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Abstract

Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy # yx for any two
distinct elements x and y in X. If | X| > |Y| for any other set of pairwise noncommuting elements Y in G,
then X is said to be a maximal subset of pairwise noncommuting elements. In this paper we determine
the cardinality of a maximal subset of pairwise noncommuting elements for some p-groups of maximal
class. Specifically, we determine this cardinality for all 2-groups and 3-groups of maximal class.
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1. Introduction

Let G be a nonabelian group and let X be a maximal subset of pairwise noncommuting
elements of G. The cardinality of such a subset is denoted by w(G). Also w(G) is
the maximal clique size in the noncommuting graph of a group G. Let Z(G) be the
center of G. The noncommuting graph of a group G is a graph with G \ Z(G) as the
vertices and join all distinct vertices x and y such that xy # yx. By a famous result of
Neumann [8], answering a question of Erdds, the finiteness of @ (G) in G is equivalent
to the finiteness of the factor group G/Z(G). Chin [4] has obtained upper and lower
bounds for w(G) for an extra-special p-group G, where p is an odd prime number.
For p =2, it has been shown by Isaacs (see [3, p. 40]) that w(G) = 2n + 1 for any
extra-special group G of order 227+1 In[1, 2], (GL(n, q)) is given for n € {2, 3}.
Let G be a p-group of maximal class and order p”, where p is a prime number.
In this paper we find w(G) when G satisfies some extra conditions. On the other
hand, for these groups of maximal class we show that w(G) = p"‘2 +1orw(G)=
"2+ p+ 1 (Theorems 3.4 and 3.7). Then by the above observation we determine
o (G) for all 2-groups and 3-groups G of maximal class. In particular, we show that
(G) =2""2 4+ 1 for any 2-group G of maximal class and order 2" (Corollary 3.10).
Also for a 3-group G of maximal class and order 3" we show that w(G) = 3""2 + 1
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when G possesses an abelian maximal subgroup, and w(G) =3""2 +4 when G
possesses no abelian maximal subgroups (Corollary 3.11).

Throughout this paper we use the following notation. The letter p denotes a prime
number. The terms of the lower central series of G are denoted by y; = y;(G). A
group G is called an AC-group if the centralizer of every noncentral element of G is
abelian and Cg (x) is the centralizer of an element x in a group G.

2. Some basic results

In this section we give some basic results that are needed for the main results of the
paper.
LEMMA 2.1. The following conditions on a group G are equivalent:

(i) G isan AC-group;
(1) if[x, y]=1thenCg(x) =Cg(y), where x,y € G\ Z(G).

PROOF. This is straightforward. See also [9, Lemma 3.2]. O

LEMMA 2.2. Let G be an AC-group.

(1) Ifa, b e G\ Z(G) with distinct centralizers, then Cg(a) N Cg(b) = Z(G).
) IfG= Uf;l Cg(a;), where Cg(a;) and Cg(aj) are distinct for 1 <i < j <k,
then {ay - - - ai} is a maximal set of pairwise noncommuting elements in G.

PROOF. (i) We see that Z(G) <Cg(a) NCg(b). If Z(G) <Cg(a) NCq(b), then
there exists an element x in Cg(a) N Cg(b) such that x ¢ Z(G). This means that
Cg(a) =Cg(x) and Cg(b) = Cg(x) by Lemma 2.1(ii), which is impossible.

(i) By Lemma 2.1(ii), {ai, a2, ...,ar} is a set of pairwise noncommuting
elements. Suppose to the contrary that {b1, by, ..., b;} is another set of noncom-
muting elements of G with ¢ > k. Then we see that there exist positive integers r, s
andi with1 <r <s <tand1 <i <k suchthatb,, by € Cg(a;). This yields C;(b,) =
Cg (bs) by Lemma 2.1(ii), or equivalently b, by = byb,, which is a contradiction. d

LEMMA 2.3. Let G be a finite group of order p" with the central quotient of order p>?,
where p is a prime number. Then o (G) = p + 1.

