COMPACTNESS AND STRONG SEPARATION

DAVID E. COOK

Two point sets H and K are said to be strongly separated if there exist two mutually exclusive domains D_{H} and D_{K} containing H and K respectively such that either \bar{D}_{H} and \bar{D}_{K} are mutually exclusive or $\bar{D}_{H} \cdot \bar{D}_{K}$ is $\bar{H} \cdot \bar{K}$. R. L. Moore has shown [2, Theorem 153, Chapter I] that if S is a normal Moore space and H and K are two mutually separated point sets then H and K are strongly separated. In this paper it is shown that if S is a Moore space, (1) H and K are two mutually separated point sets and (2) the closure of the set of all boundary points of H which do not belong to \bar{K} is compact, then H and K are strongly separated. It is further shown that the above proposition does not remain true in every separable space satisfying Moore's Axioms 0-6 if condition (2) of its hypothesis is replaced by either (a) H and K are conditionally compact, there exists a domain containing H whose closure does not intersect \bar{K}, and there exists a domain containing K whose closure does not intersect \bar{H} or (b) H is a conditionally compact domain, \bar{H} does not intersect \bar{K}, and K is conditionally compact. It is also shown that if S is connected, M separates H from K in S and the boundary of M is compact then some closed subset of M separates H from K.

A Moore space is one satisfying Axiom 0 and the first three parts of Axiom 1 of [2]. It is assumed throughout that S is a Moore space. The terms compact and conditionally compact are as in [3] and other definitions and notation are as in [2].

Theorem 1. Suppose H and K are two mutually separated point sets such that \bar{H} is compact. Then H and K are strongly separated.

Proof. Suppose \bar{H} and \bar{K} are mutually exclusive. Then the conclusion follows from [2, Theorem 16, Chapter I].

Suppose \bar{H} and \bar{K} are not mutually exclusive. Then $\bar{H} \cdot \bar{K}$ is compact. With the aid of [2, Theorem 155, Chapter I] it can be shown that there exists a sequence $D_{1}, D_{2}, D_{3}, \ldots$ of domains such that (1) for each n, D_{n} contains \bar{D}_{n+1}, (2) $\bar{H} \cdot \bar{K}$ is the common part of all of the domains of this sequence, (3) every domain that contains $\bar{H} \cdot \bar{K}$ contains some domain of this sequence,
(4) $S-\bar{D}_{1}$ contains a point of H and a point of K, and (5) there exists a

[^0]sequence $P_{1}, P_{2}, P_{3}, \ldots$ of points such that for each n, P_{n} is a point of $H \cdot\left(D_{n}-\bar{D}_{n+1}\right)$.

Let H_{1} denote $\left(\bar{H}+D_{1}\right)-D_{1}$ and, for each positive integer n, let H_{n+1} denote $\bar{H} \cdot\left(\bar{D}_{n}-D_{n+1}\right)$. For each n, P_{n} belongs to H_{n+1}, H_{n} and \bar{K} are mutually exclusive and closed, H_{n} is compact, and H_{n+2} lies in \bar{D}_{n+1}. Therefore there exists a sequence $E_{1}, E_{2}, E_{3}, \ldots$ such that for each n, E_{n} is a domain containing H_{n}, \bar{E}_{n} does not intersect \bar{K}, and \bar{E}_{n+2} is a subset of D_{n}. Let E denote $\bar{H} \cdot \bar{K}+\sum \bar{E}_{n} . E$ contains no point of K.

