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Abstract

We give counterexamples to the degeneration of the Hochschild-Kostant-Rosenberg spectral sequence in character-
istic p, both in the untwisted and twisted settings. We also prove that the de Rham-HP and crystalline-TP spectral
sequences need not degenerate.

1. Introduction

Let : be a commutative ring and ' a commutative flat :-algebra. Recall that the Hochschild homology
complex HH('/:) of ' relative to : can be defined as the ‘functions on the self-intersection of the
diagonal of Spec(') → Spec(:)’; that is, as

HH('/:) = ' ⊗!'⊗:' '.

The Hochschild-Kostant-Rosenberg (HKR) theorem connects the cohomology groups of this complex
to differential forms over :: if ' is smooth, there are canonical isomorphisms

�−= (HH('/:)) � Ω
=
'/: . (1)

In characteristic 0, the formula (1) upgrades to a canonical decomposition (often referred to as the
Hodge decomposition) of the Hochschild complex; cf., for instance, [32, Th. 8.6], [20], [43]; this implies
that for a smooth variety -/: there are canonical isomorphisms

�−= (HH(-/:)) �
⊕

B−C==

�C (-,ΩB
-/: ). (2)

In this article, we study to what extent the decomposition (2) might hold when : has positive char-
acteristic ? > 0. More precisely, given a smooth :-scheme - , the canonicity of the HKR isomorphism
(1) already implies that one has an �2-spectral sequence, which we call the HKR spectral sequence, of
the form

�
B,C

2 = �B (-,Ω−C
-/: ) ⇒ �B+CHH(-/:).
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We ask here whether this spectral sequence always has to degenerate at �2 (e.g., for smooth proper
varieties).

Degeneration of the HKR spectral sequence is known if -/: is smooth proper of dimension 6 ?

by work of Yekutieli [45] (in the case where dim(-) < ?, in which case one also gets a canonical
decomposition) and by Antieau-Vezzosi [7] (which allows dim(-) = ? as well). Additionally, Rao et
al. [34] recently proved that HKR holds for the blowup of a smooth proper - along a smooth closed
subscheme / if and only if it holds for - and / . There are additional examples in which one can
verify degeneration; for example, smooth complete intersections in projective space (see [7, Ex. 1.7]).
In contrast, we prove the following result.

Theorem 1.1. Let : be a perfect field of characteristic ? > 0. There exists a smooth projective 2?-
dimensional :-scheme - such that the HKR spectral sequence for - does not degenerate, so there can
be no Hodge decomposition of HH(-/:). Specifically, we construct such an - for which the differential
3? : �0 (-,Ω1

-/:
) → � ? (-,∧?!-/: ) in the HKR spectral sequence is nonzero.

We also give related examples where the de Rham-HP and crystalline-TP spectral sequences con-
structed in [12] are nondegenerate and examples where the crystalline-TP spectral sequence gives a
non-split filtration on �∗(TP(-)). For details, see Theorem 6.2.

Our method is to understand these spectral sequences in the case where we replace the scheme - by
the classifying stack �� of a group scheme �. In fact, slightly surprisingly, � = `? already leads to
Theorem 1.1. In this case, the reason for nondegeneracy of the HKR spectral sequence is relatively easy
to describe, at least informally: the Hochschild homology of �`? is concentrated in degree 0 (because
the category of quasicoherent sheaves on �`? or, equivalently, the category of representations of `? is
just the ?-fold direct sum of the category of vector spaces), whereas the Hodge cohomology of �`? is
not concentrated in degree 0 (because there are nontrivial 1-forms on �`? arising from the singularities
of `? as a scheme).

To pass from the stacks discussed above to the examples of Theorem 1.1, we approximate �� by
smooth projective varieties; that is, we find maps - → �� with - smooth projective such that the
pullback map on various cohomology theories considered above is injective. More specifically, we prove
the following theorem.

Theorem 1.2. Suppose that : is a perfect field of characteristic ? > 0 and that � is an affine :-
group scheme that is either finite or geometrically reductive. For any integer 3 > 0, there exists a
smooth projective :-scheme - of dimension 3 together with a map - → �� such that the pullback
�B (��,∧C!��/: ) → �B (-,∧C!-/: ) is injective for B + C 6 3.

The geometric idea behind finding such approximations goes back to the work of Godeaux and Serre.
However, because the relevant group schemes� are not smooth, one runs into possibly singular complete
intersections in projective space as intermediate objects in this argument. To handle their cohomology,
we prove a version of the weak Lefschetz theorem for Hodge cohomology for such complete intersections.

We also consider the twisted version of this question. Let -/: be a smooth :-scheme and let
U ∈ H2 (-,G<) be a cohomological Brauer class. One constructs a twisted form HH(-/:, U) of
Hochschild homology as in the study of twisted  -theory. In fact, if U is the Brauer class of an Azumaya
algebraA, then HH(-/:, U) ≃ HH(A/:). By work of Cortiñas-Weibel [14], there is a spectral sequence

�
B,C

2 = �B (-,Ω−C
-/: ) ⇒ �B+C (HH(-/:, U)).

We call this the U-twisted HKR spectral sequence; when U = 0, it is the HKR spectral sequence. In
general, the terms of the �2-page are the same as in the untwisted case, but the differentials might be
different. When : is a field and - is additionally proper over : , the degeneration of the HKR spectral
sequence is equivalent to the existence of an isomorphism as in (2).

Theorem 1.3. Let : be a field of characteristic ? > 0. There exists a smooth projective threefold - over
: and a Brauer class U ∈ Br(-) such that the U-twisted HKR spectral sequence does not degenerate.
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Specifically, we construct such an - for which the differential 3U2 : �0(-,Ω0
-/:
) → �2(-,Ω1

-/:
) in

the U-twisted HKR spectral sequence is nonzero.

For ? = 2, we can do a little better and find surface examples. In fact, classical Enriques surfaces
work in that case (Propositions 7.7 and 9.2).

Theorem 1.3 gives examples of a smooth projective :-schemes - and Azumaya algebras A on -
such that dim: �

8 (HH(A/:)) ≠ dim: �
8 (HH(-/:)). This is in contrast to the affine case of Cortiñas-

Weibel [14] and shows that their theorem cannot be globalised. These examples also lead to cases of
P=-bundles % → - such that pullback kills Hodge and de Rham cohomology classes, a phenomenon
that can only exist in characteristic ?. See Section 10.

Conventions. Throughout, we use cohomological indexing conventions. Given a commutative ring : ,
we will let � (:) denote the derived∞-category of :-modules and Sp denote the∞-category of spectra.
For the purposes of this article, a 3-dimensional scheme is by definition equidimensional. Moreover,
when we say that a spectral sequence discussed in Section 3 degenerates without specifying a page, the
degeneration is always intended to begin at the first page where the spectral sequence is defined; when
we assert that a spectral sequence does not degenerate, we specify the nonzero page and differential.

2. Hochschild homology and de Rham cohomology of stacks

Fix a commutative ring : . In this section, we introduce the various cohomology theories that we shall
use later in the context of algebraic stacks over : . Our strategy is to define the cohomology of a stack via
descent. To simplify definitions and avoid subtleties, we work with the syntomic topology and stick to
stacks that are themselves syntomic (as defined next); this includes all smooth (or even local complete
intersection) algebraic stacks over : , which is sufficient for our purposes.

Notation 2.1. A map ' → ( of commutative rings is called a syntomic map if it is flat and finitely
presented with !(/' ∈ � (() having Tor amplitude in [−1, 0]; there is a similar definition for maps of
schemes. Let Syn: denote the category of syntomic :-algebras; its opposite category Syn>?

:
, equipped

with the Grothendieck topology where covers are given by finite families of syntomic maps that are
jointly faithfully flat, is called the syntomic site of : . An algebraic stack X/: is called syntomic if there
exists a syntomic cover* → X with* a syntomic :-scheme.

Example 2.2. Say �/: is a flat and finitely presented affine group scheme. It is known that � is a
syntomic :-scheme. It follows that �� is a syntomic :-stack: The canonical map Spec(:) → �� is a
syntomic cover because it is a�-torsor. In fact, �� is actually a smooth :-stack: It suffices to check this
fibrewise, and there it follows by realising � as a closed subgroup scheme � ↩→ GL= and noting that
the resulting map GL=/� → �� is a smooth surjection with a smooth source. Nevertheless, it is often
more convenient in calculations to work with the syntomic cover Spec(:) → �� (which is functorially
defined in the group scheme �) rather than some noncanonical smooth atlas for ��.

Our goal is to give a definition of Hochschild and derived de Rham cohomologies (as well as variants)
for syntomic :-stacks. Let us first recall the definitions of the relevant functors in the affine case; that is,
as functors on Syn>?

:
; we shall later extend these to all syntomic :-stacks via descent.

Definition 2.3. Fix ' ∈ Syn: .

(a) For 8 > 0, we write∧8!'/: ∈ � (') for the 8th derived wedge power (in '-modules) of the cotangent
complex !'/: ; these together form the Hodge cohomology of '.

(b) We let HH('/:) = ' ⊗!
'⊗:'

' ∈ � (:) denote the Hochschild homology of ' relative to : .

(c) The object HH('/:) is equipped with a :-linear (1-action, and we let HC−('/:) = HH('/:)ℎ(
1
∈

� (:) denote the negative cyclic homology and HP('/:) = HH('/:)C(
1
∈ � (:) denote the

periodic cyclic homology.
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(d) We let THH(') ∈ Sp denote the topological Hochschild homology of ', which is a spectrum (even
an �∞-ring spectrum) with an (1-action; we write TP(') = THH(')C(

1
for its topological periodic

cyclic homology. See [30] for a modern account of topological Hochschild homology and the
structure on it. Recall also that if : is a perfect field of characteristic ?, then TP(')/? ≃ HP('/:),
as in [12, Theorem 6.7] or [6, Theorem 3.4]. Moreover, though TP(') is typically a spectrum, if '
is an F?-algebra, TP(') is naturally an object of � (Z?).

(e) We let !Ω'/: denote the derived de Rham complex of ', equipped with the derived Hodge

filtration Fil★� !Ω'/: = !Ω
>★
'/:

. Then !Ω>★
'/:

is naturally an object of the filtered derived category

�� (:) (see [12, §5] for more on the filtered derived category). By definition, if ' is a finitely
generated polynomial ring over : , then !Ω>★

'/:
≃ Ω>★

'/:
; that is, the derived de Rham complex with

the derived Hodge filtration agrees with the ordinary de Rham complex and the filtration bête. We
then define !Ω>★

'/:
for general ' via left Kan extension. When : has characteristic ? > 0 (which

will be the case in our applications), it follows from [10] that !Ω>★
'/:
≃ Ω>★

'/:
for smooth :-algebras;

in particular, !Ω'/: is complete for the Hodge filtration for ' smooth.

Remark 2.4. Assume that : has characteristic ? and is perfect. It was shown in [10, Theorem
3.27] that derived de Rham cohomology of syntomic algebras can be computed via crystalline
cohomology; that is, for any syntomic :-algebra ', there is a natural isomorphism !Ω'/: ≃
'Γcrys(Spec(')/:), with the Hodge filtration on !Ω'/: matching up with the filtration coming from
divided powers of the ideal sheaf on 'Γcrys(Spec(')/:). Thus, this invariant admits a ‘nonderived’
definition. The derived definition is nevertheless useful because it is often easy to compute the
cotangent complex and its derived exterior powers (especially once we extend to stacks).

