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A GENERALIZATION OF AN ADDITION THEOREM
FOR SOLVABLE GROUPS

THOMAS YUSTER AND BRUCE PETERSON

The “sets” in this paper are actually multi-sets. That is, we allow an
element to occur several times in a set and distinguish between the number
of elements in a set and the number of distinct elements in the set. On the
few occasions when we need to avoid repetition we will use the term
“ordinary set.”

Definition. Let G be a group and let S a set of elements of G. An r-sum in
S is an ordered subset of S of cardinality r; the result of that r-sum is the
product of its elements in the designated order.

Definition. 1f S is a set, r(x, S) denotes the number of times x appears in
S and [x, S]is a set consisting of r(x, S) copies of x. An n-set or n-subset is
a set consisting of n elements. Hence [x, S] is an r(x, S)-subset of S.

The following result due to Cauchy [1] will be used throughout the
paper.

PROPOSITION 1. Let A and B be ordinary subsets of Z,, (the integers mod
n) with |A| = a and |B| = b. If n is prime then either

A+ B=Z,or|A + B| = (a+b—1).

In this paper, we will generalize the following result. It was originally
proved for abelian groups by Erdos, Ginsburg and Ziv [2] and was later
generalized to solvable groups. It is a direct consequence of Proposition
1.

PROPOSITION 2. Let G be a solvable group of order n and let S be a (2n —
1)-subset of G. Then S contains an n-sum of result 1.

This result does not hold if 2n — 1 is replaced by 2n — 2 since a subset
of Z, consisting of n — 1 0’s and n — 1 I’s contains no n-sum of result 1.
Our main theorem is the following generalization of Proposition 2.

THEOREM 1. Let G be a solvable group of order n and S a 2n — 2)-subset
of G which contains no n-sum of result 1. Then:

1. There are exactly two distinct elements x and y in S,

2.r(x,S) =r(y,S) =n — 1, and

3. G is cyclic.
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LEMMA 1. Let G be a counter-example to Theorem 1 with |G| minimal,
and let K<a G with 1 < |K| < |G|. Let |G| = ab and |K| = b, and let SF be
the image of S in G/K. Then:
1. Any set of ¢ a-sums of S with results in K can be extended to a set of 2b
— 2 a-sums of S with results in K.

2. Any set of 2b — 2 a-sums of S with results in K contains exacily two
distinct results, with each result occurring exactly b — 1 times. There is
no set of 2b — 1 a-sums of S with results in K.

3. Both K and G/K are cyclic.

4. There are exactly two distinct elements x and y in S, and

r(x, S#) = r(y, S#) = — 1 (mod a).

Proof. 1. We have |G/K| = a, so if T is an r-subset of G with r = 2a —
1, and 7#1s its image in G/ K, T contains an a-sum of result 1 and thus T
contains an a-sum with result in K. Thus if we have ¢ g-sums in S with
results in K, there are

(2ab —2) —ca=2b — ¢c)a — 2
other elements in S. If ¢ < 2b — 2, then
2b — ¢)a — 2 > 2a — 2,

so we can obtain another a-sum with result in K.

2. Suppose that S contains 2b — 1 a-sums with results in K. Let 7 be the
set of these results. Then Proposition 2 implies that there is a b-sum in T of
result 1. Hence there is an n-sum in S of result 1. Thus we may assume that
there are at most 2b — 2 a-sums in S with results in K. Now suppose that
S contains 2b — 2 a-sums with results in K. Let T be the set of these
results. Since K < G, minimality assures that there is a b-sum of result 1 in
T unless there are exactly two elements in 7 and each appears exactly b —
1 times.

3. Suppose that K is not cyclic. By part 1, we can find 2b — 2 g-sums of
S with results in K. Let T be the set of these results. Since K < G and K is
not cyclic, T contains a b-sum of result 1, and S contains an n-sum of
result 1. Thus K is cyclic.

Now suppose that G/K is not cyclic. Since |G/K| < |G|, if T is any
subset of S with |T| = 2a — 2, then T contains an g-sum with result in K.
By part 1, we can find 26 — 2 a-sums of S with results in K. There are

2ab —2) — (2b — 2)a = 2a — 2

other elements in S and thus another a-sum with result in K. This
contradicts part 2, and hence G/K is cyclic.

4. It is clear that S must contain at least two distinct elements, for
otherwise any a-subset of S would be an a-sum with result in K, and there
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would be 2b — 1 a-sums of S with results in K, contradicting part 2.
Suppose first that S contains exactly two distinct elements x and y. After
forming all the a-sums of result 1 we can from [x, S#], at most a — 1
elements remain. Doing the same thing in [y, S#], again at most a — 1
elements remain. If r(x, S#) or r(y, S#) is not congruent to — 1(mod a),
then there must be fewer than 2a — 2 elements left over which means we
must have used at least

(ab — 2) — 2a — 3) = 2b — 2)a + 1

elements to form a-sums. Since the number of elements used must be
divisible by a, we must have formed at least 2b — 1 a-sums of result 1.