Suppose there is a limit point Q of E that does not belong to E. There exists a sequence $Q_{1}, Q_{2}, Q_{3}, \ldots$ of distinct points of E converging to Q. Since for each positive integer n, Q is not a limit point of \bar{E}_{n} and since Q is not a limit point of $\bar{H} \cdot \bar{K}$, there exists an increasing sequence $n_{1}, n_{2}, n_{3}, \ldots$ of integers and a subsequence $Q_{1}{ }^{\prime}, Q_{2}{ }^{\prime}, Q_{3}{ }^{\prime}, \ldots$ of the sequence $Q_{1}, Q_{2}, Q_{3}, \ldots$ such that $n_{1}>2$ and for each $j, Q_{j}{ }^{\prime}$ is a point of $\bar{E}_{n_{j}} . D_{n_{1}-2}, D_{n_{2}-2}, D_{n_{3}-2}, \ldots$ is a sequence of domains such that $\bar{H} \cdot \bar{K}$ is their common part, each of them contains the next one and for each $j, Q_{j}{ }^{\prime}$ is a point of $\left(D_{n_{j-2}}\right)-(\bar{H} \cdot \bar{K})$. It follows from [2, Theorem 151, Chapter I] that $Q_{1}{ }^{\prime}+Q_{2}{ }^{\prime}+Q_{3}{ }^{\prime}+\ldots$ has a limit point belonging to $\bar{H} \cdot \bar{K}$. Since Q is the only limit point of this point set, Q belongs to $\bar{H} \cdot \bar{K}$. This involves a contradiction. Hence E is closed. Therefore $S-E$ is a domain D_{K} containing K.

There exists a sequence $F_{1}, F_{2}, F_{3}, \ldots$ such that for each n, F_{n} is a domain containing H_{n} and \bar{F}_{n} is a subset of E_{n}. Let D_{H} denote $\sum F_{n} . D_{H}$ contains H.

Suppose D_{H} and D_{K} have some point P in common. For some positive integer i, P is a point of F_{i} and for each positive integer n, P is a point of $S-\left(\bar{E}_{n}+\bar{H} \cdot \bar{K}\right)$. Thus P is not a point of $\bar{H} \cdot \bar{K}$ but P belongs to $S-\bar{E}_{i}$. This involves a contradiction. Therefore D_{H} and D_{K} are two mutually exclusive domains containing H and K respectively.

Suppose X is a point of $\bar{H} \cdot \bar{K}$, then X belongs neither to H nor to K but is a limit point of both of them. D_{H} contains H and D_{K} contains K, thus X is a limit point of both D_{H} and D_{K}. Therefore $\bar{D}_{H} \cdot \bar{D}_{K}$ contains $\bar{H} \cdot \bar{K}$.

Suppose some point Y of $\bar{D}_{H} \cdot \bar{D}_{K}$ does not belong to $\bar{H} \cdot \bar{K}$. Since D_{H} and D_{K} are mutually exclusive domains, Y is a limit point of each of them but belongs to neither of them. Suppose Y is a limit point of F_{n} for some positive integer $n . F_{n}$ is a subset of E_{n} and E_{n} is a domain containing Y but containing no point of D_{K}. This involves a contradiction, thus Y is not a limit point of F_{n} for any positive integer n. There exists an increasing sequence $n_{1}, n_{2}, n_{3}, \ldots$ of positive integers and a sequence $Y_{1}, Y_{2}, Y_{3}, \ldots$ of distinct points of D_{H} converging to Y such that $n_{1}>2$ and for each positive integer j, Y_{j} is a point of $F_{n_{j}} . D_{n_{1}-2}, D_{n_{2}-2}, D_{n_{3}-2}, \ldots$ is a sequence of domains such that $\bar{H} \cdot \bar{K}$ is their common part, each of them contains the next one and for each positive integer j, Y_{j} is a point of $\left(D_{n_{j}-2}\right)-(\bar{H} \cdot \bar{K})$. It follows from [2, Theorem 151 , Chapter I] that the point set $Y_{1}+Y_{2}+Y_{3}+\ldots$ has a limit point in $\bar{H} \cdot \bar{K}$. Since Y is the only limit point of this point set, Y belongs to $\bar{H} \cdot \bar{K}$. Therefore $\bar{H} \cdot \bar{K}$ is $\bar{D}_{H} \cdot \bar{D}_{K}$.

Theorem 2. Suppose H and K are two mutually separated point sets such that if M denotes the set of all boundary points of H that do not belong to \bar{K}, \bar{M} is compact. Then H and K are strongly separated.