(f) Suppose that : is a perfect ring of characteristic ?. In this situation, we write 'Γcrys(Spec(')) ∈
� (, (:)) for the crystalline cohomology of '; because : is perfect, we can take this to mean either
absolute crystalline cohomology relative to the pd-base (Z? , (?)) or crystalline cohomology relative
to the pd-base (, (:), (?)) without changing its meaning. By generalities on crystalline cohomology
and Remark 2.4, we can regard 'Γcrys(Spec(')) ∈ � (, (:)) as a lift of !Ω'/: ∈ � (:). We refer to
[12, §8] for a further discussion of this theory, including a description via the derived de Rham-Witt
complex.

In order to extend these functors to syntomic :-stacks, we need the following descent result.

Theorem 2.5. The following assignments give sheaves on Syn>?
:

:

(1) the � (:)-valued functors ' ↦→ ∧8!'/: (for all 8 > 0), HH('/:),HC− ('/:),HP('/:);
(2) the Sp-valued functors ' ↦→ THH('), TP(');
(3) the � (:)-valued functor ' ↦→ !Ω'/: when : has characteristic ?;
(4) the � (, (:))-valued functor ' ↦→ 'Γcrys(Spec(')) when : is perfect of characteristic ?.

In other words, given a syntomic cover ' → '′, the natural maps

� (') → Tot
(

� ('′) //
// � ('′ ⊗' '

′)
//
//
// � ('′ ⊗' '

′ ⊗' '
′)

//
//
//
// · · ·

)

are equivalences for � any of the above functors on Syn: .

Proof. We refer to [9, Remark 2.8] for the cotangent complex. In fact, [12, §3] covers all of the functors
in (1) and (2), and [12, Example 5.12] covers (3); the claim in (4) follows formally from that in (3)
because 'Γcrys(Spec(')) is derived ?-complete (see [38, Tag 091N] for a treatment of this notion) and
'Γcrys(Spec('))/? ≃ !Ω'/: . �

Remark 2.6. The results of [12] are more general in that they show descent for stronger Grothendieck
topologies (such as the quasisyntomic topology for all classes of functors above, and even the flat
topology for the first two). These stronger results are critical to the methods of [12]. However, for the
purpose of geometric applications in this article, the preceding generality suffices.
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Construction 2.7 (Cohomology of stacks). Fix a sheaf � of spectra on Syn>?
:

. ecause � is a Zariski
sheaf, we know how to make sense of � (-) for any syntomic :-scheme - by Zariski descent: We set
� (-) = 'Γ(-

0 5 5

/0A
, �), where -0 5 5

/0A
denotes the category of affine opens in - equipped with the usual

topology. Similarly, if X is a syntomic :-stack, there is a tautological way to make sense of � (X) by
syntomic descent; that is, we set

� (X) := 'Γ(Syn>?
:,/X

, �).

In fact, we can be more explicit in practice: If X is a quasicompact syntomic :-stack with affine diagonal,
then there exists an affine syntomic cover* → X with* a syntomic affine :-scheme, and Čech descent
gives an identification

'Γ(Syn>?
:,/X

, �) ≃ Tot
(

� (*) //
// � (* ×X *)

//
//
// � (* ×X * ×X *)

//
//
//
// · · ·

)

,

thus allowing one to compute the left side in terms of the value of � on affines; a similar description
applies to all syntomic :-stacks if one allows* to be a possibly nonaffine syntomic :-scheme. Applying
this construction to the functors from Theorem 2.5, we can obtain the following functors on syntomic
:-stacks:

(1) the � (:)-valued functors X ↦→ 'Γ(X,∧8!X/: ) (∀8),HH(X/:),HP(X/:);
(2) the Sp-valued functors X ↦→ THH(X),TP(X);
(3) the � (:)-valued functor X ↦→ 'ΓdR(X/:) when : has characteristic ?;
(4) the � (, (:))-valued functor X ↦→ 'Γcrys(X) when : is perfect of characteristic ?.

The construction as a totalisation above also immediately makes it clear that if a sheaf � has certain
structural features when evaluated on syntomic :-schemes (respectively smooth :-schemes), it does so
on syntomic :-stacks (respectively smooth :-stacks) as well. We shall implicitly exploit this observation
later when extending certain natural filtrations on the invariants from Definition 2.3 to the stacky setting.
Nonetheless, there are some subtleties.

Remark 2.8 (Comparison with the stack-theoretic cotangent complex). For a syntomic :-stack X, one
can show that 'Γ(X, !X/: ) as defined above is the global section of the stack-theoretic cotangent
complex !X/: , considered as a quasicoherent complex on X; this is the reason for the above notation.
This follows from the transitivity triangle, which shows that the global sections of !X/: satisfy syntomic
descent in X (as in [9, Remark 2.8]).

Warning 2.9 (Comparison with Hochschild homology of perfect complexes). Fix a syntomic :-stack
X. The object HH(X/:) constructed above does not (in general) coincide with HH(Perf(X)/:), the
Hochschild homology of the :-linear stable ∞-category of perfect complexes on X: There is always a
natural map HH(Perf(X)/:) → HH(X/:), but it will not be an equivalence in general. For example,
for X := �G<, one finds that both sides are concentrated in degree 0 where we obtain the completion
map : [C±1] → :ÈC − 1É (cf. Example 4.3).

Warning 2.10 (HP versus the Tate construction). For any syntomic :-stack X, the object HH(X/:)
inherits an (1-action. It is always true that HC−(X/:) = HH(X/:)ℎ(

1
because we can commute limits.

However, HP(X/:) may differ from HH(X/:)C(
1

because the (1-Tate construction does not generally
commute with limits (compare Remark 4.16 below).

3. Spectral sequences for stacks

Continuing the notation of Section 2, we explain how the invariants introduced in Construction 2.7
come equipped with certain natural filtrations leading to spectral sequences. The differentials 3A in our
spectral sequences have bidegree (A, 1 − A).
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Definition 3.1. If a sheaf � of spectra on Syn>?
:

is equipped with a complete descending N-indexed
filtration by sheaves, then its value on a syntomic :-stack X also admits a similar filtration. Applying
this observation allows us to construct the following spectral sequences:

(a) Recall that for ' ∈ Syn: , we have a complete descending N-indexed multiplicative (1-equivariant
HKR filtration Fil★HKRHH('/:)with graded pieces grCHKRHH('/:) ≃ ∧C!'/: [C], obtained by left
Kan extending the Postnikov filtration on polynomial algebras. The HKR filtration on HH(−/:) in-
duces a complete descending N-indexed filtration of HH(X/:) with grC given by 'Γ(X,∧C!X/: ) [C].
In particular, for any syntomic :-stack X, we obtain the HKR spectral sequence

�
B,C

2 = �B (X,∧−C!X/: ) ⇒ �B+C (HH(X/:)).

The HKR spectral sequence degenerates in characteristic 0 by [40].
(b) Assume that X is a smooth :-stack where : has characteristic ? > 0. Restricting attention to

smooth :-algebras and applying the reasoning used above, in conjunction with the last sentence of
Definition 2.3(e), shows that the de Rham cohomology 'ΓdR(X/:) admits a complete descending
N-indexed filtration Fil★�'ΓdR(X/:) with gr8 given by 'Γ(X,∧8!X/: ) [−8]. In particular, we obtain
the Hodge-de Rham spectral sequence

�
B,C

1 = �C (X,∧B!X/: ) ⇒ �B+CdR (X/:).

(b’) Assume that : is perfect of characteristic ?. For any :-algebra ', the object !Ω'/: comes endowed
with a functorial increasing exhaustive N-indexed filtration, called the conjugate filtration, with gr8
given by ∧8!' (1) /: [−8] (see [10]). If one restricts attention to syntomic :-algebras, these graded
pieces are coconnective. Because totalisations of cosimplicial coconnective objects commute with
filtered colimits, we learn by descent that for any syntomic stack X/: , we have a functorial
increasing exhaustive N-indexed filtration on 'ΓdR(X/:) with gr8 given by 'Γ(X,∧8!

X(1) /: ) [−8].
In particular, we obtain the conjugate spectral sequence

�
B,C

2 = �B (X,∧C!
X(1) /: ) ⇒ �B+CdR (X/:).

Remark 3.2. Comparing the �2-terms of the conjugate spectral sequence with the �1-terms of the
Hodge-de Rham spectral sequence shows the following: If both the Hodge and de Rham cohomology
groups of X/: are finite-dimensional in each degree, then the Hodge-de Rham spectral sequence
degenerates if and only if the conjugate spectral sequence degenerates.

The preceding discussion also extends to Z-indexed filtrations provided the graded pieces become
highly coconnective for 8 → −∞. By the main results of [12], this yields the following two spectral
sequences:

(c) Assume that : has characteristic ? > 0 andX is a smooth :-stack. The motivic filtration on HP(−/:)
constructed in [12] (in the ?-complete setting) and in general in [3] induces a complete exhaustive
descending Z-indexed filtration on HP(X/:) with gr8 given by 'ΓdR(X/:) [28]. In particular, we
obtain the de Rham-HP spectral sequence

�
B,C

2 = �B−CdR (X/:) ⇒ �B+C (HP(X/:)).

There is a variant for HC−(X/:): One has a complete exhaustive Z-indexed descending filtration
on HC−(X/:) with grC given by FilC�'ΓdR(X/:) [2C] and a similar spectral sequence.

(d) Assume that : is a perfect ring of characteristic ? and X is a smooth :-stack. The motivic filtration
on TP(−) (cf. [12]) induces a complete exhaustive descending Z-indexed filtration on TP(X) with
gr8 given by 'Γcrys(X) [28]. In particular, we obtain the crystalline version of the de Rham-HP
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spectral sequence, namely, the crystalline-TP spectral sequence

�
B,C

2 = �B−Ccrys (X) ⇒ �B+C (TP(X; Z?));

the target is the ?-completion of topological periodic cyclic homology.
(e) For any syntomic :-stack X, we have the Tate spectral sequence

�
B,C

2 = �BTate(�(
1, �C (HH(X/:))) ⇒ �B+C ((HH(X/:))C(

1
).

If X is a syntomic :-scheme, then we can identify HH(X/:)C(
1

with HP(X/:).

Remark 3.3. The smoothness assumptions were made in Definition 3.1 to ensure that derived de Rham
cohomology is complete for the Hodge filtration. We could drop this assumption entirely if we replaced
derived de Rham cohomology with its Hodge-completed variant (and derived crystalline cohomology
with its Nygaard completed variant). However, because the stacks that we shall encounter later are
smooth, we prefer to stick to the limited generality introduced above.

We organise the spectral sequences introduced in Figure 1, borrowed from [4].

