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Computerization and Computer Algebra

12.1 Introduction

The quantized detector network (QDN) formalism was designed from the outset

to deal with detector networks of arbitrary complexity and rank. However, there

is a price to be paid. A qubit register of rank r is a Hilbert space of dimension 2r,

so the dimensionality of quantized detector networks grows exponentially with

rank. For example, a relatively small system of, say, 10 detectors involves a

Hilbert space of dimension 210 = 1, 024.

Even such a relatively small system cannot be dealt with easily by manual cal-

culation, because quantum mechanics (QM) involves entangled states. Labstates

in QDN are far more complex (in the sense of having far more mathematical

structure) than the corresponding states in a classical register of the same rank.

Some of the mathematical entanglement and separability properties of quantum

labstates are discussed in Chapters 22 and 23.

The quantum entanglement structure of labstates poses a ubiquitous and

serious problem, for both theorists and experimentalists. At this time, there

is significant interest in quantum entanglement, particularly regarding its use

in quantum computing, but theoretical understanding of entanglement is still

surprisingly limited.

On the experimental side, quantum computers with 2000 qubits are currently

being developed (D-Wave Systems, 2016). There is scope here for the application

of QDN to networks of rank going into the many thousands. For those sorts of

systems under observation (SUOs), quantum entanglement makes calculations

by hand far too laborious to be of any practical use.

Fortunately, three factors come to our aid here, making the application of QDN

to large-rank networks a potentially viable proposition.
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Modularization

We saw in previous chapters that QDN deals with discrete aspects of observa-

tion, despite the fact that standard QM and relativistic quantum field theory

(RQFT) deal with continuous degrees of freedom. This discreteness comes in

three forms, referred to us as stages, nodes, and modules, and all of that is due

to three inescapable physical facts. First, all real observations take time and

involve discrete signals in finite numbers of detectors.1 Second, real apparatus is

constructed from atoms, not continua. Third, these atoms form finite numbers

of well-characterized modules, as discussed in the previous chapter.

Contextuality

A critically helpful fact here is that in any particular experiment, the contextual

subspaces that the observer needs to deal with will usually be of significantly

lower dimensions than that of the full quantum registers involved. For example,

while the register ground state 0n at stage Σn is an indispensable component

of the QDN formalism, there are few situations that will involve the completely

saturated labstate 2r − 1
n

≡ Â1
nÂ

2
n . . . Â

r
n0n. This will certainly be the case

when the rank r is large, say, of the order of hundreds or even possibly thousands.

Computerization

While QDN calculations can often be done by hand for small rank calculations

involving a small number of stages, the use of computer algebra (CA) software,

such as Maple, Mathlab, and Mathematica, allows problems with much greater

rank registers running over many more stages to be dealt with. All but the

simplest network calculations in this book were done using a computer algebra

program developed by us called Program MAIN, for example.

12.2 Program MAIN

In this chapter we discuss the application of CA to QDN. We illustrate this

approach to QDN by describing a typical experiment, referred to here as the

Wollaston interferometer (WI), shown in Figure 12.1.

The aim in this experiment is to investigate the polarization structure of an

unpolarized monochromatic beam of light. From source S, the beam is first passed

through a Wollaston prism W that splits it into two orthogonally polarized

components 11 and 21 as shown. Component 11 has “internal” polarization

represented by ket |s11〉 while component 21 has polarization state |s21〉, orthogonal
to |s11〉. Component 11 is then deflected by mirror M to 12 and then toward one

input channel of beam splitter B. Component 21, meanwhile, is passed through

polarization rotator Rθ that rotates |s21〉 into cos(θ)|s22〉+sin(θ)|s12〉, before passing

1 Technically, the signals are not discrete or continuous. It is the observer who interprets
whatever they find at a detector as a discrete bit of information.
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Figure 12.1. The Wollaston interferometer. A monochromatic, unpolarized
beam of light from source S is passed through Wollaston prism W . Emerging
polarized beam 11 is deflected by mirror M onto beam splitter B, while
emerging polarized beam 21 has its polarization rotated by angle θ through
module Rθ, before hitting B. Signal detection is at detectors 13 and 23.

into the other input channel of B. The two beam splitter outcome channels are

monitored by final stage detectors 13 and 23. The angle θ is chosen by the observer

before the preparation switch 10 is thrown.

