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Abstract
Quantum computing has been studied over the past four decades based on two computational models
of quantum circuits and quantum Turing machines. To capture quantum polynomial-time computabil-
ity, a new recursion-theoretic approach was taken lately by Yamakami [J. Symb. Logic 80, pp. 1546–1587,
2020] by way of recursion schematic definition, which constitutes six initial quantum functions and three
construction schemes of composition, branching, and multi-qubit quantum recursion. By taking a similar
approach, we look into quantum polylogarithmic-time computability and further explore the express-
ing power of elementary schemes designed for such quantum computation. In particular, we introduce
an elementary form of the quantum recursion, called the fast quantum recursion, and formulate EQS
(elementary quantum schemes) of “elementary” quantum functions. This class EQS captures exactly quan-
tum polylogarithmic-time computability, which forms the complexity class BQPOLYLOGTIME. We also
demonstrate the separation of BQPOLYLOGTIME fromNLOGTIME and PPOLYLOGTIME. As a natural
extension of EQS, we further consider an algorithmic procedural scheme that implements the well-known
divide-and-conquer strategy. This divide-and-conquer scheme helps compute the parity function, but the
scheme cannot be realized within our system EQS.

Keywords: Recursion schematic definition; quantum Turing machine; fast quantum recursion; quantum polylogarithmic-
time computability; divide-and-conquer strategy

1. Background, motivations, and challenges
We provide a quick overview of this work from its background to challenging open questions to
tackle.

1.1 Recursion schematic definitions that capture quantum computability
Over the four decades, the study of quantum computing has made significant progress in both
theory and practice. Quantum computing is one of the most anticipated nature-inspired comput-
ing paradigms today because it relies on the principle of quantummechanics, which is assumed to
govern nature. The core of quantum computing is an exquisite handling of superpositions, which

aA preliminary report (Yamakami, 2022b) has appeared under a slightly different title in the Proceedings of the 28th
International Conference on Logic, Language, Information, and Computation (WoLLIC 2022), Iaşi, Romania, September
20–23, 2022, Lecture Notes in Computer Science, vol. 13468, pp. 88–104, Springer, 2022.
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are linear combinations of basic quantum states expressing classical strings, and entanglement,
which binds multiple quantum bits (or qubits, for short) with no direct contact, of quantum states.
Early models of quantum computation were proposed by Benioff (1980), Deutsch (1985, 1989),
and Yao (1993) as quantum analogs of Turing machines and Boolean circuits. Those models have
been used in a theoretical study of quantum computing within the area of computational com-
plexity theory since their introduction. The quantum Turing machine (QTM) model is a natural
quantum extension of the classical Turing machine (TM)model, which has successfully served for
decades as a basis to theoretical aspects of computer science. The basic formulation of the QTM
model1 used today attributes to Bernstein and Vazirani (1997). QTMs provide a blueprint of algo-
rithmic procedures by describing how to transform each superposition of configurations of the
machines. There have been other computational models proposed to capture different aspects of
quantum computing, including a (black-box) query model.

A recursion schematic approach has been a recent incentive for the full characterization of
the notion of quantum polynomial-time computability (Yamakami, 2020), which can be seen
as a quantum extension of deterministic polynomial-time computability. The primary purpose
of taking such an exceptional approach toward quantum computability stems from a successful
development of recursion theory (or recursive function theory) for classical computability.
Earlier, Peano, Herbrand, Gödel, and Kleene (1936, 1943) all made significant contributions to
paving a straight road to a coherent study of computability and decidability from a purely logical
aspect (see, e.g., (Soare, 1996) for further references therein). In this theory, recursive functions
are formulated in the following simple “schematic” way. (i) We begin with a few initial functions.
(ii) We sequentially build more complicated functions by applying a small set of construction
schemes to the already-built functions. The description of how to construct a recursive function
actually serves as a blueprint of the function, which resembles like a “computer program” of the
modern times in such a way that each construction scheme is a command line of a computer
program. Hence, a schematic definition itself may be viewed as a high-level programming
language by which we can render a computer program that describes the movement of any
recursive function. As the benefit of the use of such a schematic definition, when we express
a target function as a series of schemes, the “size” of this series can serve as a “descriptional
complexity measure” of the function. This has lead to a fully enriched study of the descriptive
complexity of functions. This schematic approach sharply contrasts the ones based on Turing
machines as well as Boolean circuit families to formulate the recursive functions. A similar
approach taken by Yamakami (2020) aims at capturing the polynomial-time computability of
quantum functions,2 each of whichmaps a finite-dimensional Hilbert space to itself, in place of the
aforementioned recursive functions. Unlike quantum transitions of QTMs, the recursion schemes
can provide a clear view of how quantum transforms act on target quantum states in the Hilbert
space.

Two important classes of quantum functions, denoted �QP
1 and �̂QP

1 , were formulated by
Yamakami (2020) from six initial quantum functions and three basic construction schemes. The
major difference between�QP

1 and �̂QP
1 is the permitted use of quantummeasurement operations,

which make quantum states collapse to classical states with incurred probabilities. Unfortunately,
this is a non-reversible operation. Shown by Yamakami (2020) are a precise characterization of
quantum polynomial-time computability and a quantum analog of the normal form theorem.
A key in his recursion schematic definition is an introduction of the multi-qubit quantum recur-
sion scheme, which looks quite different in its formulation from the corresponding classical
recursion scheme. We will give its formal definition in Section 3.1 as Scheme T. This quantum
recursion scheme turns out to be so powerful that it has helped us capture the notion of quantum
polynomial-time computability.

There are a few but important advantages of using recursion schematic definitions to intro-
duce the notion of quantum computation over other quantum computational models, such as
QTMs and quantum circuits. The most significant advantage is in fact that there is no use of the
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well-formedness requirement of QTMs and the uniformity requirement of quantum circuit fami-
lies. These natural but cumbersome requirements are necessary to guarantee the unitary nature
of QTMs and the algorithmic construction of quantum circuit families. Recursion schematic def-
initions, on the contrary, avoid such extra requirements and make it much simpler to design a
quantum algorithm in the form of a quantum function for solving a target combinatorial problem.
This is because each basic scheme naturally embodies “well-formedness” and “uniformity” in its
formulation. More accurately, the scheme produces only “well-formed” and “uniform” quantum
functions by way of applying the scheme directly to the existing quantum functions. In fact, the
schematic definition of Yamakami (2020) constitutes only six initial quantum functions together
with three basic construction schemes and this fact helps us render a short procedural sequence of
how to construct each target quantum function. A descriptional aspect of the recursion schematic
definition of Yamakami (2020) has become a helpful guide to develop even a suitable form of
quantum programming language (Hainry et al., 2023). It is worth mentioning that such a recur-
sion schematic definition has been made possible because of an extensional use of the bra and ket
notations. See Section 2.3 for detailed explanations.

A schematic approach of Yamakami (2020) to quantum computing has exhibited a great pos-
sibility of treating quantum computable functions in such a way that is quite different from the
traditional ways with QTMs and quantum circuit families. Recursion schemes further lead us to
the descriptional complexity of quantum functions. Concerning such recursion schematic defini-
tions, numerous questions still remain unanswered. It is important and also imperative to expand
the scope of our research to various resource-bounded quantum computing. In this work, we
particularly wish to turn our attention to a “limited” form of quantum computing, which can
be naturally implemented by small runtime-restricted QTMs as well as families of small depth-
bounded quantum circuits, and we further wish to examine how the schematic approach of
Yamakami (2020) copes with such restricted quantum computing.

Of practical importance, resource-bounded computability has been studied in the classical
setting based on various computational models, including families of Boolean circuits and time-
bounded (classical) Turing machines (or TMs, for short). Among all reasonable resource bounds,
we are particularly keen to (poly)logarithmic time. The logarithmic-time (abbreviated as logtime)
computability may be one of themost restricted butmeaningful, practical resource-bounded com-
putabilities and it was discussed earlier by Buss (1987) and Barrington et al. (1990) in terms of TMs
equipped with index tapes to access particular locations of input symbols. Hereafter, we denote by
DLOGTIME (resp., NLOGTIME) the class of decision problems solvable by logtime deterministic
(resp., nondeterministic) TMs. The logtime computability has played a central role in charac-
terizing a uniform notion of constant-depth Boolean circuit families. As shown by Barrington
et al. (1990), logtime computability is also closely related to the first-order logic with the special
predicate BIT. As slightly more general resource-bounded computability, polylogarithmic-time
(abbreviated as polylogtime) computability has been widely studied in the literature. Numerous
polylogtime algorithms were developed to solve, for example, the matrix chain ordering problem
(Bradford et al., 1994) and deterministic graph construction (Holm et al., 2001). There were also
studies on data structures that support polylog operations (Munro, 1984) and probabilistic check-
ing of polylog bits of proofs (Babai et al., 1991). We denote by PPOLYLOGTIME the complexity
class of decision problems solvable by polylogtime probabilistic TMs with unbounded-error
probability.

In the setting of quantum computing, nevertheless, we are able to take a similar approach
using resource-bounded QTMs. A quantum analog of DLOGTIME, called BQLOGTIME, was
lately discussed in connection to an oracle separation between BQP and the polynomial hier-
archy in (Raz and Tal, 2022). In this work, however, we are interested in polylogtime-bounded
quantum computations, and thus we wish to look into the characteristics of quantum polylogtime
computability. Later in Section 5.1, we formally describe the fundamental model of polylogtime
QTMs as a quantum analog of classical polylogtime TMs. These polylogtime QTMs naturally
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induce the corresponding bounded-error complexity class BQPOLYLOGTIME. In Section 5.2,
BQPOLYLOGTIME is shown to differ in computational power from NLOGTIME as well as
PPOLYLOGTIME.

1.2 Our challenges in this work
We intend to extend the scope of the existing research on resource-bounded quantum com-
putability by way of an introduction of a small set of recursion schemes defining runtime-
restricted quantum computability. In particular, we look into quantum polylogtime computability
and seek out an appropriate recursion schematic definition to exactly capture such computability.
Since �QP

1 and �̂QP
1 precisely capture quantum polynomial-time computability, it is natural to

raise a question of how we can capture quantum polylogtime computability in a similar fashion.
As noted earlier, the multi-qubit quantum recursion scheme of Yamakami (2020) is capable of

precisely capturing quantum polynomial-time computability. A basic idea of this quantum recur-
sion scheme is, starting with n qubits, to modify at each round of recursion the first k qubits
and continue to the next round with the rest of the qubits after discarding the first k qubits. This
recursive process slowly consumes the entire n qubits and finally grinds to halt after linearly-many
recursive rounds. To describe limited quantum computability, in contrast, how can we weaken the
quantum recursion scheme? Our attempt in this work is to speed up this recursive process signif-
icantly by discarding a bundle of �n/2�(or �n/2�) qubits from the entire n qubits at each round.
Such a way of halving the number of qubits at each recursive round makes the recursive process
terminate significantly faster; in fact, ending in at most �log n� recursive rounds. For this very rea-
son, we intend to call this weakened recursive process the (code-controlled) fast quantum recursion
scheme.

Although the fast quantum recursion scheme is significantly weaker in power than the quan-
tum recursion scheme of Yamakami (2020), the scheme still generates numerous interesting and
useful quantum functions, as listed in Lemmas 4–8 and 15–22. More importantly, it is possible
to implement the binary search strategy, which has been a widely used key programming tech-
nique. We call the set of all quantum functions generated from six initial quantum functions and
three construction schemes together with the fast quantum recursion scheme by EQS (elemen-
tary quantum schemes) in Section 3. This class EQS turns out to precisely characterize quantum
polylogtime computability (Theorems 33–34).

To cope with polylogtime computability, we need an appropriate encoding of various types of
“objects” (such as numbers, graphs, matrices, and tape symbols) into qubits of an equal length and
also another efficient way of decoding the original “objects” from those encoded qubits. For this
purpose, we introduce in Section 3.2 a code-skipping scheme, which recognizes encoded segments
to skip them one by one. This scheme in fact plays a key role in performing the fast recursion
scheme.

Throughout this work, we try to promote much better understandings of resource-bounded
quantum computing in theory and in practice.

New Materials after the Preliminary Conference Report. The current work corrects and signif-
icantly alters the preliminary conference report (Yamakami, 2022b), particularly in the following
points. Five schemes, which constitute EQS, in the preliminary report have been modified and
reorganized, and thus they look slightly different in their formulations. In particular, Scheme
V is introduced to establish a precise characterization of quantum functions computable by
polylogtime QTMs.

Beyond the scope of the preliminary report (Yamakami, 2022b), this work further looks into
another restricted quantum algorithmic procedure, known as the divide-and-conquer strategy in
Section 6. A key idea behind this strategy is to inductively split an given instance into small pieces
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and then inductively assemble them piece by piece after an appropriate modification. This new
scheme helps us capture the parity function, which requires more than polylogtime quantum
computation. This fact implies that this new procedure is not “realized” in the framework of EQS.

2. Preparation: notions and notation
We will briefly explain basic notions and notation used throughout this work.

2.1 Numbers, strings, and languages
The notations Z, Q, and R respectively denote the sets of all integers, of all rational numbers,
and of all real numbers. In particular, we set Q̄=Q∩ [0, 1]. The natural numbers are nonnegative
integers and the notation N expresses the set of those numbers. We further write N+ to denote
the set N− {0}. For two integers m, n with m≤ n, [m, n]Z indicates the integer interval {m,m+
1,m+ 2, . . . , n}. In particular, we abbreviate [1, n]Z as [n] when n≥ 1. In addition, C denotes
the set of all complex numbers. We use the notations �·� and �·� for the ceiling function and the
floor function, respectively. In this work, all polynomials have nonnegative integer coefficients and
all logarithms are taken to the base 2. We further define ilog(n) and iloglog(n) to be �log n� and
�log log n� for any n ∈N, respectively. To circumvent any cumbersome description to avoid the
special case of n= 0, we intentionally set ilog(0)= iloglog(0)= 0. The notation ı denotes

√−1
and e does the base of natural logarithms. Given a complex number α, α∗ denotes the complex
conjugate of α. As for a nonempty set of quantum amplitudes, which is a subset of C, we use the
notation K.

A nonempty finite set of “symbols” (or “letters”) is called an alphabet and a sequence of such
symbols from a fixed alphabet � is called a string over �. The total number of occurrences of
symbols in a given string x is the length of x and is denoted |x|. The empty string λ is a unique string
of length 0. A collection of those strings over � is a language over �. Throughout this work, we
deal only with binary strings, which are sequences of 0s and 1s. Given a number n ∈N, �n (resp.,
�≤n) denotes the set of all strings of length exactly n (resp., at most n). Let �∗ = ⋃

n∈N �n and
�+ =�∗ − {λ}. Given a string x and a bit b ∈ {0, 1}, the notation #b(x) denotes the total number
of occurrences of the symbol b in x. Due to the nature of quantum computation, we also discuss
“promise” decision problems. A pair (A, R) of subsets of �∗ is said to be a promise (decision)
problem over � if A∪ R⊆�∗ and A∩ R=∅. Intuitively, A and R are, respectively, composed
of accepted strings and rejected strings. When A∪ R=�∗, (A, R) becomes (A,�∗ −A), and this
can be identified with the language A.

Given a number n ∈N, we need to partition it into two halves. To describe the “left half” and
the “right half” of n, we introduce two special functions: LH(n)= �n/2� and RH(n)= �n/2�.

For a function f and a number k ∈N+, we write f k for the k consecutive applications of f to an
input. For example, f 2(x)= f ◦ f (x)= f (f (x)) and f 3(x)= f ◦ f ◦ f (x)= f (f (f (x))). The functions
LH and RH satisfy the following property.

Lemma 1. Let k, n ∈N+ be any two numbers. (1) If n is in [2k−1 + 1, 2k]Z (i.e., �log n� = k),
then LHk(n)= 1 holds. Moreover, if k≥ 2, then LHk−1(n)= 2. (2) If n is in [2k, 2k+1 − 1]Z (i.e.,
�log n� = k), then RHk(n)= 1 holds. Moreover, if k≥ 2, then RHk−1(n) ∈ {2, 3}.

Proof. (1) Consider a series: n, LH(n), LH2(n), · · · , LHk(n). It follows that, for any number n> 2,
n ∈ [2k−1 + 1, 2k]Z iff LH(n) ∈ [2k−2 + 1, 2k−1]Z. Thus, we obtain LHk−1(n) ∈ {2} and LHk(n) ∈
{1}. When n≥ 3, the last two numbers of the above series must be 2 and 1.
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(2) In a similar fashion to (1), let us consider a series: n, RH(n), RH2(n), . . ., RHk(n). It then
follows that n ∈ [2k, 2k+1 − 1]Z iffRH(n) ∈ [2k−1, 2k − 1]Z.We then obtainRHk−1(n) ∈ {2, 3} and
RHk(n) ∈ {1}. �

We assume the standard lexicographical order on {0, 1}∗: λ, 0, 1, 00, 01, 10, 11, 000, · · · and,
based on this ordering, we assign natural numbers to binary strings as bin(0)= λ, bin(1)= 0,
bin(2)= 1, bin(3)= 00, bin(4)= 01, bin(5)= 10, bin(6)= 11, bin(7)= 000, etc. In contrast, for a
fixed number k ∈N+, bink(n) denotes lexicographically the nth string in {0, 1}k as long as n ∈ [2k].
For instance, we obtain bin3(1)= 000, bin3(2)= 001, bin3(3)= 010, bin3(4)= 011, etc. Remember
that bink(0) is not defined whereas bin(0) means λ.

2.2 Quantum States and Hilbert spaces
We assume the reader’s familiarity with basic quantum information and computation (see, e.g.,
textbooks (Kitaev et al., 2002; Neilsen and Chuang, 2016). A basic concept in quantum computing
is a Hilbert space and unitary transformations over it. The ket notation |φ〉 expresses a (column)
vector in a Hilbert space and its transposed conjugate is expressed as a (row) vector of the dual
space and is denoted by the bra notation 〈φ|. The notation 〈ψ |φ〉 denotes the inner product of two
vectors |ψ〉 and |φ〉. We use the generic notation I to denote the identity matrix of an arbitrary
dimension. A square complex matrix U is called unitary if U satisfies UU† =U†U = I, where U†

is the transposed conjugate of U.
The generic notation 0 is used to denote the null vector of an arbitrary dimension. A quantum

bit (or a qubit, for short) is a linear combination of two basis vectors |0〉 and |1〉. The notation
H2 indicates the Hilbert space spanned by |0〉 and |1〉. More generally, H2n refers to the Hilbert
space spanned by the computational basis Bn = {|s〉 | s ∈ {0, 1}n}. For convenience, we write H∞
for the collection of all quantum states in H2n for any n ∈N+. Remember that H∞ does not form
a Hilbert space. Given a non-zero quantum state |φ〉 ∈ H∞, its length �(|φ〉) denotes a unique
number n ∈N for which |φ〉 ∈ H2n . We stress that the length of |φ〉 is defined only for a quantum
state residing in H∞. As a special case, we set �(0)= 0 for the null vector 0 (although 0 belongs
to Hk for any k ∈N+). For convenience, we also set �(α)= 0 for any scalar α ∈C. For a quantum
state |φ〉, if wemake ameasurement in the computational basis, then each binary string x of length
�(|φ〉) is observed with probability |〈x|φ〉|2. Thus, |φ〉 can be expressed as |0〉〈0|φ〉 + |1〉〈1|φ〉 and
also as

∑
x∈{0,1}n |x〉 ⊗ 〈x|φ〉, where |φ〉 ⊗ |ψ〉 is the tensor product of |φ〉 and |ψ〉. The norm of

|φ〉 is defined as
√〈φ|φ〉 and is denoted ‖|φ〉‖.