Remark 3.4. The Hodge-de Rham spectral sequence degenerates in characteristic 0 for smooth proper
schemes by Hodge theory. Moreover, if : is a perfect field of characteristic ? and -/: is a smooth proper
:-scheme with dim(-) 6 ? that lifts to,2(:), then the Hodge-de Rham spectral sequence degenerates
by Deligne-Illusie [17]. Remarkably, it is still unknown whether the hypothesis on dimension is necessary
in the preceding statement: Could it be true that the Hodge-de Rham spectral sequence degenerates for
any smooth proper scheme over a perfect field : of characteristic ? that is liftable to ,2 (:) (or even
, (:))? This question was explicitly raised in [23, Problem 7.10], and Deligne-Illusie presumed that the
answer is ‘no’.

Remark 3.5 (The noncommutative Tate spectral sequence). In Definition 3.1, the first four spectral
sequences crucially use algebraic geometry. However, the Tate spectral sequence extends to the non-
commutative setting: For any :-linear stable∞-category C, there is a spectral sequence

�
B,C

2 = �BTate(�(
1, �C (HH(C/:))) ⇒ �B+C (HP(C/:)).

In this context, the Tate spectral sequence is also called the noncommutative Hodge-de Rham spectral
sequence. Let : be a perfect field of characteristic ?. A result of Kaledin [25, 26] (see also [29]) implies
that if C is a smooth proper :-linear stable ∞-category (such as Perf(-) where - is a smooth proper
:-scheme) such that �8 (HH(C/:)) = 0 for 8 ∉ [−?, ?] (the noncommutative analogue of dim(-) 6 ?)
and if C lifts to ,2 (:), then the Tate spectral sequence degenerates at �2. Kaledin used this to prove
that the Tate spectral sequence degenerates for smooth proper dg categories over characteristic 0 fields,
which together with HKR in characteristic 0 implies Hodge-de Rham degeneration.

Remark 3.6 (A degeneration criterion). Suppose that - is a smooth and proper variety over a perfect field
: of characteristic ?. In this case, all of the :-vector spaces appearing in Figure 1 are finite-dimensional.

�∗(HH(X/:))

�∗(X,∧∗!X/: ) �∗(HP(X/:))

�∗dR(X/:)

TateHKR

Hodge-de Rham de Rham-HP

Figure 1. The Hodge quartet.
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Thus, we can use dimension counts to make conclusions about degeneration of the spectral sequences.
For example, if dim - 6 ?, then the HKR spectral sequence degenerates [7]. This implies that the
Tate spectral sequence degenerates if and only if both the Hodge-de Rham and de Rham-HP spectral
sequences degenerate. In particular, if the Hodge-de Rham spectral sequence does not degenerate, then
neither does the Tate spectral sequence.

The literature (see, for example, [17, Remarques 2.6(i)]) provides many examples of smooth proper
surfaces where the Hodge-de Rham spectral sequence, and hence the Tate spectral sequence, does not
degenerate. In this article, we provide examples that witness the nondegeneration of the remaining
spectral sequences; that is, the HKR, de Rham-HP, and crystalline-TP spectral sequences.

4. Classifying space counterexamples

In this section, we establish counterexamples to degeneration of the HKR spectral sequence for certain
algebraic stacks. Our examples are the classifying stacks of finite flat group schemes. In fact, the group
schemes `? , `?×`? and U? already lead to the desired counterexamples.1 Later, we will approximate, in
the sense of Totaro [41], these classifying stacks by smooth projective :-schemes to prove Theorem 1.1.

In this section, we work over a fixed perfect field : of characteristic ? > 0. For a finite flat :-group
scheme �, we will let �� denote the classifying stack of �-torsors for the fppf-topology. Note that
these stacks are always smooth (Example 2.2).

Our arguments begin with the calculation of the Hodge cohomology of �� and are phrased in terms
of the co-Lie complex co-Lie(�) ∈ � (��) of [21, Ch. VII, 3.1.2]. This is a �-equivariant refinement
of 4∗!�/: for 4 : Spec(:) → � the identity section and can be identified with the cotangent complex of
the stack �� up to a shift. When � is smooth, co-Lie(�) is the linear dual of the adjoint representation
of �. The main technical tool is the following result.

Theorem 4.1 (Totaro, cf. [42, Theorem 3.1]). There is a multiplicative, graded isomorphism

'Γ

(

��,
⊕

8>0

∧8!��/:

)

≃ 'Γ

(

�,
⊕

8>0

Sym8 (co-Lie(�)) [−8]

)

(3)

in � (:), where the right side denotes ‘rational cohomology’ of �-representations.

The result comes from the fact (which to formulate we use the cotangent complex of stacks) that if
c : Spec(:) → �� denotes the tautological map, then there is a multiplicative, graded, �-equivariant
isomorphism

c∗

(

⊕

8>0

∧8!��/:

)

≃
⊕

8>0

Sym8 (co-Lie(�)) [−8],

which implies the isomorphism (3) in � (:).
In our examples, the basic source for nondegeneration is the following. The Frobenius on the

classifying stacks �`? , �U? factors through a point, which forces the Frobenius to act by zero on
the zeroth Hochschild homology. However, the ?th power map is not zero in the relevant Hodge
cohomology (in fact, the ?th power map does not agree with the map induced by the Frobenius), which
forces the existence of differentials in the HKR spectral sequence. Another phenomenon that leads to
nondegeneration of the Hodge-to–de Rham spectral sequence for �U? is its failure to lift to ,2 (:),
which leads to the nondegeneration of the conjugate spectral sequence.

1These examples exhibit qualitatively different behaviour: The group schemes `? or `? × `? lift to ,2 (:) compatibly with
Frobenius and their Hodge-de Rham spectral sequences always degenerate (Proposition 4.6), whereas the group scheme U? does
not lift to,2 (:) and its Hodge-de Rham spectral sequence does not degenerate (Proposition 4.12 or Remark 4.13). Nevertheless,
either example leads to a nondegenerate HKR spectral sequence.
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4.1. �`?

In this section, we analyze the spectral sequences for �`? . Let us begin with a (special case of much
more general) degeneration criterion for the Hodge-de Rham spectral sequence.

Lemma 4.2. Let X = �� for a diagonalisable group scheme� (such as `? or G<). Then the conjugate
and Hodge-de Rham spectral sequences for X degenerate.

Proof. Using [17, Remark 2.2 (ii)] as well as functorial simplicial resolutions, one shows that for any
syntomic :-algebra ' equipped with a lift '̃ to ,2 (:) together with a lift q̃ : '̃ → '̃ of the Frobenius,
there is a functorial (in the pair ('̃, q̃)) isomorphism ⊕8>0∧

8 !' (1) /: [−8] ≃ !Ω'/: ; that is, the conjugate
filtration splits functorially in the lifting data. Now the syntomic hypercover of X = �� given by the
Čech nerve of Spec(:) → �� is a simplicial syntomic affine :-scheme that comes equipped with such
lifting data compatibly with the simplicial structure maps. Applying the preceding splitting levelwise
and totalising gives an isomorphism 'ΓdR(��/:) ≃ ⊕8>0'Γ(��,∧

8!��/: [−8]); that is, the conjugate
filtration splits and thus the conjugate spectral sequence degenerates. Dimension considerations now
show that the Hodge-de Rham spectral sequence must also degenerate. �

This allows us to recover the following standard calculation. As usual, let %(2) denote a polynomial
ring over : on the generator 2 and let � (3) denote an exterior algebra over : on the generator 3.

Example 4.3 (Cohomology of �G<). We have that co-Lie(G<) is the trivial representation of G<.
Because 'Γ(�G<,O) ≃ : , it follows that �∗(�G<,∧

∗!�G</: ) ≃ %(2), where 2 has bidegree (1, 1).
By Lemma 4.2, we also have �∗dR (�G<) ≃ %(2). The generator 2 can be explicitly chosen as the first
Chern class of the tautological line bundle on �G<. The HKR spectral sequence for �∗(HH(�G</:))
degenerates and we find that �∗(HH(�G</:)) ≃ : [[D]] for a class D in degree zero. In fact, all of the
spectral sequences considered above degenerate for �G< because there is no room for differentials.

Let us first review the Hodge and de Rham cohomologies of �`? . Part (i) of the following proposition
is a consequence of the fact that co-Lie(`?) ≃ O ⊕ O[1] ∈ � (`?), which yields the calculation of
Hodge cohomology. Part (ii) follows from the fact that the group scheme `? lifts to characteristic 0 with
a lift of Frobenius.

Proposition 4.4 (cf. [42, Proposition 10.1]).

(i) The Hodge cohomology of �`? is given by

�∗(�`? ,∧
∗!�`?/: ) � � (3) ⊗ %(2),

where 3 ∈ �0(�`? , !�`?/: ) and 2 ∈ �1(�`? , !�`?/: ).
(ii) The Hodge-de Rham and conjugate spectral sequences degenerate for �`? and we have an isomor-

phism

�∗dR(�`?/:) � � (3) ⊗ %(2),

where |3 | = 1 and |2 | = 2.

Proposition 4.5. The Hochschild homology ring �∗(HH(�`?/:)) is isomorphic to : [2]/(2?), where
|2 | = 0. In particular, it is concentrated in degree 0.

Proof. We use the HKR spectral sequence to calculate �∗(HH(�`?/:)). Its �2-page is calcu-
lated using Proposition 4.4. Using the notation there, one sees that for degree reasons, the class
2 ∈ �1(�`? , !�`?/: ) must be permanent. Thus, it defines a nonzero class of �0 (HH(�`?/:)) that

we also call 2. Note that 2 ∈ �0(HH(�`?/:)) is annihilated by the pullback along the tautological
map Spec(:) → �`? . On the other hand, the Frobenius i on �`? factors through this map, so we see
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that i(2) = 0 in �0 (HH(�`?/:)). But i acts on �0(HH(�`?/:)) by the ?-power map,2 so multi-
plicativity of the HKR spectral sequence shows that i(2) is represented by 2? ∈ � ? (�`? ,∧

?!�`?/: ),
whence the latter must be a boundary in the HKR spectral sequence. To proceed further, observe
that we have a filtered map HH(�`?/:) → HH(�`?/:)/Fil?HKR as well as a formality isomorphism
HH(�`?/:)/Fil?HKR ≃ ⊕86?−1'Γ(�`? ,∧

8!�`?/: [8]) in �� (:). By contemplating the induced map
on spectral sequences, we learn that the only differential that can possibly hit 2? ∈ � ? (�`? ,∧

?!�`?/: )
in the HKR spectral sequence of �`? is 3? (3) (up to a unit). This completes the proof because now on
the �?+1-page of the spectral sequence we are left only with the nonzero classes 1, 2, . . . , 2?−1. �

Theorem 4.6. For �`? , the following assertions hold:

(1) The HKR spectral sequence does not degenerate. There is a nonzero differential
3? : �0(�`? , !�`?/: ) → � ? (�`? ,∧

?!�`?/: ).
(2) The Hodge-de Rham and conjugate spectral sequences degenerate.
(3) The Tate spectral sequence for HH(�`?/:)C(

1
degenerates.

(4) The de Rham-HP spectral sequence does not degenerate. There is a nonzero differential
3? : �1

dR(�`?/:) → �
2?
dR (�`?/:).

(5) The crystalline-TP spectral sequence degenerates, but the resulting filtration on �∗(TP(�`?)) is
not split.

Proof.