Thus in S, there are at least 26 — 1 a-sums with results in K. This
contradicts part 2. Thus if there are exactly two distinct elements x and y
in S then

r(x, S#) = r(y, S¥) = —l(mod a).

Now suppose that S# contains at least three distinct elements x, y, and
z. Then clearly a > 2. Let

T =S5— {x,y,z}.

Then |T#| = 2ab — 5. Suppose first that ¢ > 3. If we have formed ¢
a-sums in 7. of result 1, there are

(2ab — 5 —ca=2b —ca—5=22b —c— la — 1

elements left. Hence we can form 2b — 2 g-sums in 7.# of result 1. There
are 2a — 2 elements of S.#which have not been used, and at least three of
these are distinct. Since |G/ H| < |G|, we can form another a-sum of result
1. Hence there are 2b — 1 a-sums of S with results in K. This contradicts
part 2, so we may assume that ¢ = 3.

Now part | implies that we can form 2b — 2 3-sums with result 1 in S.£
There is a set consisting of exactly 4 elements of S.# which were not used
to form these 3-sums. If one of x, y, or z appears 3 times in this set, or each
element appears at least once, we can form another a-sum of result 1, since
|G/K| = 3 and hence x + y + z = 1. Thus we may assume that the set of
remaining elements is 7 = {x, x, y, y}. Since z is in S we must have
formed a 3-sum of the form {x, y, z} or of the form {z, z, z}.

In the first case, we can combine the 3-sum with T and form {x, x, x}
and {y, y, v}, both of which have result 1. In the second case, we can
combine the 3-sum with 7 and form two 3-sums of the form {x, y, z}, both
of which have result 1. Thus in either case we have produced 26 — 1
3-sums of S of result 1. This contradiction establishes part 4 and
completes the proof.

LEMMA 2. Let G be a group of order n and let S be a (2n — 2)-subset of G
such that S contains no n-sum of result 1. Then S generates G.
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Proof. Suppose not. Let H = <S§>. Then |H| = a where ab = n with a
< n. In any (2a — 1)-subset of H there is an a-sum of result 1. Now

S| =2n —2=2ab — 2= 2ab — b =b(2a — 1),

so we can find b a-sums of result 1 in S. But then S contains an n-sum of
result 1.

LEMMA 3. Let G be a group of order n = ab, and let T be a set of elements
of G such that T contains no n-sum of result 1. Suppose that T = T\ U T,
U ... U T,and for each i with 1 =i = r, every a-subset of T; is an a-sum of
result. 1. Then

T = ab — 1) + r(a — 1)

Proof. For each i, we form as many a-sums in 7; as possible. Suppose
after running through all of the 7;’s, we have formed ¢ a-sums. All of these
a-sums have result 1, so we can form an n-sum of result 1 unless ¢ = b —
1. If, after removing the elements to form these a-sums, there is a 7; with
at least a elements remaining, we can form another a-sum of result 1. Thus
no T; has more than @ — 1 elements remaining. We have used at most
a(b — 1) elements of T to form a-sums and there are at most r(a — 1)
elements remaining. Therefore

IT) =ab — 1) + r(a — 1).

Proof of Theorem 1. We will use additive notation here when we are
working with abelian groups. Assume that G is a counter-example of
minimal order and let S be a (2n — 2)-subset of G containing no n-sum of
result 1. We observe that if G is abelian and x is an element of G, then S +
x is also a (2n — 2)-set containing no x#-sum of result 0. Clearly then we
may replace S by S + x and assume that

r0,S) = r(y, S) forall yin S.
The proof proceeds in a series of steps.

Step 1. If G is abelian and S contains exactly 3 distinct elements x, y,
and z, then it is not the case that x = O and y = —z.

Proof. 1f not, we may assume that
r0,8) = r(y, S) = r(=y,8).

Choose T a subset of [y, S] with |T| = r(— y, S). Then in the set T U
[—y, S], there is a 2i-sum of result 0 for 1 = i = |T). Since r(0, §) > 0, S
contains an n-sum of result O unless

r0,8) +2r(—y,S) =n — 1,

and since r(y, S) = n — 1,
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r©0,8) +r(y,S) + 2r(—y,S) =2n — 2.
But #(—y, ) > 0, so
S| = r(0,8) + r(y,S) +r(—y,S) < 2n— 2
This is a contradiction.
Step 2. If G is abelian, then #n is not prime.

