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FUNCTIONS WITH A FINITE NUMBER OF
NEGATIVE SQUARES

BY
JAMES STEWART

1. Introduction. Let f be a complex-valued function defined on the real line R

with the property that f(——x)=]—'(_;) for every x € R. If k is a nonnegative integer, f
is said to have k negative squares, or to be indefinite of order k, if the Hermitian form

0 S fOa—x)EE,
£,j=1

has at most k negative squares for any choice of n and x,, ..., x, in R, and for
some choice of x;, ..., x, the form has exactly k negative squares. Krein [7]
proved that if fis a continuous function with k negative squares then there is a
nondecreasing function o and a polynomial Q of degree k such that

2 f(x) = h(x)+ f © e =S8,(x, ) do(A),

o [Qo(P
where

(i) if 0(A)=0(2) then h,(x) is a solution of the differential equation Q(—id/dx)x
O(—id|dx)h, (x)=0,

(ii) if @y, . .., o, are the distinct real roots of Q(A) with multiplicities m;, . . . , m,,
then

%w=gaww,

(iii) if p>max {Jayl, ..., ||} then S,(x, 2) is a regularizing correction which is
equal to O for |A|>p and for |A|<p it is equal to [Qy(4)]* times the sum of the
principal parts of the function e"**[Q,(4)]2 over all its poles.

Earlier Krein ([8], [6]) had given integral representations for the case k=1. The
definition of a function with k negative squares reduces to that of a positive
definite function in the case k=0, and Krein’s integral representation (2) becomes
Bochner’s theorem.

Cooper [3] has generalized Bochner’s theorem in a different direction. If Fis a
set of functions on R he called a function f positive definite for F if the integral

f_i f_zf (x—»)p(x)¢(y) dx dy
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exists as a Lebesgue integral and is nonnegative for every ¢ € F. The class of
functions positive definite for L' turns out to be identical, up to sets of measure
zero, with the usual positive definite functions. However if we take F to be C,, the
continuous functions with compact support, then Cooper’s definition gives rise to
a much larger class of functions. The analogue of Bochner’s theorem is that every
function positive definite for C, is the Fourier-Stieltjes transform of a positive
measure, possibly unbounded, in the sense of Cesaro summability almost every-
where.

Our aim in this paper is to enlarge the class of functions with a finite number of
negative squares in a sense similar to that in which Cooper’s positive definite
functions extend those of Bochner. In the form (1) f(x,—x;) is replaced by the
integral

f_i f_if (x—))edx)7;() dx dy

for @, in some function class F, and the integral representation (2) continues to hold

in a summability sense.
Krein’s definition of a function with k negative squares can be formulated just

as easily on a group, and our definition makes sense on a locally compact group.
Indeed in §2 we give the elementary properties of these functions on a locally
compact group. However when it comes to proving integral representation theorems
in §3 we must restrict our attention to the real line. In fact, even for the ordinary
functions with a finite number of negative squares as defined by the form (1),
integral representation theorems are known only for the groups R"[4] and the
integers ([6], Theorem 5.2).

2. Elementary properties of the class P,(F). Let f be a complex-valued function,

defined on a locally compact group G, such that f(x—1)=j7(;) for every x € G. If
F is a linear space of complex-valued functions on G, fis said to be indefinite of
order k for F if the Hermitian form

3 0, &) =L Lf 0 p(x)e(y) dx dy

where

E= [51’ cees Eﬂ]’ @ = Zl gz(pz’

exists as a Haar integral over the product group GX G and has at most & negative
squares for any choice of nand ¢, . . . , ¢, in F, and for some choiceof ¢y, . . . , @,
in F the form has exactly k negative squares. Notice that Q can also be written in

terms of the scalar product
@ =] [ 160D dxdy e
as

0 &) = 3 (h 7)EE

T, 1=
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Let P,(F) be the class of functions which are indefinite of order & for F. Py(F)=
P(F), the class of functions positive definite for F, in the notation of [12]. If F
has the property that for any compact subset C of G, F contains a function which
is strictly positive on C and has compact support, then it is not difficult to show
that every function in P,(F) is locally summable with respect to the left Haar
measure on G. The function classes F that we deal with will always enjoy this
property.

It is clear that F, < F, implies that P,(F;) @ P,(F,). More precise information
about how P,(F) varies with F is provided by the following two theorems which
generalize theorems given in [12]. Since their proofs are similar we prove only the
second of them.