(1) This was shown in the course of the proof of Proposition 4.5.
(2) This was shown in Proposition 4.4 (see also Lemma 4.2).
(3) This follows for degree reasons because HH(�`?/:) is concentrated in degree 0.
(4) It follows from the calculation of HH(�`?/:) that �∗(HC− (�`?/:)) � %(C) ⊗: : [2]/(2?),where
|C | = 2. In particular, this theory is concentrated in even degrees. Because we know that �`?
has de Rham cohomology in odd degree (Proposition 4.4), the spectral sequence from Hodge-
filtered de Rham cohomology to HC− cannot degenerate. By naturality, it follows that the de
Rham-HP spectral sequence cannot degenerate either. Explicitly, we find that the de Rham-HP-
spectral sequence has �2-term given by � (3) ⊗ %(2) ⊗ %(C±1); here C is a permanent cycle because
it comes from the cohomology of (1 and 2 is a permanent cycle because it comes from �G<.
By the description of �∗(HC− (�`?/:)), it follows that 2? = 0, so we must have a nonzero

differential 3? : �1
dR(�`?/:) → �

2?
dR (�`?/:) annihilating 2? . The spectral sequence now shows

that �∗(HP∗(�`?/:)) ≃ %(C±1) ⊗ : [2]/2? , where |C | = 2.
(5) Because TP(�`?)/? ≃ HP(�`?/:), the calculation in (4) implies that �∗(TP(�`?)) is concen-

trated in even degrees and ?-torsion free. On the other hand, we have

�∗crys (�`?) ≃ , [2]/(?2),

where |2 | = 2: This follows from the isomorphism 'Γcrys(�`?)/? ≃ 'ΓdR(�`?/:), the calculation
in Proposition 4.4 and the observation that multiplication by = on �2

crys (�`?) is induced by the
multiplication by = endomorphism of �`? (and is thus the 0 map when ? | =). It follows that all terms
on the �2-page of the crystalline-TP spectral sequence are in even degrees, so the spectral sequence
degenerates. Because �∗crys (�`?) contains nonzero ?-torsion elements while �∗(TP(�`?)) is ?-
torsion free, the filtration on �∗(TP(�`?)) coming from this spectral sequence cannot split.

�

Remark 4.7 (The HKR filtration does not split for Frobenius lifts). In analogy with Deligne-Illusie [17,
Remark 2.2 (ii)], one might wonder the following: Given a smooth :-algebra with a lift '̃ to,2(:) and

2Given an F?-algebra ', the endomorphism of HH('/F?) induced by the Frobenius on ' coincides with the Frobenius
endomorphism of the simplicial commutative F?-algebra HH('/F?) . Applying this observation to a hypercover shows that for
any algebraic stack X/F? , the endomorphism of � 0 (HH(X/F?)) induced by the Frobenius on X is the ?-power map.
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a lift q̃ : '̃ → '̃ of the Frobenius, can one choose an isomorphism HH('/:) ≃ ⊕8Ω8'/: [8] splitting

the HKR filtration that is functorial in the lifting data ('̃, q̃)? Theorem 4.6 (1) shows that this is not
possible (via the argument of Lemma 4.2 to pass from the affine case to stacks).

Finally, let us use the calculations above to record an example where the crystalline-TP spectral
sequence does not degenerate.

Lemma 4.8. The crystalline-TP spectral sequence for �(`? × `?) does not degenerate.

Proof. We saw in the proof of (3) of Theorem 4.6, via the de Rham-HP spectral sequence, that
�∗(HP(�`?/:)) is concentrated in even degrees and given by %(C±1) ⊗: : [2]/2

? . Though HP does
not in general satisfy a Künneth formula for syntomic :-stacks, de Rham cohomology does. Running
the de Rham-HP spectral sequence again, we find that �∗(HP(�(`? × `?)/:)) is concentrated in even
degrees. Therefore, �∗(TP(�(`? × `?))) is concentrated in even degrees and is ?-torsion free, because
TP/? ≃ HP. On the other hand, �3

crys(�(`? × `?)) � : by Künneth. The lemma follows. �

4.2. �U?

In this subsection, we calculate everything explicitly for �U? . We shall crucially exploit the natural
G<-action on �U? , induced (ultimately) from the G<-action on G0, defined formally as follows.

Observation 4.9 (Gradings). The group scheme U? = Spec(: [C]/(C ?)) has a natural G<-action defined
by requiring the function C to have weight 1. This induces a G<-action on �U? and, consequently, there
is a natural weight grading on associated cohomological invariants, such as Hodge, Hochschild and de
Rham cohomologies. Moreover, the differentials in the relevant spectral sequences respect the weight
grading.

Proposition 4.10. If ? > 2, the Hodge cohomology of �U? is given by

�∗(�U? ,∧
∗!�U?/: ) � � (U) ⊗ %(V) ⊗ � (B) ⊗ %(D),

where U ∈ �1(�U? ,O), V ∈ �2(�U? ,O), B ∈ �0(�U? , !�U?/: ) and D ∈ �1(�U? , !�U?/: ). More-
over, the weights of U, V, B and D are 1, ?, ? and 1, respectively. For ? = 2, we replace � (U) ⊗ %(V)
with %(U).

Proof. We begin by showing that �∗(�U? ,O) ≃ � (U) ⊗ %(V) with degrees and weights as in the
proposition. By Cartier duality,3 we have �∗(�U? ,O) ≃ Ext∗

: [B]/(B?) (:, :), where : [B]/(B?) denotes
the Hopf algebra of functions on the Cartier dual of U? (and is thus also a copy of U? itself, but the
weight of the generator B is now −1). One then calculates using the standard resolution

(

· · · : [B]/(B?)
B?−1

−−−→ : [B]/(B?)
B
−→ : [B]/(B?)

B?−1

−−−→ : [B]/(B?)
B
−→ : [B]/(B?)

)

20=
≃ :,

graded in a natural way, that the answer is as predicted. Alternately, one can find this calculation in [19,
Theorem 2.4].

To compute Hodge cohomology, we first calculate the co-Lie complex. Using the closed im-
mersion U? ⊂ G0 of group schemes, we learn that !U?/: is computed by the 2-term complex

(C ?)/(C2?)
3
−→ : [C]/(C ?)3C. Restricting along the origin gives a 2-term complex of U?-representations

computing co-Lie(U?) as an object of � (:). Using this complex, we find that �0(co-Lie(U?)) =

3For a finite :-group scheme �, the abelian category of coherent sheaves Coh(��) on �� can be identified as the category

Rep 5 (�) of finite-dimensional representations�; that is, as the category CoMod 5

O(�)
of finite dimensional comodules over the

:-coalgebra O(�) . When � is commutative, this is anti-equivalent to the category Mod 5

O(�∨ )
of finite-dimensional modules

over :-algebra O(�)∨ ≃ O(�∨) , where �∨ denotes the Cartier dual of �. Under this identification, the trivial representation
of � corresponds to the residue field at the origin on �∨. Computing Ext-groups now gives the isomorphism used above.
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�−1 (co-Lie(U?)) = : are both the trivial one-dimensional representation of U? . Furthermore, �0 (cor-
responding to 3C) is concentrated in weight 1 and �−1 (corresponding to C ?) is concentrated in weight ?.
But then co-Lie(U?) ∈ � (�U?) splits as O ⊕ O[1]: The obstruction to splitting is a weight ? − 1 map
O → O[2], and there are no such maps by the calculation of �2(�U? ,O) explained in the previous
paragraph. Another approach to seeing this description of co-Lie(U?) is to use that U? is commutative
and [21, Ch. VII, Prop. 4.1.1].

Thus, we learn that, as objects in � (�U?), we have co-Lie(U?) ≃ OB[1] ⊕OD, where B corresponds
to a class in �0(�U? , !�U?/: ), which has weight ?, and D corresponds to a class �1(�U? , !�U?/: ),
which has weight 1. As in Proposition 4.4, one then finds that

⊕

8>0

Sym8 (co-Lie(�)) [−8] ≃ � (B) ⊗ %(D) ⊗ O ∈ � (�U?).

Combining this with the calculation of �∗(�U? ,O) and using the projection formula then gives the
desired answer. �

For the next result, we recall that HH(�U?/:) acquires an action of the circle (1, inducing an operator
�∗(HH(�U?/:)) → �∗−1(HH(�U?/:)) given by multiplication by the fundamental class of (1; this
is also identified (up to 2-periodicity) with the first differential in the Tate spectral sequence.

Proposition 4.11. If ? is odd, then �∗(HH(�U?/:)) is isomorphic to � (U) ⊗ %(V) ⊗ : [D]/D? with U
having degree 1 and weight 1, V having degree 2 and weight ? and D having degree 0 and weight 1. If
? = 2, then �∗(HH(�U?/:)) is given by : [U] ⊗ : [D]/D? if ? = 2 with the same degrees and weights as
in the odd case. The circle action carries U ↦→ D (up to units); in particular, the Tate spectral sequence
for HH(�U?/:)C(

1
does not degenerate.

Proof. We give the proof when ? is odd. We will use the HKR spectral sequence and the calculation
of the �2-page coming from Proposition 4.10. Note that |U | = (1, 0), |V | = (2, 0), |B | = (0,−1) and
|D | = (1,−1) in the �2-page of the HKR spectral sequence.

We begin by noting that U and V are permanent cycles arising from the map 'Γ(�U? ,O) →
HH(�U?/:) that comes from choosing a base point on (1. (In fact, we recall that HH(X/:) must
contain 'Γ(X,O) as a summand for any syntomic stack X/: .) Next, because every differential respects
the weight grading, we conclude that D (which has weight 1) is a permanent cycle: All weights that
occur on the target of a differential emanating from D have weights > 1. Finally, we claim 3? (B) = D

?

up to units: This is proven like the analogous claim in Proposition 4.5, noting that Frobenius on �U?
factors through a point. There are no further differentials (because U, V and D are permanent), so we
obtain that �∗(HH(�U?/:)) has the predicted shape.

For the circle action, we use the following observation: If ' is any nonnegatively graded commutative
:-algebra with '0 = : , then we have an (1-equivariant equivalence in weight 1, HH('/:)wt=1 ≃
�∗ ((

1; :) ⊗: (!'/: )wt=1 as one sees by reducing to the free case. In particular, in weight 1, the circle
action on HH(−/:) is always induced. Because this is functorial, it applies to �U? , too, and we find
that �∗(HH(�U?/:)) in weight 1 has an induced (1-action, whence the claim. �

Proposition 4.12. For all ?, the de Rham cohomology of �U? is given by

�∗dR(�U?/:) ≃ � (U
′) ⊗ %(V′),

where U′ has degree 1 and weight ?, and V′ has degree 2 and weight ?. In particular, both the conjugate
and the Hodge-de Rham spectral sequences for �U? fail to degenerate.

Proof. We use the Hodge-de Rham spectral sequence and the calculation of the �1-page coming from
Proposition 4.10. Conjugate filtration considerations show that the abutment can have no terms in
weights not divisible by ?, so there must be a differential in weight 1, which forces 31(U) = D up to
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units. This forces all of the differentials because V, B now have to be permanent cycles for weight and
degree reasons. �

Remark 4.13 (Nondegeneration of the conjugate spectral sequence for �U?). One can also calculate
the de Rham cohomology of �U? using the conjugate spectral sequence, giving a different proof of
Proposition 4.12. Because U? is defined over F? , we may assume : = F? , which allows us to suppress
Frobenius twists. The conjugate spectral sequence takes the form

�
8, 9

2 = �8 (�U? ,∧
9!�U?/: ) ⇒ �

8+ 9
dR (�U?/:).