If the transmission t and reflection r coefficients of the beam splitter B are

known, then the observed outcome frequencies at the final stage detectors will

depend on θ, and this gives information about the relative magnitudes of the two

polarizations in the initial beam.

For applying QDN to the WI and all other experiments we have a single CA

program, referred to here as MAIN . This program consists of two sections, A

and B. In Section A, we input the details of the particular experiment we want

to calculate, such as how many stages the experiment involves, the rank of each

stage quantum register, and so on.

In practice, MAIN carries full details of all the experiments we have investi-

gated, with a path parameter that allows us to select any experiment of current

interest. For example, the path parameter for WI is 44.

Given the path parameter, MAIN jumps to Section A, initializing the variables

from the relevant data there. Then MAIN jumps to Section B, automatically

calculating everything of interest, such as the outcome probabilities at each final

labstate detector.

The power of this approach is that all the work is done in encoding Section A.

In general, this does not take long and is straightforward, given a stage diagram

for the process and the module rules discussed in the previous chapters. Section B

is universal, that is, is the same for all experiments. This gives a very economical

and powerful approach indeed, allowing a great range of questions to be posed

and answered rapidly. The only real theoretical problem is in deciding the stage-

to-stage evolution operators Un+1,n in the encoding of Section A. This part of
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the process is currently where the computer does not help and the theorist has to

decide what goes in. However, it should be possible to automate this part as well,

if stage diagrams could be encoded first. We comment on this further, below.

12.3 The Wollaston Interferometer

We now describe the steps followed for a typical experiment, in this case the WI.

This example illustrates the fact that MAIN can deal with total states, that is,

entangled quantum states of the form

|Ψn) ≡
∑
a

|san〉 ⊗ ian, (12.1)

where |san〉 is an “internal” SUO state, carrying information such as polarization,

and ian is a computational basis representation (CBR) labstate element carrying

information about the signal state of the detectors.

Encoding

Our QDN notation is transcribed into program MAIN as follows. Although the

observer’s focus is the signality of the signal detector amplitudes, the internal

calculations of MAIN are written in terms of the CBR. The reason is that

labstates of signality greater than one are nonlinear in the signal operators Âi
n,

whereas the CBR is transparent to signality.

Our encoding takes the following form:

in → a[i, n], in → A[i, n],

|spn〉 → s[p, n], 〈spn| → S[p, n]. (12.2)

Here the symbols a,A, s, and S were arbitrarily chosen, with the rule that

lowercase letters represent quantum “ket” states and capital letters represent

their duals.

The power of the CA approach comes in at this point in that we can use

differentiation to implement “inner product” rules. For example,

injn → ∂a[j, n]

∂a[i, n]
= δij , 〈spn|sqn〉 →

∂s[q, n]

∂s[p, n]
= δpq, (12.3)

which is readily encoded in CA.2

In the following, the asterisk symbol ∗ denotes ordinary commutative multipli-

cation in the CA program. It is an important and helpful fact that our encoding

does not need any noncommutative product operation, although CA is capable

of handling those when required.

2 Differentiation is a good example of the dichotomy between the continuous and the discrete.
Mathematicians frequently deal with continuous variables, but mathematicians themselves
operate on discrete principles: all of mathematics is done line by line, symbol by symbol, in
a discrete way, very much like the way experimentalists have to operate in the real world.
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If rn is the rank of the stage-Σn qubit register and dn is the dimension of the

internal SUO Hilbert space, also at that stage, then total states will be of the

form

|Ψn) ≡
2rn−1∑
i=0

dn∑
p=1

cp,in |spn〉 ⊗ in

→ Ψ[n] ≡
2rn−1∑
i=0

dn∑
p=1

c[p, i, n] ∗ s[p, n] ∗ a[i, n],
(12.4)

while their duals are of the form

(Φn| ≡
2rn−1∑
i=0

dn∑
p=1

Dp,i
n 〈spn| ⊗ in

→ Φ[n] ≡
2rn−1∑
i=0

dn∑
p=1

D[p, i, n] ∗ S[p, n] ∗A[i, n],
(12.5)

where the cp,in and Dp,i
n are complex coefficients (readily handled in CA).