Proof. There are two cases to be considered.
Case 1. Suppose H is a subset of M. Since \bar{M} is compact, \bar{H} is compact, and the conclusion of this theorem follows from Theorem 1.

Case 2. Suppose H is not a subset of M. Every boundary point of H is a point of $M+\bar{K}$. Since no point of H is a point of \bar{K}, there is a point of H which is not a boundary point of H. Let D denote the domain $(H+M)-M$. Since M and K are two mutually separated point sets and \bar{M} is compact, it follows from Theorem 1 that there exist two mutually exclusive domains D_{M} and $D_{K}{ }^{\prime}$ containing M and K respectively such that either \bar{D}_{M} and $\overline{D_{K}}{ }^{\prime}$ are mutually exclusive or $\bar{D}_{M} \cdot \overline{D_{K}}{ }^{\prime}$ is $\bar{M} \cdot \bar{K}$.

Let D_{K} denote $\left(D_{K}^{\prime}+\bar{H}\right)-\bar{H} . D_{M}$ and D_{K} are two domains containing M and K respectively such that either \bar{D}_{M} and \bar{D}_{K} are mutually exclusive or $\bar{D}_{M} \cdot \bar{D}_{K}$ is $\bar{M} \cdot \bar{K}$. Let D_{H} denote the domain $D+D_{M}$.

Suppose D_{H} contains some point P of D_{K}. P does not belong to D since D is a subset of H and $D_{K}=D_{K^{\prime}}-\bar{H} \cdot D_{K^{\prime}} . P$ does not belong to D_{M} since D_{M} and $D_{K}{ }^{\prime}$ are mutually exclusive. Therefore, D_{H} does not intersect D_{K}.

There are two subcases to be considered.
Case 2A. Suppose that \bar{H} and \bar{K} are mutually exclusive. \bar{M} and \bar{K} are mutually exclusive since \bar{M} is a subset of \bar{H}. Thus \bar{D}_{M} and $\overline{D_{K}^{\prime}}$ are mutually exclusive and therefore \bar{D}_{M} does not intersect \bar{D}_{K}. Suppose some point P belongs to \bar{D} and \bar{D}_{K}. Since D and D_{K} are mutually exclusive domains, P is a boundary point of each of them. Since D is a subset of H and no point of D_{K} is a point of \bar{H}, P is a boundary point of H and since \bar{H} and \bar{K} are mutually exclusive, P is not a point of \bar{K}. Therefore P is a point of M. But M is a subset of \bar{D}_{M}. This involves a contradiction. Therefore \bar{D} and \bar{D}_{K} are mutually exclusive and since $\bar{D}_{H}=\bar{D}+\bar{D}_{M}$, it follows that \bar{D}_{H} and \bar{D}_{K} are mutually exclusive.

Case 2B. Suppose \bar{H} intersects \bar{K} and P is a point of $\bar{H} \cdot \bar{K}$. Since D is $(H+M)-M, D_{M}$ contains M and $D+M$ contains H, it follows that \bar{D}_{H} contains \bar{H} and therefore P is in $\bar{D}_{H} . K$ is a subset of $D_{K}{ }^{\prime} \cdot(S-\bar{H})$, therefore \bar{D}_{K} contains \bar{K} and P is in \bar{D}_{K}. Hence $\bar{H} \cdot \bar{K}$ is a subset of $\bar{D}_{H} \cdot \bar{D}_{K}$.