THEOREM 2.1. P, (C)=P,(L?) for any p>2, where L, denotes the class of function
in L?(G) with compact support.

THEOREM 2.2. Let 1< p<2 and g=p|2(p—1). If f € P(L}) and f is in L2 locally
then f € P,(Ly).

Proof. We denote integration with respect to the left Haar measure on G by dx.

Let ¢, € L. Then the adjoint $¥(x)=p(x")A(x?), where A is the modular

function of G, is also in L. Thus ¢ * p € L, where r-1=2p7'—1=1—¢" [5,

p- 296]. Since f is locally in L?, the integral
] —_— j —_—
|| 1070wt ax dy = 9] p207%0) dy ax
¢Ja G G

- fo(x)zp « p(x) dx

exists. If {@, ..., ¢,} < L7 the integrals (¢;, ¢;)=[ f(x)@; * p;(x) dx exist. For
each i=1,...,n choose a sequence {@;}m_; < L? such that |@;— ¢ ,—0 as
m—>co and the supports of the ¢;" are contained in a common compact set. Define
@*(x)=@(x1). Then we also have

loF—(@*l,—~0 and |[@—¢"l,—>0 as m— co.
Hence

16 * o=@ * @l < 1@l loi— o157 o — (e ™13
+HI@— @7, 191577 W@ *I5 —0 as m— oo,
(Note that in the general case formula (ii) of [5, p. 296] is replaced by
If* gl < IS0, 1ld™ Ig* 1™ ")

Thus for i, j=1, ..., n we have (¢}, ¢7)—>(¢:, @;) as m—oo. Since ¢} € L? each
of the matrices [(¢;", ;)] has at most k negative eigenvalues. But the eigenvalues
6
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of a matrix are continuous functions of its elements, and so the matrix [(g;, ¢;)]
has at most k negative eigenvalues. Furthermore since L? < L? and f € P(L?)
there must exist ¢y, ..., ¢, € L, such that the form (3) has exactly k negative
squares. Therefore f € P,(L?).

The converse of Theorem 2.2 can be proved for the case p=1 by using the
uniform boundedness theorem twice. The shorter proof given here uses Cohen’s
theorem on factorization in group algebras.

THEOREM 2.3. If f € Py(L;) then f is essentially bounded on any compact set.

Proof. If g € L; then there exist functions &, ¢ € L! such that g=& * ¢ since L,
is a subalgebra of L' [2]. Thus if y=& we have [fg=[f (% * )< oo for every
g € L. This proves that f € L® on any compact set ([1, p. 85]).

We conclude this section by showing that the functions with k negative squares
treated by Krein are special cases of the functions that we are considering.

THEOREM 2.4. A continuous function f has k negative squares if and only if it is in
PIC(CC)'

Proof. First suppose that G contains x,, . . ., x, such that the form
3 [T x)EE;

has exactly r negative squares. Then there is a nonsingular linear transformation
£;=21 ;7 such that

n

2 [ x)ES = _§|n1|2+ 2 Ind*

i,j=1 i=r+1

(p) __

Thus, by taking #;"' =0,,, we obtain

Z f(x;lxi)aip—‘a = '—51»11’ p,g<r.
=

1

2

Let V; be a neighbourhood of x;, v, a positive continuous function with support
in V, such that fy,(x)dx=1, and ¢,=>;, a,,p;. By taking the V, sufficiently

small we can make (¢,,  )={ff(yx)p,(x)p,(y) dx dy arbitrarily close to
S f(x5'x;)a,,a,, Since the eigenvalues of a matrix are continuous functions of its
elements we conclude that the matrix [(¢,, ¢,)],.,_1 has r negative eigenvalues if
the V; are chosen sufficiently small.

Now suppose that there exist ¢, ..., ¢, in C(G) such that the form
ST (s 9;)&£; has exactly r negative squares. As in the above paragraph there is a
nonsingular matrix [b,]} ;_; such that (y;, y;)=—0,; for i, j<r if ;=37 ; b;;@;.

u
D,q=
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Let K be a compact set which contains the supports of v, ..., 9,. Since the

functions f(y~'x)yp,(x)y;(y) are uniformly continuous on KX K we can partition K
into disjoint sets Ej, . . . , E,, so that the sums

3 16 %Rk R EE,),

D g=

where m is the left Haar measure, differ from the integrals

f f fO ey, dxdy = =64,  i,j<,
QJQ

by less than any preassigned amount. This shows that the form 37" f(x7'x,)£,£,
has r negative squares.
The theorem follows from combining the results of the two preceding paragraphs.

