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A GENERALIZATION OF AN ADDITION THEOREM 
FOR SOLVABLE GROUPS 

THOMAS YUSTER AND BRUCE PETERSON 

The "sets" in this paper are actually multi-sets. That is, we allow an 
element to occur several times in a set and distinguish between the number 
of elements in a set and the number of distinct elements in the set. On the 
few occasions when we need to avoid repetition we will use the term 
"ordinary set." 

Definition. Let G be a group and let S a set of elements of G. An r-sum in 
S is an ordered subset of S of cardinality r\ the result of that r-sum is the 
product of its elements in the designated order. 

Definition. If S is a set, r(x, S) denotes the number of times x appears in 
S and [x, S] is a set consisting of r(x, S) copies of x. An n-set or n-subset is 
a set consisting of n elements. Hence [x, S] is an r(x, S)-subset of S. 

The following result due to Cauchy [1] will be used throughout the 
paper. 

PROPOSITION 1. Let A and B be ordinary subsets ofZn (the integers mod 
n) with |A| = a and \B\ = b. If n is prime then either 

A + B =Zn or \A + B\ ^ (a + b - 1). 

In this paper, we will generalize the following result. It was originally 
proved for abelian groups by Erdôs, Ginsburg and Ziv [2] and was later 
generalized to solvable groups. It is a direct consequence of Proposition 
1. 

PROPOSITION 2. Let G be a solvable group of order n and let S be a (2n — 
1)-subset of G. Then S contains an n-sum of result 1. 

This result does not hold if 2/7 — 1 is replaced by 2n — 2 since a subset 
of Zn consisting of n — 1 O's and n — 1 l's contains no «-sum of result 1. 
Our main theorem is the following generalization of Proposition 2. 

THEOREM 1. Let G be a solvable group of order n and S a (2n — 2)-subset 
of G which contains no n-sum of result 1. Then: 

1. There are exactly two distinct elements x and y in S, 
2. r(x, S) = r(y, S) = n — 1, and 
3. G is cyclic. 
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LEMMA 1. Let G be a counter-example to Theorem 1 with \G\ minimal, 
and let K <3 G with \<\K\< \G\. Let \G\ = aband\K\ = b, and let S Jbe 
the image of S in G IK. Then'. 

1. Any set of c a-sums of S with results in K can be extended to a set of 2b 
— 2 a-sums of S with results in K 

2. Any set of 2b — 2 a-sums of S with results in K contains exactly two 
distinct results, with each result occurring exactly b — 1 times. There is 
no set of2b— 1 a-sums of S with results in K. 

3. Both K and G/K are cyclic. 
4. There are exactly two distinct elements x and y in S J, and 

r(x, SJ) = r(y, SJ) = - \ (mod a). 

Proof. 1. We have \G/K\ = a, so if T is an r-subset of G with r = 2a — 
1, and 7I/is its image in G/K, ^ c o n t a i n s an a-sum of result 1 and thus T 
contains an a-sum with result in K. Thus if we have c a-sums in S with 
results in K, there are 

(lab - 2) - ca = (2b - c)a - 2 

other elements in S. If c < 2b — 2, then 

(2b - c)a - 2 > 2a ~ 2, 

so we can obtain another a-sum with result in K. 
2. Suppose that S contains 2b — 1 a-sums with results in K. Let Tbe the 

set of these results. Then Proposition 2 implies that there is a è-sum in T of 
result 1. Hence there is an «-sum in S of result 1. Thus we may assume that 
there are at most 2b — 2 a-sums in S with results in K. Now suppose that 
S contains 2b — 2 a-sums with results in K. Let T be the set of these 
results. Since K < G, minimality assures that there is a Z>-sum of result 1 in 
T unless there are exactly two elements in T and each appears exactly b — 
1 times. 

3. Suppose that K is not cyclic. By part 1, we can find 2b — 2 a-sums of 
S with results in K. Let T be the set of these results. Since K < G and K is 
not cyclic, T contains a &-sum of result 1, and S contains an «-sum of 
result 1. Thus K is cyclic. 