Suppose some point Q of $\bar{D}_{H} \cdot \bar{D}_{K}$ does not belong to $\bar{H} \cdot \bar{K} . \bar{D}_{H}$ is $\bar{D}+\bar{D}_{M}$. \bar{D}_{K} is the closure of $\left(D_{K}{ }^{\prime}-\bar{H} \cdot D_{K}{ }^{\prime}\right) . \overline{D_{K}^{\prime}}$ contains \bar{D}_{K} and Q is in $\bar{D}_{H} \cdot \overline{D_{K}{ }^{\prime}}$. Therefore Q belongs to either $\bar{D} \cdot \overline{D_{K}{ }^{\prime}}$ or $\bar{D}_{M} \cdot \overline{D_{K}{ }^{\prime}}$. Suppose Q is a point of $\bar{D} \cdot \overline{D_{K}}$. \bar{H} contains \bar{D}, thus Q belongs to $\bar{H} . D$ contains no point of \bar{D}_{K}, thus Q is a limit point of D. If Q is not a limit point of K, Q is a point of M and therefore Q is in either $\bar{H} \cdot \bar{K}$ or \bar{D}_{M}. Suppose Q is in $\bar{D}_{M} \cdot \bar{D}_{K}$. Then Q belongs to $\bar{D}_{M} \cdot \overline{D_{K}}$ and hence to $\bar{M} \cdot \bar{K} . \bar{M}$ is a subset of \bar{H}, therefore Q is in $\bar{H} \cdot \bar{K}$.
$\bar{H} \cdot \bar{K}$ contains $\bar{D}_{H} \cdot \bar{D}_{K}$ and is a subset of it, thus $\bar{H} \cdot \bar{K}$ is $\bar{D}_{H} \cdot \bar{D}_{K}$. Therefore either \bar{D}_{H} and \bar{D}_{K} are mutually exclusive or $\bar{H} \cdot \bar{K}$ is $\bar{D}_{H} \cdot \bar{D}_{K}$.
Theorem 3. If H and K are two mutually separated point sets and one of them has a compact boundary then H and K are strongly separated.
Proof. Suppose H has a compact boundary β. Suppose β is a subset of \bar{K}. Since H and K are mutually separated, H is a domain. $S-\bar{H}$ is a domain D containing K. \bar{H} contains β and since \bar{D} contains \bar{K}, it contains β. Therefore β is a subset of $\bar{H} \cdot \bar{K}$ and $\bar{H} \cdot \bar{D}$. Each point of $\bar{H} \cdot \bar{K}$ is in β, thus $\bar{H} \cdot \bar{D}$ contains $\bar{H} \cdot \bar{K}$. Each point of $\bar{H} \cdot \bar{D}$ is in β, thus $\bar{H} \cdot \bar{K}$ is $\bar{H} \cdot \bar{D}$ and the domains H and D satisfy the conclusion of this theorem. Now suppose β is not a subset of \bar{K}. Since β is closed and compact, the closure of the set of all points of β that do not belong to \bar{K} is compact and it follows from Theorem 2 that H and K are strongly separated.

Theorem 4. If S is connected, the point set M separates the point set H from the point set K in S, and the boundary of M is compact, then some closed subset of M separates H from K.

Proof. $S-M$ is the sum of two mutually separated point sets U and V containing H and K respectively. Since S is connected, U and $M+V$ are not mutually separated. Since U and V are mutually separated, either U contains a limit point of M or M contains a limit point of U, thus the boundary of U exists and is a subset of the boundary of M and hence is compact. It follows from Theorem 3 that there exist two domains D_{U} and D_{V} containing U and V respectively such that either \bar{D}_{U} and \bar{D}_{V} are mutually exclusive or $\bar{D}_{U} \cdot \bar{D}_{V}$ is $\bar{U} \cdot \bar{V} . D_{U}$ and D_{V} are mutually exclusive domains containing H and K respectively and S is connected, therefore $S-\left(D_{U}+D_{V}\right)$ is a closed subset of M which separates H from K.
Theorem 5. If the hypothesis of the continuum is true, there exists a separable space which satisfies Moore's Axioms 0 and 1-6 [2] and contains two conditionally compact point sets H and K such that
(1) \bar{H} and \bar{K} are mutually exclusive,
(2) there exists a domain containing H whose closure does not intersect \bar{K} and there exists a domain containing K whose closure does not intersect \bar{H}, and
(3) H and K are not strongly separated.