3. Representation theorems. In this section the only group that we shall deal
with is the real line. If C7 is the class of infinitely differentiable functions with
compact support then P,(C;")=P,(C,)=P,(L?), p=>2. We shall find it convenient
in the proofs to take the function class F to be C;°, and for this reason the theorems
are stated for P,(C;’). The Fourier transform of a function ¢ € L! is denoted by

o) = ¢ = g .

THEOREM 3.1. If f € P,(C7’) then there is a polynomial Q of degree at most k
such that

@) I Te=ye(-i-4) qo(x)Q(—idiy) #(y) dx dy > 0

holds for every ¢ € Cy.

Proof. The indefinite scalar product

) (@ p) = f f fa—0)ep) dxdy (g, peCP)

clearly satisfies axioms I, IT, IV and V of the six axioms for a II,, space of Iohvidov
and Krein [6]. Let H be the isotropic subspace of C°, i.e., H={y € CZ; (y, ¢)=0
for every @ € C.°}. The factor space C;’[H can be written as a direct sum IT, @II_
where II_ is a k-dimensional negative subspace. If I is a completion of the
positive subspace I1, then IT,=I1, ®II_ satisfies all six axioms of Iohvidov and
Krein.

The operator Ap=idp[dx is symmetric on C; with respect to the scalar product
(5), and since H is invariant under 4 we can regard A4 as a well-defined symmetric
operator on the dense subspace C; [H of II,. Since A4 is defined on all of II_ we
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can write A as a matrix [A,.,]f-, j—1 With respect to the direct sum I, =11, ®II_,
where A,, is a symmetric operator on II_ and A4, is a symmetric operator densely
defined on the Hilbert space [1,. By means of Naimark’s theorem on self-adjoint
extensions of the second kind [9] 4;, can be extended to a self-adjoint operator A4,
on a Hilbert space I} > TI,. Define II,=II', ®II_ and extend A, :I1,—II_ to
Az, : I —TI_ by defining it to be zero except on 1. If Aj,:TI_—II/, is defined to
coincide with 4y, then the operator A'=[A4.,] ;_, on II, is a self-adjoint extension
of A. A theorem of Pontryagin [10] proves the existence of a k-dimensional sub-
space L of II; which is invariant under 4’ and is such that (x, x)<0 for every
x € L. Let Q be the minimal polynomial of the operator A’ restricted to L; then

Q(A4")x=0 for every x € L. Thus if §(2)=Q(2) we have

(AN, L) = (I, Q(A)L) = 0.

But the orthogonal complement of L is a nonnegative subspace and hence
(0(4")x, 0(A4")x) >0 for every x € II,. In particular (J(4)@, O(4)F) >0 for every
@ € C; and thus

f f(x=y)Q(—id[dx)p(x) Q(—id[dy) ¢(y) dx dy

- f f £ (x—)0id]dx)pO(id]dy)e(y) dx dy > 0.

The following theorem can be proved either by the method of directed functionals
as used in [7] or by using the Bochner-Schwartz theorem as in [11]. We follow
Shah Tao-Shing in the latter approach.

THEOREM 3.2. There is a positive measure o and a function h, satisfying the
differential equation

O(—id[dx)Q(—id[dx)h,(x) = 0
such that, for every ¢ € C7,

_do(A)

© ff(x)qv(x) dx = [t d’““f U (=S M dxffp oo

Proof. Since f'is locally summable we can consider it as a distribution so that the
inequality (4) can be rewritten as

P p——
f [Q(i c%c) Q(" d—‘i) JT’C)} p*§(x) dx > 0.

or
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Thus the distribution Q(id/dx)Q(id|dx)f is positive definite and hence by the
Bochner-Schwartz theorem it is the Fourier transform of a positive tempered
measure u, i.e.,

[[e(iE)o(i 7@ )ocoax = [sdanry  ecs)
and i

oo forsome p > 0.
a+ ey S ners

If Q, is defined as in §1 and Q(A)=0,(4)0,(4) then the polynomial Q, has no real
zeros and the measure o defined by

dp(2)
10,(D)®

is a positive tempered measure. To verify that the functional T, defined by

da(l) =

do(2)
Qs

is a distribution, let ¢,—0 in C7°. Thus the support of each ¢, is contained in a
common interval [—a, a] and d”¢,[dx"—0 uniformly for every r. T, can be written
as U,+V, where

T, 9) f { f (€5 (—x, D)g(x) dx } (pecy)

do(2)

