma 2.1(ii), {a1, a2, . . . , ak} is a set of pairwise noncommuting
elements. Suppose to the contrary that {b1, b2, . . . , bt } is another set of noncom-
muting elements of G with t > k. Then we see that there exist positive integers r , s
and i with 1≤ r < s ≤ t and 1≤ i ≤ k such that br , bs ∈ CG(ai ). This yields CG(br )=

CG(bs) by Lemma 2.1(ii), or equivalently br bs = bsbr , which is a contradiction. 2

LEMMA 2.3. Let G be a finite group of order pn with the central quotient of order p2,
where p is a prime number. Then ω(G)= p + 1.

PROOF. First we show that G is an AC-group. Suppose that a is a noncentral element
of G. So Z(G) < CG(a). Therefore |CG(a)| = pn−1. Since CG(a)= 〈Z(G), a〉, we
see that CG(a) is abelian and so G is an AC-group. Now since G is finite we may write
G =

⋃k
i=1 CG(ai ), where CG(ai ) and CG(a j ) are distinct for 1≤ i < j ≤ k. Therefore

X = {a1, a2, . . . , ak} is a maximal subset of pairwise noncommuting elements of G
by Lemma 2.2(ii). Thus by Lemma 2.2(i),

|G| =
k∑

i=1

(|CG(ai )| − |Z(G)|)+ |Z(G)|.

This yields pn
= k × (pn−1

− pn−2)+ pn−2 and so k = p + 1. 2
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3. Main results

Let G be a p-group of maximal class and order pn (n ≥ 4), where p is a prime.
Following [7], we define the 2-step centralizer Ki in G to be the centralizer in G
of γi (G)/γi+2(G) for 2≤ i ≤ n − 2 and define Pi = Pi (G) by P0 = G, P1 = K2,
Pi = γi (G) for 2≤ i ≤ n. The degree of commutativity l = l(G) of G is defined to be
the maximum integer such that [Pi , Pj ] ≤ Pi+ j+l for all i, j ≥ 1 if P1 is not abelian
and l = n − 3 if P1 is abelian.

In this section we determine ω(G) for any p-group G of maximal class and
order pn , with positive degree of commutativity when [P1, P3] = 1. Then we deduce
ω(G) for all 2-groups and 3-groups of maximal class

LEMMA 3.1. Let G be a p-group of maximal class which possesses an abelian
maximal subgroup. Then P1 is abelian.

PROOF. Let M be an abelian maximal subgroup of G. Then [M, γ2(G)] = 1. This
implies that P1 = M by using the definition of P1. 2

LEMMA 3.2 [7, Corollary 3.2.7]. Let G be a p-group of maximal class. The degree of
commutativity of G is positive if and only if the 2-step centralizers of G are all equal.

THEOREM 3.3. Let G be a p-group of maximal class and order pn(n ≥ 4) with
positive degree of commutativity and let s ∈ G \ P1, s1 ∈ P1 \ P2 and si = [si−1, s]
for 1≤ i ≤ n − 1. Then:

(i) G = 〈s, s1〉, Pi = 〈si , . . . , sn−1〉, |Pi | = pn−i for 1≤ i ≤ n − 1 and Pn−1(G)=
Z(G) is of order p;

(ii) CG(s)= 〈s〉Pn−1, s p
∈ Pn−1 and |CG(s)| = p2. So

CG(s)= {s
i s j

n−1 : 0≤ i, j ≤ p − 1};

(iii) CG(s) ∩ (G \ P1)= {si s j
n−1 : 1≤ i ≤ p − 1, 0≤ j ≤ p − 1};

(iv) CG(s) ∩ P1 = Z(G);
(v) if s, s′ ∈ G \ P1 and [s, s′] 6= 1, then CG(s) ∩ CG(s′)= Z(G).

PROOF. (i) This is obvious by [7, Lemma 3.2.4].
(ii) This follows from Lemma 3.2 and [6, Hilfssatz III 14.13].
(iii) and (iv) are evident.
(v) We have Z(G)≤ CG(s) ∩ CG(s′) < CG(s). Also by (i) and (ii), we see that

|Z(G)| = p and |CG(s)| = p2 which completes the proof. 2

THEOREM 3.4. Let G be a p-group of maximal class and order pn (n ≥ 4) with
positive degree of commutativity which possesses an abelian maximal subgroup. Then:

(i) G is an AC-group;
(ii) ω(G)= pn−2

+ 1.