Proof. Let F denote the collection of all nondecreasing infinite sequences of positive integers. Let M denote the set of all points in a Cartesian plane E whose coordinates are positive integers. Let \mathscr{H} denote the collection of subsets of M to which h belongs if and only if the points of h are the points of a sequence $P_{1}, P_{2}, P_{3}, \ldots$ such that P_{1} is $(1,1)$ and for each positive integer n, P_{n+1} is at a distance of 1 from P_{n} and either above it or to the right of it. For each element h of \mathscr{H}, let G_{h} denote the collection of all images of h in M under a translation in E throwing $(0,0)$ into $(k,-k)$ for some integer k.

If the hypothesis of the continuum is true, it follows from [1, Theorem 1] that there exists an uncountable subcollection \mathscr{H}^{\prime} of \mathscr{H} such that
(1) if h and h^{\prime} are two elements of \mathscr{H}^{\prime}, no point set of G_{h} contains infinitely many points of any one point set of $G_{h^{\prime}}$ and
(2) if M^{\prime} is an infinite subset of M, there exists a point set h of \mathscr{H}^{\prime} such that some element of G_{h} contains infinitely many points of M^{\prime}.

Let \mathscr{G} denote the collection to which g belongs if and only if g is in G_{h} for some h in \mathscr{H}^{\prime}. There exists a reversible transformation T from F to \mathscr{H}^{\prime}. If A and B are two points of E, let $A B$ denote the straight line interval having end points A and B and let $L(A B)$ denote its length.

Suppose P is a point (x, y) of M, k is a number between 0 and 1 , and g is an element of \mathscr{G} containing P. Let A_{P} and $A_{P}{ }^{\prime}$ denote two points of a line having slope -1 and containing P such that (1) A_{P} is above $A_{P}{ }^{\prime}$, (2) P is the midpoint of $A_{P} A_{P}{ }^{\prime}$, and (3) the length of this interval is $(x+y)^{-1}$. Let B_{P} and $B_{P}{ }^{\prime}$ denote the points of $A_{P} A_{P}{ }^{\prime}$ which lie in the order $A_{P} B_{P} P B_{P}{ }^{\prime} A_{P}{ }^{\prime}$ such that $B_{P} B_{P}{ }^{\prime}$ is the middle third interval of $A_{P} A_{P}{ }^{\prime}$. For some element h of \mathscr{H}^{\prime}, g is an element of G_{h} and for some positive integer i, P is the i th point of g. Let v denote the i th term of the sequence f of F such that $T(f)=h$. Let $C_{P}, D_{P}, E_{P}, E_{P}{ }^{\prime}, D_{P}{ }^{\prime}$, and $C_{P}{ }^{\prime}$ denote the points of $B_{P} B_{P}{ }^{\prime}$ in the order indicated from B_{P} to $B_{P}{ }^{\prime}$ such that each of the intervals $B_{P} C_{P}, C_{P} D_{P}, D_{P} E_{P}$, $E_{P}{ }^{\prime} D_{P}{ }^{\prime}, D^{\prime} C^{\prime}$, and $C^{\prime} B^{\prime}$ has length $[3(v+6)(x+y)]^{-1}$.

Let $A_{P k}$ denote the point of $A_{P} B_{P}$ such that $L\left(B_{P} A_{P k}\right)=k\left[L\left(A_{P} B_{P}\right)\right]$. Let $C_{P k}$ denote the point of $B_{P} C_{P}$ such that $L\left(B_{P} C_{P k}\right)=k\left[L\left(B_{P} C_{P}\right)\right]$. Let $D_{P k}$ denote the point of $D_{P} E_{P}$ such that $L\left(D_{P} D_{P k}\right)=k\left[L\left(D_{P} E_{P}\right)\right]$. Let $E_{P k}$ denote the point of $P E_{P}$ such that $L\left(P E_{P k}\right)=k\left[L\left(P E_{P}\right)\right]$. Let $A_{P k}{ }^{\prime}$, $C_{P k}{ }^{\prime}, D_{P k}{ }^{\prime}$, and $E_{P k}{ }^{\prime}$ denote the images of $A_{P k}, C_{P k}, D_{P k}$, and $E_{P k}$ respectively under a rotation of $A_{P} A_{P}{ }^{\prime}$ about P which throws A_{P} into $A_{P}{ }^{\prime}$.