A qustring of length n is a unit-norm quantum state in H2n . As a special case, the null vector is
treated as the qustring of length 0 (although its norm is 0). Let �n denote the set of all qustrings
of length n. Clearly, �n ⊆ H2n holds for all n ∈N+. We then set �∞ to be the collection of all
qustrings of length n for any n ∈N.

Abusing the aforementioned notations of LH(n) and RH(n), we set LH(|φ〉)= ��(|φ〉)/2� and
RH(|φ〉)= ��(|φ〉/2� for any quantum state |φ〉 ∈ H∞. It then follows that �(|φ〉)= LH(|φ〉)+
RH(|φ〉).

We are interested only in functions mapping H∞ to H∞, and these functions are generally
referred to as quantum functions on H∞ to differentiate from “functions” working with natural
numbers or strings. Such a quantum function f is said to be dimension-preserving (resp., norm-
preserving) if �(|φ〉)= �(f (|φ〉)) (resp., ‖|φ〉‖ = ‖f (|φ〉)‖) holds for any quantum state |φ〉 ∈ H∞.

2.3 Conventions on the bra and the ket notations
To calculate the outcomes of quantum functions on H∞, we must take advantage of making
a purely symbolic treatment of the bra and the ket notations together with the tensor product
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notation ⊗. We generally follow (Yamakami, 2020) for the conventions on the specific usage of
these notations. These notational conventions in fact help us simplify the description of vari-
ous qubit operations in later sections. Since we greatly deviate from the standard usage of those
notations, hereafter, we explain how to use them throughout this work.

It is important to distinguish between the number 0 and the null vector 0. To deal with
the null vector, we conveniently take the following specific conventions concerning the oper-
ator “⊗”. For any |φ〉 ∈ H∞, (i) 0⊗ |φ〉 = |φ〉 ⊗ 0= 0 (scalar case), (ii) |φ〉 ⊗ 0= 0⊗ |φ〉 = 0,
and (iii) if |ψ〉 is the null vector, then 〈φ|ψ〉 = 〈ψ |φ〉 = 0. In the case of (i), we here extend the
standard usage of ⊗ to even cover “scalar multiplication” to simplify later calculations. Given
two binary strings u, s ∈ {0, 1}+, if |s| = |u|, then 〈u|s〉 = 1 if u= s, and 〈u|s〉 = 0 otherwise. On
the contrary, when |u|< |s|, 〈u|s〉 expresses the quantum state |z〉 if s= uz for a certain string
z, and 0 otherwise. By sharp contrast, if |u|> |s|, then 〈u|s〉 always denotes 0. More gener-
ally, if |φ〉 = ∑

u∈{0,1}n
∑

s∈{0,1}m αu,s|u〉 ⊗ |s〉 and u0 ∈ {0, 1}n, then 〈u0|φ〉 expresses the quantum
state

∑
s∈{0,1}m αu0,s|s〉. For instance, if |φ〉 = 1√

2
(|00〉 + |11〉), then 〈0|φ〉 equals 1√

2
|0〉 and 〈1|φ〉

does 1√
2
|1〉. These notations 〈0|φ〉 and 〈1|φ〉 together make it possible to express any qustring

|φ〉 as |0〉 ⊗ 〈0|φ〉 + |1〉 ⊗ 〈1|φ〉. In a more general case with |ξ〉 = ∑
u∈{0,1}n βu|u〉, 〈ξ |φ〉 means∑

u∈{0,1}n β∗
u〈u|φ〉, which equals

∑
u∈{0,1}n

∑
s∈{0,1}m αu,sβ∗

u |s〉. Moreover, |φ〉 can be expressed as∑
u∈{0,1}n βu|u〉 ⊗ 〈u|φ〉. We often abbreviate |φ〉 ⊗ |ψ〉 as |φ〉|ψ〉. In particular, for strings s and

u, |s〉 ⊗ |u〉 is further abbreviated as |s, u〉 or even |su〉. When 〈s|φ〉 is just a scalar, say, α ∈C, the
notation |s〉 ⊗ 〈s|φ〉 (or equivalently, |s〉〈s|φ〉) is equal to α|s〉.

We also expand the norm notation ‖ · ‖ for vectors to scalars in the following way. For any
quantum states |φ〉 and |ψ〉 with �(|φ〉)= �(|ψ〉)> 0, the notation ‖〈φ|ψ〉‖ is used to express the
absolute value |〈φ|ψ〉|. In general, for any scalar α ∈C, ‖α‖ denotes |α|. This notational conven-
tion is quite useful in handling the value obtained after making a measurement without worrying
about whether the resulting object is a quantum state or a scalar.

Later, we will need to encode (or translate) a series of symbols into an appropriate qustring. In
such an encoding, the empty string λ is treated quite differently. Notably, we tend to automatically
translate |λ〉 into the null vector 0 unless otherwise stated.

3. A recursion schematic definition of EQS
Wewill present a recursion schematic definition to formulate a class of special quantum functions
on H∞ (i.e., from H∞ to H∞), later called EQS. To improve the readability, we first provide a
skeleton system of EQS and later we expand it to the full-fledged system.

3.1 Skeleton EQS
As a starter, we discuss a “skeleton” of our recursion schematic definition for “elementary” quan-
tum functions, which are collectively called EQS (elementary quantum schemes) in Definition 20,
involving six initial quantum functions and two construction schemes. All initial quantum
functions were already presented when defining�QP

1 and �̂QP
1 in (Yamakami, 2020).

Throughout the rest of this work, we fix a nonempty amplitude set K, and we often omit the
clear reference to K as long as the choice of K is not important in our discussion.

Definition 2. The skeleton class EQS0 is composed of all quantum functions constructed by selecting
the initial quantum functions of Scheme I and then inductively applying Schemes II–III a finite
number of times. In what follows, |φ〉 denotes an arbitrary quantum state in H∞.When the item 6)
of Scheme I is not used, we denote the resulting class by ÊQS0.
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I. The initial quantum functions. Let θ ∈ [0, 2π)∩K and a ∈ {0, 1}.
1) I(|φ〉)= |φ〉. (identity)
2) PHASEθ (|φ〉)= |0〉〈0|φ〉 + eıθ |1〉〈1|φ〉. (phase shift)
3) ROTθ (|φ〉)= cos θ |φ〉 + sin θ(|1〉〈0|φ〉 − |0〉〈1|φ〉). (rotation around xy-axis at angle θ)
4) NOT(|φ〉)= |0〉〈1|φ〉 + |1〉〈0|φ〉. (negation)

5) SWAP(|φ〉)=
⎧⎨
⎩

|φ〉 if �(|φ〉)≤ 1,∑
a,b∈{0,1} |ab〉〈ba|φ〉 otherwise.

(swapping of 2 qubits)

6) MEAS[a](|φ〉)= |a〉〈a|φ〉. (partial projective measurement)
II. The composition scheme. From g and h, we define Compo[g, h] as follows: Compo[g, h](|φ〉)=

g ◦ h(|φ〉) (= g(h(|φ〉))).
III. The branching scheme.3 From g and h, we define Branch[g, h] as:

(i) Branch[g, h](|φ〉)= |φ〉 if �(|φ〉)≤ 1,
(ii) Branch[g, h](|φ〉)= |0〉 ⊗ g(〈0|φ〉)+ |1〉 ⊗ h(〈1|φ〉) otherwise.

We remark that all quantum functions in Items 1)–4) and 6) in Scheme I directly manipulate
only the first qubit of |φ〉 and that SWAP manipulates the first two qubits of |φ〉. All other qubits
of |φ〉 are intact. Notice that the length function �(|φ〉) is not included as part of EQS0. Since |φ〉
is always taken from H∞, the value �(|φ〉) is uniquely determined from |φ〉. It is also important
to remark that, for any |φ〉 and a ∈ {0, 1}, �(MEAS[a](|φ〉))= �(|φ〉).

In Schemes II and III, the constructions of Compo[g, h] and Branch[g, h] need two quantum
functions, g and h, which are assumed to have been already constructed in their own construc-
tion processes. To refer to these supporting quantum functions used in the scheme, we call them
the ground (quantum) functions of Compo[g, h] and Branch[g, h]. In the case of a special need to
emphasize K, we write EQSK,0 and ÊQSK,0 with a clear reference to K.

We quickly provide simple examples of how to compute the quantum functions induced by
appropriate applications of Schemes I–III.

Example 3. It follows that PHASEπ (|1〉)= −|1〉 and PHASEπ/2( 1√
2
(|0〉 + |1〉)= 1√

2
(|0〉 +

ı |1〉), ROTπ/4(|0〉)= 1√
2
(|0〉 + |1〉) and ROTπ/4(|1〉)= 1√

2
(|0〉 − |1〉), NOT(|a〉)= |1− a〉, and

SWAP(|abc〉)= |bac〉 for three bits a, b, c ∈ {0, 1}. We also obtain MEAS[0](ROTπ/4(|00〉))=
MEAS[0]( 1√

2
(|0〉 + |1〉)⊗ |0〉)= 1√

2
|00〉.As for Scheme III, it is important to note that Branch[g, g]

is not the same as g itself. For example, Branch[NOT,NOT](|b〉|φ〉) equals |b〉 ⊗NOT(|φ〉) by
Scheme III(ii) whereas NOT(|b〉|φ〉) is just |1− b〉|φ〉, where b denotes any bit. The EPR pair
1√
2
(|00〉 + |11〉) is obtainable from |0〉|0〉 as follows. By first applying ROTπ/4 to |0〉|0〉, we

obtain |φ〉 = ROTπ/4(|0〉|0〉). We then apply Branch[I,NOT] and obtain Branch[I,NOT](|φ〉)=
Branch[I,NOT]( 1√

2
(|00〉 + |10〉))= |0〉 ⊗ I( 1√

2
|0〉)+ |1〉 ⊗NOT( 1√

2
|0〉)= 1√

2
(|00〉 + |11〉).

For later reference, let us review from Yamakami (2020) the multi-qubit quantum recur-
sion scheme, which is a centerpiece of schematically characterizing quantum polynomial-time
computability. In this work, this special scheme is referred to as Scheme T.

(T) The multi-qubit quantum recursion scheme (Yamakami, 2020). Let g, h, p be quantum func-
tions and let k, t ∈N+ be numbers. Assume that p is dimension-preserving. For Fk =
{fu}u∈{0,1}k , we define F ≡ kQRect[g, h, p|Fk] as follows:
(i) F(|φ〉)= g(|φ〉) if �(|φ〉)≤ t,
(ii) F(|φ〉)= h(

∑
u:|u|=k |u〉 ⊗ fu(〈u|ψp,φ〉)) otherwise,

where |ψp,φ〉 = p(|φ〉) and fu ∈ {F, I} for any u ∈ {0, 1}k.
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This quantum recursion scheme together with Schemes I–III given above and another quan-
tum function called REMOVE (removal) defines the function class �QP

1 , which constitutes all
polynomial-time computable quantum functions (Yamakami, 2020). Althoughwe do not consider
REMOVE here, its restricted form, called CodeREMOVE[ · ], will be introduced in Section 3.2.

Let us present a short list of typical quantum functions “definable” within EQS0; that is, those
quantum functions are actually constructed from Items 1)–5) of Scheme I and by finitely many
applications of Schemes II–III. As the first simple application of Scheme I–III, we demonstrate
how to construct the special quantum function called Skipk[ · ].
Lemma 4. Let g denote any quantum function in EQS0 and let k ∈N+. The quantum function
Skipk[g] is defined by Skipk[g](|φ〉)= |φ〉 if �(|φ〉)≤ k, and

∑
u:|u|=k |u〉 ⊗ g(〈u|φ〉) otherwise. This

Skipk[g] is definable within EQS0.

Proof. We construct the desired quantum function Skipk[g] inductively for any k ∈N+. When
k= 1, we set Skip1[g]≡ Branch[g, g]. Clearly, when �(|φ〉)> 1, we obtain Skip1[g](|φ〉)=
Branch[g, g](|φ〉)= ∑

a∈{0,1} |a〉 ⊗ g(〈a|φ〉). For any index k≥ 2, we define Skipk+1[g] as
Branch[Skipk[g], Skipk[g]]. It then follows that, if �(|φ〉)> k+ 1, then Skipk+1[g](|x〉|φ〉)=∑

a∈{0,1} |a〉 ⊗ Skipk[g](〈a|φ〉)= ∑
a∈{0,1}

∑
s:|s|=k |a〉|s〉 ⊗ g(〈s|ψSkipk[g],〈a|φ〉〉)=

∑
s′:|s′|=k+1 |s′〉

⊗g(〈s′|φ〉), as requested. �

Lemma 5. Fix θ ∈ [0, 2π)∩K and i, j, k ∈N+ and i< j. Let |φ〉 be any quantum state in H∞, let
a, b, and c be any bits. The following quantum functions are definable by Schemes I–III and thus in
EQS0.

1. CNOT(|φ〉)= |φ〉 if �(|φ〉)≤ 1 and CNOT(|φ〉)= |0〉〈0|φ〉 + |1〉 ⊗NOT(〈1|φ〉) otherwise.
(controlled NOT)

2. GPSθ (|φ〉)= eıθ |φ〉. (global phase shift)
3. WH(|φ〉)= 1√

2
|0〉 ⊗ (〈0|φ〉 + 〈1|φ〉)+ 1√

2
|1〉 ⊗ (〈0|φ〉 − 〈1|φ〉). (Walsh-Hadamard trans-

form)
4. Z1,θ (|φ〉)= eıθ |0〉〈0|φ〉 + |1〉〈1|φ〉.
5. zROTθ (|φ〉)= eıθ |0〉〈0|φ〉 + e−ıθ |1〉〈1|φ〉. (rotation around the z-axis)
6. Cθ (|φ〉)= |φ〉 if �(|φ〉)≤ 1 and Cθ (|φ〉)= |0〉〈0|φ〉 + |1〉 ⊗ ROTθ (〈1|φ〉) otherwise. (con-

trolled ROTθ )
7. CPHASEθ (|φ〉)= |φ〉 if �(|φ〉)≤ 1, and CPHASEθ (|φ〉)= 1√

2
∑

b∈{0,1} (|0〉〈b|φ〉 +
eıθb|1〉〈b|φ〉) otherwise. (controlled PHASE)

8. CSWAP(|a〉|φ〉)= |0〉 ⊗ 〈0|a〉|φ〉 + |1〉 ⊗ SWAP(〈1|a〉|φ〉) (controlled SWAP)
9. LengthQk(|b〉|φ〉)= |b〉|φ〉 if �(|φ〉)< k and LengthQk(|b〉|φ〉)= |1− b〉|φ〉 otherwise. (length

query)
10. SWAPi,j(|φ〉)= ∑

a1···aj∈{0,1} |a1 · · · ai−1ajai+1 · · · aj−1aiaj+1 · · · an〉 ⊗
〈a1 · · · ai−1aiai+1 · · · aj−1ajaj+1 · · · an|φ〉 if �(|φ〉)≥ j and SWAPi,j(|φ〉)= |φ〉 otherwise,
where n= �(|φ〉).

Proof. (1)–(5) These quantum functions are constructed in (Yamakami, 2020, Lemma 3.3). (6)
We set Cθ ≡ Branch[I, ROTθ ]. (7) This was shown in (Yamakami, 2020, Lemma 3.6). (8) We set
CSWAP to be Branch[I, SWAP]. This gives the equation CSWAP(|a〉|φ〉)= |0〉 ⊗ I(〈0|a〉|φ〉)+
|1〉 ⊗ SWAP(〈1|a〉|φ〉).
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(9) For simplicity, we write g ◦ f in place of Compo[g, f ]. Let h≡ Branch[NOT,NOT] ◦ SWAP.
We construct LengthQk inductively for any k≥ 1 as follows. Firstly, when k= 1, LengthQ1 is
set to be SWAP ◦ Skip1[SWAP] ◦ Skip1[h] ◦ SWAP. It then follows that LengthQ1(|b〉)= |b〉 and
LengthQ1(|b〉|φ〉)= |1− b〉|φ〉. Letting k≥ 2, assume that LengthQk−1 has been already defined.
We then define LengthQk as SWAP ◦ Skip1[Branch[LengthQk−1, LengthQk−1]] ◦ SWAP.

(10) Notice that SWAP1,2 coincides with SWAP of Scheme I. For any fixed constant
k≥ 1, we first define SWAPk,k+1 to be Skipk−1[SWAP]. For any indices i, j≥ 1 with i<
j, we further define MOVEi,j to be SWAPi,i+1 ◦ SWAPi+1,i+2 ◦ · · · ◦ SWAPj−1,j. Note that
MOVE−1

1,j−1 equals SWAPj−2,j−1 ◦ SWAPj−3,j−2 ◦ · · · ◦ SWAP1,2. With the use of MOVE1,j, we
define SWAP1,j as MOVE1,j ◦MOVE−1

1,j−1. The target quantum function SWAPi,j is finally set to
be Skipi−1[SWAP1,j−i]. �

Lemma 6. Fix i, j, k ∈N+ with k≥ 2 and i< j, and let |φ〉 denote any quantum state in H∞. The
following quantum functions are definable using Schemes I–III and thus in EQS0.

1. SecSWAP(k)i,j (|x1〉|x2〉 · · · |xi−1〉|xi〉|xi+1〉 · · · |xj−1〉|xj〉|φ〉)= |x1〉|x2〉 · · · |xi−1〉|xj〉|xi+1〉
· · · |xj−1〉|xi〉|φ〉 for any k-bit strings x1, x2, . . . , xi, . . . , xj ∈ {0, 1}k. (section SWAP)

2. SecMOVE(k)i,j (|x1〉|x2〉 · · · |xi−1〉|xi〉|xi+1〉 · · · |xj〉|φ〉)= |x1〉|x2〉 · · · |xi−1〉|xi+1〉 · · · |xj〉|xi〉|φ〉
for any k-bit strings x1, x2, . . . , xi, . . . , xj ∈ {0, 1}k. (section MOVE)

Proof. (1) Since x1, x2, . . . , xi, . . . , xj are k-bit strings, we obtain |x1x2 · · · xi−1| = (i− 1)k and
|x1x2 · · · xj−1| = (j− 1)k. For convenience, we write ik for (i− 1)k and jk for (j− 1)k. We then
define the desired quantum function SecSWAP(k)i,j to be SWAPik+1,jk+1 ◦ SWAPik+2,jk+2 ◦ · · · ◦
SWAPik+k,jk+k.

(2) The quantum function SecMOVE(k)i,j is set to be SecSWAP(k)j−1,j ◦ · · · ◦ SecSWAP(k)i+1,i+2 ◦
SecSWAP(k)i,i+1. �

Hereafter, let us construct more quantum functions in EQS0.