PROOF. First we show that G is an AC-group. Suppose that a is a noncentral element
of G. So Z(G) < Cg(a). Therefore |Cg(a)| = p"~!. Since Cg(a) = (Z(G), a), we
see that Cg (a) is abelian and so G is an AC-group. Now since G is finite we may write
G= Ule Cg(a;), where Cg(a;) and Cg (a;) are distinct for 1 <i < j < k. Therefore
X ={ay, a, . . ., ar} is a maximal subset of pairwise noncommuting elements of G
by Lemma 2.2(ii). Thus by Lemma 2.2(i),

k
Gl =>_(ICc(an| — 1Z(G)]) + | Z(G)|.
i=1

This yields p" =k x (p"~! — p"2)+ p"2andsok = p + 1. O
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3. Main results

Let G be a p-group of maximal class and order p" (n > 4), where p is a prime.
Following [7], we define the 2-step centralizer K; in G to be the centralizer in G
of yi(G)/vi4+2(G) for 2 <i <n —2 and define P; = P;(G) by Pp=G, P; =K>,
P; = y;(G) for 2 <i < n. The degree of commutativity / = /(G) of G is defined to be
the maximum integer such that [P;, P;] < P;; j4; forall i, j > 1if P; is not abelian
and [ =n — 3 if P; is abelian.

In this section we determine w(G) for any p-group G of maximal class and
order p", with positive degree of commutativity when [Py, P3] = 1. Then we deduce
o (G) for all 2-groups and 3-groups of maximal class

LEMMA 3.1. Let G be a p-group of maximal class which possesses an abelian
maximal subgroup. Then Py is abelian.

PROOF. Let M be an abelian maximal subgroup of G. Then [M, y»(G)] = 1. This
implies that P = M by using the definition of Pj. O

LEMMA 3.2 [7, Corollary 3.2.7]. Let G be a p-group of maximal class. The degree of
commutativity of G is positive if and only if the 2-step centralizers of G are all equal.

THEOREM 3.3. Let G be a p-group of maximal class and order p"(n > 4) with

positive degree of commutativity and let s € G\ P1, s1 € P1\ P> and s; = [s;i_1, ]

for1 <i<n—1. Then:

@) G={(s,51) P =151\, 0-1) [Pl = p" " for | <i <n —land P,_1(G) =
Z(G) is of order p;

(i) Cg(s) = (s)Pui, s” € Pu—y and |CG(s)| = p*. So

Co(s) ={s's] | :0<i, j<p—1}

(iii) C(;(s)ﬂ(G\Pl)={sis,{_1:15i§p—1,0§j§p—l};
(iv) Cg(s) N Py = Z(G);
V) ifs,s’€e G\ Pyand[s,s'1#1, thenCs(s) NCs(s") = Z(G).

PROOF. (i) This is obvious by [7, Lemma 3.2.4].

(i1) This follows from Lemma 3.2 and [6, Hilfssatz III 14.13].

(ii1) and (iv) are evident.

(v) We have Z(G) <Cg(s) NCg(s") <Cq(s). Also by (i) and (ii), we see that
|Z(G)| = p and |Cg(s)| = p2 which completes the proof. d
THEOREM 3.4. Let G be a p-group of maximal class and order p" (n > 4) with
positive degree of commutativity which possesses an abelian maximal subgroup. Then:
(1) G isanAC-group;

() o(G)=p"2+1.

PROOF. (i) By Lemma 3.1, P; is abelian and so Cg(x) = P; for any x € P \ Z(G).
Moreover, if x € G \ Py, then by Theorem 3.3(ii), |Cg(x)| = p2 as desired.
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(i) We may write G = U;-"Zl Cg(ai), where Cg(a;) and Cg(a;) are distinct for
1<i<j<m and q; ¢ Z(G). Therefore {ai, ..., a;} is a maximal subset of
pairwise noncommuting elements of G by Lemma 2.2(ii). Now let s; € P| \ P> as
in Theorem 3.3. Then we may assume that s; € Cg(a;) and so Cg(s;) =Cg(ay) by
Lemma 2.1. Moreover, Cg(s1) = P; by considering the proof of (i). Therefore
|Cq(a)| = |P1]| = p”_l. So a; ¢ Py for 2<i <m. Therefore |Cg(a;)| = p2 for
2 <i < m by Theorem 3.3(ii). On the other hand,

|G| = ICg(an] + Z(|CG(ai)| —1Z(G)D)
i=2

by Lemma 2.2(i). This means that p" = p”_1 + (m — 1)(p2 — p) which yields
w(G)=p" 2 +1. O

LEMMA 3.5. Let G be a p-group of maximal class and order p" (n > 4) with positive
degree of commutativity and [ Py, P3] = 1 such that G possesses no abelian maximal
subgroup. Then Py is not abelian and w(P1) = p + 1.