Inner products are evaluated by the CA prescription

(Φn|Ψn) →
2rn−1∑
i=0

dn∑
p=1

∂2Φ[n]

∂S[p, n]∂A[i, n]
∗ ∂2Ψ[n]

∂s[p, n]∂a[i, n]

=

2rn−1∑
i=0

dn∑
p=1

D[p, i, n] ∗ c[p, i, n].
(12.6)

Draw a Stage Diagram

Having decided to model a particular experiment, we need to have a clear

overview of the experiment’s space-time architecture. That is best done graph-

ically. Any quantum experiment can be described diagrammatically by a stage

diagram, that is, a representation of the detectors and modules at each stage,

with different stages linked by amplitude transmission lines.

Currently, MAIN has no facility for automatically transcribing such diagrams

into code, but we envisage the development of graphical interface software that

would make this part of the programming straightforward. The reason for this

optimism is that there is only a finite variety of modules, and their properties

can be well specified and catalogued mathematically, as discussed in Chapter 11.

Figure 12.1 is the relevant diagram for the WI calculation.

Transcription Phase

Given the stage diagram, the next step is to read from it the following information

and encode it into MAIN:

1. N , the number of stages, not counting the initial stage, which is labeled

Σ0. There is no limit to the size of N apart from the capacity limits of the
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computer. In our case, a personal computer with 32 gigabytes random access

memory and a 240 gigabyte hard disc was quite sufficient to deal with all the

experiments discussed in this book. For our WI calculation, N = 3.

2. r[0], r[1], . . . , r[N ], the rank at each stage. From Figure 12.1 we have r[0] = 1,

r[1] = r[2] = r[3] = 2.

3. d[0], d[1], . . . , d[N ], the dimensions of the “internal” SUO Hilbert space at

each stage. In the case of the WI, we have two orthonormal polarizations of

light, |s1n〉, |s2n〉, to factor in. These are often taken as horizontal and vertical

polarizations, but in principle could be circular polarizations if required. Hence

we take d[0] = d[1] = d[2] = 2.

4. The initial labstate: for the WI being discussed, we take |Ψ0) ≡ {c1|s10〉 +
c2|s20〉} ⊗ 10, and its dual (Ψ0| ≡ {c1∗〈s10| + c2∗〈s20|} ⊗ 10, where ci∗ is the

complex conjugate of ci. The coefficients ci characterize the two incident beam

polarizations and satisfy |c1|2 + |c2|2 = 1.

These states are encoded into MAIN as

|Ψ0) → ψ[0] ≡ (c[1] ∗ s[1, 0] + c[2] ∗ s[2, 0]) ∗ a[1, 0],
(Ψ0| → Ψ[0] ≡ (C[1]) ∗ S[1, 0] + C[2] ∗ S[2, 0]) ∗A[1, 0]. (12.7)

MAIN checks at each stage that normalization is preserved, so that at any

stage Σn, we have

(Ψn|Ψn) = (Ψ0|Ψ0) → C[1] ∗ c[1] + C[2] ∗ c[2]. (12.8)

5. From Figure 12.1 and the rules of the modules concerned (covered in the

previous chapter) we write (on paper)

Stage Σ0 → Σ1

U1,0

{
|s10〉 ⊗ Â1

000

}
= |s11〉 ⊗ Â1

101,

U1,0

{
|s20〉 ⊗ Â1

000

}
= |s21〉 ⊗ Â2

101. (12.9)

Stage Σ1 → Σ2

U2,1

{
|s11〉 ⊗ Â1

101

}
= |s12〉 ⊗ Â1

202, (12.10)

U2,1

{
|s21〉 ⊗ Â2

101

}
= (cos θ|s22〉+ sin θ|s12〉)⊗ Â2

202. (12.11)

Stage Σ2 → Σ3

U3,2

{
|s12〉 ⊗ Â1

202

}
= |s12〉 ⊗

(
tÂ2

303 + irÂ1
303

)
,

U3,2

{
|s12〉 ⊗ Â2

202

}
= |s12〉 ⊗

(
tÂ1

303 + irÂ2
303

)
,

U3,2

{
|s22〉 ⊗ Â2

202

}
= |s22〉 ⊗

(
tÂ1

303 + irÂ2
303

)
. (12.12)

Here t and r are beam splitter parameters, and we use (11.28).
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That is all the theoretical input needed. The next step is to transcribe it

into Section A code.