U, 9 = { f (=S (—x, D)p(x) "”}m ,

da(l)
Vr ®) f s loE”

Since d*?¢,/dx?*—0 uniformly there is a constant A such that |[d*?¢,(x)/dx??|< A
for every n and x. This implies that |$,(4)| <2aA |A|~27 for every n. But since u is

p-tempered we have
f 2aA do(2) <
|

21> |41 [Qo(DT*
and so the dominated convergence theorem implies that (¥, ¢,)—0. Also
(U,, ¢,)—0 by the bounded convergence theorem and thus 7, is a distribution.
S,(x, A) is of the form >7_; exp(ia;x)P;(x), where P; is a polynomial of degree
2m;—1, and is therefore a solution of the differential equation Q(—id/dx)x
Q(—id|dx)S ,(x, 2)=0. It follows that, for every ¢ € C7,

forma{-s (-
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Therefore

(O(—id|dx)Q(—id|dx)T,, ¢) = (T,, O(—id|dx)Q(—id|dx)¢)

-fif "”Q(-l;%)Q(-fa)M “Jor

do(%)

= p) 2'/1
le( I 4 L7

= f (2 du(h)

—f[( ) (’“)f(X)]q)(x)dx

= (O(—id/dx)Q(—id|dx)f, ¢).

Consequently the distribution h,=f—T, satisfies the differential equation
O(—id|dx)Q(—id|dx)h,(x)=0. But the only solutions of this equation are ordinary
functions. The equation f=h,+T, then becomes (6).

So far, all that we know about the measure o is that it is positive and tempered:

da(2)
(A+121%?
However in order to deduce integral representation theorems for f from Theorem
3.2 we need more precise information about . Specifically, for what values of p is
o p-tempered ? If fis continuous it is known [7] that ¢ is p-tempered for all p >m,
where m is the degree of @Q,. The following theorem shows that in the general case
o is p-tempered for p>m+-3.

< o for some p > 0.

THEOREM 3.3.

do(2)
L<|z|<aﬁ)—]2= o(a) as a— oo.

Proof. Consider the function

4a

ks

(1—2—“ le) if x| < =
T 2a
"pa(x) = -
0 if [x] > —

2a

and its Fourier transform
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These functions have the following properties: 0<y,(x)<4a/m, y, has support in
[—=(2a, w[2a], ¥ ,(A)>1 for |A|<a, and ¥',(A) >0 everywhere. We can find a
function ¢, € C7 such that ¢, and @, have these same properties. First notice
that y,=g, * g, where g (x) is equal to 2,/(2a)/r for |x|<w[4a and is zero else-
where. If we approximate g, by 4, € C in the L norm then ¢ =h, * h, approxi-
mates ¥, in L' and hence @, approximates ¥, in L*. Thus we can choose #, € C;
so that 0</%,(x)<g,(x) and ®,(4)>1 for |A|<a. Then ¢, and @, possess the
desired properties.
By setting ¢ =g, in (6) we obtain

f da(2) < ) A)M
p<iat<a [Qu(M] ~ Jo<iit<a © [QDP?

dao(2)
< O (A
_fmu ()[QO(A)F

[ se=si=n g as }[g:’((j))lz

+ f T - pulx) dx

n/2a —
f T =) galx) dx

—7/2a

u(x) = f P8 (x, ) do().
— [Qo(}*)]2

where

Thus
1 dO’(l) w/2a 3 _
£< 111<a [Qy()]? <= J‘_malf () —h,(x)—u(x)| dx

which approaches 0 as a— 0.

COROLLARY. The measure o is p-tempered for every p>m-+3% where m is the
degree of Q.

Proof. Let
' do(s)_
P[0T
f ¢_do(d) gla) g(p)
P 21+8[Q (l)]2 a1+8 1+8
converges as a— o0 since g(t)=o(t). Hence if p>m+-%,

f“’ do(2)
—o (14121

g(H) =
If £>0 then

HE (1o [ 20

< ©
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The next theorem shows that Krein’s representation theorem holds almost
everywhere if fis bounded in a neighbourhood of 0.

THEOREM 3.4. Let f € P,(Cy) and suppose that fis bounded in some neighbourhood

of 0. Then
dao(R)
fuw 0 <

and, for almost all x,

0 GAx__ Sp(x,

™ Fe) =+ | A 4o(3).
- [Qo(}-)]2

Proof. In the proof of Theorem 3.3 it was shown that

do-(l) ig w/2a B 3
J:’<“|<" [Qu(DF < T f—n/zalf(x) () —uCx)l dx.