The �2-page is again calculated by Proposition 4.10, except that all weights are multiplied by ? (due
to the implicit Frobenius twists).

First, note that U and V are permanent cycles because there is no room for the differentials. Moreover,
by weight considerations, 32(D) = 0, which makes D a permanent cycle because the higher differentials
have 0 target. The key claim is that 32(B) = V (up to units). Granting this claim, one immediately deduces
the calculation of �∗dR(�U?/:) given in Proposition 4.12, as well as the fact that both the Hodge-de
Rham and conjugate spectral sequences do not degenerate (by counting dimensions).

To prove the claim 32(B) = V (up to units), we use that �U? does not lift to Z/?2. This implies that
the map ob�U?

: !�U?/: → O[2] measuring the failure to lift to,2 is nonzero. But, for any syntomic

stack X/: , the 32 differential �8 (X, !X/: ) → �8+2(X,O) in the conjugate spectral sequence is just the
map on �8 induced by obX (by [17, Theorem 3.5] extended to stacks). Thus, it is enough to show that the
map �0(�U? , ob�U?

) is nonzero. For this, write !�U?/: ≃ OB ⊕ OD[−1] using the generators found
in Proposition 4.10. We must show that the restriction of ob�U?

to the first factor OB is nonzero. But
the restriction of ob�U?

to the second factor OD[−1] is 0 by comparison with the analogous situation
for the liftable stack �G0. Because ob�U?

was already shown to be nonzero, the claim follows.

Remark 4.14. Combining Proposition 4.12 (or Remark 4.13) with the approximation result in Theo-
rem 1.2 gives a large supply of examples of smooth projective surfaces in characteristic ? where both
the Hodge-de Rham and conjugate spectral sequences fail to degenerate.

Proposition 4.15. For all ?, the de Rham-HP spectral sequence for �U? degenerates.

Proof. The �2-term is given by � (U′) ⊗%(V′) ⊗%(C±1), where U′, V′ are in Proposition 4.12 and |C | = 2
has weight 0. Because C comes from the cohomology of the circle, it is a permanent cycle. Because
U′, V′ have weight ?, one checks that U′, V′ are forced to be permanent cycles for weight reasons. Thus,
there is no room for differentials in the spectral sequence. �

Remark 4.16. It follows that HP(�U?/:) ; HH(�U?/:)C(
1
. In fact, the degenerate de Rham-HP

spectral sequence shows that �∗(HP(�U?/:)) is uncountably dimensional in each degree. However,

because HH(�U?/:) is coconnective and countably dimensional, it is easy to see that HH(�U?/:)C(
1

is countably dimensional in each degree.

Proposition 4.17. The crystalline cohomology of �U? is given by

�∗crys (�U?) ≃ , (:) [V
′]/?V′,

where |V′ | = 2.

Proof. This follows from Proposition 4.12, provided that we can show that �2
crys (�U?) is simple ?-

torsion. But this is clear because the group scheme U? is annihilated by ?. �

Let us collect everything we know.
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Theorem 4.18. For �U? , the following assertions hold true:

(a) The HKR spectral sequence does not degenerate. There is a nonzero differential
3? : �0(�U? , !�U?

) → � ? (�U? ,∧
?!�U?

).
(b) The Hodge-de Rham spectral sequence does not degenerate: There is a nonzero 31 : �1 (�U? ,O) →

�1(�U? , !�U?
). Similarly, the conjugate spectral sequence does not degenerate: There is a nonzero

differential 32 : �0(�U? , !�U?/: ) → �2(�U? ,O).
(c) The Tate spectral sequence for HP does not degenerate (there is already a nonzero 32).
(d) The de Rham-HP spectral sequence degenerates.
(e) The crystalline-TP spectral sequence degenerates.

Proof.

(a) This was shown in the course of proving Proposition 4.11.
(b) This was shown in Proposition 4.12 and Remark 4.13.
(c) This was shown in Proposition 4.11.
(d) This was shown in Proposition 4.15.
(e) All terms on the �2-page live in even degrees (Proposition 4.17), so there are no differentials.

�

5. A weak Lefschetz property

Our main goal in this section is to verify a version of the weak Lefschetz theorem for the Hodge
cohomology of complete intersections in projective space (in arbitrary characteristic). In the case of a
smooth complete intersection, these results are special cases of those in [18, Exposé XI.1.3]. However,
in the next section, it will be crucial to have the result for singular complete intersections.

For simplicity, we work everywhere over a base field : . Unless specified otherwise, cotangent
complexes and de Rham cohomology are computed relative to : .

Definition 5.1 (Hodge 3-equivalences). We say that a map of syntomic algebraic stacks X → Y is a
Hodge 3-equivalence if, for each B > 0, we have

cofib ('Γ(Y,∧B!Y) → 'Γ(X,∧B!X)) ∈ � (:)
>3−B .

Remark 5.2 (Consequences in de Rham and crystalline cohomology). Say X → Y is a Hodge 3-
equivalence of syntomic stacks over a perfect field : of characteristic ?. Then the map 'ΓdR(X) →
'ΓdR(Y) preserves the conjugate filtration and each graded piece has cofibre in �>3 (:) by our assump-
tion. It follows that the map 'ΓdR(X) → 'ΓdR(Y) itself has cofibre in �>3 (:). Passing to crystalline
cohomology, this implies that the cofibre � of the map 'Γcrys(Y) → 'Γcrys(X) is in � (, (:))>3 and,
moreover, �3 (�) is ?-torsion free.

The main result of this section is the following result.

Proposition 5.3. Let - be a 3-dimensional complete intersection in P=: . Then the inclusion map - → P=:
is a Hodge 3-equivalence.

The argument for Proposition 5.3 is based on an induction on the codimension and, in fact, it will be
convenient to prove a slightly stronger result (Corollary 5.8), based on the following two notions (which
we will need only for schemes).

Definition 5.4 (KAN 3-equivalences). Let 5 : . → - be a map of syntomic :-schemes and let L be a
line bundle on - . We say that 5 is a Kodaira–Nakano–Akizuki 3-equivalence (or KAN 3-equivalence)
if for each B > 0 and A > 0,

cofib ('Γ(-,∧B!- ⊗ L−A ) → 'Γ(.,∧B!. ⊗ L−A )) ∈ � (:)>3−B .

Taking A = 0, we see that a KAN 3-equivalence is in particular a Hodge 3-equivalence.
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Definition 5.5. A Kodaira pair is an =-dimensional :-scheme . and an ample line bundle L such that
'Γ(.,∧B!. ⊗ L−A ) ∈ � (:)>=−B for all B > 0 and all A > 0.

Example 5.6.

(1) Projective space P= with any ample line bundle OP= (ℎ) (so that ℎ > 0) is a Kodaira pair.
(2) In characteristic 0, any smooth projective variety . with an ample line bundle ! is a Kodaira pair,

by the Kodaira-Nakano-Akizuki vanishing theorem [17, Corollary 2.11].

Proposition 5.7 (Weak Lefschetz). Let (-,L) be a Kodaira pair of dimension 3. If 8 : � → - is the
inclusion of an effective Cartier divisor defined by a section of a positive power of L, then

(i) the pair (�, 8∗L) is a Kodaira pair and
(ii) the inclusion 8 : � → - is a KAN (3 − 1)-equivalence.

Proof. In the following, we write O(A) = LA for simplicity. For each 8 > 0, we consider the statements
(8:

(a) 'Γ(�,∧8!� (−A)) ∈ �>3−8−1 (:) for A > 0 and
(b) the map 'Γ(-,∧8!- (−A)) → 'Γ(�,∧8!� (−A)) has cofibre in �>3−8−1 (:) for A > 0.

For all 8 > 0, the statements (8 imply the result. We will prove (8 by induction on 8. Note that in the
statement (8 , part (a) is actually a consequence of part (b) because (-,L) is a Kodaira pair; however, it
will be convenient to have part (a) marked separately.

For 8 = 0, we use the cofibre sequence O- (−� − A) → O- (−A) → 8∗O� (−A) for any A > 0; we get

cofib('Γ(-,O- (−A)) → 'Γ(�,O� (−A))) ≃ 'Γ(-,O- (−A − �)) [1] ∈ �
>3−1 (:)

by our assumption that (-,L) is a Kodaira pair and that O(−�) = L−C for some C > 0. This implies (0.
For 8 > 0, we first consider the factorisation of the map in question (for any A > 0),

'Γ(-,∧8!- (−A))
58,A
−−→ 'Γ(�, 8∗ ∧8 !- (−A))

68,A
−−−→ 'Γ(�,∧8!� (−A)).

It suffices to see that each of these maps has cofibre in �>3−8−1 (:). The first map 58,A has cofibre in
�>3−8−1 (:) via the cofibre sequence

'Γ(-,∧8!- (−A − �)) → 'Γ(-,∧8!- (−A))
58,A
−−→ 'Γ(�, 8∗ ∧8 !- (−A))

and our assumption that (-,L) is a Kodaira pair. For the second map 68,A , we use the conormal sequence
O� (−�) → 8∗!. → !� in � (�) to regard 8∗!. as a (two-term) filtered object in � (�). We can take
exterior powers to obtain a filtration on ∧88∗!. (cf. the proof of [28, Prop. 25.2.4.1]); because O� (−�)
has rank 1, this filtration degenerates to a cofibre sequence∧8−1!� (−�) → 8∗∧8 !- → ∧

8!� . Twisting
by −A and taking global sections, we obtain a cofibre sequence

'Γ(�, 8∗ ∧8 !- (−A))
68,A
−−−→ 'Γ(�,∧8!� (−A)) → 'Γ(�,∧8−1!� (−� − A)) [1] .

Now part (a) of statement (8−1 implies that the cofibre of 68,A belongs to �>3−8−1 (:), as desired. This
completes the proof of the statement (8 and thus of the result. �

Corollary 5.8. Let (-,L) be a Kodaira pair. Let 8 : . ↩→ - be a 3-dimensional complete intersection
of sections of powers of L (in particular, those sections form a regular sequence). Then (., 8∗L) is a
Kodaira pair and 8 : . → - is a KAN 3-equivalence (in particular, a Hodge 3-equivalence).

Proof. Observe that the composite of a KAN-<-equivalence and a KAN-=-equivalence is a KAN-
min(<, =)-equivalence. Therefore, the result follows by iteratively applying the weak Lefschetz (Propo-
sition 5.7). �
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Example 5.9 (Smooth complete intersections). Let - be a smooth complete intersection of dimension
3 inside P= and let 8 : � ↩→ - be a smooth hypersurface. According to Corollary 5.8, -, � are Kodaira
pairs with respect to the line bundleO(1), and 8 is a KAN (3−1)-equivalence. In fact, this is well known:
In characteristic 0, this follows from the Kodaira-Akizuki-Nakano vanishing theorem [17, Corollary
2.11]. In positive characteristic, one can use Deligne’s computations to obtain the same result; see [18,
Exposé XI.1.3].

In the remainder of this section, we record two more basic properties of Hodge cohomology and
Hodge 3-equivalences; these will be used essentially in the next section.