Now suppose that G/K is not cyclic. Since \GIK\ < \G\, if T is any 
subset of S with \T\ = 2a — 2, then Tcontains an a-sum with result in K. 
By part 1, we can find 2b — 2 a-sums of S with results in K. There are 

(2ab ~ 2) - (2b - 2)a = 2a - 2 

other elements in S and thus another a-sum with result in K. This 
contradicts part 2, and hence G/K is cyclic. 

4. It is clear that 5'J must contain at least two distinct elements, for 
otherwise any a-subset of S would be an a-sum with result in K, and there 
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would be 2b — 1 a-sums of S with results in K, contradicting part 2. 
Suppose first that S J contains exactly two distinct elements x and y. After 
forming all the a-sums of result 1 we can from [x, S J], at most a — 1 
elements remain. Doing the same thing in [y, S J], again at most a — 1 
elements remain. If r(x, S J) or r(y, S J) is not congruent to — l(mod a), 
then there must be fewer than 2a — 2 elements left over which means we 
must have used at least 

(2ab - 2) - (2a - 3) = (2b - 2)a + 1 

elements to form «-sums. Since the number of elements used must be 
divisible by a, we must have formed at least 2b — 1 a-sums of result 1. 
Thus in S, there are at least 2b — 1 û-sums with results in K. This 
contradicts part 2. Thus if there are exactly two distinct elements x and y 
in S J, then 

r(x, SJf) = r(y, S J) = - l(mod a). 

Now suppose that S J contains at least three distinct elements x, y, and 
z. Then clearly a > 2. Let 

TJ= SJ - {x,y, z}. 

Then \TJ\ = 2ab — 5. Suppose first that a > 3. If we have formed c 
«-sums in TJ of result 1, there are 

{lab - 5) - ca = (2b - c)a - 5 ^ (2b - c - \)a - 1 

elements left. Hence we can form 2b — 2 a-sums in TJot result 1. There 
are 2a — 2 elements of S Jwhich have not been used, and at least three of 
these are distinct. Since \G/H\ < |G|, we can form another a-sum of result 
1. Hence there are 2b — 1 a-sums of S with results in K. This contradicts 
part 2, so we may assume that a = 3. 

Now part 1 implies that we can form 2b — 2 3-sums with result 1 in SJ. 
There is a set consisting of exactly 4 elements of S J which were not used 
to form these 3-sums. If one of x, yy or z appears 3 times in this set, or each 
element appears at least once, we can form another a-sum of result 1, since 
\G/K\ = 3 and hence x + y + z = 1. Thus we may assume that the set of 
remaining elements is T = {x, x, y, y}. Since z is in SJ, we must have 
formed a 3-sum of the form {x, y, z} or of the form {z, z, z}. 

In the first case, we can combine the 3-sum with T and form {x, x, x) 
and {y, y, y), both of which have result 1. In the second case, we can 
combine the 3-sum with T and form two 3-sums of the form {x, y, z }, both 
of which have result 1. Thus in either case we have produced 2b — 1 
3-sums of S J of result 1. This contradiction establishes part 4 and 
completes the proof. 

LEMMA 2. Let G be a group of order n and let S be a (2n — 2)-subset of G 
such that S contains no n-sum of result 1. Then S generates G. 
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Proof. Suppose not. Let H = <S>. Then \H\ = a where ab = n with a 
< n. In any (2a — l)-subset of H there is an a-sum of result l. Now 

\S\ = 2n - 2 = 2ab - 2 ^ 2ab - b = b(2a ~ 1), 

so we can find b a-sums of result 1 in S. But then S contains an «-sum of 
result 1. 

LEMMA 3. Let G be a group of order « = ab, and let T be a set oj elements 
of G such that T contains no n-sum of result 1. Suppose that T = T\ U 7^ 
U . . . U Tr and for each i with 1 = i = r, every a-subset ofTl is an a-sum of 
result. 1. Then 

\T\ ^ a(b ~ 1) + r(a - 1). 