By hypothesis there are positive constants é and A4 such that | f(x)| <4 for |x| <é.
Since 4, and u are both continuous, B=sup{|A,(x)4u(x)|; |x| <} < co. Then for
a>m|20 we have

f 49D < 44+B).
p<lil<a [Qy(2)]

This proves the first assertion and allows us to reverse the order of integration in
(6) and obtain, after replacing ¢ by @,

f FOOP(x) dx = f (X)) dx+ f { f ﬁ;l"_ﬂ da(l)} o) dx.

Since this equation holds for every ¢ € C;’ it follows that (7) holds almost every-
where.

If fis unbounded at O the integral representation (7) continues to hold provided
that the integral is interpreted in a summability sense.

THEOREM 3.5. If f€ P,(C) then there is a positive measure ¢ and a polynomial Q
of degree at most k such that the equation

£6) = hye)+lim [ =55 D g ) dor)
noo Joo [Q(2)]?

holds in the following cases:

(i) almost everywhere (and at points of continuity) for summability by Weierstrass
means, ie., O, ()=exp(—A%n?), if there is a positive constant ¢ such that
f(x)exp(—cx?) is in L'(— o0, o),
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(ii) in L* over compact sets (and at points of continuity) if ®,(2)=0(A"""%) as
A—= 0 for some £>0 and ®,=§, where @, is continuous, ¢,>0, [@,(x) dx=1,
and support (,) decreases to 0,

(ili) in the sense of distributions, i.e., [f,o—[fp, where

0 ilz_S , y)
719 = hw | :[T(;%J (1) do(A),

if ©,(A)=0(A""%) as A=+ o0, ®,(A)—1 as n—~o0, and |®,(A)|<1.

Proof. Let ¢ be any continuous function such that [fg exists, (x)=0(x"2"~2)
as x—4- 00, and ®(A)=0(A"17*) as A— = oo for some £>0. (This will be the case if
® is the summability function in (i) or (ii).) We shall show that

do()

(8) f F®e(x) dx = f () p(x) dx+ f { f (e =S, (—x, A)p(x) dx}[ 0.0

First notice that the second integral on the right-hand side exists because it can be
written as

P[P pmitn_g do) [ o 4o
L{Lo(e Sol=% D)ex) dx}[Qo(z)]2+f|u>p Do

Since @(4)=0(A"1*) the latter integral exists by the corollary to Theorem 3.3; the
former integral exists because @(x)=0(x"2"-2%) and

5,00 ) = 3 exp(io x)szl =l <.
p!

There is a sequence {y,} = C;* such that p, (x)—¢(x) and |yp,(x)|<|p(x)|. The
equation (8) holds with ¢ replaced by v,,; therefore by the dominated convergence
theorem it holds for ¢.
Now set ¢(x)=g,(t+x) in (8), where @, =¢, is the summability function in (i)
or (ii). Thus
_da(})

) f (f ()= h (X)) gn(t—x) dx f_ p{ f (=S (x, D) pa(t—x) dx} 0/AT

$tA dUU»)
+fm>p B QDT

since f_(x—)= -f(—x) and h,(x)=h,(—x). The left-hand side of (9) converges to
S(©)—h,(2) if ¢ is a point of continuity of f, and in case (i)

(@n(x) = }7/2n exp(—n’x?[4))
the convergence holds almost everywhere [13, p. 31, Theorem 16]. For every value
of ¢ the first term on the right-hand side converges to

145802 4
= [QuDF*
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by the bounded convergence theorem. Thus if ¢ is a point of continuity of f, or a
point of the Lebesgue set in case (i), we have

£ = @+ [ "5 D gty ptim [ @ pyert 42D
- [Qu(D]? no J[A]>p [Q(W)]?
— h@+lim [ 58D 2y do(r)

o Jmo [Qy()]?

since ®,(4)—1 uniformly on [—p, p]. Again this equation also holds in case (ii)
in the sense of convergence in L' over compact sets.
In case (iii) we have, using the assumption that @, (1)=0(4"17%),

[ =[rp+ [{] < [QL;; D 0,2 do(i)| o) v
_do(2)

= [ [{ o=, o0 axf 0, ) 20 o

for ¢ € C;. By the dominated convergence theorem this converges to

do(h)
h —S(x, A
f o+ f { f(e 8,6, D) () dx }[Qo(mz
which is equal to | fo.
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