PROOF. Note that Pj is not abelian since P; is a maximal subgroup of G. Also, P3 <
Z(P1) by the fact that [Py, P3] = 1. Therefore |P1/Z(P1)| = p? by Theorem 3.3(i).
Now the result follows from Lemma 2.3. O

LEMMA 3.6. By the assumption of Lemma 3.5, if Y = {y1, . .. y;} is a maximal subset
of pairwise noncommuting elements in G \ Py, thent = p"~

PROOF. On setting A; =Cg(y;) N (G \ P1) for 1 <i<t¢, we see that |A;|=
p(p—1)and A; NA; =¥ for1<i < j<tby Theorem 3.3(iii), (v). We claim that
G\PL=A1U---UA;. Forotherwise if ye G\ Py and y ¢ A; for 1 <i <t, then
y ¢ Cg(y;). This implies that {y, y1, ..., y;} is a subset of pairwise noncommuting
elements in G \ P, which is a contradiction. Therefore G\ Py =A; U---U A; is
a partition for G \ P;. Hence |G \ P1| = Z;Zl |A;| and so p" — p" ' = p(p — D,
and consequently r = p" 2. O

THEOREM 3.7. Let G be a p-group of maximal class and order p" (n >4) with
positive degree of commutativity and [Py, P3] = 1 such that G possesses no abelian
maximal subgroup. Then w(G) = p"~2 + p + 1.

PROOF. Let Y ={y,...,y} and X ={xj,...,xp41} be maximal subsets of
pairwise noncommuting elements in G \ P; and Pj, respectively. Obviously, by
Lemma 3.6, t = p"‘z. First we see that [x;, y;]#1forl1 <i<p+1land1<j <t
For otherwise x; € Cg(y;) and so x; € Cg(y;) N Py or, equivalently, x; € Z(G) by
Theorem 3.3(iv), which is impossible. Therefore X UY is a subset of pairwise
noncommuting elements in G and so w(G)>t+p+1=p" 2+ p+1. Now
let w(G)=m and {ay, ..., a;} be a maximal subset of pairwise noncommuting
elements in G. We may assume that {ay, ..., ax} € G \ Py and {ag+1, ..., an} < Pi.
By Lemma 3.5, we see that m — k < w(P1) = p 4+ 1. Also, by Lemma 3.6, we have
k < p"~2. Consequently w(G) =m —k +k < p + 1 + p"~2 as desired. O
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Now we determine w (G) for all 2-groups and 3-groups G of maximal class by using
the following two theorems.

THEOREM 3.8 [7, Theorem 3.4.1]. Let G be a 2-group of maximal class. Then P is
cyclic.

THEOREM 3.9 [7, Theorem 3.4.3]. Let G be a 3-group of maximal class. Then G has
degree of commutativity | > n — 4.

COROLLARY 3.10. If G is a 2-group of maximal class and order 2", then w(G) =
22 41,

PROOF. This is evident for n = 3 by Lemma 2.3. Now since P; is abelian and n > 4,
the degree of commutativity of G is n — 3. Therefore we can complete the proof by
Theorem 3.4. u

COROLLARY 3.11. Let G be a 3-group of maximal class and order 3".

(1) If G possesses an abelian maximal subgroup, then w(G) = 3241,
(i) If G possesses no abelian maximal subgroup, then (G) = 3" 4 4.

PROOF. This is obvious for n =3 by Lemma 2.3. Also for n =4, we see that
o (G) = 10 by using GAP [5]. Now we may assume that n > 5. Moreover, G has
degree of commutativity / > n — 4 by Theorem 3.9 and so [ P;, P3] = 1. Therefore we
can complete the proof by using Theorems 3.4 and 3.7. O
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