Proof. Suppose that n is prime. We observe that S must contain at least
three distinct elements. We have that (0, S) = n — 1 and since we may
assume that (0, S) = r(x, S) for all xin G — {0}, it follows that r(x, S)
=n — 2forall x in G — {0}. Choose g, a non-zero element of S. Step 1
implies that there is an element 4 in S whichisnotQorgor — g. Let T} =
{0,g}and T, = {0, h}. No element of S — (7} U T5) appears more than
n — 2 times, so we can partition S — (7, U T,) into n — 2 non-empty
ordinary subsets of G. Call these subsets 73, ..., T,, and let

A=T,+ T, +...+ T,

Clearly |T) + T,| = 4. Proposition 1 applied n — 2 times implies that 4 =
G which contradicts the non-existence of an n-sum of result 0.

Step 3. G is not isomorphic to Z, X Z, where 1 < a < b.

Proof. Suppose that G is isomorphic to Z, X Z;. Clearly b = 3. By
applying Lemma 1 to Z, <t G and Z, <O G, we can assume there are
exactly at most four distinct elements in S and, by replacing S by S + u
for the appropriate u and observing that S still must generate G, that these
elements are w = (0, 0), x = (1,0),y = (0, 1), and z = (1, 1). We may also
assume that r(w, S) is at least as large as each of r(x, S), r(y, S), and r(z,
S). Applying Lemma 3 to [w, S] U [x, S] we conclude that

row, ) +r(x, ) =ab— 1) +2a—1)=ab +a— 2,
and hence that
r(y,S) +r(z,S) =2 2n —2) —(ab +a—2)=ab — 1) = 2a.

If r(y, S) > 0, we can form an a-sum in [y, S] U [z, S] of result (0, a)
and still have an element y = (0, 1) left over. If 5 = 3 then a = 2 and |S]|
= 10, and thus

r(w,S) 23 =2a — 1.
If b > 3 then
S| =2n —2=8a — 2

so r(w, §) = 2a. In either case, we can form an a-sum of result (0, 1) and
another of result (0, 0) in [w, S] U {»}. This contradicts Lemma 1, and
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thus r(y, S) = 0. Therefore r(z, S) = 2a. Thus if r(x, S) > 0, we can form
two a-sums in [z, S] U [x, S}, one of result (0, a) and one of result (0,
a — 1). But there is an g-sum of result (0, 0) in [w, S], which again
contradicts Lemma 1. Hence 7(x, ) = 0 and the assertion follows.

Step 4. G is not cyclic of prime power order.

Proof. Suppose that G is cyclic of order p¢, and let H = <x> be its
unique subgroup of order p. We apply Lemma 1 to G/H. We conclude that
S can be partitioned in two subsets S| and S; with S| contained in / and
S, contained in the coset H + g. Lemma 2 implies that g is a generator of
G and that

1S|| = 1S5l = —I(mod p* ).

We may assume that |S|| = |S,|, and thus that |S;| = p* — 1. Now any (2p
— 1)-subset of S| contains a p-sum of result 0. Thus if

ISif=p+p —1

we can find a p“-sum of result 0. We conclude that
ISif<p*+p—1

and hence
ISil = 1S3l = p* — L.

Every element of S| can be written in the form u;, = ¢;x and every
element of S, can be written in the formv, = g + dxfor 1 =i = p* — 1,
where ¢; and d; are integers with 0 = ¢;, d; = p — 1. Since S is not a
counter-example if all the ¢;’s are identical and all the d;’s are identical, we
may assume that not all of the ¢’s are identical. Hence there is a
(p* Y-sum in S, of result other than 0. Since S, is contained in H, any
(Zp — 1)-subset of S| contains a p-sum of result 0. It follows that any
(p*~ ' 4+ p — 1)-subset of S, contains a (p* " "-sum of result 0. Thus,
besides the (p¢~!)-sum of result different from 0, we can find p — 2 other
(p* "-sums in S, all of result 0.

Now look at S, — g. This set consists of elements of H, so, just as
above, it must contain p — 1 (p®~")-sums of result 0. Hence S, contains
p — 1 (p* Y-sums of result p ! g. Since Lemma 2 implies that g
generates G, we know that p¢ ! g is an element of H but is not 0. We now
have 2p — 2 (p“ ')-sums in H but exactly p — 2 of these have result 0.
This contradicts Lemma 1, even when p = 2.

Step 5. G is not elementary abelian of rank 2.