Lemma 7. Consider COPY1 that satisfies COPY1(|a〉|φ〉)= ∑
s∈{0,1} |a⊕ s〉|s〉〈s|φ〉 for any quan-

tum state |φ〉 ∈ H∞ and any bit a, where ⊕ denotes the bitwise XOR. More generally, for each fixed
constant k≥ 2, let COPYk(|x〉|φ〉)= ∑

z∈{0,1}k |x⊕ z〉|z〉〈z|φ〉 for any quantum state |φ〉 ∈ H∞
and any k-bit string x. These quantum functions are all definable using Schemes I–III.

Proof. We inductively define COPYk for any index k≥ 1. In the case of k= 1, we set
COPY1 to be SWAP ◦ CNOT ◦ SWAP. It then follows that COPY1(|a〉|φ〉)= SWAP ◦ CNOT ◦
SWAP(|a〉|φ〉)= SWAP ◦ CNOT(∑s∈{0,1} |s〉|a〉 ⊗ 〈s|φ〉)= ∑

s∈{0,1} SWAP(|s〉|a⊕ s〉 ⊗ 〈s|φ〉)=∑
s∈{0,1} |a⊕ s〉〈s|φ〉.
Let k≥ 2. Assume by induction hypothesis that COPYk−1 has been already defined. The

quantum function COPYk(|x〉|φ〉) is obtained by taking the following process. To |x〉|φ〉, we
first apply SWAP[2,k] ≡ SWAP2,3 ◦ SWAP3,4 ◦ · · · ◦ SWAPk−1,k. Next, we apply COPY1 and then
Skip2[COPYk−1]. Finally, we apply SWAP−1

[2,k]. It is not difficult to check that the obtained
quantum function matches COPYk. �

Let us construct the basic quantum functions gAND and gOR, which “mimic” the behaviors of
the two-bit operations AND and OR, using only Schemes I–III.
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Lemma 8. There exist two quantum functions gAND and gOR that satisfy the following. Let x, y ∈
{0, 1} and b ∈ {0, 1}. (1) AND(x, y)= b iff ‖〈b|ψ (AND)

0xy 〉‖ = 1, where |ψ (AND)
0xy 〉 = gAND(|0〉|x〉|y〉).

(2) OR(x, y)= b iff ‖〈b|ψ (OR)
0xy 〉‖ = 1, where |ψ (OR)

0xy 〉 = gOR(|0〉|x〉|y〉). These quantum functions are
defined by Schemes I–III.

Proof. Recall the quantum functions SWAPi,j and COPY1, respectively, from Lemmas 5 and 7.
We first define gOR to be SWAP1,3 ◦ CSWAP ◦ COPY1. From this definition, for any x, y ∈ {0, 1},
it follows that gOR(|0〉|x〉|y〉)= 〈0|x〉|y〉|x〉|0〉 + 〈1|x〉|x〉|y〉|1〉. Thus, we obtain gOR(|0〉|0〉|y〉)=
|y〉|0〉|0〉 and gOR(|0〉|1〉|y〉)= |1〉|y〉|1〉.

We next define gAND to be SWAP1,3 ◦ SWAP2,3 ◦ CSWAP ◦ COPY1. It then follows that
gAND(|0〉|x〉|y〉)= 〈0|x〉|x〉|y〉|0〉 + 〈1|x〉|y〉|x〉|1〉. From this equality, we obtain gAND(|0〉|0〉|y〉)=
|0〉|y〉|0〉 and gAND(|0〉|1〉|y〉)= |y〉|1〉|1〉. �

For later use, we define another quantum function, which splits the entire input qubits into two
halves and then swaps them. We do not intend to include this quantum function to our system,
but it will be used to support the description of a new scheme given in Section 3.2.We remark that,
to construct this quantum function, we need Schemes I–III together with the quantum recursion
Scheme T. By recalling the left-half function LH and the right-half function RH from Section 2.1,
let us introduce HalfSWAP as

∗) HalfSWAP(|φ〉)=
⎧⎨
⎩

|φ〉 if �(|φ〉)≤ 1,∑
s:|s|=LH(|φ〉)〈s|φ〉 ⊗ |s〉 otherwise.

The inverse of HalfSWAP, denoted HalfSWAP−1, matches the quantum function obtained
from HalfSWAP by replacing LH(|φ〉) in its definition with RH(|φ〉). In the special case where
�(|φ〉) is even, HalfSWAP ◦HalfSWAP(|φ〉) equals |φ〉 since LH(|φ〉)= RH(|φ〉).
Example 9. Consider a quantum state |φ〉 = ∑

u:|u|=3 αu|u〉, which is α000|000〉 +
α001|001〉 + α010|010〉 + α011|011〉 + · · · + α111|111〉. Notice that LH(|φ〉)= ��(|φ〉)/2� = 2
and RH(�(|φ〉))= ��(|φ〉)/2� = 1. Since 〈s|φ〉 = ∑

u:|u|=3 αu〈s|u〉, it then follows that
HalfSWAP(|φ〉)= ∑

s:|s|=2
∑

u:|u|=3 αu〈s|u〉 ⊗ |s〉, which equals α000|000〉 + α001|100〉 +
α010|001〉 + α011|101〉 + · · · + α111|111〉.

3.2 Binary encoding of various types of objects
All quantum functions discussed in Section 3.1 take only “single” quantum states in H∞ as
their inputs. For practical applications of these quantum functions, we need to further deal with
a problem that consists of various types of “objects,” such as numbers, graphs, matrices, and
tape symbols. Since each QTM uses multiple tapes with their associated tape heads, these tapes
hold possibly different qubits and their tape heads move separately. This is an advantage of the
QTM model over quantum functions. For our purpose, nevertheless, it is imperative to set up an
appropriate binary encoding to transform multiple objects into a single quantum state with an
appropriate use of designated “separators”. In the polynomial-time setting (Yamakami, 2020), the
scheme of quantum recursion (Scheme T) is powerful enough to handle several inputs altogether
as a single encoded quantum state in a way similar to a multiple-tape QTM being simulated by
a single-tape QTM with only polynomial overhead. However, since we aim at capturing quan-
tum polylogtime computability instead, we cannot take the same approach to cope with multiple
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inputs.We thus need to ponder how to circumvent this difficulty to expand the scope of our quan-
tum functions. As a feasible solution to this problem, we introduce “extra” schemes that help us
handle intended binary encodings.

In what follows, we attempt to design an encoding (or a translation) of various types of objects
into binary strings of the same fixed length so that a series of these encoded objects forms a larger-
dimensional quantum state. Each “segment” of such a quantum state representing one encoded
object is referred to as a section, and this fixed-length encoding makes it possible to work with
each section separately.

Let us describe our encoding scheme for eight symbols in {0, 1, 2,�, B,H, S, T}, where �, B,H,
S, and T, respectively, stand for an “ending,” a “blank,” a “head,” a “separator,” and a “time”. With
the use of three bits, we take the following abbreviations: 0̂= 000, 1̂= 001, B̂= 010, �̂ = 011,
2̂= 111, Ĥ = 100, Ŝ= 110, and T̂ = 101. Given a binary string s= s1s2 · · · sk, the notation s̃(−)

denotes ŝ1ŝ2 · · · ŝk, and s̃ denotes s̃(−)�̂. For convenience, we also define λ̃ to be �̂. This makes us
encode, for example, the number 8 into b̃in(8)= 0̃01= 0̂0̂1̂�̂, while b̃in3(2) also equals 0̃01. Given
an arbitrary quantum state |φ〉 in H∞, we finally define its encoding |φ̃〉 as ∑

s:|s|=�(|φ〉) |s̃〉〈s|φ〉.
Notice that �(|φ̃〉)= 3�(|φ〉)+ 3.

To mark the end of a series of encoded objects, we use a designated separator, say, r0 in
{0, 1}+. We fix such r0 in the following discussion. We make each series of encoded objects
have length proportional to the section size |r0|, and thus any encoding x satisfies |x| = k|r0|
for an appropriate, fixed number k ∈N+. This helps us partition x section-wise as x1x2 · · · xk
with |xi| = |r0| for all indices i ∈ [k]. We also demand that no xi should match r0. Here, we say
that x section-wise contains no r0 if xi �= r0 holds for all indices i ∈ [k]. Let NONr0 = {x ∈ {0, 1}+ |
|x| ≡ 0 (mod |r0|), x section-wise contains no r0 }. Similarly, we set NONr0 (|φ〉)= {x ∈NONr0 |
〈xr0|φ〉 �= 0}. For convenience, when r0 = 2̂, we tend to omit r0 from NONr0 and NONr0 (|φ〉).
Example 10. Fix r0 ∈ {0, 1}+. Choose three strings x1, x2, x3 ∈ {0, 1}|r0| satisfying xi �= r0 for
all i ∈ [3], and consider three quantum states |ψ〉 = |x1x2x3〉|r0〉|φ〉, |ψ ′〉 = |x1x2r0x3〉|φ〉, and
|ψ ′′〉 = |x1r0x2x3〉|φ〉 for any |φ〉 ∈ H∞.We then obtain NONr0 (|ψ〉)= {x1x2x3}, NONr0 (|ψ ′〉)=
{x1x2}, and NONr0 (|ψ ′′〉)= {x1}. By contrast, when |ψ〉 has the form (α|x1〉|r0〉 + β|x2〉|r0〉)|φ〉,
NONr0 (|ψ〉) equals {x1, x2}.

As another example, if x= 0111 and r0 = 2̂, then x̃ equals x̃(−)�̂ = 0̂1̂1̂1̂�̂. Notice that |̃x| ≡
0 (mod |r0|). Thus, we obtain NONr0 (|̃x〉|r0〉|φ〉)= {̃x}.

We then need a quantum function that splits an input into sections and apply “section-wise”
two predetermined quantum operations. We actually introduce two slightly different code skip-
ping schemes described below. We do not unconditionally include them to EQS, but we use them
in a certain restricted situation, which will be discussed later. Such a restriction is in fact necessary
because these schemes are too powerful to use for quantum polylogtime computability.

∗) The code skipping schemes. From g, h and r0 ∈ {0, 1}+, we define CodeSKIP+[r0, g, h] and
CodeSKIP−[r0, g, h] as follows:

(i) CodeSKIP+[r0, g, h](|φ〉)=
⎧⎨
⎩

|φ〉 if NONr0 (|φ〉)=∅,∑
x∈NONr0 (|φ〉) (g(|xr0〉)⊗ h(〈xr0|φ〉)) otherwise.

(ii) CodeSKIP−[r0, g, h](|φ〉)=
⎧⎨
⎩

|φ〉 if NONr0 (|φ〉)=∅,∑
x∈NONr0 (|φ〉) (g(|x〉)⊗ h(〈x|φ〉)) otherwise.
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The difference between CodeSKIP+[r0, g, h] and CodeSKIP−[r0, g, h] looks subtle but becomes
clear in the following example. When |φ〉 = |x〉|r0〉|y〉 with |x| = |r0| and x �= r0, it fol-
lows that CodeSKIP+[r0, g, h](|φ〉)= g(|xr0〉)⊗ h(|y〉) but CodeSKIP−[r0, g, h](|φ〉)= g(|x〉)⊗
h(|r0y〉). These schemes are not interchangeable in most applications.

A quantum function g is said to be query-independent if, in the process of constructing g,
for any input of the form |xr0〉|φ〉, any quantum function that appears in this construction pro-
cess does not directly access |φ〉 and thus it does not depend on |φ〉. This instantly implies that
g(|xr0〉|φ〉)= g(|xr0〉)⊗ |φ〉 for any x and |φ〉. Using this terminology, when h= I in the code
skipping schemes, CodeSKIP+[r0, g, I] and CodeSKIP−[r0, g, I] are query-independent.

Here, we present a few more examples of CodeSKIP+.

Example 11. Let g = ROTπ/4 and h=NOT. Let r0 = 05 and let |φ〉 = |x1x2〉|r0〉|x3x4〉|r0〉|ψ〉with
binary strings xi = bin5(i) for any i ∈ [4] and a qustring |ψ〉. Since NONr0 (|φ〉)= {x1x2}, we obtain
CodeSKIP+[r0, g, h](|φ〉)= ROTπ/4(|x1x2r0〉)⊗NOT(|x3x4r0〉|ψ〉).

Let |φ′〉 = α|y1r0〉|ψ1〉 + β|y2r0〉|ψ2〉 with |y1| = |y2| = |r0| and y1, y2 /∈ {r0}. In this case,
NONr0 is the set {y1, y2}. It then follows that CodeSKIP+[r0, g, h](|ψ ′〉)= αg(|y1r0〉)⊗ h(|ψ1〉)+
βg(|y2r0〉)⊗ h(|ψ2〉).

We wish to recall the two useful quantum functions REMOVE (removal) and REP (replace-
ment) introduced by Yamakami (2020). We introduce the “code-controlled” versions of them. Let
r0 ∈ {0, 1}+ be a separator.

(i)CodeREMOVE[r0](|φ〉)=
⎧⎨
⎩

|φ〉 if NONr0 (|φ〉)=∅,∑
x∈NONr0 (|φ〉)

∑
a∈{0,1} (〈a|x〉 ⊗ |ar0〉 ⊗ 〈xr0|φ〉) otherwise.

(ii) CodeREP[r0](|φ〉)=
⎧⎨
⎩

|φ〉 if NONr0 (|φ〉)=∅,∑
x∈NONr0 (|φ〉)

∑
u:|u|=|x|−1 (〈u|x〉 ⊗ |ur0〉 ⊗ 〈xr0|φ〉) otherwise.

Notice that the quantum functions CodeREMOVE[r0] and CodeREP[r0] are query-
independent.

We wish to include a simple example of CodeREMOVE and CodeREP.

Example 12. Let |φ〉 = α|x1r0〉|ψ1〉 + β|x2r0〉|ψ2〉 + γ |r0〉|ψ3〉with �(|x1r0〉|ψ1〉)= �(|x2r0〉|ψ2〉)
= �(|r0〉|ψ3〉), NONr0 (|ψ〉)= {x1, x2}, |α|2 + |β|2 + |γ |2 = 1, and αβγ �= 0. If x1 = 0y1 and x2 =
1y2 for two strings y1 and y2, then CodeREMOVE[r0](|ψ〉) equals α|y10r0〉|ψ1〉 + β|y21r0〉|ψ2〉 +
γ |r0〉|ψ3〉. If x1 = z10 and x2 = z21, then we obtain CodeREP[r0](|φ〉)= α|0z1r0〉|ψ1〉 +
β|1z2r0〉|ψ2〉 + γ |r0〉|ψ3〉.

3.3 Code-controlled fast quantum recursion scheme
Let us introduce a new scheme, called Scheme IV, which is a variant of the multi-qubit quantum
recursion scheme (Scheme T) geared up with the code skipping schemes in Section 3.2. Recall that,
in Scheme T, we inductively discard k qubits from an input quantum state |φ〉 until we consume
all qubits except for the last (at most) t qubits. Unlike Scheme T, since our access to input qubits is
quite limited, we need to split the whole input into two separate parts, which play quite different
roles as we will see.

Before formally introducing the complexity class EQS, for each quantum function f in EQS0,
we define its “code-controlled” version f ∗ by setting f ∗(|xr0〉|φ〉)= |xr0〉|φ〉 if |x| ≤ 2, �(|φ〉)≤ 1,
or |x|> |r0|ilog(�(|φ〉)), and f ∗(|xr0〉|φ〉)= f (|xr0〉)⊗ |φ〉 otherwise, for any x ∈ {0, 1}∗ and any
|φ〉 ∈ H∞. In the rest of this work, it is convenient to identify f with f ∗. It is important to note
that f ∗ does not access |φ〉 in |xr0〉|φ〉 by its definition.
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In the fast quantum recursion, on the contrary, we discard a half of the second part of
input quantum state |xr0〉 ⊗ |φ〉. By halving the input at each step, this recursive process quickly
terminates.

Definition 13. We introduce the following scheme.

IV. The code-controlled fast quantum recursion scheme. Assume that we are given quantum func-
tions d, g, h, a number t ∈N+, and a string r0 ∈ {0, 1}+ (where d is not defined using
MEAS[ · ] but d and h may be defined using CodeSKIP+[ · ] and CodeSKIP−[ · ]). We then
define F ≡ CFQRect[r0, d, g, h|P|r0|,F|r0|] for P|r0| = {pu}u∈{0,1}|r0| with pu ∈ {I,HalfSWAP}
and F|r0| = {fu}u∈{0,1}|r0| with fu ∈ {I, F} as follows. For any x ∈ {0, 1}∗ and any |φ〉 ∈ H∞, let

(i) F(|xr0〉|φ〉)= g(|xr0〉|φ〉) if x= λ, �(|φ〉)≤ t, or |x|> |r0|k,
(ii) F(|xr0〉|φ〉)= ∑

u:|u|=|r0|
∑

v:|v|=�(〈u|xr0〉) (h(|u〉|v〉)⊗ p−1
u (〈v|ζ (x′r0)u,pu,φ〉)) otherwise,

where k= ilog(�(|φ〉)), x ∈NONr0 , |ζ (x′r0)u,pu,φ〉 = ∑
s:|s|=mu(|φ〉) (fu(〈u|x′r0〉 ⊗ |s〉)⊗ 〈s|ψpu,φ〉),

d(|xr0〉)= |x′r0〉 with x′ ∈NONr0 , |ψpu,φ〉 = pu(|φ〉).Moreover, mu( · ) is determined to be LH
if pu = I and RH if pu =HalfSWAP. Notice that u �= r0 follows from x′ ∈NONr0 . In the other
case where an input, say, |y〉 to F satisfies NONr0 (|y〉)=∅, we automatically set F(|y〉)= |y〉.
For readability, the prefix term “code-controlled” is often dropped and |ζ (x′r0)u,pu,φ〉 is expressed
briefly as |ζu,pu,φ〉 as long as x′r0 is clear from the context.

The quantum functions d, g, h in the above definition are called ground (quantum) functions
of F. If g is query-independent, Scheme IV is said to be query-independent.

Although the description of Items (i)–(ii) in Scheme IV concerns only with a classical string
xr0, whenever any quantum state |ψ〉 = ∑

x αx|xr0〉 ⊗ |φx〉 is plugged in to F, we obtain the result∑
x αxF(|xr0〉|φx〉).
Since pu ∈ {I,HalfSWAP} and |x′| = |x|, it follows that �(|ψu,pu,φ〉)= �(|φ〉), �(|ζ (x′r0)u,pu,φ〉)=

�(〈u|x′r0〉)+ �(|φ〉), and �(〈v|ζ (x′r0)u,pu,φ〉)= �(|φ〉). In Item (ii), since the size |s| is exactly LH(|φ〉)
(or RH(|φ〉)), fu takes inputs of length (�(|x′r0〉)− |r0|)+ ��(|φ〉)/2� (or (�(|x′r0〉)− |r0|)+
��(|φ〉)/2�). Hence, within �log �(|φ〉)� recursive steps, the whole process terminates.