Proof For each /, we form as many a-sums in Tt as possible. Suppose 
after running through all of the T/s, we have formed c a-sums. All of these 
tf-sums have result 1, so we can form an «-sum of result 1 unless c = b — 
1. If, after removing the elements to form these a-sums, there is a Tl with 
at least a elements remaining, we can form another tf-sum of result 1. Thus 
no Tj has more than a — 1 elements remaining. We have used at most 
a(b — 1) elements of T to form <2-sums and there are at most r(a — 1) 
elements remaining. Therefore 

171 ^ a(b - 1) + r(a - 1). 

Proof of Theorem 1. We will use additive notation here when we are 
working with abelian groups. Assume that G is a counter-example of 
minimal order and let S be a (2n — 2)-subset of G containing no «-sum of 
result 1. We observe that if G is abelian and x is an element of G, then S + 
x is also a (2n — 2)-set containing no «-sum of result 0. Clearly then we 
may replace S by S + x and assume that 

r(0, S) ^ r(y, S) for all y in S. 

The proof proceeds in a series of steps. 

Step 1. If G is abelian and S contains exactly 3 distinct elements x, y, 
and z, then it is not the case that x = 0 and y = — z. 

Proof If not, we may assume that 

r(0,S) ^ r(y,S) ^ r(-y, S). 

Choose T a subset of [y, S] with |71 = r(— y, S). Then in the set T U 
[-y9 S], there is a 2/-sum of result 0 for 1 S / ê \T\. Since r(0, S) > 0, S 
contains an «-sum of result 0 unless 

r(0, S) + 2 r ( - y, S) ^ « - 1, 

and since r(y, S) = « — 1, 
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r(0, S) + r(y, S) + 2 r ( - y , S) ^ 2n - 2. 

But r(->>, 5) > 0, so 

|S| = r(0, S) + r(j>, S) + r(-y, S) < 2n - 2. 

This is a contradiction. 

S/e/? 2. If G is abelian, then n is not prime. 

Proof. Suppose that n is prime. We observe that S must contain at least 
three distinct elements. We have that r(0, S) = n — 1 and since we may 
assume that r(0, S) â r(x, S) for all x in G — {0}, it follows that r(x, 5) 
^ « — 2 for all x m G — {0}. Choose g, a non-zero element of S. Step 1 
implies that there is an element h in S which is not 0 or g or — g. Let T\ = 
{0, g) and T2 = {0, /z}. No element of S — (Tx U T2) appears more than 
n — 2 times, so we can partition S — (T\ U T2) into n — 2 non-empty 
ordinary subsets of G. Call these subsets T-$, . . . , Tn, and let 

^ = TX + r2 + . . . + T„. 

Clearly \T\ + T2\ = 4. Proposition 1 applied n — 2 times implies that ,4 = 
G which contradicts the non-existence of an «-sum of result 0. 

Step 3. G is not isomorphic to Za X Zh where 1 < a < b. 

Proof. Suppose that G is isomorphic to Za X Zh. Clearly b = 3. By 
applying Lemma 1 to Za <3 G and Zj, <d G, we can assume there are 
exactly at most four distinct elements in S and, by replacing S by S + w 
for the appropriate w and observing that 5* still must generate G, that these 
elements are w = (0, 0), x = (1, 0),y = (0, 1), and z = (1, 1). We may also 
assume that r(w, S) is at least as large as each of r(x, £), r(y, S), and r(z, 
S). Applying Lemma 3 to [w, S] U [x, S] we conclude that 

r(w, S) + r(x, S) ^ a(6 - I) + 2(a - \) = ab + a - 2, 

and hence that 

r(>>, S) + r(z, 5) ^ (2n - 2) - (ab + a - 2) = a(b - 1) ^ 2a. 

If r(_y, 5) > 0, we can form an a-sum in [y, S] U [z, £] of result (0, a) 
and still have an element^ = (0, 1) left over. If b = 3 then a = 2 and \S\ 
= 10, and thus 

r(w, S) ^ 3 = 2A - 1. 