PROOF. (i) By Lemma 3.1, P1 is abelian and so CG(x)= P1 for any x ∈ P1 \ Z(G).
Moreover, if x ∈ G \ P1, then by Theorem 3.3(ii), |CG(x)| = p2 as desired.
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(ii) We may write G =
⋃m

i=1 CG(ai ), where CG(ai ) and CG(ai ) are distinct for
1≤ i < j < m and ai /∈ Z(G). Therefore {a1, . . . , am} is a maximal subset of
pairwise noncommuting elements of G by Lemma 2.2(ii). Now let s1 ∈ P1 \ P2 as
in Theorem 3.3. Then we may assume that s1 ∈ CG(a1) and so CG(s1)= CG(a1) by
Lemma 2.1. Moreover, CG(s1)= P1 by considering the proof of (i). Therefore
|CG(a1)| = |P1| = pn−1. So ai /∈ P1 for 2≤ i ≤ m. Therefore |CG(ai )| = p2 for
2≤ i ≤ m by Theorem 3.3(ii). On the other hand,

|G| = |CG(a1)| +

m∑
i=2

(|CG(ai )| − |Z(G)|)

by Lemma 2.2(i). This means that pn
= pn−1

+ (m − 1)(p2
− p) which yields

ω(G)= pn−2
+ 1. 2

LEMMA 3.5. Let G be a p-group of maximal class and order pn (n ≥ 4) with positive
degree of commutativity and [P1, P3] = 1 such that G possesses no abelian maximal
subgroup. Then P1 is not abelian and ω(P1)= p + 1.

PROOF. Note that P1 is not abelian since P1 is a maximal subgroup of G. Also, P3 ≤

Z(P1) by the fact that [P1, P3] = 1. Therefore |P1/Z(P1)| = p2 by Theorem 3.3(i).
Now the result follows from Lemma 2.3. 2

LEMMA 3.6. By the assumption of Lemma 3.5, if Y = {y1, . . . yt } is a maximal subset
of pairwise noncommuting elements in G \ P1, then t = pn−2.

PROOF. On setting Ai = CG(yi ) ∩ (G \ P1) for 1≤ i ≤ t , we see that |Ai | =

p(p − 1) and Ai ∩ A j = ∅ for 1≤ i < j ≤ t by Theorem 3.3(iii), (v). We claim that
G \ P1 = A1 ∪ · · · ∪ At . For otherwise if y ∈ G \ P1 and y /∈ Ai for 1≤ i ≤ t , then
y /∈ CG(yi ). This implies that {y, y1, . . . , yt } is a subset of pairwise noncommuting
elements in G \ P1, which is a contradiction. Therefore G \ P1 = A1 ∪ · · · ∪ At is
a partition for G \ P1. Hence |G \ P1| =

∑t
i=1 |Ai | and so pn

− pn−1
= p(p − 1)t ,

and consequently t = pn−2. 2

THEOREM 3.7. Let G be a p-group of maximal class and order pn (n ≥ 4) with
positive degree of commutativity and [P1, P3] = 1 such that G possesses no abelian
maximal subgroup. Then ω(G)= pn−2

+ p + 1.

PROOF. Let Y = {y1, . . . , yt } and X = {x1, . . . , x p+1} be maximal subsets of
pairwise noncommuting elements in G \ P1 and P1, respectively. Obviously, by
Lemma 3.6, t = pn−2. First we see that [xi , y j ] 6= 1 for 1≤ i ≤ p + 1 and 1≤ j ≤ t .
For otherwise xi ∈ CG(y j ) and so xi ∈ CG(y j ) ∩ P1 or, equivalently, xi ∈ Z(G) by
Theorem 3.3(iv), which is impossible. Therefore X ∪ Y is a subset of pairwise
noncommuting elements in G and so ω(G)≥ t + p + 1= pn−2

+ p + 1. Now
let ω(G)= m and {a1, . . . , am} be a maximal subset of pairwise noncommuting
elements in G. We may assume that {a1, . . . , ak} ⊆ G \ P1 and {ak+1, . . . , am} ⊆ P1.
By Lemma 3.5, we see that m − k ≤ ω(P1)= p + 1. Also, by Lemma 3.6, we have
k ≤ pn−2. Consequently ω(G)= m − k + k ≤ p + 1+ pn−2 as desired. 2
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Now we determine ω(G) for all 2-groups and 3-groups G of maximal class by using
the following two theorems.

THEOREM 3.8 [7, Theorem 3.4.1]. Let G be a 2-group of maximal class. Then P1 is
cyclic.

THEOREM 3.9 [7, Theorem 3.4.3]. Let G be a 3-group of maximal class. Then G has
degree of commutativity l ≥ n − 4.

COROLLARY 3.10. If G is a 2-group of maximal class and order 2n , then ω(G)=
2n−2
+ 1.

PROOF. This is evident for n = 3 by Lemma 2.3. Now since P1 is abelian and n ≥ 4,
the degree of commutativity of G is n − 3. Therefore we can complete the proof by
Theorem 3.4. 2

COROLLARY 3.11. Let G be a 3-group of maximal class and order 3n .

(i) If G possesses an abelian maximal subgroup, then ω(G)= 3n−2
+ 1.

(ii) If G possesses no abelian maximal subgroup, then ω(G)= 3n−2
+ 4.

PROOF. This is obvious for n = 3 by Lemma 2.3. Also for n = 4, we see that
ω(G)= 10 by using GAP [5]. Now we may assume that n ≥ 5. Moreover, G has
degree of commutativity l ≥ n − 4 by Theorem 3.9 and so [P1, P3] = 1. Therefore we
can complete the proof by using Theorems 3.4 and 3.7. 2
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