As a special case of Scheme IV, when r0 = 1, Item (ii) has the following simple form:

(ii′) F(|0n1〉|φ〉)= ∑
v:|v|=n (h(|0〉 ⊗ |v〉)⊗ p−1

0 (〈v|ζ (0n1)0,p0,φ〉)),

where |ζ (0n1)0,p0,φ〉 = ∑
s:|s|=m(|φ〉) (f0(|0n−11〉 ⊗ |s〉)⊗ 〈s|ψp0,φ〉).

At this moment, it is worth remarking the usage of the length function �( · ). In Scheme IV, the
input quantum state |xr0〉|φ〉 is reduced to 〈u|x′r0〉|s〉 (with |s| =mu(|φ〉) and |u| = |r0|) so that
we can inductively apply F (when fu = F) to it. The length �(|φ〉) then becomes �(|s〉), and thus
the conditional execution of Item (i) depends on the value �(|s〉).

To understand Scheme IV better, we provide in Example 14 a simple example of how to
calculate the quantum function F ≡ CFQRect[r0, d, g, h|P|r0|,F|r0|] step by step.

Example 14. In this example, we wish to show how to calculate the quantum function F ≡
CFQRect[r0, d, g, h|P|r0|,F|r0|] defined with the parameters t = 1, r0 = 1, d = I, and g ≡ I.
Furthermore, h is defined as h(|01〉)= |11〉 and h(|010m1〉)= |10m+11〉 for any m ∈N. We also
set p0 =HalfSWAP, p1 = I, f0 = F, and f1 = I. Let x ∈ {0}∗ and |φ〉 ∈ H∞. In what follows, we will
calculate F(|x1〉|φ〉) in a “bottom-up” fashion.
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(1) We start with the base case. If x= λ, then F(|1〉|φ〉)= g(|1〉|φ〉)= |1〉|φ〉. If x= 0m1 with
m≥ 1 and �(|φ〉)≤ 1, then F(|0m1〉|φ〉)= g(|0m1〉|φ〉)= |0m1〉|φ〉.

(2) Hereafter, we assume that x �= λ and �(|φ〉)≥ 2. For simplicity, let |φ〉 denote |u〉 for a certain
string u ∈ {0, 1}∗. When u= u1u2 · · · un and 1≤ i< j≤ n, we use the succinct notation u[i,j] to
express the string uiui+1 · · · uj.

(a)We first calculate F(|01〉|u〉) for u= u1u2u3u4. Since |u〉 = |u[1,2]〉|u[3,4]〉,we obtain p0(|u〉)=
|u[3,4]〉|u[1,2]〉. We also obtain |ζ0,p0,u〉 = F(|1〉|u[3,4]〉)⊗ |u[1,2]〉 = |1〉 ⊗ |u[3,4]〉|u[1,2]〉 by (1), and
thus F(|01〉|u〉) equals h(|0〉 ⊗ |1〉)⊗ p−1

0 (|u[3,4]〉|u[1,2]〉), which is |11〉|u[1,2]〉|u3,4]〉 = |11〉|u〉.
(b) Next, we calculate F(|001〉|u′〉) for u′ = u1u2 · · · u8. Note that |ζ0,p0,u′ 〉 = F(|01〉|u′

[5,8]〉)⊗
|u′

[1,4]〉 = |11〉 ⊗ |u′
[5,8]〉|u′

[1,4]〉 by (a). From this, we obtain F(|001〉|u′〉)= h(|0〉 ⊗ |11〉)⊗
p−1
0 (|u′

[5,8]〉|u′
[1,4]〉)= |101〉|u′〉.

3.4 Power of Scheme IV
In what follows, we intend to show the usefulness of Scheme IV by applying it to construct a
quantum function, which calculates the logarithmic value of (part of) input size. Formally, for
any |φ〉 ∈ H∞ and m ∈N+, we define SIZE1 as SIZE1(|0m1〉|φ〉)= |0k1〉|0m−k−11〉|φ〉 if �(|φ〉)≤
2m−1, where k= ilog(�(|φ〉)), and SIZE1(|0m1〉|φ〉)= |0m1〉|φ〉 otherwise. More generally, for any
r0 /∈ {0}∗ with |r0| ≥ 1, we define SIZEr0 as SIZEr0 (|0m|r0|r0〉|φ〉)= |0k|r0|r0〉|0(m−k−1)|r0|r0〉|φ〉. The
choice of 0m|r0| here is only for simplicity.

For brevity, we intend to use the notation EQS0 + IV to express the set of quantum functions
constructed by applying Schemes I–IV.

Lemma 15. Let r0 /∈ {0}∗ with |r0| ≥ 1. The above quantum function SIZEr0 can be definable within
EQS0 + IV .

Proof. We prove the lemma only for the simple case of r0 = 1. Given m ∈N+ and |φ〉 ∈ H∞, let
|ξ〉 = |0m1〉|φ〉. Recall the quantum function LengthQ1 from Lemma 5(9) and, for simplicity, write
g for LengthQ1. It then follows that g(|1〉)= |1〉 and g(|0m1〉)= |10m−11〉 if m≥ 1. We denote by
F the quantum function CFQRec1[1, I, g, I|{p0, p1}, {f0, f1}] with the parameters f0 = F, f1 = I, and
p0 = p1 = I.

If either m= 0 or �(|φ〉)≤ 1, then F(|1〉|φ〉) equals g(|1〉)⊗ |φ〉 = |1〉|φ〉. Hereafter, we
assume that m≥ 1 and �(|φ〉)≥ 2. By induction hypothesis, we obtain F(|0m−11〉 ⊗ |s〉)=
|0k−11〉|0m−k−11〉|φ〉 if �(|s〉)≤ 2m−2 and k− 1= ilog(�(|s〉)). Starting with |ξ〉 = |0m1〉|φ〉,
F(|ξ〉) equals |0〉 ⊗ ∑

s:|s|=LH(|φ〉) F(|0m−11〉 ⊗ |s〉)⊗ 〈s|φ〉 = |0〉 ⊗ |0k−11〉|0m−k−11〉|φ〉 =
|0k1〉|0m−k−11〉|φ〉.

The general case of r0 �= 1 is similarly handled. The desired quantum function SIZE1 is
therefore set to be F. �

Given an input of the form |xr0〉|φ〉, it is possible to apply any quantum function g in EQS0 to
the first segment |xr0〉 with keeping the second segment |φ〉 intact. This can be done by the use of
Scheme IV in the following way.

Lemma 16. For any string r0 ∈ {0, 1}+ and any quantum function g ∈ ÊQS0 satisfying g(|r0〉 ⊗
|φ〉)= g(|r0〉)⊗ |φ〉, there exists another quantum function F definable within EQS0 + IV such that
F(|xr0〉|φ〉)= g(|xr0〉)⊗ |φ〉 for any x ∈NONr0 and any |φ〉 ∈ H∞.

Proof. Let us recall the quantum function Skipk[g] from Lemma 4. For a given g ∈ ÊQS0,
we set h≡ g ◦ Skip|r0|[g−1]. Notice that h belongs to ÊQS0 because g−1 exists within ÊQS0
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(as shown in Lemma 23). The desired quantum function F is defined by Scheme IV as F ≡
CFQRec1[r0, I, g, h|P|r0|,F|r0|], where P|r0| = {pu}u∈{0,1}|r0| with pu = I for all u’s and F|r0| =
{fu}u∈{0,1}|r0| with fu = F for all u’s. As a special case, we then obtain F(|r0〉|φ〉)= g(|r0〉|φ〉)=
g(|r0〉)⊗ |φ〉.

Assume by induction hypothesis that F(|xr0〉|φ〉)= g(|xr0〉)⊗ |φ〉. Let us con-
sider F(|axr0〉|φ〉) for an arbitrary string a ∈ {0, 1}|r0| ∩NONr0 . It then follows that
|ζ (xr0)a,I,φ 〉 = ∑

s:|s|=LH(|φ〉) (F(|xr0〉 ⊗ |s〉)⊗ 〈s|φ〉)= ∑
s:|s|=LH(|φ〉) (g(|xr0〉)⊗ |s〉〈s|φ〉)=

g(|xr0〉)⊗ |φ〉. We therefore conclude that F(|axr0〉|φ〉)= ∑
v:|v|=|xr0| (h(|a〉|v〉)⊗ 〈v|ζ (xr0)a,I,φ 〉)=∑

v:|v|=|xr0| (h(|a〉|v〉)⊗ 〈v|ψg,xr0〉 ⊗ |φ〉)= h(|a〉|ψg,xr0〉)⊗ |φ〉 = h(|a〉 ⊗ g(|xr0〉))⊗ |φ〉 since
|v| = |xr0|, where |ψg,xr0〉 = g(|xr0〉). Because h(|a〉 ⊗ g(|xr0〉)) equals g(|a〉 ⊗ g−1(g(|xr0〉))=
g(|axr0〉), it follows that F(|0xr0〉|φ〉)= g(|axr0〉)⊗ |φ〉, as requested. �

As shown in Proposition 18, Scheme IV turns out to be so powerful that it generates quantum
functions, which can modify the first segment, |xr0〉, ilog(�(|φ〉)) times for any given input of the
form |xr0〉|φ〉.

Let h be any quantum function defined by Schemes I–III. Consider a quantum function ĥ
defined inductively as

( ∗ ) ĥ(|r0〉)= |r0〉 and ĥ(|xr0〉)=
∑

u:|u|=|r0|
h(|u〉 ⊗ ĥ(〈u|xr0〉))

for any x ∈NONr0 with x �= λ. This recursive construction scheme (∗) looks similar to Scheme T
but it is not supported in our system EQS0 + IV . Nevertheless, as shown in Proposition 18, when-
ever the length of an input qustring |xr0〉 is “short” enough compared to another supplemental
input qustring |φ〉, it may be possible to “realize” this scheme within EQS0 + IV .

Example 17. As a concrete example of the above function ĥ, we consider CodeSKIP+[r0, g, I]
(as well as CodeSKIP−[r0, g, I]) for a norm-preserving quantum function g. To see this, we
set h to be g ◦ Skip|r0|[g−1] and define ĥ from h by applying the above scheme (∗). Here, we
wish to claim that this quantum function ĥ coincides with CodeSKIP+[r0, g, I]. Initially, we
obtain CodeSKIP+[r0, g, I](|r0〉)= |r0〉 = ĥ(|r0〉) by (∗). For any two strings a, x ∈NONr0 ∩ {0, 1}+
with |a| = |r0|, it follows from (∗) that ĥ(|axr0〉)= ∑

u:|u|=|r0| h(|u〉 ⊗ ĥ(〈u|axr0〉))= h(|a〉 ⊗
CodeSKIP+[r0, g, I](|xr0〉))= h(|a〉 ⊗ g(|xr0〉))= g ◦ Skip|r0|[g−1](|a〉 ⊗ g(|xr0〉))= g(|axr0〉).

The quantum function ĥ given by the recursive scheme (∗) may not be constructed by the
only use of Schemes I–IV since the k-qubit quantum recursion scheme is required. For rela-
tively “short” inputs, however, it is possible to compute the value of ĥ within the existing system
EQS0 + IV .

Proposition 18. For a quantum function h in EQS0, let ĥ satisfy the conditions of the aforemen-
tioned recursive scheme (∗). There exists a quantum function F definable within EQS0 + IV such
that, for any (x, |φ〉) with x ∈NONr0 and |φ〉 ∈ H∞, if |x| ≤ |r0| log �(|φ〉), then F(|xr0〉|φ〉)=
ĥ(|xr0〉)⊗ |φ〉 holds. However, there is no guarantee that F(|xr0〉|φ〉) matches ĥ(|xr0〉)⊗ |φ〉 when
|x|> |r0| log �(|φ〉).
Proof. Assume that |x| ≤ |r0| log �(|φ〉). Consider the quantum function F ≡
CFQRec|r0|−1[r0, I, g, h|P|r0|,F|r0|], where P|r0| = {pu}u∈{0,1}|r0| and F|r0| = {fu}u∈{0,1}|r0|
with pu ≡ I and fu ≡ F for all u ∈ {0, 1}|r0|. We verify the proposition by induction on the
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number of applications of F. In the base case, we obtain F(|r0〉|φ〉)= |r0〉|φ〉 = ĥ(|r0〉)⊗ |φ〉
since ĥ(|r0〉)= |r0〉 by (∗). Next, we consider any string ax with a ∈ {0, 1}|r0| ∩NONr0 and
x ∈NONr0 . We obtain F(|xr0〉|φ〉)= ĥ(|xr0〉)⊗ |φ〉 by induction hypothesis. It then fol-
lows that F(|axr0〉|φ〉)= ∑

v:|v|=|xr0| (h(|a〉 ⊗ |v〉)⊗ 〈v|ζ (xr0)a,I,φ 〉), where |ζ (xr0)a,I,φ 〉 = ∑
s:|s|=LH(|φ〉)

(F(|xr0〉 ⊗ |s〉)⊗ 〈s|φ〉). Since F(|xr0〉|φ〉)= ĥ(|xr0〉)⊗ |φ〉, |ζ (xr0)a,I,φ 〉 equals
∑

s:|s|=LH(|φ〉)
(ĥ(|xr0〉)⊗ |s〉 ⊗ 〈s|φ〉)= ĥ(|xr0〉)⊗ |φ〉. We briefly write |ψĥ,xr0

〉 for ĥ(|xr0〉). We then
obtain F(|axr0〉|φ〉)= ∑

v:|v|=|xr0| (h(|a〉 ⊗ |v〉)⊗ 〈v|ψĥ,xr0
〉)⊗ |φ〉. This implies that

F(|axr0〉|φ〉)= h(|a〉 ⊗ ĥ(|xr0〉))⊗ |φ〉 = ĥ(|axr0〉)⊗ |φ〉 by the definition of ĥ. �

Since CodeSKIP+[ · ] can be realized by the recursive construction scheme (∗), Proposition 18
allows us to use CodeSKIP+[ · ] freely as if it is a quantum function in EQS0 + IV .

Corollary 1. There exists a quantum function F definable within EQS0 + IV such that
F(|xr0〉|φ〉)= CodeSKIP+[r0, g, I](|xr0〉|φ〉) if |x| ≤ |r0| log �(|φ〉).

3.5 Elementary quantum schemes
Formally, let us introduce ÊQS and EQS. We have already explained Schemes I–IV. Now, we
wish to add the final piece of construction schemes, called Scheme V, which intuitively supports
successive ilog(�(|φ〉)) applications of Compo[g, g] for a given quantum function g taking |xr0〉|φ〉
as an input.

Definition 19. We introduce the following scheme.

V. The logarithmically many composition scheme. From g, we define LCompo[g] as follows:
(i) LCompo[g](|xr0〉|φ〉)= |xr0〉 ⊗ |φ〉 if x= λ, �(|φ〉)≤ 1, or |x|> |r0|k,
(ii) LCompo[g](|xr0〉|φ〉)= gk(|xr0〉|φ〉) otherwise,

where x ∈NONr0 and k= ilog(�(|φ〉)).
When g is query-independent, we say that Scheme V is query-independent. We remark that

query-independent Scheme V is actually redundant because Proposition 18 helps us realize
LCompo[g] by an application of Scheme IV.

Definition 20. The class EQS is the smallest set of (code-controlled) quantum functions that con-
tains the quantum functions of Scheme I and is closed under Schemes II–V. Similarly, ÊQS is defined
with no use of Item 6) of Scheme I.

Note that any quantum function F in EQS is constructed by sequential applications of Schemes
I–V. Such a finite series is referred to as a construction history of F. The length of this construc-
tion history serves as a descriptive complexity measure of F. Refer to (Yamakami, 2020) for more
discussions.

4. Quantum functions definable within EQS
In Section 3.5, we have introduced the system ÊQS as well as EQS. In this section, we will study the
basic properties of all quantum functions in ÊQS and EQS by introducing several useful quantum
functions and extra schemes, which are also definable within EQS. One of the most important
properties we can show is an implementation of a simple “binary search strategy” in EQS.
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4.1 Basic properties of ̂EQS
The only difference between ÊQS and EQS is the free use of Item 6) (quantum measurement)
of Scheme I. Since ÊQS does not involve quantum measurement, we naturally expect that ÊQS
enjoys the unitary nature of quantum computation described in the following three lemmas,
Lemmas 21–23.

Lemma 21. Any quantum function in ÊQS is dimension-preserving and norm-preserving.

Proof. Let us check Schemes I–V separately to verify the lemma. Note that Items 1)–5) of Scheme
I are clearly dimension-preserving and norm-preserving. The lemma was already shown for
Schemes II–III by Yamakami (2020). Therefore, it suffices to check Schemes IV and V. Let
F ≡ CFQRect[r0, g, h|P|r0|,F|r0|] be any quantum function defined by Scheme IV. It is easy to
verify that HalfSWAP is dimension-preserving and norm-preserving. Thus, so are all quantum
functions in P|r0|. By induction hypothesis, we assume that g and h are dimension-preserving
and norm-preserving. In what follows, we argue by way of induction on the input length of F
that F is dimension-preserving and norm-preserving. If either x= λ or �(|φ〉)≤ t, then we obtain
�(F(|xr0〉|φ〉))= �(g(|xr0〉|φ〉))= �(|xr0〉|φ〉) and ‖F(|xr0〉|φ〉)‖ = ‖g(|xr0〉|φ〉)‖ = ‖|xr0〉|φ〉‖.

Let us consider the case where x �= λ and �(|φ〉)> t. We then obtain �(h(|u〉|v〉)⊗
p−1
u (〈v|ζu,pu,φ〉))= �(|u〉)+ �(|v〉〈v|ζu,pu,φ〉)= �(|xr0〉)− |r0| + �(|ζu,pu,φ〉). By induction
hypothesis, we obtain �(F(〈u|xr0〉|s〉))= �(〈u|xr0〉|s〉). This implies that �(|ζu,pu,φ〉)=
�(

∑
s F(〈u|xr0〉|s〉)⊗ 〈s|ψpu,φ〉)= �(〈u|xr0〉|φ〉). It then follows that �(F(|xr0〉|φ〉))=

�(
∑

u
∑

v h(|u〉|v〉)⊗ p−1
u (〈v|ζu,pu,φ〉))= �(|xr0〉|φ〉). The property of norm-preserving is

similarly proven.
For Scheme V, it is obvious that, if g is dimension-preserving and norm-preserving, then so is

gk for any number k ∈N+. Thus, LCompo[g] satisfies the lemma. �

We further discuss two useful construction schemes, which are definable within ÊQS.

Lemma 22. Let k ∈N+ and let Gk = {gu}u∈{0,1}k be a series of ÊQS-functions. The following quan-
tum functions all belong to ÊQS. The lemma also holds even if ÊQS is replaced by EQS. Let |φ〉 be
any quantum state in H∞ and let x ∈ {0, 1}k.
1. Compo[Gk](|φ〉)= gs1 ◦ gs2 ◦ · · · ◦ gs2k (|φ〉). (multiple composition)
2. Branchk[Gk](|φ〉)= |φ〉 if �(|φ〉)< k and Branchk[Gk](|φ〉)= ∑

s:|s|=k |s〉 ⊗ gs(〈s|φ〉) other-
wise.