6. To transcribe the above information, we first use contextual completeness to

write down U1,0, U2,1, and so on, and then use the rules (12.2). For instance,

from (12.9) this gives

U1,0 = |s11〉 ⊗ Â1
101〈s10| ⊗ 01A

1
0 + |s21〉 ⊗ Â2

101〈s20| ⊗ 01A
1
0

= |s11〉〈s10| ⊗ 1110 + |s21〉〈s20| ⊗ 21 ⊗ 10

→ U [1, 0] ≡ s[1, 1] ∗ S[1, 0] ∗ a[1, 1] ∗A[1, 0]+
s[2, 1] ∗ S[2, 0] ∗ a[2, 1] ∗A[1, 0], (12.13)

and similarly for U2,1 and U3,2.

This is all the input we need to provide program MAIN for it to answer all

possible maximal questions about this particular experiment.

Evaluation Phase

Once Section A has been initialized, Section B goes into action, employing several

key procedures (subroutines):

1. Given U [n + 1, n] and U [n + 2, n + 1], then the operator Un+2,n ≡ Un+1,n+1

Un+1,n is given by the rule Un+2,n → U [n+ 2, n], where

U [n+ 2, n] ≡
2r[n+1]−1∑

i=0

d[n+1]∑
p=1

∂2U [n+ 2, n+ 1]

∂S[p, n+ 1]∂A[i, n+ 1]
∗ ∂2U [n+ 1, n]

∂s[p, n+ 1]∂a[i, n+ 1]
.

(12.14)

The overall contextual evolution operator U [N, 0] is evaluated by iterating

this process.

2. The retraction operator UN,0 is calculated from U [N, 0] by complex conjuga-

tion of coefficients and the interchange s ↔ S, a ↔ A. Complex conjugation

is readily handled in CA.

3. The detector POVM operators Ei
N,0 → E[i,N ] discussed in Chapter 9 are

calculated by the rule

E[i,N ] ≡
d[N ]∑
p=1

∂2U [N, 0]

∂S[p,N ]∂A[i,N ]
∗ ∂2U [N, 0]

∂s[p,N ]∂a[i,N ]
. (12.15)

These should satisfy the rule

2r[N]−1∑
i=0

E[i,N ] =

d[0]∑
p=1

s[p,N ] ∗ S[p,N ]
2r[0]−1∑
i=0

a[i, 0] ∗A[i, 0], (12.16)

which is a representation of I0, the contextual identity operator at stage Σ0.

In MAIN, this is used as a useful check on the evolution operators U [n+1, n]

written down in Section A.
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4. The outcome probabilities P (iN |Ψ0), i = 0, 1, 2, . . . , 2r[N ]−1 are given by the

rule (9.59) and are readily evaluated in MAIN, again using differentiation in

the taking of inner products and operator action on state vectors. This gives

the answers to all the 2rN maximal questions. Because large-rank stages may

have excessive dimensions, the program gives a listing only of the nonzero

answers to the maximal questions. This listing will generally be significantly

smaller than the full potential set of answers, reflecting the fact that experi-

ments generally deal with contextual subspaces of quantum registers, not the

complete registers.

Points to note are the following.

Answers

Answers can be either in numerical form or in the far more useful algebraic form.

For example, the output listing for the Wollaston interferometer is

P (Â1
303|Ψ0) = |c1|2r2 + |c2|2t2 + i(c2∗c1 − c1∗c2)rt sin θ,

P (Â2
303|Ψ0) = |c1|2t2 + |c2|2r2 − i(c2∗c1 − c1∗c2)rt sin θ. (12.17)

These sum to unity, as expected. The implication here is that MAIN has found

the other two potential probabilities P (03|Ψ0) and P (Â1
3Â

2
303|Ψ0) to be zero.

Signal Decomposition

The CBR is excellent for CA but not so helpful with understanding signality.