If 6 > 3 then 

|S| = 2/i - 2 ^ 8A - 2 

so r(w, £) = 2a. In either case, we can form an a-sum of result (0, 1) and 
another of result (0, 0) in [w, S] U {y}. This contradicts Lemma 1, and 
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thus r(y, S) = 0. Therefore r(z, S) ^ 2a. Thus if r(x, S) > 0, we can form 
two tf-sums in [z, S] U [x, S], one of result (0, a) and one of result (0, 
a — 1). But there is an a-sum of result (0, 0) in [w, S], which again 
contradicts Lemma 1. Hence r(x, S) = 0 and the assertion follows. 

Step 4. G is not cyclic of prime power order. 

Proof. Suppose that G is cyclic of order pa, and let H = <x> be its 
unique subgroup of order p. We apply Lemma 1 to G/H. We conclude that 
S can be partitioned in two subsets S\ and S2 with 5i contained in H and 
S2 contained in the coset H + g. Lemma 2 implies that g is a generator of 
G and that 

\SX\ = \S2\ = ~\(modpa-]). 

We may assume that \S\\ ^ |*S2|, and thus that \S\\ = pa — I. Now any (2p 
— l)-subset of Si contains a/?-sum of result 0. Thus if 

\SX\ ^pa + p - 1 

we can find a pa-sum of result 0. We conclude that 

\Si\ <pa +p - 1 ' 

and hence 

|5 , | = |S2 | = p" - 1. 

Every element of S\ can be written in the form ut = c{x and every 
element of S2 can be written in the form vz = g + dfx for 1 ^ i ^ pa — 1, 
where c7 and Jz are integers with 0 ^ ch dt t^ p — \. Since ^ is not a 
counter-example if all the C/'s are identical and all the dfs are identical, we 
may assume that not all of the c/s are identical. Hence there is a 
( ^ _ 1 ) - sum in S\ of result other than 0. Since S\ is contained in H, any 
(2/7 — l)-subset of Si contains a /?-sum of result 0. It follows that any 
(pa~l -\- p — l)-subset of S\ contains a (pa~x)-s\\m of result 0. Thus, 
besides the ( / _ 1 ) - s u m of result different from 0, we can find/? — 2 other 
( / _ 1 ) - s u m s in S\, all of result 0. 

Now look at 5*2 — g. This set consists of elements of H, so, just as 
above, it must contain p — 1 ( / _ 1 ) - s u m s of result 0. Hence S2 contains 
p — 1 ( / _ 1 ) - s u m s of result pa~x g. Since Lemma 2 implies that g 
generates G, we know that/?a~ l g is an element of H but is not 0. We now 
have 2/? — 2 ( / _ 1 ) - s u m s in H but exactly/? — 2 of these have result 0. 
This contradicts Lemma 1, even when/? = 2. 

Step 5. G is not elementary abelian of rank 2. 

Proof If G is elementary abelian of rank 2, then G is isomorphic to Zp 

X Zp. By applying Lemma 1 to each factor in the product, we conclude 
that there are at most 4 distinct elements in S. We can take these elements 
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to be w = (0, 0), x = (1, 0), y = (0, 1), and z = (1, 1). Any ^-subset of [z, 
S] is a/?-sum of result (0, 0), and the same is true for the sets [w, S], [x, 5], 
and [y, S]. Thus Lemma 3 implies that 

\S\ ^p(p - 1) + 4(p - 1) =p2 + 3p - 4. 

But |S| = 2/?2 - 2 so 2p2 - 2 < />2 + 3/? - 4 and hencep(p - 3) 4- 2 ^ 
0. Thus/7 = 2, |G| = 4 and |S| = 6. There cannot be two different 2-sums 
of result (0, 0) in S, so at most one element in S can appear more than 
once. Since that element cannot appear as many as 4 times all of w, x, y 
and z must appear in S. This is impossible because 

x + y + z + w = (0, 0). 

S/e/? 6. G is not abelian. 