Proof. (1)–(2) The above schemes were shown in (Yamakami, 2020, Lemma 3.6) to be valid for
�QP

1 and �̂QP
1 , and their argument also work for EQS and ÊQS. �

As a quick example of Branchk[Gk], let us recall the quantum function Skipk[g] from Lemma 4.
It is obvious that Skipk[g] is simply defined to be Branchk[{gu}u∈{0,1}k] with gu = g for all u ∈
{0, 1}k.

For any given quantum function, when there exists another quantum function g satisfying
f ◦ g(|φ〉)= g ◦ f (|φ〉)= |φ〉 for any |φ〉 ∈ H∞, we express this g as f−1 (or sometimes f †) and call
it the inverse (function) of f .

Lemma 23. For any quantum function g in ÊQS, its inverse function g−1 exists in ÊQS.Moreover,
if g is in ÊQS0, then g−1 is also in ÊQS0.
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Proof. For Scheme I, it is obvious that PHASE−1
θ = PHASE−θ , ROT−1

θ = ROT−θ , NOT−1 =
NOT, and SWAP−1 = SWAP. For Scheme II, Compo[g, h]−1 equals Compo[h−1, g−1]. For
Scheme III, it suffices to set Branch[g, h]−1 to be Branch[g−1, h−1]. For Scheme IV, let F ≡
CFQRect[r0, d, g, h|P|r0|,F|r0|]. If x= λ, �(|φ〉)≤ t, or |x|> |r0|k with k= ilog(�(|φ〉)), then we
set F−1 ≡ g−1. In this case, we obtain F−1 ◦ F(|xr0〉|φ〉)= F−1(g(|xr0〉|φ〉))= g−1 ◦ g(|xr0〉|φ〉)=
|xr0〉|φ〉. Assuming otherwise, we define F−1 to be the consecutive applications of two quan-
tum functions: h−1 and G≡ CFQRect[r0, d−1, g−1, I|P|r0|,F−1

|r0|], where F−1
|r0| = {f−1

u }u∈{0,1}|r0| .
It is important to note that we do not use P−1

|r0| = {p−1
u }u∈{0,1}|r0| in place of P|r0| in the

definition of G. Let us show that F−1 ◦ F(|xr0〉|φ〉)= |xr0〉|φ〉. Assume that F(|xr0〉|φ〉) has
the form

∑
u:|u|=|r0|

∑
v:|v|=�(〈u|xr0〉) (h(|u〉|v〉)⊗ p−1

u (〈v|ζ (x′r0)u,pu,φ〉)). We first apply h−1 to the

first |xr0| qubits and then obtain
∑

u:|u|=|r0|
∑

v:|v|=�(〈u|xr0〉) (|u〉|v〉 ⊗ p−1
u (〈v|ζ (x′r0)u,pu,φ〉)). To this

quantum state, we further apply G. By an application of pu to p−1
u (〈v|ζ (x′r0)u,pu,φ〉), we obtain∑

u:|u|=|r0|
∑

v:|v|=�(〈u|xr0〉) |u〉|ζ (x
′r0)

u,pu,φ〉. Notice that |ζ (x′r0)u,pu,φ〉 equals
∑

s:|s|=mu(|φ〉) (fu(〈u|x′r0〉 ⊗
|s〉)⊗ 〈s|ψpu,φ〉). An application of f−1

u to fu(〈u|x′r0〉 ⊗ |s〉) leads to ∑
u:|u|=|r0|〈u|x′r0〉 ⊗ |ψpu,φ〉.

Since |x′r0〉 = d(|xr0〉), by applying d−1 and p−1
u (which come from the definition of G), we finally

obtain |xr0〉 ⊗ |φ〉. For Scheme V, it suffices to set LCompo[g]−1 to be LCompo[g−1].
The above argument also proves the second part of the lemma. �

4.2 Section-wise handling of binary encoding
We have discussed in Section 3.2 the binary encodings of various objects usable as part of
inputs. We further explore the characteristics of quantum functions that can handle these binary
encodings.

Given k encoded strings x̃1, x̃2, . . . , x̃k, we merge them into a single string of the form
x̃1x̃2 · · · x̃k2̂, where 2̂ serves as an endmarker. Let k≥ 2 and let G = {gi}i∈[k] denote a series of k
quantum functions. We then consider a simultaneous application of all quantum functions in G,
MultiAppk[G], given as

MultiAppk[2̂, G](|x̃1x̃2 · · · x̃k2̂〉|φ〉)
= g1(|x̃1〉)⊗ g2(|x̃2〉)⊗ · · · ⊗ gk(|x̃k2̂〉)⊗ |φ〉.

Lemma 24. For any k≥ 2 and any series G = {gi}i∈[k] of k quantum functions, the quantum
function MultiAppk[2̂, G] is definable from G and the code skipping scheme.

Proof. Let G = {gi}i∈[k] denote any series of k quantum functions, not necessarily in EQS.
For brevity, we set r̄0 = �̂ and r0 = 2̂. The quantum function MultiAppk[2̂, G] is con-
structed from G by applying CodeSKIP+[ · ] in the following inductive way. Initially, we
set G[k,k] ≡ CodeSKIP+[r0, gk, I]. Let Xk = x̃k (= x̂k�̂). Since NONr0 (|Xk〉|r0〉|φ〉)= {Xk}, we
obtain G[k,k](|Xk〉|r0〉|φ〉)= gk(|Xk〉|r0〉)⊗ |φ〉. Let i be any index in [k− 1] and set Xi+1 =
x̃i+1x̃i+2 · · · x̃k. We assume by induction hypothesis that G[i+1,k](|Xi+1〉|r0〉|φ〉)= gi+1(|x̃i+1〉)⊗
gi+2(|x̃i+2〉)⊗ · · · ⊗ gk(|x̃k〉|r0〉)⊗ |φ〉. We then define G[i,k] ≡ CodeSKIP+[r̄0, gi,G[i+1,k]].
Since NONr̄0 (|Xi〉|r0〉|φ〉)= {x̂i}, it follows that G[i,k](|Xi〉|r0〉|φ〉)= gi(|x̂ir̄0〉)⊗
G[i+1,k](|Xi+1〉|r0〉|φ〉)= gi(|x̃i〉)⊗ gi+1(|x̃i+1〉)⊗ · · · ⊗ gk(|x̃k〉|r0〉)⊗ |φ〉.

The desired quantum function MultiAppk[r0, G] therefore equals G[1,k], which is g1(|x̃1〉)⊗
g2(|x̃2〉)⊗ · · · ⊗ gk(|x̃k2̂〉)⊗ |φ〉. �
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By Lemma 24, we can construct MultiAppk[2̂, G] from G = {gi}i∈[k] and CodeSKIP+[r0, g, h].
Since CodeSKIP+[r0, g, h] stays outside of EQS, MultiAppk[2̂, G] in general does not belong to
EQS. However, as the next lemma ensures, we can useMultiAppk[2̂, G] as if it is an EQS function
under certain circumstances.

To describe our result, let us recall the 3-bit encoding of Ŝ, which indicates “separator”.

Lemma 25. Let k ∈N+ and let G = {gi}i∈[k] be any series of k quantum functions
in EQS. There exists a quantum function F in EQS such that F(|Ŝ̃x1̃x2 · · · x̃k2̂〉|φ〉)=
MultiAppk[2̂, G](|Ŝ̃x1̃x2 · · · x̃k2̂〉|φ〉) as long as |Ŝ̃x1̃x2 · · · x̃k2̂| ≤ |2̂| log �(|φ〉). However, the equal-
ity may not hold if |Ŝ̃x1̃x2 · · · x̃k2̂|> |2̂| log �(|φ〉).

Proof. Let k ∈N+ and let G = {gi}i∈[k] be given as in the premise of the lemma. Since |2̂| = 3,
we set h to be Branch3[{hu}u∈{0,1}3 ] with hŜ ≡MultiAppk[2̂, G] and hu ≡ I for any u �= Ŝ. The
desired quantum function F is defined to be CFQRec1[2̂, I, I, h|P3,F3], where P3 = {pu}u∈{0,1}3
with pu = I for all u ∈ {0, 1}3 and F3 = {fu}u∈{0,1}3 with fu = F for all u ∈ {0, 1}3. Because of
|Ŝ̃x1̃x2 · · · x̃k2̂| ≤ |2̂| log �(|φ〉), in the following recursive process of computing F, it suffices to
start with F(|2̂〉|φ′〉) with �(|φ′〉)≥ 1.

For each index i ∈ [k], we abbreviate x̃ix̃i+1 · · · x̃k asXi. In what follows, we fix i ∈ [k] arbitrarily
and assume that F(|Xi2̂〉|φ〉)= |Xi2̂〉|φ〉. Note that |ζu,I,φ〉 = ∑

s:|s|=LH(|φ〉) (F(〈u|Xi−12̂〉|s〉)⊗
〈s|φ〉). If u= x̃i−1, then |ζu,I,φ〉 = ∑

s:|s|=LH(|φ〉) (F(|Xi2̂〉|s〉)⊗ 〈s|φ〉)= ∑
s:|s|=LH(|φ〉) (|Xi2̂〉|s〉 ⊗

〈s|φ〉)= |Xi2̂〉|φ〉. From this, it follows that F(|Xi2̂〉|φ〉)= h(|x̃i−1〉|Xi2̂〉)⊗ 〈Xi2̂|ζx̃i−1,I,φ〉 =
|Xi−12̂〉|φ〉. Finally, we consider the case of |Ŝ〉|X12̂〉|φ〉. We then obtain F(|Ŝ〉|X12̂〉|φ〉)=
h(|Ŝ〉|X12̂〉)⊗ 〈X12̂|ζŜ,I,φ〉. Since |ζŜ,I,φ〉 = |X12̂〉 ⊗ |φ〉, it follows that F(|Ŝ〉|X12̂〉|φ〉)=
h(|Ŝ〉|X12̂〉)⊗ 〈X12̂|X12̂〉|φ〉 = h(|Ŝ〉|X12̂〉)⊗ |φ〉 = Branch3[{hu}u∈{0,1}3 ](|Ŝ〉|X12̂〉)⊗ |φ〉 =
MultiAppk[2̂, G](|Ŝ〉|X12̂〉)⊗ |φ〉. �

In a certain limited case, Lemma 25 makes possible a repeated application of any quantum
function within EQS0 + IV (as well as EQS). Let us recall the notation T̂, which indicates “time”.

Proposition 26. Let r0 ∈ {0, 1}+ and let g be any quantum function definable within EQS0 +
IV (resp., EQS). There exists a quantum function F definable within EQS0 + IV (resp.,
EQS) such that, for any |φ〉 ∈ H∞ and x ∈ {0, 1}∗, if �(|φ〉)≤ 1, then F(|T̂ m(|φ〉)Ŝ〉|x2̂〉|φ〉)=
|T̂ m(|φ〉)Ŝ〉|x2̂〉|φ〉, and otherwise, F(|T̂ m(|φ〉)Ŝ〉|x2̂〉|φ〉)= |T̂ m(|φ〉)Ŝ〉 ⊗ gm(|φ〉)(|x2̂〉)⊗ |φ〉, where
m(|φ〉)= ilog(�(|φ〉)).

Proof. Let F denote the desired quantum function. Remember that |2̂| = |T̂| = |Ŝ| = 3.
We set P3 = {pu}u∈{0,1}3 with pu = I for all u ∈ {0, 1}3 and set G = {gu}u∈{0,1}3 with gT̂ =
CodeSKIP+[Ŝ, I, g], and gu = I for all other indices u ∈ {0, 1}3 − {T̂}. We then define h to be
Branch3[G]. Finally, F is defined as F ≡ CFQRec1[2̂, I, I, h|P3,F3], where F3 = {fu}u∈{0,1}3 with
fu = F for all u ∈ {0, 1}3.

For any index i ∈ [0,m(|φ〉)]Z, we set zi = T̂m(|φ〉)−i. If �(|φ〉)≤ 1, then we obtain
F(|ziŜ〉|x2̂〉|φ〉)= |ziŜ〉|x2̂〉|φ〉 for any i ∈ [0,m(|φ〉)]Z. Next, we assume that �(|φ〉)≥ 2.
Let i ∈ [0,m(|φ〉)]Z and set y= ziŜx. By induction hypothesis, F(|zi+1Ŝ〉|x2̂〉|s〉 = |zi+1Ŝ〉 ⊗
gm(|φ〉)−i−1(|x2̂〉)⊗ |φ〉 holds. Let us consider the value F(|ziŜ〉|x2̂〉|φ〉. Note that h(|ziŜ〉 ⊗
gm(|φ〉)−i(|x2̂〉))= CodeSKIP+[Ŝ, I, g](|ziŜ〉 ⊗ gm(|φ〉)−i(|x2̂〉))= |ziŜ〉 ⊗ gm(|φ〉)−i−1(|x2̂〉). It thus

https://doi.org/10.1017/S0960129524000264 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000264


730 T. Yamakami

follows that F(|ziŜ〉|x2̂〉|φ〉 = ∑
u:|u|=|2̂|

∑
v:|v|=�(〈u|y2̂〉) (h(|u〉 ⊗ |v〉)⊗ 〈v|ζu,I,φ〉), where |ζu,I,φ〉

is calculated as follows. If u �= T̂, then |ζu,I,φ〉 = 0 holds. Otherwise, |ζu,I,φ〉 is equal to∑
s:|s|=LH(|φ〉) (F(〈u|ziŜ〉|x2̂〉 ⊗ |s〉)⊗ 〈s|φ〉)= ∑

s:|s|=LH(|φ〉) (F(|zi+1Ŝ〉|x2̂〉 ⊗ |s〉)⊗ 〈s|φ〉)=∑
s:|s|=LH(|φ〉) h(|zi+1Ŝ〉 ⊗ gm(|φ〉)−i−1(|x2̂〉)⊗ |s〉〈s|φ〉)= |zi+1Ŝ〉 ⊗ gm(|φ〉)−i−1(|x2̂〉)⊗ |φ〉. Thus,

we obtain F(|ziŜ〉|x2̂〉|φ〉)= |ziŜ〉 ⊗ gm(|φ〉)−i(|x2̂〉)⊗ |φ〉. In particular, when i= 0, we conclude
that F(|T̂ m(|φ〉)Ŝ〉|x2̂〉|φ〉)= |T̂ m(|φ〉)Ŝ〉 ⊗ gm(|φ〉)(|x2̂〉)⊗ |φ〉. �

4.3 Implementing the binary search strategy
The strength of Scheme IV is further exemplified by an implementation of a simple binary search
algorithm. Given any string x ∈ {0, 1}k with k≥ 1, assume that x equals bink(m) for a certain num-
ber m ∈ [2k]. For any s with |s| = 2k and b ∈ {0, 1}, the quantum function BinSearch satisfies the
following equality: BinSearch(|̃x〉|b̂〉|2̂〉|s〉)= |̃x〉| ̂b⊕ s(m)〉|2̂〉|s〉, where s(m) is themth bit of s. This
quantum function finds themth bit of s and extracts its bit s(m) from s by way of modifying |b̂〉 to
| ̂b⊕ s(m)〉.
Theorem 27. The above quantum function BinSearch is definable within EQS0 + IV .

Proof. We remark that the length of s given to BinSearch(|̃x〉|b̂〉|2̂〉|s〉) is a power of 2. In
this proof, we intend to use the quantum functions SecSWAP(3)i,j and COPY1 introduced in
Lemmas 6(1) and 7, respectively. Given any strings x= x1x2 · · · xk, s= s1s2 · · · s2k , and b ∈ {0, 1}
associated with the number m ∈ [2k] satisfying x= bink(m), we define the quantum function
g by setting g(|�̂〉|b̂〉|2̂〉|sm〉)= |�̂〉|b̂⊕ sm〉|2̂〉|sm〉. Notice that b̂= 00b and b̂⊕ sm = 00b′ with
b′ = b⊕ sm. It is possible to realize g by simply setting g ≡ SWAP7,10 ◦ Skip5[COPY1] ◦ SWAP7,10
since COPY1(|b〉|sm〉|w〉)= |b⊕ sm〉|sm〉|w〉 for any w. Let p0̂ ≡ I, p1̂ ≡HalfSWAP, and pu = I
for all indices u ∈ {0, 1}3 − {0̂, 1̂}. We then define F to be CFQRec1[2̂, I, g, I|P3,F3], where
P3 = {pu}u∈{0,1}3 and F3 = {fu}u∈{0,1}3 with fu = F for all u ∈ {0, 1}3. Now, our goal is to verify
that F indeed matches BinSearch.

For any string s ∈ {0, 1}+ whose length is a power of 2 and for any numberm ∈ [|s|], we explain
how to find themth bit sm of s. We first split s into the left part and the right part of swhose lengths
are LH(|s|) and RH(|s|), respectively. We assign 0 to the left part and 1 to the right part and we call
the left part by s0 and the right part by s1. Starting s0 (resp., s1), we further split it into its left part,
called s00 (resp., s10), and its right part, called s01 (resp., s11). Inductively, we repeat this process
until the target strings become single symbols. In the end, a string x ∈ {0, 1}ilog(|s|) is assigned to
the single symbol obtained by the series of the above-described processes. We denote this unique
symbol by sx. If x= binilog(|s|)(m), then sx coincides with the desired bit sm. We then treat x as the
binary representation of an index of the symbol sx in s.

Let Xk+1 = �̂ and let Xi = x̂ix̂i+1 · · · x̂k�̂ for any index i ∈ [k]. We split s into two parts
as s= s(l)s(r) with |s(l)| = LH(|s|) and |s(r)| = RH(|s|). We set m1 =m and, for each index i ∈
[2, k]Z, we take the number mi satisfying bink−i+1(mi)= xixi+1 · · · xk. Note that smi = s(r)mi+1

if xi = 1, and smi = s(l)mi+1 otherwise. When �(|s〉)= 1, we conclude that F(|Xk+1〉|b̂2̂〉|s〉)=
g(|Xk+1〉|b̂2̂〉|s〉)= g(|�̂〉|b̂〉|2̂〉|s〉)= |�̂〉|b̂⊕ s〉|2̂〉|s〉 = BinSearch(|Xk+1〉|b̂2̂〉|s〉). Next, we assume
that �(|s〉)= i≥ 2. It follows by induction hypothesis that F(|Xi+1〉|b̂2̂〉|s(r)〉)= |Xi+1〉|û〉|2̂〉|s(r)〉
with u= b⊕ s(r)mi+1 if xi = 1, and F(|Xi+1〉|b̂2̂〉|s(l)〉)= |Xi+1〉|v̂〉|2̂〉|s(l)〉 with v= b⊕ s(l)mi+1 oth-
erwise. In the case of u= 1, since |ψpû,s〉 =HalfSWAP(|s〉), it follows that |ζû,pû,s〉 =
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∑
t:|t|=RH(|s|) (F(|Xi+1〉|b̂2̂〉|t〉)⊗ 〈t|s(r)s(l)〉)= |Xi+1〉|û〉|2̂〉|s(l)〉. Therefore, when xi = 1, we obtain

F(|Xi〉|b̂2̂〉|s〉)= |xi〉|Xi+1〉|û〉|2̂〉|s〉 = BinSearch(|Xi〉|b̂2̂〉|s〉). When xi = 0, in contrast, we obtain
F(|Xi〉|b̂2̂〉|s〉)= |xi〉|Xi+1〉|v̂〉|2̂〉|s〉 = BinSearch(|Xi〉|b̂2̂〉|s〉).