Proof. If G is elementary abelian of rank 2, then G is isomorphic to Z,
X Z,. By applying Lemma 1 to each factor in the product, we conclude
that there are at most 4 distinct elements in S. We can take these elements
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tobew = (0,0), x = (1,0),y = (0, 1), and z = (1, 1). Any p-subset of [z,
S]1is a p-sum of result (0, 0), and the same is true for the sets [w, S], [x, S].
and [y, S]. Thus Lemma 3 implies that

ISISp(p— 1 +4p—1)=p>+3p—4

But |S| — 2p> — 2s02p? —2=p?> 4+ 3p —dand hencep(p — 3) + 2 =
0. Thusp = 2, |G| = 4 and |S| = 6. There cannot be two different 2-sums
of result (0, 0) in S, so at most one element in S can appear more than
once. Since that element cannot appear as many as 4 times all of w, x, y
and z must appear in S. This is impossible because

x+y+z+w=(0,0).
Step 6. G 1s not abelian.

Proof. Suppose the contrary and let P be a Sylow-p subgroup of G with
[P| > 1. Lemma 1 implies that G/P is cyclic. If Q is a Sylow-g subgroup of
G with ¢ # p we conclude that Q is cyclic and, by applying Lemma 1 to
G/Q, that P is cyclic. Thus either G is cyclic or G is a p-group. Steps 2, 3,
and 4 imply that G is not cyclic, so G must be a non-cyclic abelian
p-group. If H, the Frattini subgroup of G, is non-trivial, then G/ H must be
cyclic. But then G is cyclic, which is a contradiction. Therefore H is trivial
and thus G is elementary abelian. Step 5 implies that the rank of G is at
least 3. If K is any subgroup of G with |K| = p, then G/K is not cyclic.
This is a contradiction.

Step 7. Final contradiction.

Proof. Step 6 implies that G is a solvable, non-abelian group. Choose H
<1 G so that |G/ H| is prime. Observe that G/H is cyclic. Lemma 1 implies
that H is cyclic. Let |G/H| = a and |H| = b. If there are ab + b — 1
elements of S in H, we can form a b-sums of result 1 and hence an n-sum
of result 1, so we may assume that there are at least

Qab — 2) — (ab + a — 2) = a(b — 1)

elements in S but not in H. Let T be the set of those elements.

Now G is non-abelian, so » > 2, and thus |T| = 2a. Now |G/H| = a, so
it follows that T contains an a-sum with result in H. Using Lemma 1, we
extend this a-sum to a set of 2b — 2 g-sums of S with results in H. Let Z
be the set of results of these a-sums. At least one of these a-sums consists
entirely of elements of G — H. Let U = {u, . . ., u, } be this a-sum. Since
G/H is abelian, any rearrangement of the elements of U also has result in
H. Rearrangement cannot change the result of U without contradicting
Lemma 1. Thus the elements of U, indeed of any a-sum with result in H,
may be rearranged without affecting the result. Let 7 be the result of U.
We may assume that 4~ = xy = yx where x is an element of G — H.
Clearly x commutes with A.
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Lemma 1 implies that there are exactly two distinct elements of Z. Let
k # h be the other element that appears in Z. Lemma | implies that

rth, Z) =rk,Z)y = b — 1,

and Lemma 2 implies that (h, k) = H. Let
Y=2— {h k}.

The results of realizable (b — 2)-sums of Y are of the form
Wikb=r=% for0=r=b— 2

If these results are not all distinct, then it must be the case that »* = k* for
some s with 1 = s = b — 2. Then #*k”° = 1 is a realizable result of a
b-sum in Z. We conclude that there are b — 1 distinct results of (b —
2)-sums in Y. If (hk) "' is one of these results then we can form a b-sum of
result 1in Z. Thus we conclude that all of the elements of H except (hk) '
are realizable as results of (b — 2)-sums in Y.

Now if we can rearrange the elements in an a-sum of result of # and an
a-sum of result k to obtain a 2a-sum with result in H different from hk,
then this result will have an inverse which is realizable as a (b — 2)-sum in
Y. Then we can combine these two sums and form an r-sum of result 1.
Since this is impossible we may assume that no such rearrangement exists.
But & = xy and G/H is abelian, so xky is in H. Therefore

hk = kh = kxy = xky and xk = kx.

But |G/H]| is prime and (h, k) = H, so {(x, h, k) = G. Now h and k
commute, and it follows that G is abelian. This final contradiction
establishes the theorem.

We remark that it is now easy to classify all solvable groups G of order n
and (2n — 2)-subsets S of G such that S contains no n-sum of result 1.

CoROLLARY. Let G be a solvable group of order n and let S be a 2n —
2)-subset of G. Then S contains no n-sum of result 1 if and only if both of the
Jfollowing conditions hold:

1. G is cyclic, and

2. S can be written as S = T + x (G is abelian) where x is an arbitrary
element of G and T consists of n — 1 0’s and n — 1 g’s with {g) = G.
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