Let $P_{1}, P_{2}, P_{3}, \ldots$ denote the points of g. Let $s_{g 0}$ denote $\sum P_{j} P_{j+1}$. Let $t_{g 0}$ denote $\sum B_{P_{j}} B_{P_{j+1}}$ and let $t_{g 0}{ }^{\prime}$ denote $\sum B_{P_{j}}{ }^{\prime} B_{P_{j+1}}{ }^{\prime}$. Let $s_{g 1}$ denote

$$
\sum\left(E_{P_{j}} E_{P_{j+1}}+E_{P_{j}}^{\prime} E_{P_{j+1}}{ }^{\prime}\right) .
$$

Let $s_{g k}, s_{g k^{\prime}}, t_{g k}$, and $t_{g k^{\prime}}{ }^{\prime}$ denote the point sets obtained by substituting E, D, A, and A^{\prime} for X and $E^{\prime}, D^{\prime}, C$, and C^{\prime} for Y respectively in the expression

$$
\sum\left(X_{P_{j} k} X_{P_{j+1} k}+Y_{P_{j} k} Y_{P_{j+1 k}}\right)
$$

Suppose g is a point set of the collection \mathscr{G}, k is a number between 0 and 1 , n is a positive integer, and z is some one of the symbols s, t, and t^{\prime}. Let ${ }_{z} R_{g k n}$ denote the set to which w belongs if and only if either
(1) w is $z_{\rho 0}$,
(2) for some number k^{\prime} between 0 and k,w is $z_{g k^{\prime}}$, or
(3) w is a point of E which is separated from $(0,0)$ by the sum of the point sets $z_{\rho k}$ and the interval $A_{P} A_{P}{ }^{\prime}$ for the nth point P of g.

Let ${ }_{u} R_{p k n}$ denote the set to which w belongs if and only if either
(1) w is s_{91},
(2) for some number k^{\prime} between k and 1 , w is either $s_{g k^{\prime}}$ or $s_{g k^{\prime}}$, or
(3) w is a point of E which is separated from $(0,0)$ by the sum of $s_{o k}$, $s_{o k}{ }^{\prime}, D_{P k} E_{P k}$, and $D_{P k}{ }^{\prime} E_{P k}{ }^{\prime}$ for the nth point P of g.

Suppose g is in G, k_{1} and k_{2} are numbers between 0 and $1, n$ is a positive integer, and z is some one of the symbols s, s^{\prime}, t, and t^{\prime}. Let ${ }_{2} R_{g k_{1} k_{2} n}$ denote the set to which w belongs if and only if either
(1) for some number k between k_{1} and k_{2}, w is $z_{g k}$ or
(2) w is a point of E which is separated from $(0,0)$ by the sum of $z_{g k_{1}}, z_{g k_{2}}$, and the intervals $X_{P k_{1}} X_{P k_{2}}$ for the nth point P of g where X is some one of the symbols $A, C, D, E, A^{\prime}, C^{\prime}, D^{\prime}$, and E^{\prime}.

Let Σ_{1} denote a space such that
(1) X is a point in Σ_{1} if and only if either X is a point of E or X is $s_{g k}, s_{g k}{ }^{\prime}$, $t_{o k}$, or $t_{g k^{\prime}}$ for some g and k and
(2) R is a region in Σ_{1} if and only if either R is the interior of a circle in E, R is ${ }_{z} R_{g k n}$ for some z, g, k, and n, or R is ${ }_{z} R_{g k_{1} k_{2} n}$ for some z, g, k_{1}, k_{2}, and n.