As a result, we conclude that F = BinSearch, as requested. �

Hereafter, we demonstrate how to use the quantum function BinSearch. For this purpose, we
first show the following statement.

Corollary 2. Given |φ〉 ∈ H∞ and x= bink(m) for k ∈N+ and m ∈ [2k], if |φ〉 is of the form∑
s:|s|=2k αs|s〉, then we set Bit(|05〉|b〉|̃x〉|φ〉)= ∑

s:|s|=2k αs|05〉|b⊕ s(m)〉|̃x〉|s〉, where s(m) is the
mth bit of s. This quantum function Bit is definable within EQS0 + IV .

Proof. Recall the quantum function Skipk[g] from Lemma 4. We first change the quantum state
|05〉|b〉|̃x〉|φ〉 into |b̂〉|2̂〉|̃x〉|φ〉 by applying h≡ SWAP1,4 ◦ SWAP2,5 ◦ SWAP3,6 ◦ Skip2[NOT] ◦
Skip1[NOT] ◦NOT.

Consider the quantum function f defined by f (|φ〉)= ∑
z:|z|=6〈z|φ〉 ⊗ |z〉 for all |φ〉 ∈ H∞.

This f satisfies the following recursive property: f (|x〉|�̂〉)= SecSWAP(3)1,3 ◦ SecSWAP(3)2,4(|u1u2〉 ⊗
f (〈u1u2|x�̂〉)), where x= u1u2x′ with |u1| = |u2| = 3.

Proposition 18 makes it possible to realize the quantum function F that satisfies
F(|b̂〉|2̂〉|̃x〉 ⊗ |φ〉)= f (|b̂〉|2̂〉|̃x〉)⊗ |φ〉. The last term actually equals |̃x〉|b̂〉|2̂〉|φ〉. We apply
BinSearch to |̃x〉|b̂〉|2̂〉|s〉 and obtain |̃x〉| ̂b⊕ s(m)〉|2̂〉|s〉. We further apply f−1 to obtain
f−1(|̃x〉| ̂b⊕ s(m)〉|2̂〉|s〉)= | ̂b⊕ s(m)〉|2̂〉|̃x〉|s〉. Finally, we apply h−1 to | ̂b⊕ s(m)〉|2̂〉|̃x〉|s〉 and
obtain |05〉|b⊕ s(m)〉|̃x〉|s〉. Therefore, Bit can be defined by a finite series of applications of Scheme
I–IV. �

As the second application of BinSearch, we wish to “count” the number of 0s and 1s in an input
string in a quantum-mechanical fashion. It is impossible to do so deterministically in polyloga-
rithmic time. Fix a constant ε ∈ [0, 3/4) and consider the promise decision problem MAJPDPε in
which we determine whether the total number of 0s in x is at least

√
1− ε|x| or the total number

of 1s is at least
√
1− ε|x|. Formally, MAJPDPε is expressed as (Aε , Bε), where Aε = {x ∈ {0, 1}∗ |

#1(x)≥
√
1− ε|x|} and Bε = {x ∈ {0, 1}∗ | #0(x)≥

√
1− ε|x|}. We intend to prove the existence of

a quantum function in EQS0 + IV that “solves” this promise problemMAJPDPε in the following
sense.

Proposition 28. Let ε be any constant in [0, 3/4). There exists a quantum function F in EQS0 +
IV such that, for any x ∈ {0, 1}∗, (1) if x ∈Aε , then ‖〈1|ψF,x〉‖2 ≥ 1− ε and (2) if x ∈ Bε , then
‖〈0|ψF,x〉‖2 ≥ 1− ε, where |ψF,x〉 = F(|03k〉|�̂〉|x〉) with k= ilog(|x|).

To prove this proposition, we first demonstrate how to produce a superposition of all “indices”
of a given input. This can be done by recursively applyingWH to |03k〉|�̂〉 as shown below.

Lemma 29. There exists a quantum function G in EQS0 + IV satisfying G(|03k〉|�̂〉 ⊗ |φ〉)=
1√
2k

∑
x:|x|=k |̃x〉|φ〉 for any n ∈N+ and any |φ〉 ∈ H∞, provided that k= ilog(�(|φ〉)).

Proof. Consider the quantum function ĥ(|03k〉|�̂〉)= 1√
2k

∑
x:|x|=k |̃x〉. This function ĥ satis-

fies the following recursive property: ĥ(|�̂〉)= |�̂〉 and ĥ(|03〉|w�̂〉)= h(|03〉 ⊗ ĥ(|w�̂〉)) for
any string w, where h≡ Branch2[{gu}u∈{0,1}2 ] with g00 =WH and gu = I for all indices u ∈
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{0, 1}2 − {00}. Let us prove this property. Assume that ĥ(|03k〉|�̂〉)= 1√
2k

∑
x:|x|=k |̃x〉. For the

value ĥ(|03k+3〉|�̂〉), we calculate h(|03〉 ⊗ ĥ(|03k〉|�̂〉)) as |00〉 ⊗ g(|0〉 ⊗ ĥ(|03k〉|�̂〉))= |00〉 ⊗
1√
2
(|0〉 + |1〉)⊗ ĥ(|03k〉|�̂〉)= 1√

2
(|0̂〉 + |1̂〉)⊗ 1√

2k
∑

x:|x|=3k |̃x〉 = 1√
2k+1

∑
y:|y|=k+1 |̃y〉. The last

term clearly equals ĥ(|03k+3〉|�̂〉).
By Proposition 18, there exists a quantum function G in EQS0 + IV for which G(|03k〉|�̂〉 ⊗

|φ〉)= ĥ(|03k〉|�̂〉)⊗ |φ〉, where k= ilog(�(|φ〉)). This completes the lemma’s proof. �

With the help of Lemma 29, the proof of Proposition 28 easily follows.

Proof of Proposition 28. Consider MAJPDPε = (Aε , Bε) defined above. We wish to construct a
quantum function, say, F in EQS0 + IV that “solves”MAJPDPε in the proposition’s sense. Recall
the quantum function G of Lemma 29. Since G is norm-preserving and thus in ÊQS, Lemma 23
ensures that G−1 exists.

Let x denote any string. We then set bx = 1 if x ∈Aε and bx = 0 if x ∈ Bε . We start
the desired computation with the quantum state |φx〉 = |06〉|03k〉|�̂〉|x〉, where k= ilog(|x|),
and apply Skip6[G] to generate 1√

2k
∑

u:|u|=k |̃u〉|x〉|06〉. We then move |06〉 to the front
and obtain 1√

2k
∑

u:|u|=k |06〉|̃u〉|x〉. We further apply Bit to the resulting quantum state
and generate 1√

2k
∑

u:|u|=k |05〉|x(m(u))〉|̃u〉|x〉, where m(u) denotes a unique number satis-
fying that u= bink(m(u)) and x(m(u)) is the m(u)-th bit of x. We change it to |γx〉 =
1√
2k

∑
u:|u|=k |̃u〉|x〉|05〉|x(m(u))〉 and then apply G−1. We denote the resulting quantum state by

|βx〉. Letting |ξ〉 = |03k〉|�̂〉, we wish to calculate 〈ξ |βx〉. Note that |βx〉 =G−1(|γx〉) is equiva-
lent to G(|βx〉)= |γx〉. It thus follows that 〈ξ |βx〉 equals 〈ψG,ξ |γx〉, which is further calculated to
( 1√

2k
∑

v:|v|=k〈̃v|) · ( 1√
2k

∑
u:|u|=k |̃u〉|x〉|05〉|x(m(u))〉)= 1

2k |x〉|05〉|x(m(u))〉, where |ψG,ξ 〉 =G(|ξ〉).
After removing the last qubit to the front, we obtain a unique quantum state, say, |ηx〉. Finally,

we measure the first qubit of |ηx〉 in the computational basis. If x ∈Aε ∪ Bε , then bx satisfies that
‖〈bx|ηx〉‖2 ≥ ( 1

2k
∑

u〈bx|x(m(u))〉)2 = ( #bx (x)2k )2 ≥ (
√
1− ε)2 = 1− ε because of the promise given

by (Aε , Bε). �

5. Relationships to quantum computability
Throughout Section 3, we have studied basic properties of quantum functions in EQS. In this
section, we will look into relationships of these quantum functions to other platforms of limited
computability, in particular, a model of polylogarithmic-time (or polylogtime) Turing machine.

5.1 Runtime-restricted quantum Turingmachines
We wish to describe a computational model of quantum Turing machine (or QTM, for short) that
runs particularly in polylogarithmic time. For this purpose, we need to modify a standard model
of QTM defined in (Bernstein and Vazirani, 1997; Ozawa and Nishimura, 2000; Yamakami, 1999)
structurally and behaviorally. This new model also expands the classical model of (poly)logtime
Turing machine (TM) discussed in (Barrington et al., 1990). Notice that quantum polylogtime
computability was already discussed by, for example, Raz and Tal (2022) based on uniform
quantum circuit families. For more information, refer to (Raz and Tal, 2022) and references
therein.

A (random-access) QTM4 (or just a QTM in this work) is equipped with a random-access
read-only input tape, multiple rewritable work tapes of O( logk n) cells, and a rewritable index
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tape of exactly ilog(n)+ 1 cells, where k is a constant in N+ and n refers to the length of
an input. The index tape indicates the cell location (or address) of the input tape, specify-
ing which qubit of a given input we wish to access. This QTM M is formally expressed as
(Q,�, {�,�}, δ, q0,Qacc,Qrej), where Q is a finite set of inner states, � = {0, 1} is an alphabet,
� and � are endmarkers, δ is a quantum transition function, q0 (∈Q) is the initial (inner) state,
and Qacc (resp., Qrej) (⊆Q) is a set of accepting (resp., rejecting) states. We use an additional
convention that the input tape, the index tape, and all the work tapes have two endmarkers to
mark the usable areas of these tapes. This in fact helps the machine understand the “size” of a
given input. The QTMM begins with an input qustring |φ〉 given on the input tape marked by the
endmarkers. Let |φ〉 = ∑

x∈�n αx|x〉 with n ∈N+ and αx ∈C for all x’s.
Recall from Section 2.1 the binary encoding of natural numbers. Let kn = ilog(n). To access the

tape cell indexed bym,M first produces the binary string binkn(m) on the index tape with an aux-
iliary bit b and then enters a designated query state, say, qquery in Q. If the index tape contains
|binkn(m)〉|b〉, then this quantum state becomes |binkn(m)〉|b⊕ x(m)〉 as the immediate conse-
quence of the query, where x(m) is the mth input symbol of an input x ∈�+. With the proper
use of work tapes, we assume that, while writing |binkn(m)〉|b〉 until entering a query state, the
tape head never moves to the left and, whenever it writes a non-blank symbol, it must move to the
right. We remark that the number of queries and their timings may vary on all computation paths
ofM on |φ〉.

Concerning a random access to an input, a classical polylogtime TM takes the following con-
vention (Barrington et al., 1990; Vollmer, 1999). When the machine enters a query state with
index-tape content binkn(m), an input-tape head instantly jumps to the target bit x(m) of an input
x and reads it. After this query process, the index tape remains unerased and the corresponding
tape head does not automatically return to the start cell. Therefore, for the next query, themachine
can save time to rewrite the same query word, but it must overwrite a different query word over
the previous query word on the index tape.

The quantum transition function δ takes a quantum transition of the form δ(q, σ ,
τ1, τ2, . . . , τc)= ∑

r αr|p, ξ , η1, η2, . . . , ηc, d, d′
1, d

′
2, . . . , d′

c〉, where r = (p, ξ , η1, η2, . . . ,
ηc, d, d′

1, d
′
2, . . . , d′

c), which indicates that, if M is in inner state q reading σ on the
index tape and (τ1, τ2, . . . , τc) on the c work tapes, then, in a single step, with transi-
tion amplitude αr , M changes q to p, writes ξ over σ by moving the input-tape head
in direction d ∈ {−1,+1}, and writes ηi over τi by moving the ith work-tape head in
direction d′

i ∈ {−1,+1}. For practicality, we can limit the scope of transition ampli-
tudes of QTMs. In this work, we allow only the following two forms of quantum
transitions: δ(q, σ , τ1, τ2, . . . , τc)= cos θ |p1, ξ1, η11, η12, . . . , η1c, d1, d′

11, d
′
12, . . . , d

′
1c〉 +

sin θ |p2, ξ2, η21, η22, . . . , η2c, d2, d′
21, d

′
22, . . . , d

′
2c〉 and δ(q, σ , τ1, τ2, . . . , τc)= eıθ |p, ξ , η1,

η2, . . . , ηc, d, d′
1, d

′
2, . . . , d′

c〉, based on the universality of a set of quantum gates of Barenco et al.
(1995).

A QTM is required to satisfy the so-called “well-formedness condition” (see, e.g.,
Yamakami, 1999, 2003) to guarantee that the behaviors of the QTM obeys the laws of
quantum physics. A surface configuration of M on an input x of length n is an element
(q, u, r,w1, s1,w2, s2, . . . ,wc, sc) of the surface-configuration set Q× {�u� | u ∈ {0, 1, B}kn+1} ×
[0, kn + 2]Z × ({�w� |w ∈ {0, 1, B}kn} × [0, kn + 1]Z)c, which depicts the circumstance where M
is in inner state q, scanning the rth bit of the index tape content u, and the sith bit of the ith
work tape content wi. We call the space spanned by this set of surface configurations the surface
configuration space of M on x. The time-evolution operator of M on the input x is a map from
superpositions of surface configurations of M on x to other superpositions of surface configu-
rations resulting from a single application of δ of M. A QTM M is said to be well-formed if its
time-evolution operator of M preserves the �2-norm in the surface configuration space of M on
all inputs.
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At every step, we first apply δ to a superposition of surface configurations and then perform
a measurement in the halting inner states (i.e., either accepting states or rejecting states). If M is
not in a halting state, we move to the next step with the quantum state obtained by tracing out all
halting surface configurations. Generally, QTMs can “recognize” not only sets of classical strings
but also sets of qustrings.

For convenience, we modify M slightly so that M produces 1 (resp., 0) in the first cell of the
first work tape when M enters a designated final state (in place of accepting/rejecting states). We
say that M produces b with probability γ if, after M halts, we observe b as an outcome of M with
probability γ .

We call M polylogarithmic time (or polylogtime) if we force M to stop its application of δ after
O( logk n) steps for a certain fixed constant k ∈N+, not depending on the choice of inputs. We do
not require all computation paths to terminate within the specified time.

Let us consider a language L over {0, 1} that satisfies the following condition: there are a con-
stant ε ∈ [0, 1/2) and a polylogtime QTMM whose amplitude set is K such that (i) for any input
x ∈ L, M accepts x with probability at least 1− ε and (ii) for any x /∈ L, M rejects x with proba-
bility at least 1− ε. These conditions are referred to as bounded-error probability. The notation
BQPOLYLOGTIMEK denotes the collection of all such languages L.

5.2 Computational complexity of polylogtime QTMs
We begin with a discussion on the computational complexity of polylogtime QTMs. Remember
that input tapes of these machines are read-only and accessed by way of writing cell locations onto
index tapes.

In the classical setting, the notationDLOGTIMEwas used by Barrington et al. (1990) to express
the family of all languages recognized by logtime deterministic TMs (or succinctly, DTMs).
Similarly, we denote the nondeterministic variant of DLOGTIME by NLOGTIME. With the use
of classical probabilistic TMs (or PTMs) in place of DTMs, we say that a PTMM recognizes a lan-
guage L with unbounded-error probability if, for any x ∈ L,M accepts it with probability more than
1/2 and, for any x /∈ L,M rejects with probability at least 1/2.We further define PPOLYLOGTIME
using unbounded-error polylogtime PTMs.

Theorem 30. BQPOLYLOGTIMEQ̄ � PPOLYLOGTIME and NLOGTIME� BQPOLYLOGT
IMEC.

For the proof of Theorem 30, nevertheless, we first verify the following impossibility result of
the parity function and the OR function by polylogtime QTMs, where the parity function, Parity,
is defined by Parity(x)= ⊕n

i=1 xi and the OR function,OR, is defined byOR(x)=max{xi | i ∈ [n]}
for any number n ∈N+ and any n-bit string x= x1x2 . . . xn.

Lemma 31. The parity function and the OR function cannot be computed by any polylogtime QTM
with bounded-error probability.

Proof. This proof comes from a result on the quantum query complexity gap between quantum
and deterministic query complexities of the parity function. Assume that a polylogtime QTM, say,
M computes the parity function with bounded-error probability.

We encode M’s surface configuration conf into a “single” quantum state |φ〉. As done in
Lemma 29, it is possible to produce in polylog time a superposition of all locations of the input-
tape cells by repeatedly applyingWH to |0ilog(n)〉. This helps us access all input bits quantumly at
once with the equal probability. Since the input tape is read-only, this type of input access can be
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realized as a (black-box) quantum query model5 used in the study of quantum query complexity.
Refer to, for example, (Ambainis, 2002; Beals et al., 2001; Nishimura and Yamakami, 2004).

In such a (black-box) quantum query model, we run the following quantum algorithm on a
binary input x of length n. We prepare a series of unitary transformations U0,U1, . . . ,Ut−1,Ut
and a special oracle transformation6 Qx that changes |binkn(m)〉|b〉|φ〉 to |binkn(m)〉|b⊕ x(m)〉|φ〉,
where kn = ilog(n) and x(m) is themth bit of x. We start with the initial quantum state |ψ0〉 = |0m〉.
We then computeUtQxUt−1Qx · · ·U1QxU0|ψ0〉. Finally, we measure the resulting quantum state
in the computational basis. The number t indicates the total number of queries made by this
algorithm on each computation path.

Claim 32. Each polylogtime QTM can be simulated by a (black-box) quantum query model with
O( logk n) queries for an appropriate constant k ∈N+.

Proof. Recall that a QTM has an read-only input tape, which holds an input string. Whenever
a QTM makes a query on the ith position by entering a unique query state qquery, the machine
instantly receives the information on the ith bit of a given input string written on the input tape.
We view this input tape as an oracle of a (black-box) quantum query model and we further view
this entire query process of the QTM as a procedure of forming a superposition of query words
indicating input-bit positions and receiving their answers from the oracle.

We first construct a unitary transformation to simulate a single non-query transition of M.
Recall that, whenM enters qquery, it changes |binkn(m)〉|b〉|φ〉 to |binkn(m)〉|b⊕ x(m)〉|φ〉 in a sin-
gle step. To translate M’s query process, we generate |binkn(1)〉|0〉 in an extra register. If M is in
the inner state qquery, then we swap between this register and the register containing the content
of M’s index tape. Otherwise, we do nothing. We then apply Qx to change |binkn(m)〉|b〉|φ〉 to
|binkn(m)〉|b⊕ x(m)〉|φ〉. Notice that this process does not alter the inner state of M. After apply-
ing Qx, we swap back the two registers exactly when M’s inner state is qquery and then we follow
the transition ofM’s inner state.