To assist in the interpretation, MAIN converts CBR probabilities into a listing

of total signal probability for individual final-stage detectors, excluding any

that have probabilities of zero. This gives valuable insight into the patterns

of information flow. With some experience, it becomes clear why the photon

concept has become so popular: signality is conserved in many quantum optics

experiments unless some specific module such as a nonlinear crystal that creates

photons is used, as in parametric down-conversion.

Partial Questions

MAIN answers the full set of maximal questions. We have stated before that this

set of answers allows all partial questions to be answered. Therefore, CA gives

us the possibility of answering all possible questions in the context of QDN.

This becomes important in several complex experiments, such as the two-photon

interferometer of Horne, Shimony, and Zeilinger (Horne et al., 1989) and the

double-slit quantum eraser of Walborn et al. (Walborn et al., 2002), experiments

covered in detail in Chapter 14.

12.4 Going to the Large Scale

There is little doubt in our mind that the greatest challenge facing quantum

physics lies not with the reductionist laws of physics, which have been determined
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empirically to be excellent, but with the relatively unexplored laws of complexity

and emergence. Even the simplest of experiments, such as the double-slit (DS)

experiment discussed in Chapter 10, poses a serious challenge to QDN, simply

because the dimensions of quantum registers grow exponentially with rank. With

reference to Figure 10.2, suppose we wanted to model a DS experiment with K

detector sites on screen. Three possible approaches that we could take are the

following.

Approach 1: The Theoretical Approach

Here K is regarded as fixed but undetermined, and treated algebraically by the

theorist on paper.

Approach 2: The Brute Force CA Approach

Here K is given a specific value, such as K = 20 in a CA program such as MAIN,

and a relatively laborious calculation is done by a computer.

Approach 3: The Symbolic Approach

Here K is encoded symbolically and treated as an algebraic parameter char-

acterizing the experiment. CA does in principle have the potential to handle

this approach, but it requires more sophisticated programming, because that

would essentially be an attempt to simulate the way the human theorist handles

abstract modeling. A good example is that theorists can with training readily

discuss infinite-dimensional Hilbert spaces on paper, but CA cannot easily handle

infinities directly.

Approach 1 works for the relatively simple DS experiment but is impractical

for other large-rank networks, prompting the development of the CA approach.

Approach 2 has definite limitations. A CA simulation of the DS experiment

using MAIN was done with a range of values of K and timed. The results are

given in the following table:

Rank r Tr (seconds)

10 0.137

12 0.515

14 2.609

16 11.73

18 40.92

20 192.3

22 1284

Analysis of this table suggests that the time Tr for MAIN to complete a DS

simulation with a rank-r screen register is approximately of the form Tr = A +

B2r, where A and B are constants. It is clear that even a rank-100 simulation

could not be completed on this basis.
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Approach 3 should be made to work if contextual subspaces are incorporated

adequately (which they are not, currently, in our program MAIN).

Three conclusions can be drawn from this analysis:

1. Computerization seems inevitable.

2. Computerization will be very useful in a broad range of problems, but some

problems may remain intractable.

3. Intelligent use of contextual subspaces will be necessary for problems where

the rank is too large for the brute force approach to work.

12.5 Prospects

Our current CA program, MAIN, requires the user to transcribe “by hand” the

information contained in a stage diagram into CA form. This process could be,

and perhaps should be, fully automated, opening the door to potentially vast

applications. Ideally, this would utilize the currently accessible technology of

touch screens, whereby the user used electronic graphics pens to sketch stage

diagrams in freehand. These would then be automatically transcribed into the

information currently fed in by hand in Section A of MAIN.

We envisage the development of user-friendly graphical software that would

allow the user to select all the necessary modules that were of interest, using

palettes of symbols representing real and virtual detectors, modules of all sorts,

and lines representing transmission through various media. With the right infor-

mation, it should be possible to encode different material properties, so that

quantized detector networks representing crystals, glasses, and other complex

systems such as neural networks and retinas could be dealt with in a systematic

and coherent way.

There is little doubt in our mind that such an approach to complex prob-

lems involving quantum mechanical effects in engineering, materials science, and

medical science will one day become commonplace.
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