The space Σ_{1} satisfies Axioms 0 and 1-6 and is separable.
Let H denote the point set to which h belongs if and only if for some point P of M, h is B_{P}. Let K denote the set of all points $B_{P}{ }^{\prime}$. Let D_{U} denote the point set to which the point w belongs if and only if for some point P of M, w is a point of the interior of a square with center B_{P} and one vertex P. Let D_{V} denote a similar set but with $B_{P}{ }^{\prime}$ as the center of each square. D_{U} and D_{V} are domains containing H and K respectively. Since $\bar{H}-H$ is the set of all points $t_{g 0}$ of Σ_{1} and those points of $\bar{D}_{V}-D_{V}$ which do not lie in E lie in a subset of the set of all points $s_{g k}, s_{g k^{\prime}}$, and $t_{g k}{ }^{\prime}$ and since $E \cdot\left(\bar{D}_{V}-D_{V}\right)$ does not intersect \bar{H}, \bar{H} and \bar{D}_{V} are mutually exclusive. Similarly \bar{K} and \bar{D}_{U} are mutually exclusive.

Suppose D_{H} is a domain containing H and D_{K} is a domain containing K. For each point P of M, there exists a number r_{P} such that each point of the interval $P B_{P}$ nearer to B_{P} than r_{P} is in D_{H} and each point of the interval $P B_{P}{ }^{\prime}$ nearer to $B_{P}{ }^{\prime}$ than r_{P} is in D_{K}. There exists a sequence $r_{1}, r_{2}, r_{3}, \ldots$ such that for each positive integer $n, r_{n}<r_{P}$ for every point $P=(x, y)$ of M such that $x+y<n+2$. There exists an increasing sequence of integers $k_{1}, k_{2}, k_{3}, \ldots$ such that for each positive integer $n,\left[\left(k_{n}+6\right)(n+1)\right]^{-1}<r_{n}$. This sequence is a member f of the collection $F . T(f)$ is a point set h of the collection \mathscr{H}. Let $P_{1}, P_{2}, P_{3}, \ldots$ denote the points of h and for each positive integer n, let x_{n} and y_{n} denote the abscissa and ordinate respectively of $P_{n} . x_{n}+y_{n}=n+1$ and

$$
L\left(B_{P_{n}} E_{P_{n}}\right)=\left[\left(k_{n}+6\right)(n+1)\right]^{-1}
$$

thus $E_{P_{n}}$ is a point of D_{H}. Similarly, $E_{P_{n}}{ }^{\prime}$ belongs to D_{K}. Each of the sequences $E_{P_{1}}, E_{P_{2}}, E_{P_{3}}, \ldots$ and $E_{P_{1}}{ }^{\prime}, E_{P_{2}}{ }^{\prime}, E_{P_{3}}{ }^{\prime}, \ldots$ converges to the point $s_{h 1}$. Therefore \bar{D}_{H} intersects \bar{D}_{K}.

Theorem 6. If the hypothesis of the continuum is true, there exists a separable
space satisfying Axioms 0 and 1-6 [2] and containing two conditionally compact point sets H and K such that
(1) \bar{H} and \bar{K} are mutually exclusive,
(2) K is a domain, and
(3) H and K are not strongly separated.

Proof. Notation not introduced here will be that of the previous theorem. Suppose P is a point (x, y) of M, k is a number between 0 and 1 , and g is a point set of the collection \mathscr{G} containing P. Let $E_{P}{ }^{\prime \prime}$ denote the midpoint of the interval $A_{P}{ }^{\prime} B_{P}{ }^{\prime}$. Let $P_{1}, P_{2}, P_{3}, \ldots$ denote the points of g.