Proposition 5.10 (Preservation of Hodge 3-equivalences). Suppose that - → . is a Hodge 3-
equivalence of syntomic :-schemes.

(1) For any syntomic :-scheme / , - ×: / → . ×: / is a Hodge 3-equivalence.
(2) If � is an affine :-group scheme of finite type (and thus � is syntomic) that acts on both - and .

equivariantly for the map - → . , then the map [-/�] → [./�] of quotient stacks is a Hodge
3-equivalence.

Proof. Part (1) follows from the Künneth formula in Hodge cohomology; we have

'Γ(- ×: /,∧
B!-×:. ) ≃

⊕

0+1=B

'Γ(-,∧0!- ) ⊗: 'Γ(/,∧
1!/ ),

and similarly for . ×: / . Note now that 'Γ(/,∧1!/ ) belongs to � (:)>−1 because / is syntomic.
Therefore, the map 'Γ(-,∧0!- ) ⊗: 'Γ(/,∧1!/ ) → 'Γ(.,∧0!. ) ⊗: 'Γ(/,∧

1!/ ) has cofibre in
� (:)>3−0−1 = � (:)>3−B , as desired.

For part (2), consider the resolution · · ·
→
→
→
�×- ⇒ - of the stack [-/�] and similarly for [./�]. By

hypothesis and Proposition 5.10, the induced map of cosimplicial objects 'Γ(�• ×: .,∧B!�•×:. ) →
'Γ(�• × -,∧B!�•×:- ) has levelwise cofibre in � (:)>3−B . Because � (:)>3−B is closed under limits
in � (:), the result now follows by taking the limit. �

Proposition 5.11 (Projective bundle formula). Let X be a syntomic stack. Given an =-dimensional
vector bundle + over X, let Y be the associated projective bundle over X. Then there exists a class
21 ∈ �

1(Y, !Y) such that �∗(Y,∧∗!Y) is a free module over �∗(X,∧∗!X) on 1, 21, . . . , 2
=−1
1 .

Proof. The class 21 is the first Chern class (in Hodge cohomology) of the tautological line bundle O(1)
on Y, which is defined via pullback from the induced map Y→ �G< classifying O(1). The result then
asserts that for each 8, the map

=−1
⊕

9=0

'Γ(X,∧8− 9!X) [− 9] → 'Γ(Y,∧8!Y),

obtained as multiplication by 2 91 on the 9 th factor, is an equivalence. This assertion is local on X, whence
we reduce to the case of X an affine scheme and + a trivial bundle, for which the result is classical. �

6. Approximation of classifying spaces and failure of HKR

Using our study of Hodge 3-equivalences from the previous section, we prove Theorem 1.2 from the
Introduction. The ideas here are not new and go back to work of Serre [36] and Totaro [42]; we also use
arguments from [11].

Proof of Theorem 1.2. First, we assume that � is a finite group scheme. We claim that there is a finite-
dimensional representation + of � and a 3-dimensional complete intersection / ⊆ P(+) such that /
is stable under the �-action, � acts freely on / and //� ≃ [//�] is smooth and projective. This is a
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standard argument involving an application of a Bertini-type theorem for the quotient variety P(+)/�
(see, e.g., [11, 2.7-2.9]).4 Having found / , we note that / ↩→ P(+) is a Hodge 3-equivalence by
Proposition 5.3. Therefore, the induced map //� ≃ [//�] ↩→ [P(+)/�] on quotient stacks is a Hodge
3-equivalence by Proposition 5.10. The theorem now follows from Proposition 5.11 by taking - = //�.

Now suppose that � is geometrically reductive. For each A , we let �A ⊂ � be the kernel of
the Ath Frobenius on �. According to [24, Cor. II.4.12], for any finite-dimensional �-representation
+ , we have that the cohomology groups �8 (�,+), �8 (�A , +) are finite-dimensional for 8 > 0, and
�8 (�,+) ≃ lim

←−−A
�8 (�A , +). We claim that for all 8, 9 , A > 0, the vector spaces �8 (��,∧ 9!��) and

�8 (��A ,∧
9 , !��A

) are finite-dimensional and

�8 (��,∧ 9!��) ≃ lim
←−−

�8 (��A ,∧
9!��A

). (4)

By finite-dimensionality, this implies that for any 8, 9 , the map �8 (��,∧ 9!��) → �8 (��A ,∧
9!��A

)
is injective for A ≫ 0. From this, we reduce the case of reductive � to finite � treated above.

To prove the claim (4), we observe that by functoriality we have maps (where each object belongs to
the appropriate derived category, and the maps are compatible in the natural sense)

co-Lie(�) → · · · → co-Lie(�A+1) → co-Lie(�A ) → · · · → co-Lie(�1).

By the description of the �A as Frobenius kernels, we find that each of these maps is an isomorphism
on �0 and induces the zero map on �−1. Taking rational cohomology, we find easily that

lim
←−−

'Γ(�A , Sym8co-Lie(�A )) ≃ lim
←−−

'Γ(�A , �
0(Sym8co-Lie(�A ))) = lim

←−−
'Γ(�A , Sym8co-Lie(�))

(5)

and all cohomologies are finite-dimensional in each degree. Combining with [24, Cor. II.4.12] and the
decomposition (3), we conclude 'Γ(��,∧8!��) ≃ lim

←−−A
'Γ(��,∧8!��A

). This yields (4), because

finite-dimensionality prevents the existence of nonzero lim1 terms. �

Remark 6.1. The proof of Theorem 1.2 given above proves a slightly stronger statement in the case of
finite group schemes �: we find approximations - → �� as in Theorem 1.2 such that �∗(-,∧∗

′
!- )

is free as a bigraded �∗(��,∧∗
′
!��)-module in total degrees ∗ + ∗′ 6 3 on classes 28 ∈ �8 (-,∧8!- )

for 0 6 8 6 ⌊ 32 ⌋.

We can now prove that several spectral sequences as explained earlier are nondegenerate.

Proof of Theorem 1.1. Choose � = U? or � = `? . In each case, we find that there is a nonzero
differential 3? : �0 (��,∧1!��) → � ? (��,∧?!��) in the HKR spectral sequence. If we choose
- → �� as in Theorem 1.2 to have dimension 2?, then we find that the differential 3? : �0 (-,Ω1

-
) →

� ? (-,Ω?

-
) is nonzero, as desired. �

Theorem 6.2. Let : be a perfect field of characteristic ? > 0.

(a) There exists a smooth projective 2?-fold such that the de Rham-HP spectral sequence does not
degenerate.

(b) There exists a smooth projective variety such that the crystalline-TP spectral sequence does not
degenerate.

(c) There exists a smooth projective variety - such that the filtration on �∗(TP(-)) arising from the
crystalline-TP spectral sequence is not split.

Proof. For (a), let - → �`? be a smooth projective approximation as in Theorem 1.2 for 3 = 2?, so
�C (�`? ,∧

B!�`?
) → �C (-,∧B!- ) is injective for B + C 6 2?. By the results of Subsection 4.1, we see

that in the de Rham-HP spectral sequence for �`? , there is a nonzero differential 3? : �1
dR (�`?) →

4The argument relies on Bertini-type theorems; in case : is finite, one can use Bertini theorems in the form of [31].
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�
2?
dR (�`?). Thus, by naturality, there is also a nonzero differential in the de Rham-HP spectral sequence

for - , as desired.
Now, for part (b), by Lemma 4.8, the crystalline-TP spectral sequence for �(`? × `?) does

not degenerate. In particular, from the proof we see that there is some first nonzero differen-
tial 3A : �1

crys(�(`? × `?)) → �2A
crys(�(`? × `?)). Choose a smooth projective approximation

- → �(`? × `?) with 3 = 2A . Then, the crystalline-TP spectral sequence does not degenerate for - .
To prove part (c), we take a smooth projective approximation to �`? as in 1.2 with 3 > 2?. Then,

�Ccrys (�`?) → �Ccrys(-) is injective for C 6 2?. In particular, in this range, the images of the classes
in �Ccrys (�`?) in �Ccrys (-) are permanent cycles. Because the extensions in the spectral sequence are
nontrivial for �`? , they also must be nontrivial for - . �

Remark 6.3 (Obtaining liftable examples). Take � = `? in the proof of Theorem 1.1 given above.
Because the group scheme `? admits a lift (even a unique one) to,2(:), one can show that the smooth
projective variety - used in the proof of Theorem 1.1 (coming from Theorem 1.2) also lifts to ,2 (:),
thus yielding a liftable example where the HKR spectral sequence does not degenerate. A similar remark
applies to Theorem 6.2.

7. Hochschild homology and the dlog map

The construction of Hochschild homology and the HKR spectral sequence allows for a twisted version,
via an Azumaya algebra or a class in the Brauer group. In this section, we describe this spectral sequence.

Throughout, we fix a base commutative ring : . The starting point is the following result from [14],
stating that Hochschild homology groups cannot distinguish between Azumaya algebras over affine
schemes.

Theorem 7.1 (Cortiñas-Weibel [14]). Suppose that ' is a :-algebra and A is an Azumaya '-
algebra. Then there is a functorial (in ',A) isomorphism of �∗(HH('/:))-modules, �∗(HH(A/:)) ≃
�∗(HH('/:)).

Corollary 7.2 (The twisted HKR theorem). Let ' be a smooth :-algebra and let A be an Azumaya
'-algebra. Then there is a natural isomorphism �∗(HH(A/:)) ≃ Ω−∗

'/:
.

The isomorphism �∗(HH(A/:)) ≃ �∗(HH('/:)) appearing in Corollary 7.2 can be chosen func-
torially at the level of cohomology groups but not at the level of complexes. Globalising, this leads to
the following constructions.

Construction 7.3 (Twisted Hochschild homology). Let - be a :-scheme and let A be an Azumaya
algebra over - (i.e., a sheaf of AzumayaO- -algebras). For each étale map from an affine, Spec(') → - ,
we obtain an Azumaya '-algebra A' and can form the Hochschild homology HH(A'/:). As ' varies,
we obtain an object of � (-), denoted HH(−/:)A. We write HH(A/:) = 'Γ(-,HH(−/:)A) for the
global sections of HH(−/:)A. We call this construction the A-twisted Hochschild homology of - .

Construction 7.4 (The twisted HKR spectral sequence). Let A be an Azumaya algebra over the smooth
:-scheme - . For each étale map Spec(') → - , we have functorial isomorphisms of Hochschild
homology groups �∗(HH(A'/:)) ≃ Ω∗

'/:
by Corollary 7.2. Globalising, we obtain a spectral sequence

�
B,C

2 = �B (-,Ω−C
-/: ) ⇒ �B+C (HH(A/:)), (6)

the A-twisted HKR spectral sequence.

The main result of this section (Proposition 7.7) is an identification of the first differential in this
spectral sequence. In proving the result, we will also clarify the precise choice of isomorphism in
Theorem 7.1.
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Construction 7.5 (Étale twisted  -theory). Let A be an Azumaya algebra over the :-scheme - , rep-
resenting a Brauer class U. We consider the A-twisted étale  -theory Két(−)A, defined as the étale
sheafification over - of ' ↦→ K(A'), where K(A') denotes the algebraic K-theory spectrum of A'.
Because Hochschild homology has étale descent [44, 14], the object Két(−)A is equipped with a trace
map (obtained by sheafifying the Dennis trace)

Két(−)A → HH(−/:)A.