Proof. Suppose the contrary and let P be a Sylow-/? subgroup of G with 
\P\ > 1. Lemma 1 implies that G/P is cyclic. If g is a Sylow-g subgroup of 
G with q ¥= p we conclude that g is cyclic and, by applying Lemma 1 to 
G/Q, that P is cyclic. Thus either G is cyclic or G is a/?-group. Steps 2, 3, 
and 4 imply that G is not cyclic, so G must be a non-cyclic abelian 
/?-group. If H, the Frattini subgroup of G, is non-trivial, then GIH must be 
cyclic. But then G is cyclic, which is a contradiction. Therefore / / is trivial 
and thus G is elementary abelian. Step 5 implies that the rank of G is at 
least 3. If K is any subgroup of G with \K\ = p, then G/K is not cyclic. 
This is a contradiction. 

Step 7. Final contradiction. 

Proof. Step 6 implies that G is a solvable, non-abelian group. Choose H 
< G s o that \G/H\ is prime. Observe that G/H is cyclic. Lemma 1 implies 
that H is cyclic. Let \G/H\ = a and \H\ = b. If there are ab + è - 1 
elements of 5 in H, we can form A fr-sums of result 1 and hence an «-sum 
of result 1, so we may assume that there are at least 

(lab - 2) - (ab + a - 2) = a(b - 1) 

elements in S but not in H. Let T be the set of those elements. 
Now G is non-abelian, so b > 2, and thus |T| ^ 2Û. NOW \G/H\ = a, so 

it follows that T contains an #-sum with result in H. Using Lemma 1, we 
extend this a-sum to a set of 2b — 2 «-sums of S with results in H. Let Z 
be the set of results of these a-sums. At least one of these a-sums consists 
entirely of elements of G — H. Let U = {u\, . . . , ua} be this «-sum. Since 
G/H is abelian, any rearrangement of the elements of U also has result in 
H. Rearrangement cannot change the result of U without contradicting 
Lemma 1. Thus the elements of (7, indeed of any «-sum with result in //, 
may be rearranged without affecting the result. Let h be the result of U. 
We may assume that h = xy = yx where x is an element of G — H. 
Clearly x commutes with h. 
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Lemma l implies that there are exactly two distinct elements of Z. Let 
k ^ h be the other element that appears in Z. Lemma 1 implies that 

r(h, Z) = r(k, Z) = b - I, 

and Lemma 2 implies that (h, k) = H. Let 

Y = Z - {h, k). 

The results of realizable (b — 2)-sums of Y are of the form 

hrkb-r-2 for 0 ^ r ^ Z? ~ 2. 

If these results are not all distinct, then it must be the case that hs = ks for 
some s with 1 ^ s ^ b — 2. Then hskb~s = 1 is a realizable result of a 
6-sum in Z. We conclude that there are b — 1 distinct results of (b — 
2)-sums in Y. If (hk)~] is one of these results then we can form a Z?-sum of 
result 1 in Z. Thus we conclude that all of the elements of H except (hk)~] 

are realizable as results of (b ~ 2)-sums in Y. 
Now if we can rearrange the elements in an a-sum of result of h and an 

a-sum of result k to obtain a 2a-sum with result in H different from hk, 
then this result will have an inverse which is realizable as a (b ~ 2)-sum in 
Y. Then we can combine these two sums and form an «-sum of result 1. 
Since this is impossible we may assume that no such rearrangement exists. 
But h = xy and G/H is abelian, so xky is in H. Therefore 

hk = kh = kxy = xky and xk = kx. 

But \G/H\ is prime and (h, k) = H, so (JC, h, k) = G. Now h and k 
commute, and it follows that G is abelian. This final contradiction 
establishes the theorem. 

We remark that it is now easy to classify all solvable groups G of order n 
and (2n — 2)-subsets S of G such that S contains no «-sum of result 1. 

COROLLARY. Let G be a solvable group of order n and let S be a (2n — 
2)-subset of G. Then S contains no n-sum of result 1 if and only if both of the 
following conditions hold: 

1. G is cyclic, and 
2. S can be written as S = T + x (G is abelian) where x is an arbitrary 

element of G and T consists of n — 1 O's and n — 1 g's with (g) = G. 
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