Note that the given QTM makes only O( logk n) queries because it runs in O( logk n) time.
Therefore, we can transform this QTM to a query model of O( logk n) queries. �

By Claim 32, the parity function requires only O( log n) queries in the (black box) quantum
query model. However, it is shown by Beals et al. (2001) that, for the parity function of n Boolean
variables, n/2 queries are necessary in the bounded-error quantum query model (while n queries
are necessary in the deterministic query model). This is obviously a contradiction. The case of the
OR function can be similarly handled. �

Let us return to Theorem 30. Using Lemma 31, we can prove the theorem as described below.
The core of its proof is founded on a simulation result of one-tape linear-time QTMs in (Tadaki
et al., 2010, Section 8).

Shown in (Tadaki et al., 2010, Lemma 8) is how to simulate a one-tape well-formed stationary
QTM running in linear time on an appropriate one-tape probabilistic Turing machine (or a PTM)
in linear time. In a similar vein, we can simulate polylogtime QTMs on polylogtime PTMs.

Proof of Theorem 30. Let us take an arbitrary language L in BQPOLYLOGTIMEQ̄ and consider a
polylogtime QTM M that recognizes L with bounded-error probability. We intend to show that
L falls in PPOLYLOGTIME. We first modifyM in the following way. We prepare two extra work
tapes. One of them is used as an internal clock by moving a tape head always to the right. To avoid
any unwanted interference after a computation halts prematurely, we use the other extra tape as a
“garbage tape”, to whichM dumps all information produced at the time of entering halting states,
so thatM continues its operation without actually halting. Lemma 8 of Tadaki et al. (2010) shows
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the existence of a constant d ∈N+ and an NTM N such that dTimeM(x) · pM(x)= #N(x)− #N(x)
for every x, where #N(x) (resp., #N(x)) denotes the total number of accepting (resp., rejecting)
computation paths of N on input x. This equality holds for polylogtime machines. The desired
polylogtime PTM is obtained from N by assigning an equal probability to all nondeterministic
transitions.

The OR function can be computed by the polylogtime NTM that nondeterministically writes
a number, say i on an index tape, makes a query for the ith bit x(i) of an input x, and
accepts exactly when x(i) is 1. Thus, the OR function belongs to NLOGTIME. The separation
between BQPOLYLOGTIMEQ̄ and NLOGTIME comes from Lemma 31. Since PPOLYLOGTIME
includes NLOGTIME, we obtain the desired separation between BQPOLYLOGTIMEQ̄ and
PPOLYLOGTIME. �

5.3 Comparison between EQS and BQPOLYLOGTIME
In what follows, we discuss a close relationship between quantum functions definable within
EQS and quantum functions computable by polylogtime QTMs despite numerous differences
between EQS and polylogtime QTMs. One such difference is that input tapes of QTMs are read-
only and thus inputs are not changeable, whereas quantum functions in EQS can freely modify
their inputs. In the following two theorems (Theorems 33 and 34); however, we can establish the
“computational” equivalence between polylogtime QTMs and quantum functions in EQS.

Tomake the later simulation process simpler, we first modify a polylogtime QTM so that it uses
the binary alphabet on an index tape as well as all work tapes by way of encoding each non-binary
tape symbol into a binary one using an appropriately chosen encoding scheme. This modification
makes it possible to assume that the QTM should hold superpositions |φ〉 of binary strings on
its input tape and its work tapes. For convenience, a QTM that satisfies these conditions is called
normalized.

Theorem33. Any normalized polylogtimeQTMMwith c work tapes can be simulated by an appro-
priate quantum function F in EQS in the sense that, for any b ∈ {0, 1}, α ∈ [0, 1], and |φ〉 ∈�∞,M
takes |φ〉 as an input and finally produces b with probability α exactly when ‖〈b|ψF,ξφ 〉‖2 = α holds,
where |ξφ〉 = |Ŝ〉|B̃k〉⊗(c+1)|2̂〉 ⊗ |φ〉 with k= ilog(�(|φ〉)) and |ψF,ξφ 〉 = F(|ξφ〉).
Proof. Let M denote any polylogtime QTM equipped with a read-only input tape, a rewritable
index tape, and multiple rewritable work tapes. We further assume that M is normalized. For
readability, we hereafter deal with the special case whereM has a single work tape. A general case
of c work tapes can be handled in a similar but naturally extended way. Assume that M’s input
tape holds a superposition |φ〉 of binary inputs with �(|φ〉)≥ 4 and that M runs in time at most
ilog(�(|φ〉))e for a fixed constant e≥ 1. For convenience, let k= ilog(�(|φ〉)). We denote by Q the
set of all inner states of M. Since Q is finite, without loss of generality, Q assumed to have the
form {bin3t′(i) | i ∈ [23t

′
]} for an appropriate constant t′ ∈N+. We set the initial inner state q0 to

be bin3t′(1). For each inner state q ∈Q, since q is expressed as a binary string, we can encode it
into the string q̃(−) defined in Section 3.2.

We treat the content of each tape (except for the input tape) as a code block of the desired quan-
tum function F. We maintain the contents of the index tape and of the work tape as a part of two
appropriate qustrings. We intend to simulate each move of M on |φ〉 by applying an adequately
defined quantum function.

Since M’s computation is a series of surface configurations of M, we thus need to “express”
such a surface configuration using a single quantum state. Initially,M’s index tape holds Bk� and
M’s single work tape holds Bkt� for a fixed constant t ∈N+. Let w and z, respectively, denote
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the contents of the index tape and of the work tape without the right endmarker � and let q be
any inner state of M. Associated with (q,w, z), we describe M’s current surface configuration as
q#w1Hw2#z1Hz2 with w=w1w2 and z = z1z2 by including a designated symbol H andM’s inner
state q, where H is used to indicate the locations of the index-tape head and of the work-tape
head, which are scanning the leftmost symbols of w2 and z2, respectively. Assume that these two
tape heads are, respectively, scanning tape symbols η and σ on the index tape and the work tape,
that is, w2 = ηx2 and z2 = σy2. For technical reason, we slightly modify the above description of a
surface configuration and express it as w1HBx2#z1HBy2#qησ by inserting the extra symbol B. To
refer to this special form, we call it amodified (surface) configuration. In particular, the suffix qησ
is called a transition status.

By Lemma 25, it suffices for us to focus on each block of encoded tape con-
tent. The modified configuration w1HBx2#z1HBy2#qησ is encoded into the quantum state
|w̃1

(−)ĤB̂̃x〉|z̃1(−)ĤB̂̃y〉|̃q(−)η̂σ̂ 〉|�̂〉. We conveniently refer to it as the encoded (surface) config-
uration. Note that |̃q(−)η̂σ̂ | = 6t′ + 6= 6(t′ + 1). In fact, the modified initial configuration is of
the form HBk#HBkt#q0BB and its encoding is of the form |ĤB̃k〉|ĤB̃kt〉|q̃0(−)B̂B̂〉|�̂〉.

A run ofM, which covers from the initial surface configuration to certain halting surface con-
figurations, can be simulated using the fast quantum recursion. To explain this simulation, for
convenience, we split each move of M into three separate “phases”: (1) a tape content change,
(2) an input access by a query, and (4) an output production. We consider these three different
phases ofM separately. In Phase (3), in particular, we will use Scheme V to repeat Phases (1) and
(2) ilog(�(|φ〉)) times. In the end, we will combine Phases (1)–(4) into a single quantum function.

(1) The first case to consider is that M modifies multiple tapes (except for the input tape) by
a single move. We begin with paying our attention to the modification of the index-tape symbol
and describe how to simulate this tape-symbol modification. In a single step, as our convention,
a tape head firstly changes a tape symbol and secondly moves to an adjacent cell. In other words,
M locally changes w1Hw2#z1Hz2#qησ to its successor w′

1Hw
′
2#z

′
1Hz

′
2#q′η′σ ′ by applying δ. This

process can be expressed by a single quantum function defined as follows.
Let us consider M’s single transition of the form δ(q, η2, σ2)= ∑

r αr|p, ξ2, τ2, d, d′〉, where r
refers to (q, η2, σ2, p, ξ2, τ2, d, d′). This transition means that the index-tape head changes η2 to ξ2
and moves in direction d and that the work-tape head changes σ2 to τ2 and moves in direction
d′. To simulate this transition, it suffices to focus on four consecutive cells whose second cell is
being scanned by the tape head. For simplicity, we call such a series an H-block. Let η1HBη3 and
σ1HBσ3 denote two H-blocks, and let qη2σ2 denote the current transition status of δ.

(a) We make an application of Scheme IV in the following fashion. Let v=
(q, η2, σ2, p, ξ2, τ2, d, d′). We first change |̃q(−)η̂2σ̂2〉 to |̃p(−)B̂B̂〉 by remembering (ξ2, τ2, d, d′)
in the form of different quantum functions gu, which are controlled by Branch[{gu}u]. We
then search for an H-block of the form |η̂1ĤB̂η̂3〉 and change it to |Ĥη̂1ξ̂2η̂3〉 if d = −1 and to
|η̂1ξ̂2Ĥη̂3〉 if d = +1. Similarly, we change |σ̂1ĤB̂σ̂3〉 according to the value of d′. These changes
can be made by an appropriate quantum function, say, Fv,d. This quantum function Fv,d is realized
as follows.

In the case of τ2 ∈ {0, 1}, we introduce fB,τ2 that satisfies fB,τ2 (|B̂〉|Ĥ〉)= |τ̂2〉|Ĥ〉. This quantum
function fB,τ2 is constructed as fB,τ2 ≡ Branch3[{g′

u}u∈{0,1}3 ] ◦ SecSWAP(3)1,2 ◦ Branch3[{gu}u∈{0,1}3 ],
where g010(|100〉)= |00τ2〉, gu = I for all other u’s, g′

000 = g′
001, g

′
00(|010〉)= |100〉, g′

000(|100〉)=|010〉, g′
000(|x〉)= |x〉 for all other x’s, and g′

u = I for all other u’s. The remaining cases are similarly
handled. Now, let us define Ĝ to be SecSWAP(3)1,3, which transforms |α〉|Ĥ〉|β〉 to |β〉|Ĥ〉|α〉 for
any α, β ∈ {0, 1}3. Finally, when d = −1, we define Fv,d to be SecSWAP(3)2,3 ◦ SecSWAP(3)1,2 ◦ fB,τ2 ◦ Ĝ,
which satisfies Fv,d(|σ̂1〉|Ĥ〉|B̂〉|σ̂3〉)= |Ĥ〉|σ̂1〉|τ̂2〉|σ̂3〉. In a similar way, when d = +1, we define
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Fv,d ≡ SecSWAP(3)1,2 ◦ SecSWAP(3)2,3 ◦ fB,τ2 ◦ Ĝ, which transforms |σ̂1〉|Ĥ〉|B̂〉|σ̂3〉 to |σ̂1〉|τ̂2〉|Ĥ〉|σ̂3〉.
A similar treatment works for the simulation of the work-tape head.

Notice that M uses only two forms of quantum transitions. These transitions can be correctly
simulated by Items 1)–3) of Scheme I. Let r0 = �̂. Proposition 18 makes it possible, under a cer-
tain condition, to make a quantum function definable in a recursive fashion. We first define a
quantum function K by setting K(|r0〉)= |r0〉 and K(|xr0〉)= ∑

u:|u|=9 h(|u〉 ⊗K(〈u|xr0〉)), where
h(|u〉|wr0〉)= ∑

v,d αv,dFv,d(|u〉|wr0〉) if u= σ̂1Ĥσ̂2, and h(|u〉|wr0〉)= |u〉|wr0〉 otherwise. The
proposition then guarantees the existence of a quantum function that mimics K in the presence
of the large-size qustring |φ〉. In the proof of the proposition, such a quantum function is con-
structed with the use of Scheme IV. It is important to note that, its ground (quantum) functions
are all query-independent. Thus, Scheme IV used here is also query-independent.

(b) Secondly, we apply CodeREP6 to move the last six qubits |B̂B̂〉 obtained by (a) to the front.
(c) We then make the second application of Scheme IV. We change |Ĥη̂1ξ̂2η̂3〉 (resp.,

|η̂1ξ̂2Ĥη̂3〉) to |ĤB̂ξ̂2η̂3〉 (resp., |η̂1ξ̂2ĤB̂〉) by remembering η1 (resp., η3). This change is han-
dled in essence similarly to (a). Moreover, a similar construction deals with the case of |Ĥσ̂1τ̂2σ̂3〉
(resp., |σ̂1τ̂2Ĥσ̂3〉).

Toward the end, we change the first six qubits |B̂B̂〉 to |ξ̂ τ̂ 〉 for symbols ξ ∈ {ξ2, η3} and τ ∈
{τ2, σ3}.

(d) Finally, we apply CodeREMOVE6 to move |ξ̂ τ̂ 〉 back to the end.
(2) Next, we simulate M’s query access to its input qubits. Assume that the current encoded

surface configuration contains |q̃query(−)
η̂2σ̂2〉. Assume that |φ〉 = ∑

s:|s|=2k αs|s〉 is written on the
input tape and that the index tape contains |bink(m)〉|a〉, where a is an auxiliary bit. When enter-
ing the query state qquery, M changes qquery to another inner state, say, p and |bink(m)〉|a〉 to
|bink(m)〉|a⊕ s(m)〉, where s(m) is themth bit of s. We need to build a quantum function that sim-
ulates this entire query process. As the first step, we change |q̃query(−)〉 to |̃p(−)〉. Since |bink(m)〉|a〉
is encoded into | ˜bink(m)〉|̃a〉, we can transform it to |̃a〉| ˜bink(m)〉 and then to |05〉|a〉| ˜bink(m)〉.
Finally, we apply Bit (defined in Corollary 2) to |05〉|a〉| ˜bink(m)〉 and obtain

∑
s αs|05〉|a⊗

s(m)〉| ˜bink(m)〉|s〉. Since Bit is query-dependent, Scheme IV used here is also query-dependent.
(3) We then combine the above two types of moves into one and express it by a single applica-

tion of an appropriate quantum function. Note thatM accesses only the firstO( log �(|φ〉)) cells of
the work tape. We compose (1)–(2) by applying Compo[·, ·]. We call by F′ the obtained quantum
function. We repeatedly apply it ilog(�(|φ〉))e times to complete the simulation of the entire com-
putation of M until M enters a halting (either accepting or rejecting) inner state. This repetition
procedure is realized by the e applications of LCompo[ · ] to F′.

(4) When M finally enters a halting inner state, M produces an output bit, say, b on the first
cell of the first work tape. By (1)–(2) described above, the encoded configuration has the form
|b̂w̃1

(−)Ĥw̃2〉|z̃1(−)Ĥz̃2〉|q̃haltη̂σ̂ 〉|�̂〉. We then change b̂ (= 00b) to b00 by applying SWAP1,3 to
prepare the “correct” output qubit. We combine this quantum function with F′ to obtain the
desired quantum function F.

This completes the entire simulation ofM. �

The converse of Theorem 33 is stated as Theorem 34, which is given below. Recall that, at the
start of a QTMM, its index tape and all work tapes hold the blank symbol B (except for the right
endmarker) in their tape cells. From this fact, we assume that inputs of quantum functions must
be of the form |γφ〉 = |B̃k〉|r0〉 ⊗ |φ〉 with the designated separator r0 = 2̂ and k= ilog(�(|φ〉)) for
any qustring |φ〉 ∈�∞.
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Theorem 34. For any quantum function F defined by Schemes I–V, F is computed by a certain
polylogtime QTM M in the following sense: for any b ∈ {0, 1}, for any α ∈ [0, 1], and |φ〉 ∈�∞, if
�(|φ〉) is sufficiently large, then M on input |φ〉 produces b with probability α iff ‖〈b|ψF,γφ 〉‖ = α

holds, where |ψF,γφ 〉 = F(|γφ〉).
In the description of the above theorem, we need to use the norm ‖ · ‖ instead of | · | because

the superposition of M’s final configurations may contain not only the value F(|γφ〉) but also
additional “garbage” information, which might possibly be a quantum state of large dimension,
and we may need to ignore it when making a measurement.

We wish to prove Theorem 34 by induction on the construction process of F. To make this
induction work, we slightly modify the theorem into the following key lemma.

Lemma 35. For any quantum function F defined by Schemes I–V, F is computed by a cer-
tain polylogtime QTM M in the following sense: for any b ∈ {0, 1}, any |φ〉 ∈�∞, and any x in
NONr0 (|φ〉)∩ {0, 1}|r0|k, if �(|φ〉) is sufficiently large, then ‖〈ψF,γ φ,x |ξM,γ φ,x〉‖ = 1 holds, where
|γ φ,x〉 = |xr0〉|φ〉, k= ilog(�(|φ〉)), |ψF,γ φ,x〉 = F(|γ φ,x〉), and |ξM,γ φ,x〉 is the superposition of final
configurations of M that starts with |φ〉 on the input tape and |xr0〉 on the first work tape.

Theorem 34 follows immediately from Lemma 35 by setting xr0 in the lemma to be B̃k. The
remaining task is to verify the lemma.

Proof of Lemma 35. Let F denote any quantum function in EQS. For any qustring |φ〉 ∈�∞ and
any string x ∈NONr0 (|φ〉)∩ {0, 1}|r0|k with k= ilog(�(|φ〉)), let |γ φ,x〉 = |xr0〉|φ〉 denote a qustring
given as an input to F. Assuming that �(|φ〉) is sufficiently large, we first focus on F and simulate
the outcome of F by an appropriate QTM that takes an input of the form |γ φ,x〉. The desired
polylogtime QTMM reads |φ〉 on its input tape and |xr0〉 on its first work tape.

As seen later in (3) of this proof, Scheme IV may allow F to access at most a constant number
of locations of the input |φ〉, whereasM does not. To circumvent this difficulty in simulating F on
the QTM, whenever F modifies any qubit of |φ〉, M remembers this qubit modification using its
work tape as a reference to the future access to it sinceM cannot alter any qubit of |φ〉.

We intend to prove the lemma by induction on the descriptive complexity of F. We assume
that the work-tape head is scanning the cell that contains the first qubit on the first work tape
before each series of applications of the schemes of EQS.

(1) We first assert that all quantum functions F defined by Items 1)–6) of Scheme I are com-
putable by appropriate polylogtime QTMs, say, M because the target qubits of these items lie in
xr0, which are written on the work tape, not on the input tape. To verify this assertion, let us con-
sider PHASEθ of Item 2). Starting with |φ〉 as well as |xr0〉, if the first bit of xr0 is 1, then we use
the QTM’s quantum transition function δ to make a phase shift of eıθ . Otherwise, we do nothing.
A similar treatment works for Items 3)–4). For SWAP of Item 5), we simply swap between the
content of the cell currently scanned byM’s work-tape head and the content of its right adjacent
cell. For Item 6), it suffices to “observe” the first qubit on the first work tape in the computational
basis |a〉.