Construction 7.6 (The normalisation of the isomorphism HH∗('/:) ≃ HH∗(A/:)). Let A be an
Azumaya algebra over the :-scheme - . Here we construct explicitly the isomorphism of Theorem 7.1.

According to the étale descent theorem [44, 14], it follows that �∗(HH(−/:)A) define quasicoherent
sheaves on the étale site of - , which consequently have no higher cohomology. According to [2, Sec. 5],
the étale sheafified homotopy groups c8K

ét(−)A are canonically isomorphic to the untwisted sheafified
homotopy groups c8K(−). In particular, we have a canonical isomorphism c0Két(−)A � Z. The trace
map thus gives a map Z → c0 (HH(−/:)A)), which one checks étale locally (over which A is trivial)
to be a generator; that is, to induce an isomorphism �∗((HH(−/:)) � �∗(HH(−/:)A).

Now we identify the first differential in the A-twisted HKR spectral sequence. For this, we use
the map dlog: G< → Ω1

(−)/:
of étale sheaves. In particular, for any scheme - , it defines a map

�8 (-,G<) → �8 (-,Ω1
-/:
). This map arises explicitly in the Dennis trace map. Namely, if ' is a

smooth :-algebra, then the map

'× →  1(') → �−1 (HH('/:)) ≃ Ω
1
'/:

is given by dlog, in view of [35, Theorem 6.2.16].

Proposition 7.7 (The first differential in twisted HKR). Let A be an Azumaya algebra on a :-scheme
- with class U ∈ �2(-,G<). Then, the differential

3U2 : �0(-,O- ) → �2 (-,Ω1
-/: )

in the A-twisted HKR spectral sequence for HH(A/:) sends 1 to dlogU.

Proof. We have a natural trace map of étale sheaves Két(−)A → HH(−/:)A and hence an induced
map of étale descent spectral sequences. The argument of [2, Proposition 5.1] provides isomorphisms
c8K

ét(−)A � c8K
ét(−) and Corollary 7.2 provides isomorphisms �8 (HH(−/:)A) � �

8 (HH(−/:));
by construction, these are compatible with the U-twisted and untwisted trace. Thus, c0Két(−)A � Z,
c1Két(−)A � G<, �0(HH(−/:)A) � O- and �−1(HH(−/:)A) � Ω1

-
. Because the trace induces

dlog in degree 1, we have a commutative square

�0 (-,Z)
3U

2
//

��

�2(-,G<)

dlog

��

�0 (-,O- )
3U

2
// �2 (-,Ω1

-
),

where 3U2 denotes the differential in the spectral sequences converging to the U-twisted forms of étale
 -theory and Hochschild homology. By the main result of [1], we have 3U2 (1) = U for the top horizontal
arrow. Because the left vertical arrow sends 1 to 1, the corollary follows. �

Remark 7.8. Let : be a perfect field of characteristic ? > 0. If - is a smooth proper :-scheme and A is
an Azumaya algebra on - with Brauer class U ∈ �2 (-,G<) such that dlogU ≠ 0 in �2 (-,Ω1

-
), then

the A-twisted HKR spectral sequence does not degenerate, contrary to what happens in the untwisted
case when dim - 6 ? (see [7]). In the next two sections, we will find examples.
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Remark 7.9 (Cohomological Brauer classes). The A-twisted Hochschild homology and HKR spectral
sequence only depend on the Brauer class U ∈ �2 (-,G<), and one can define twisted Hochschild
homology purely in terms of U (even when it is not representable by an Azumaya algebra). Indeed,
one can construct twisted Hochschild homology as the Hochschild homology of representing derived
Azumaya algebras [39, 5]. Moreover, twisted Hochschild homology and the associated twisted HKR
spectral sequence (along the lines of Definition 3.1(a)) exist for any class U ∈ �2(X,G<) for any
syntomic :-stack X.

8. PGL=

We will give two different approaches to constructing counterexamples to the degeneration of the twisted
HKR spectral sequence as in Theorem 1.3. The first, and most naive, is to take suitable approximations
to �PGL? . This method produces smooth projective 3-folds. Second, for ? = 2, we note that classical
Enriques surfaces give examples. In this section, we describe the first approach.

For the following argument, it will be convenient to use (very mildly) the language of higher stacks:
In particular, we will want to consider �2G< as a higher stack and regard Hodge cohomology as sheaf
cohomology. We briefly review this language below (in the form of sheaves of spaces). For simplicity,
we will restrict to smooth schemes, because this is all we will need henceforth.

Definition 8.1 (Sheaves of spaces or higher stacks). Let : be a perfect field. Consider the category
Smaff

:
of affine smooth :-schemes, equipped with the étale topology. We can consider the ∞-category

Shv(Smaff
:
) of sheaves of spaces on Smaff

:
; see [27] for a detailed treatment of sheaves of spaces. Because

Shv(Smaff
:
) is an ∞-category, there is a well-defined homotopy type MapShv(Smaff

:
) (-,. ) for any two

objects -,. ∈ Shv(Smaff
:
).

Example 8.2 (Examples of higher stacks).

(a) Any smooth algebraic stack X over : yields (and is determined by) an object Shv(Smaff
:
) via the

groupoid-valued functor of points.
(b) For any smooth commutative group scheme � over : and any = > 0, we obtain a higher stack

 (�, =) ∈ Shv(Smaff
:
). Explicitly,  (�, =) is the étale sheafification of the functor that sends a

smooth :-algebra ' to the Eilenberg-MacLane space  (� ('), =).
(c) Fix 8 > 0. Consider the functor Ω8 that sends a smooth :-algebra ' to the differential forms Ω8

'
. For

= > 0, we obtain a sheaf of spaces on Smaff
:

,  (Ω8 , =) ∈ Shv(Smaff
:
), such that  (Ω8 , =) (') is the

Eilenberg-MacLane space  (Ω8
'
, =); here we do not need to étale sheafify further.

The language of higher stacks will be useful for us because one has a good internal theory of
cohomology.

Construction 8.3 (Higher group cohomology). Let� be a smooth commutative :-group scheme. Given
an object ) ∈ Shv(Smaff

:
), we have the cohomology groups (for = > 0)

�= (), �) = c0MapShv(Smaff
:
) (),  (�, =));

this agrees with the usual definition (étale cohomology) in case) is representable by a smooth :-scheme
(cf. also [28, Cor. 2.1.2.3]). By delooping, we can regard these as the cohomology groups of a complex
'Γ(), �).

Construction 8.4 (Hodge cohomology as sheaf cohomology). Let X be a smooth algebraic stack over
: , which we regard as an object of Shv(Smaff

:
) as above. Then we have natural isomorphisms

�= (X,∧8!X) = c0MapShv(Smaff
:
) (X,  (Ω

8 , =)).
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Example 8.5 (The degree 2 class on �PGL=). We have a natural map �PGL= →  (G<, 2). Explicitly,
�G< defines a commutative group object of Shv(Smaff

:
) acting centrally on �GL=; �PGL= is the

quotient of �G< acting on �GL=. We thus obtain a fibre sequence �GL= → �PGL= →  (G<, 2);
that is, a class in �2 (�PGL=,G<).

Example 8.6 (The dlog map and its delooping). For any smooth :-algebra ', we have a homomorphism
of abelian groups dlog: G<(') → Ω1

'
given by dlog( 5 ) = 3 5

5
. Sheafifying and delooping twice yields

a natural map �2dlog:  (G<, 2) →  (Ω1, 2).

Proposition 8.7. If = is divisible by ?, then the composite map �PGL= →  (G<, 2)
�2dlog
−−−−−→  (Ω1, 2)

is not null-homotopic in Shv(Smaff
:
).

Proof. The map �2dlog is clearly not null-homotopic (because its double looping is nonzero). Our
claim is then that the map �2( (G<, 2),Ω1) → �2(�PGL=,Ω

1) = �2(�PGL=, !�PGL=
) is injective.

Indeed, the map �PGL= →  (G<, 2) is obtained from the map �GL= → ∗ by taking homotopy orbits
by �G<. Thus, we have a commutative diagram of fibre sequences,

�G<

��

=
// �G<

��
�GL= //

��

∗

��

�PGL= //  (G<, 2).

(7)

Given smooth stacks X,Y with 'Γ(X,O) = 'Γ(Y,O) = : , the Künneth formula in Hodge cohomol-
ogy yields 'Γ(X × Y, !X×Y) = 'Γ(X, !X) ⊕ 'Γ(Y, !Y). The diagram of fibre sequences expresses
�PGL= as the geometric realisation of a simplicial stack given as the bar construction of �G< acting

on �GL=; that is, · · ·
→
→
→
�GL= × �G< ⇒ �GL=. Similarly,  (G<, 2) is the bar construction of �G<

acting on a point. Applying the cochains functor 'Γ(·,Ω1), which carries these simplicial resolutions
to totalisations, we find that these two observations imply that both vertical sequences in (7) are carried
to fibre sequences. That is,

'Γ(�PGL=,Ω
1) ≃ fib('Γ(�GL=,Ω

1) → 'Γ(�G<,Ω
1)),

'Γ( (G<, 2),Ω
1) ≃ fib(0→ 'Γ(�G<,Ω

1)).

Now we have the following computation in Hodge cohomology: 'Γ(�GL=,Ω
1) =

'Γ(�GL=, !�GL=
) ≃ : [−1]; this is a classical calculation, and a modern reference for a much

more general statement is [42, Theorem 10.2]. Furthermore, the diagonal map �G< → �GL= in-
duces the map : [−1] → : [−1] given by multiplication by =. This follows from the explicit expres-
sion of Hodge cohomology given in this case (i.e., as analogous to singular cohomology; cf. [42,

Theorem 4.1]). We obtain that 'Γ(�PGL=,Ω
1) is the two-term complex :

=
→ : in degrees 1 and

2 and 'Γ( (G<, 2),Ω1) = : [−2]. By naturality of the above diagrams, we obtain that the map
'Γ( (G<, 2),Ω1) → 'Γ(�PGL=,Ω

1) is an isomorphism in �2: the generating classes in both sides
arise by coboundary from �1 (�G<,Ω

1). �

Now, we can prove Theorem 1.3 from the introduction.

Proof of Theorem 1.3. Take a smooth projective - with 3 = 3 in Theorem 1.2 for� = PGL? . According
to Proposition 8.7, the composite map �PGL? →  (G<, 2) →  (Ω1, 2) is not null-homotopic and
defines a nontrivial class (indeed, the generator) of �2 (�PGL? , !PGL?

). The pullback of this class
under the map - → PGL? is nonzero by construction. Therefore, by naturality, the pullback of the
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canonical class in �2 (-,G<) maps via dlog to an exact order ? class in �2 (-,Ω1
-
). We are done by

Proposition 7.7: there is a nonzero 32-differential in the twisted HKR spectral sequence. �

9. Classical Enriques surfaces in characteristic 2

Let : be an algebraically closed field of characteristic 2. For background on Enriques surfaces in positive
characteristic (see [13] and [22, Section II.7.3]). A smooth proper surface - over : is Enriques if its
canonical class, l- , is algebraically equivalent to zero and if its second Betti number is �2 = 10. An
Enriques surface is classical if �1 (-,O- ) = 0. In this case, �2(-,O- ) = 0, l- is not trivial, and
l⊗2
-
� O- .