Let $s_{g k}$ denote the point set to which w belongs if and only if for some positive integer j, w is either (1) a point of the straight line interval $E_{P j k} E_{P_{j+1} k}$ or (2) a point of the straight line interval whose endpoints are the point of $P_{j} E_{P_{j}}{ }^{\prime \prime}$ whose distance from P_{j} is $k\left[L\left(P_{j} E_{p_{j}}{ }^{\prime \prime}\right)\right]$ and the point of $P_{j+1} E_{P_{j+1}}{ }^{\prime \prime}$ whose distance from P_{j+1} is $k\left[L\left(P_{j+1} E_{P_{j+1}}{ }^{\prime \prime}\right)\right]$. Let $s_{g k}{ }^{\prime}$ denote the point set to which w belongs if and only if for some positive integer j, w is either (1) a point of the straight line interval $D_{P_{j k}} D_{P_{j+1 k}}$ or (2) a point of the straight line interval whose endpoints are the point of $A_{P_{j}}{ }^{\prime} E_{P_{j}}{ }^{\prime \prime}$ whose distance from $A_{P_{j}}{ }^{\prime}$ is $k\left[L\left(A_{P_{j}}{ }^{\prime} E_{P_{j}}{ }^{\prime \prime}\right)\right]$ and the point of $A_{P_{j+1}}{ }^{\prime} E_{P_{j+1}}{ }^{\prime \prime}$ whose distance from $A_{P j+1}{ }^{\prime}$ is $k\left[L\left(A_{P_{j+1}}{ }^{\prime} E_{P_{j+1}}{ }^{\prime \prime}\right)\right]$. Let $s_{g 1}$ denote the sum of all the straight line intervals $E_{P_{j}} E_{P_{j+1}}$ and $E_{P_{j}}{ }^{\prime \prime} E_{P_{j+1}}{ }^{\prime \prime} . s_{g 0}, t_{g 0}$, and $t_{g k}$ are as described in the previous theorem.

Let ${ }_{s} R_{g k n},{ }_{t} R_{g k n},{ }_{u} R_{g k n},{ }_{s} R_{g k_{1} k_{2} n},{ }_{s^{\prime}} R_{g k_{1} k_{2} n}$, and ${ }_{t} T_{g k_{1} k_{2} n}$ denote the set described in the preceding theorem taking into account the new definitions of $s_{g k}, s_{g k}{ }^{\prime}$, and $s_{g_{1}}$ in the paragraph above.

Let Σ_{2} denote a space such that (1) X is a point in Σ_{2} if and only if either X is a point of E or X is $s_{g k}, s_{g k}{ }^{\prime}$, or $t_{g k}$ for some g and k and (2) R is a region in Σ_{2} if and only if either R is the interior of a circle in E, R is ${ }_{z} R_{g k n}$ for some z, g, k, and n, or R is ${ }_{z} R_{g k_{1 k_{2} n}}$ for some z, g, k_{1}, k_{2}, and n.

The space Σ_{2} is separable and satisfies Axioms 0 and 1-6.
Let H denote the set of all points B_{P}. Let K denote the point set to which k belongs if and only if for some point P of M, k is a point of the interior of a square with center B^{\prime} and a vertex at P.

Suppose D_{H} is a domain containing H. For each point P of M, there exists a number r_{P} such that each point of the interval $P B_{P}$ nearer to B_{P} than r_{P} is in D_{H}. There exists, as in the preceding example, a point set h of the collection \mathscr{H}^{\prime} such that if $P_{1}, P_{2}, P_{3}, \ldots$ denote the points of h, then for each positive integer $n, E_{P_{n}}$ is a point of D_{H}. But, for each positive integer $n, E_{P_{n}}{ }^{\prime \prime}$ is a point of \bar{K}. The sequences $E_{P_{1}}, E_{P_{2}}, E_{P_{3}}, \ldots$ and $E_{P_{1}}{ }^{\prime \prime}, E_{P_{2}}{ }^{\prime \prime}, E_{P_{3}}{ }^{\prime \prime}, \ldots$ converge to the point $s_{h 1}$, thus if D_{K} is a domain containing K, \bar{D}_{H} intersects \bar{D}_{K}.

References

1. David E. Cook, A conditionally compact point set with non-compact closure, Pacific J. Math. 35 (1970), 313-319.
2. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ. Vol. 13, rev. ed. (Providence, R.I., 1962).
3. G. T. Whyburn, Analytical topology, Amer. Math. Soc. Colloq. Publ. Vol. 28, rev. ed. (Providence, R.I., 1963).

University of Mississippi, University, Mississippi

[^0]: Received September 11, 1970. This research constitutes part of the author's doctoral dissertation written at the University of Texas under the direction of Professor R. L. Moore. Presented in part to the American Mathematical Society in Chicago, April 15, 1967, under a different title.