(2) We next show by way of induction on the construction process of the target quantum func-
tion F by Scheme II. Let us consider the quantum function F of the form Compo[g, h] for two
ground (quantum) functions g and h. By induction hypothesis, there are two polylogtime QTMs
Mg and Mh that respectively compute g and h in the lemma’s sense. The desired QTM M first
checks whether �(|φ〉)≤ 1. This part is called the first phase, and it can be done by searching for
the location of the right endmarker on the index tape. We then run Mh on |φ〉 as well as |xr0〉.
AfterMh halts, we wish to runMg in the second phase.
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Now, there are two issues to deal with. Unlike the classical case of “composing” two TMs, we
need to distinguish work tapes of Mg and those of Mh since we may not be able to erase the
contents of Mg ’s work tapes freely at the start of the simulation of Mh in the second phase. Since
we want to use Mh’s index tape as the index tape of M, we need to rename Mg ’s index tape to
one of the work tapes of M. Since the original input of Mg is the qustring h(|φ〉), we also need to
mimicMg ’s access to h(|φ〉) using only |φ〉. For this purpose, we need to remember the “history”
of how we have modified qubits of |φ〉 so far and, wheneverMg accesses its input, we first consult
this history log to check whether or not the accessed qubit has already been modified.

(3) To simulate Scheme III, let F ≡ Branch[g, h] for two ground functions g and h. By induc-
tion hypothesis, we take two polylogtime QTMs Mg and Mh, respectively, for g and h working
with |φ〉 written on their input tapes and |zr0〉 written on their first work tapes. Let us design
the desired QTM M to simulate F on |φ〉 and |xr0〉 as follows. We first check if �(|φ〉)≤ 1. If so,
we do nothing. Hereafter, we assume otherwise. Since Branch[g, h](|xr0〉|φ〉)= |0〉 ⊗ g(〈0|xr0〉 ⊗
|φ〉)+ |1〉 ⊗ h(〈1|xr0〉 ⊗ |φ〉), we scan the first qubit of |xr0〉 by a tape head and determine which
machine (eitherMg orMh) to run with the rest of the input. SinceMg andMh correctly simulate
g and h, respectively, this new machineM correctly simulates F.

(4) Concerning Scheme IV, let F ≡ CFQRect[r0, d, g, h|P|r0|,F|r0|] and assume thatM’s input
tape holds |φ〉 and its first work tape holds |xr0〉. We first calculate the length �(|φ〉) by checking
the size of the available area of the index tape in logarithmic time. If either �(|φ〉)< t or x= λ,
then we run Mg on |φ〉 as well as |xr0〉 until it eventually halts. Now, we assume that �(|φ〉)≥ t
and x �= λ.

If h is defined using none of CodeSKIP+ and CodeSKIP−, then the induction hypothesis guar-
antees the existence of a polylogtime QTM Mh for h. In the case where h is constructed using
CodeSKIPτ for a certain sign τ ∈ {+,−}, we first build a QTM that simulates CodeSKIPτ [r0, g′, h′]
for certain ground functions g′ and h′ without requiring “polylogarithmic” runtime. It is impor-
tant to note that such a QTM reads target qubits written on the work tape, not on the input tape.
The QTM M searches for the first appearance of r0 and then runs the corresponding QTMs Mg′
andMh′ in parallel. Since the input length is �(|φ〉), the QTM halts within O( log �(|φ〉)) steps.

Similarly, we can handle CodeREMOVE and CodeREP.
Since x �= λ, F(|xr0〉|φ〉) is calculated as∑

u:|u|=|r0|
∑

v:|v|=�(〈u|xr0〉) (h(|u〉|v〉)⊗ p−1
u (〈v|ζ (x′r0)u,pu,φ〉),

where |ζ (x′r0)u,pu,φ〉 = ∑
s:|s|=H(|φ〉) (fu(〈u|x′r0〉|s〉)⊗ 〈s|ψpu,φ〉) and d(|xr0〉)= |x′r0〉. Starting with |φ〉

as well as |xr0〉, we first move a work-tape head, passing through at most ilog(�(|φ〉)) blocks of
size |r0|. Recursively, we move back the tape head to the start cell (i.e., cell 0) and run Mh. For
this purpose, we write 0 and 1 on an index tape whenever we choose pu = I and pu =HalfSWAP,
respectively, because we need to trace the location of the start of each recursively halved input
until we reach x= λ or |x|> |r0|k. The entire algorithm thus requires O( log �(|φ〉)) steps.

By the definition of Scheme IV, the quantum function F can make a direct access to |φ〉 when
g is finally called to compute the value of F. Notice that g accesses at most t locations of |φ〉.
Therefore, during the simulation of F,M makes the same number of queries to its input |φ〉.

(5) Finally, let us consider Scheme V. Assume that F is defined to be LCompo[g] for a ground
function g. By induction hypothesis, we take a polylogtime QTM Mg that simulates g. Assume
further that, for a fixed constant t ∈N+, Mg runs in O( logt �(|φ〉)) time for any input |φ〉. Let
k= ilog(�(|φ〉)). To simulate F, M repeats a run of Mg k times since F(|xr0〉|φ〉)= gk(|xr0〉|φ〉).
The total runtime ofM is at most k ·O( logt �(|φ〉)), which equals O( logt+1 �(|φ〉)). �

We have shown in Section 5.2 that the parity function, Parity, cannot be computed by polylog-
time QTMs. It is possible to generalize Parity and treat it as a quantum function defined on H∞.
Lemma 31 together with Lemma 35 then leads to the following conclusion.
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Proposition 36. The parity function is not definable within EQS.

6. The divide-and-conquer scheme and EQS
We have formulated the system EQS in Section 3 by the use of recursion schematic definition
and discussed in Section 5.1 the EQS-characterization of quantum polylogtime computing. In
what follows, we intend to strengthen the system EQS by appending an extra scheme. As such a
scheme, we particularly consider the divide-and-conquer strategy, which is one of the most useful
algorithmic strategies in solving many practical problems. We further show that the divide-and-
conquer strategy cannot be “realized” within EQS. This implies that the addition of this strategy
as a new scheme truly strengthens the expressing power of EQS.

6.1 Multi-qubit divide-and-conquer scheme
Abasic idea of the divide-and-conquer strategy is to continue splitting an input of a given combina-
torial problem into two (ormore) smaller parts until each part is small enough to handle separately
and efficiently and then to combine all the small parts in order to solve the entire problem on the
given input.

To define the scheme that expresses this divide-and-conquer strategy, we first introduce a use-
ful scheme called the half division scheme. Given two quantum functions g and h and any input
quantum state |φ〉 in H∞, we simultaneously apply g to the left half of |φ〉 and h to the right half
of |φ〉 and then obtain the new quantum function denoted by HalfD[g, h].

∗) The half division scheme. From g and h, we define HalfD[g, h] as follows:

(i) HalfD[g, h](|φ〉)= |φ〉 if �(|φ〉)≤ 1,
(ii) HalfD[g, h](|φ〉)= ∑

s:|s|=LH(|φ〉) (g(|s〉)⊗ h(〈s|φ〉)) otherwise.

Here is a quick example of how this scheme works.

Example 37. Let us consider F1 ≡HalfD[g, h] with g =NOT and h=WH. Given an input
|0n〉|0n〉, we obtain F1(|0n〉|0n〉)= g(|0n〉)⊗ h(|0n〉)= 1√

2
|10n−1〉 ⊗ (|0n〉 + |10n−1〉). Similarly,

consider F2 ≡HalfD[I, h].We then obtain F2(|0n〉|0n〉)= 1√
2
|0n〉 ⊗ (|0n〉 + |10n−1〉). For the quan-

tum function F′ ≡HalfD[F1, F2], if |02n〉|02n〉 is an input to F′, then we obtain F′(|02n〉|02n〉)=
1
2 (|102n−1〉 + |10n−110n−1〉)⊗ (|02n〉 + |0n10n−1〉).

We intend to formulate the multi-qubit divide-and-conquer scheme (Scheme DC) using
HalfD[g, h]. Recall the quantum function SWAPi,j given in Lemma 5(10). We expand it by allow-
ing its parameter j to take a non-constant value. In particular, we intend to take LH(�(|φ〉))+ 1
for j and then define midSWAP1(|φ〉) to be SWAP2,LH(�(|φ〉))+1(|φ〉) for any |φ〉 ∈ H∞. More
generally, for a constant k ∈N+, we set midSWAPk(|φ〉) to be SWAP2k,m+k ◦ SWAP2k−1,m+k−1 ◦
· · · ◦ SWAPk+2,m+2 ◦ SWAPk+1,m+1, where m= LH(�(|φ〉)). With the use of midSWAPk, for any
given quantum function h, we introduce another scheme MidAppk[h] by setting MidAppk[h]≡
midSWAP−1

k ◦ h ◦midSWAPk.
Let us quickly examine the behavior ofMidAppk[ · ] with a concrete example.

Example 38. For a later argument, we consider the case of quantum function h0 ≡ SWAP−1 ◦
CNOT ◦ SWAP, which obviously belongs to EQS0. Let |φ〉 denote |x1x2 · · · xn〉 for n ∈N+ and
x1, x2, . . . , xn ∈ {0, 1}. The quantum function MidApp1[h0] satisfies that MidApp1[h0](|φ〉)= |x1〉
if n= 1, and MidApp1[h0](|φ〉)= |x1 ⊕ xLH(n)+1〉|x2x3 · · · xn〉 if n≥ 2. If we are allowed to use
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extra qubits, then MidApp1[h0] can be realized by an appropriate quantum function, say, K
in EQS obtained with Bit given in Corollary 2 in the following sense: K(|03k+8〉|x1x2 · · · xn〉)=
|03k+8〉 ⊗MidApp1[h0](|x1x2 · · · xn〉) if k ∈N+ satisfies n= 2k.

Now, we formally introduce Scheme DC, which “expresses” the divide-and-conquer strategy.

Definition 39. We express as DC the following scheme.

(DC) The multi-qubit divide-and-conquer scheme. From g, h, and p, and k ∈N+, (where p is not
defined using MEAS[ · ] and g, h, and p are not defined using Scheme DC), we define F ≡
DivConqk[g, h, p|f1, f2] as:
(i) F(|φ〉)= g(|φ〉) if �(|φ〉)≤ k,
(ii) F(|φ〉)=MidAppk[h](HalfD[f1, f2](p(|φ〉))) otherwise,
where f1, f2 ∈ {F, I}.

The notation EQS+DC denotes the smallest set including the quantum functions of Scheme I and
being closed under Schemes II–V and DC.

Hereafter, we discuss the usefulness of Scheme DC. Recall the parity function Parity from
Section 5.2. We have shown in Corollary 36 that EQS is not powerful enough to include Parity. In
sharp contrast, we argue that Parity is in fact definable by applying Schemes I–V and DC.

Proposition 40. There exists a quantum function f in EQS+DC that simulates Parity in the
following sense: for any x ∈ {0, 1}∗ and any b ∈ {0, 1}, Parity(x)= b iff ‖〈b|ψf ,x〉‖2 = 1, where
|ψf ,x〉 = f (|x〉).
Proof. Let us recall the quantum function h0 described in Example 38 and define F to be
DivConq1[g, h, p|f1, f2] with g = p= I and f1 = f2 = F. For any n-bit string x= x1x2 · · · xn, we
want to show by induction on n ∈N+ that (∗) there exist y2, y3, . . . , yn ∈ {0, 1} for which F(|x〉)=
| ⊕n

i=1 xi〉|y2〉 · · · |yn〉.
If n= 1, then we instantly obtain F(|φ〉)= |φ〉. Assume that n= 2. Since

HalfD[f1, f2](|x1x2〉)= f1(|x1〉)⊗ f2(|x2〉), it follows that F(|x1x2〉)=MidApp1[h0](F(|x1〉)⊗
F(|x2〉))=MidApp1[h0](|x1x2〉)= |x1 ⊕ x2〉|x2〉. Let n≥ 3 and assume by induction hypothesis
that (∗) is true for all indices k ∈ [n− 1]; namely, F(|x1x2 · · · xk〉)= | ⊕k

i=1 xi〉|y2〉 · · · |yk〉
for certain suitable bits y2, y3, . . . , yk ∈ {0, 1}. Let us concentrate on the case of x ∈ {0, 1}n
with x= x1x2 · · · xn. For simplicity, we write m in place of LH(n). Let x′ = x1x2 · · · xm and
x′′ = xm+1 · · · xn so that x= x′x′′. It thus follows thatHalfD[f1, f2](|x〉)= f1(|x′〉)⊗ f2(|x′′〉). Since
F(|x′〉)= | ⊕m

i=1 xi〉|y2 · · · ym〉 and F(|x′′〉)= | ⊕n
i=m+1 xi〉|ym+2 · · · yn〉 by induction hypoth-

esis, we conclude that MidApp1[h0](F(|x′〉)⊗ F(|x′′〉))=MidApp1[h0](| ⊕m
i=1 xi〉|y2 · · · ym〉 ⊗

| ⊕n
i=m+1 xi〉|ym+2 · · · yn〉)= | ⊕n

i=1 xi〉|y2 · · · yn〉. This implies that (∗) holds for all n ∈N+. �

6.2 Approximately admitting
By Proposition 40, we may anticipate that the multi-qubit divide-and-conquer scheme (Scheme
DC) cannot be “realized” or even “approximated” within the system EQS. We formalize this latter
notion under the new terminology of “approximately admitting”.

Let us consider an arbitrary scheme (such as composition and fast quantum recursion) whose
construction requires a series of quantum functions. Recall the notion of ground (quantum) func-
tions from Section 3.1. Let S denote a class of quantum functions and assume that R is a scheme
requiring a series of k ground functions taken from S. We say that S approximately admits R if,
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for any series G = (g1, g2, . . . , gk) with g1, g2, . . . , gk ∈ S, there exists a quantum function f ∈ S
and a constant ε ∈ [0, 1/2) such that, for any |φ〉 ∈ H∞, ‖〈ψf ,φ |ξR,G,φ〉‖2 ≥ 1− ε holds, where
|ψf ,φ〉 = f (|φ〉) and |ξR,G,φ〉 = R(g1, g2, . . . , gk)(|φ〉). With this new terminology, we can claim
that all schemes listed in Lemma 22, for example, are indeed approximately admitted by EQS.

Theorem 41. EQS does not approximately admit the multi-qubit divide-and-conquer scheme.

Proof. Assume that EQS approximately admits SchemeDC. Since the parity function is realized in
EQS+DC (Proposition 40), there exists a polylogtime QTM that computes Parity due to the char-
acterization theorem (Theorem 33) of EQS in terms of polylogtimeQTMs. This clearly contradicts
the fact that no polylogtime QTM can compute the parity function (Lemma 31). �

7. Further discussion and future directions
The schematic approach toward quantum computability was initiated by Yamakami (2020) and
made a great success to precisely capture quantum polynomial-time computability using the
exquisite scheme of multi-qubit quantum recursion. The use of such recursion schemes to char-
acterize quantum computability further leads us to a study on the expressibility of the schemes
for quantum computations rather than the more popular algorithmic complexity of quantum
computations. In this work, we have made an additional step toward an introduction of a more
elementary form of the recursion schematic definition than the one in (Yamakami, 2020). In par-
ticular, we have investigated the scheme of (code-controlled) fast quantum recursion in Section 3.2
as a basis to the class EQS of “elementary” quantum functions, and we have demonstrated
the usefulness of various quantum functions based on this new scheme in connection to “par-
allel” computability in Section 5. An additional scheme, multi-qubit divide-and-conquer, has
been examined and shown not to be approximately admitted within the framework of EQS in
Section 6.

To promote the future research on the schematic definability of quantum computations, we
wish to list seven natural open questions that have been left unanswered throughout this work.
We expect that fruitful research toward the answers to these questions would make significant
progress in the near future on the descriptional aspects of quantum computing.

1. It is quite important to discuss what recursion schemes must be chosen as a basis of EQS.
In our formulation, Scheme IV in particular looks rather complicated compared to other
schemes. Therefore, we still need to find more “natural” and “simpler” schemes needed to
define EQS precisely.

2. SchemeV looks quite different from the other schemes. For instance, the recursive application
of fu to compute F in Scheme IV is controlled by “internal” conditions, whereas the repeated
application of g to compute F in Scheme V is controlled by an “external” condition. It is thus
desirable to remove Scheme V from the definition of EQS by simply modifying the definitions
of Schemes I–IV. How can we modify them to achieve this goal?

3. We have shown in Theorem 41 that EQS+DC has more expressing power than EQS alone.
However, we do not know the exact computational complexity of EQS+DC. It is of great
importance to determine its exact complexity.

4. Concerning recursion-schematic characterizations of quantum computing, we have focussed
our attention only on “runtime-restricted” quantum computations. Any discussion on
“space-restricted” quantum computing has eluded from our attention so far. How can we
characterize such computations in terms of recursion schemes?

5. We have discussed the relative complexity of BQPOLYLOGTIME in Section 5.2 in compar-
ison to NLOGTIME and PPOLYLOGTIME. On the contrary, we still do not know whether
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BQPOLYLOGTIMEQ̄ differs from BPPOLYLOGTIME, which is the bounded-error analog of
PPOLYLOGTIME. Are they truly different?

6. It is well known that the choice of (quantum) amplitudes of QTMs affects their computa-
tional complexity. In the polynomial-time setting, for example, the bounded-error quantum
polynomial-time class BQPC differs from BQP

C̃
, where C̃ is the set of polynomial-time

approximable complex numbers. On the contrary, the nondeterministic variant NQPC col-
lapses to NQP

C̃
(Yamakami and Yao, 1999). In the polylogtime setting, is it true that

BQPOLYLOGTIMEC �= BQPOLYLOGTIME
C̃
?

7. It is desirable to develop a general theory of descriptional complexity based on recur-
sion schematic definitions of quantum functions for a better understanding of quantum
computability and beyond. For a further extension of quantum computability by quantum
quantifiers, for example, see (Yamakami, 2002)

Notes
1 Bernstein and Vazirani discussed only single-tape QTMs. The multiple-tape model of QTMs was distinctly discussed by
Yamakami (1999, 2003). The foundation of QTMs was also studied in (Nishimura and Ozawa, 2002; Ozawa and Nishimura,
2000).
2 This notion should be distinguished from the same terminology used by Yamakami (2003), where “quantum functions”
mean mappings from binary strings to acceptance probabilities of QTMs.
3 We remark that Branch[g, h] can be expressed as an appropriate unitarymatrix (if g and h are expressed as unitarymatrices)
and thus it is a legitimate quantum operation to consider.
4 This model is also different from the “log-space QTMs” of Yamakami (2022a), which are equipped with “garbage” tapes
onto which any unwanted information is discarded to continue their quantum computation.
5 This model is sometimes called a quantum network. See, e.g., (Beals et al., 2001).
6 In (Ambainis, 2002), for example, Qx is defined to change |bink(m)〉|φ〉 to (− 1)x(m) |bink(m)〉|φ〉. This model is in essence
equivalent to our current definition by a simple computation shown as follows. Let |ξ〉 = |bink(m)〉. Starting with |ξ〉|b〉, swap
between |ξ〉 and |b〉, apply WH, apply CQx (Controlled-Qx), apply WH, and swap back the registers, where CQx(|0〉|φ〉)=
|0〉|φ〉 and CQx(|1〉|φ〉)= (− 1)x(m) |1〉|φ〉. We then obtain |ξ〉|b⊕ x(m)〉.
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