Recall that for smooth schemes over any perfect field of characteristic ? > 0 we have exact sequences
of étale sheaves

1→ G<

?=

−−→ G< → a= (1) → 1

for all =. These induce short exact sequences

0→ Br(-)/?= → �2(-, a= (1)) → �3(-,G<) [?
=] → 0

for each =.

Lemma 9.1. If - is a classical Enriques surface over an algebraically closed field of characteristic 2,
then Br(-) = Z/2. In particular, the nonzero class U ∈ Br(-) defines a nonzero class in �2(-, a= (1))
for all = > 1.

Proof. The first part is precisely [15, Corollary 5.7.1]. �

Proposition 9.2. Let - be a classical Enriques surface over an algebraically closed field : , and let
U ∈ Br(-) denote the nonzero class. Then, dlogU ≠ 0 in �2(-,Ω1

-
).

Proof. Because : is algebraically closed and - is a smooth projective surface, we have an exact sequence

0→ lim
←−−

�2 (-, a•(1))
3log( [−])
−−−−−−−→ �2 (-,,Ω

1
- )

1−�
−−−→ �2(-,,Ω

1
- ) → 0

by [22, 5.22.5].
Because �2 (-,O- ) = 0 and �2(-,,O- ) = 0 (see Figures 2 and 3 reproduced from [22, Section

II.7.3]), we have a commutative diagram

�3
crys(-/,)

//

��

�2 (-,,Ω1
-
)

��

�3
dR (-/:)

// �2(-,Ω1
-
),

where the vertical maps are induced by killing ? in crystalline cohomology and the horizontal maps
are the natural maps coming from the slope and Hodge filtrations. All four maps in the diagram are
isomorphisms for - a classical Enriques surface (again, see Figures 2 and 3). This shows that our class
survives. �

Thus, the twisted HKR spectral sequence does not degenerate for the nontrivial twist of a classical
Enriques surface over an algebraically closed field of characteristic 2. More specifically, we can compute
the Hochschild homology exactly.

Corollary 9.3. Let A be a geometrically nontrivial 2-torsion Azumaya algebra on a classical Enriques
surface - in characteristic 2. Then, HH(A/:) is discrete and �0 (HH(A/:)) is a 12-dimensional :-
vector space.
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Ω0
-

Ω1
-

Ω2
-

�2 0 : :

�1 0 :12 0

�0 : : 0

Figure 2. The Hodge cohomology of a classical Enriques surface reproduced from [22, 7.3.8].

,Ω0
-

,Ω1
-

,Ω2
-

�2 0 : ,

�1 0 ,10 ⊕ : 0

�0 , 0 0

Figure 3. The Hodge-Witt cohomology of a classical Enriques surface reproduced from [22, 7.3.6].

Proof. We can assume that : is algebraically closed. We obtain that HH(A/:) is self-dual; for example,
via the Mukai pairing [37]. Here we can more explicitly see this because A is Morita equivalent
to A>? (because 2[A] = 0 in Br(-)). In particular, for any integer 8, we have �8 (HH(A/:)) �
�−8 (HH(A/:)). The differential 3U2 : �0(-,Ω0

-
) → �2(-,Ω1

-
) is an isomorphism by Proposition 7.7,

Proposition 9.2 and dimension considerations (see Figure 2). We see from Figure 2 that�1 (HH(A/:)) =
0. Thus, �−1(HH(A/:)) = 0 and thus the differential 3U2 : �0(-,Ω1) → �2(-,Ω2

-
) must be an

isomorphism. �

10. The conic bundle over a classical Enriques surface

Let - be a classical Enriques surface over an algebraically closed field : of characteristic 2. Let
U ∈ Br(-) � Z/2 be the nonzero class. Because - is a surface over an algebraically closed field,
ind(U) = per(U) by [16], so U is represented by a quaternion algebra � over the generic point. Because
- is a regular 2-dimensional scheme,� spreads out to a degree 2 Azumaya algebraA over - . Let %→ -

be the Severi-Brauer scheme associated to A; it is a P1-bundle locally trivial in the étale topology.

Calculation 10.1. There is a semiorthogonal decomposition

Perf(%) ≃ 〈Perf(-), Perf(A)〉.

Thus, we can compute the Hochschild homology of % using additivity. (This is basically Quillen’s
argument from [33, Section 9], but see also [8].) By [7], the HKR spectral sequence degenerates for
- , so (by Figure 2) �8 (HH(-/:)) vanishes for 8 ∉ {−1, 0, 1}; it is one-dimensional 8 = ±1 and 14-
dimensional for 8 = 0. By Corollary 9.3, the :-vector spaces �8 (HH(%/:)) vanish for 8 ∉ {−1, 0, 1}.
They are one-dimensional for 8 = ±1. And, for 8 = 0, it is a 26-dimensional vector space.

Calculation 10.2. Let c : % → - be the structure morphism. Then, c∗!- → !% → ! c is exact. We
find an exact sequence

0→ c∗Ω1
- → Ω

1
% → l%/- → 0

of vector bundles. Hence, we have an equivalence c∗Ω2
-
⊗O%

l%/- ≃ Ω3
%

.

We might hope based on the failure of twisted HKR that HKR also fails for %. However, the next
result proves that in fact the HKR spectral sequence does degenerate.

Theorem 10.3. For the conic bundle % constructed above, the HKR spectral sequence degenerates at
�2.
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Proof. We know by the calculation above the dimension of each :-vector space �8 (HH(%/:)). It is
enough to check that

∑

B+C=8

dim: �
B (%,Ω−C% ) = dim�8 (HH(%/:)).

We can do this calculation up to a small discrepancy for any P1-bundle over - . Resolving this discrepancy
involves using the fact that the pullback map Br(-) → Br(%) kills U.

We will fill out the table in Figure 4 for this threefold. By Serre duality, saying that �B (%,ΩC
%
) �

�3−B (%,Ω3−C
%
)∗, it is enough to fill out the first two columns. In the figure, n refers to a fixed number,

either 0 or 1; it is the same number each place it appears.
Because c : %→ - is a P1-bundle, we find that 'c∗O% ≃ O- . Hence, �B (%, c∗ΩC

-
) � �B (-,ΩC

-
)

by adjunction for all B, C. Moreover, we see immediately that �B (%,O%) = 0 for B > 0. This computes
the first column. For the second, we use the conormal sequence. Let us first compute the cohomology of
l%/- . By Grothendieck-Verdier duality for %→ - , we see that 'c∗l%/- ≃ O- [−1]. Therefore, using
the spectral sequence

�
0,1

2 = �0 (-, '1c∗l%/- ) ⇒ �0+1 (%, l%/- ),

we see that �B (%, l%/- ) � �B−1(-,O- ). In other words, using Figure 2, we have that �B (%, l%/- )
is one-dimensional for B = 1 and zero otherwise. The long exact sequence for the cohomology of
0→ c∗Ω1

-
→ Ω1

%
→ l%/- → 0 gives us an exact sequence

0→ �1(-,Ω1
- ) → �1(%,Ω1

%) → : → �2(-,Ω1
- ) → �2(%,Ω1

%) → 0

as well as isomorphisms

�0 (-,Ω1
- ) � �

0 (%,Ω1
%)

�3 (-,Ω1
- ) � �

3 (%,Ω1
%).

Hence, �0(%,Ω1
%
) � : and �3 (%,Ω1

%
) = 0.

Using the exact sequence, we see that n = 1 if �1(%,Ω1
%
) → : is surjective (bearing in mind that

�2 (-,Ω1
-
) is one-dimensional). We have n = 0 if �2(-,Ω1

-
) → �2(%,Ω1

%
) is zero.

This completes the analysis of the table. To determine n , we use the commutative diagram

�2 (-,G<)
dlog

//

��

�2 (-,Ω1
-
)

��

�2(%,G<)
dlog

// �2 (%,Ω1
%
).

Because the pullback map �2(-,G<) → �2 (%,G<) kills U, by definition of the Severi-Brauer scheme,
and because dlogU is nonzero in �2(-,Ω1

-
), we see that �2(-,Ω1

-
) → �2(%,Ω1

%
) has a nontrivial

Ω0
%

Ω1
%

Ω2
%

Ω3
%

�3 0 0 : :

�2 0 :0+n :12+n 0

�1 0 :12+n :0+n 0

�0 : : 0 0

Figure 4. The Hodge cohomology of the conic bundle over a classical Enriques surface.
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kernel and hence is identically zero because the map is :-linear and �2 (-,Ω1
-
) is one-dimensional over

: . Thus, we get n = 0 and a dimension count now completes the proof. �

We see from this a phenomenon that only exists in characteristic ? > 0: Hodge cohomology can
distinguish between P=-bundles. To begin with, we observe that this never happens in characteristic 0.

Proposition 10.4 (Hodge cohomology of P=-bundles). Suppose that : is a field of characteristic 0
and - is a smooth :-scheme. Let c : % → - be a Severi-Brauer scheme (i.e., an étale locally trivial
P=-bundle). The Hodge cohomology �∗(%,Ω∗

%
) is a free bigraded module over �∗(-,Ω∗

-
) on the set

{1, 2, ..., 2=}, where 2 = 21 (l%/- ) ∈ �
1(%,Ω1

%
).

This proposition may be regarded as an instance of the Leray-Hirsch theorem for Hodge cohomology.
As the following proof shows, the result also holds true in characteristic ? provided ? ∤ (= + 1).

Proof. As in the proof of Proposition 5.11, because the formation of l%/- and 2 commutes with base
change on - , we may work étale locally on - to reduce to the case % = P=× - . By the Künneth formula,
�∗(%,Ω∗

%
) is a free bigraded module over�∗ (-,Ω∗

-
) on the set {1, 3, ..., 3=}, where 3 = 21 (pr∗1OP= (1)).

Because l%/- ≃ pr∗1OP= (−= − 1), we have 2 = −(= + 1)3. Because we are working in characteristic
0, it is then clear that �∗(%,Ω∗

%
) is then also a free bigraded module over �∗(-,Ω∗

-
) on the set

{1, 2, ..., 2=}. �

For P=-bundles that arise as projectivisations of vector bundles, Proposition 10.4 holds in arbitrary
characteristic as in Proposition 5.11. By contrast, in characteristic ? > 0, we see that Hodge cohomology
can distinguish between P=-bundles % and P=- in some cases. If - is a smooth proper variety over any
field : and c : % → - is a P=-bundle, then a slight elaboration of the above proof (to handle 'c∗Ω8%)
shows that the Hodge cohomology of % is bounded above by that of P=- . However, this bound may be strict.
For example, in characteristic 2, we have seen that the pullback in Hodge cohomology the conic bundle
for % → - over a classical Enriques surface - is not injective; specifically, �2 (-,Ω1

-
) → �2 (%,Ω1

%
)

was not injective thanks to the dlog map. In characteristic ? > 2, the results of Section 8 show that
there is a smooth projective threefold . and a P?−1-bundle c′ : %′ → . such that the pullback
�2 (.,Ω1

.
) → �2 (%′,Ω1

%′
) is not injective.
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