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MINIMAX INEQUALITIES AND GENERALISATIONS OF
THE GALE-NIKAIDO-DEBREU LEMMA

KOK-KEONG TAN AND JIAN YU

Some minimax inequalities are first proved both in the compact case and in the
non-compact case using the concept of escaping sequences introduced by Bor-
der. Applications are given to deduce a generalisation of the Gale-NikaidoDebreu
Lemma due to Mehta and Tarafdar and to obtain a new generalisation of the
Gale-Nikaido-Debreu Lemma from which the corresponding generalisation due to
Grandmont is derived.

1. INTRODUCTION

The Gale-Nikaido-Debreu Lemma (in short, the GND Lemma), see [4, 6, 12] (see
also [2, Theorem 18.1, p.81]), is fundamental to proving the existence of a market
equilibrium of an economy, for example, see Border [2] and Debreu [5]. Recently, there
have been many generalisation of this Lemma, see [7, 8, 10, 11, 14]. The objective of
this paper is two-fold:

(1) we first give some minimax inequalities both in the compact case and in the
non-compact case using the concept of escaping sequences introduced by Border [2];

(2) as applications of the minimax inequalities,

(a) we deduce a generalisation of the Gale-Nikaido-Debreu Lemma due to
Mehta and Tarafdar [10] which in turn generalises that of Yannelis [14]
and

(b) we obtain a new generalisation of the Gale-Nikaido-Debreu Lemma, from
which the corresponding generalisation due to Grandmont [8] is derived.

2. PRELIMINARIES

If A is a set, 2A denotes the family of all subsets of A. If A is a subset of
a vector space, coA denotes the convex hull of A. We shall denote by R and N
the set of all real numbers and the set of all natural numbers respectively. If A is
a non-empty subset of Rm and p € Rm, dist (p, A) denotes the distance from p to
A. If p = (p i , - - ,pm) € Rm, then p ^ 0 (respectively, p > 0, p < 0) if p , -^ 0
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268 K-K. Tan and J. Yu [2]

(respectively, p< > 0, p,- < 0) for all i = 1,- • • , m . If X and Y are topological spaces
and T : X —> 2Y, then T is upper semicontinuous if for each open subset U of Y, the
set {a: £ X : T(x) C £/̂ } is open in X. If X is a non-empty convex subset of a vector
space, then / : X —* R is quasi-concave (respectively, quasi-convex) if for each A £ R,
the set {x £ X : f(x) > A} (respectively, the set {x £ X : f(x) < A}) is convex.

3. GENERALISATIONS OF THE GND LEMMA: T H E COMPACT CASE

We first prove the following minimax inequality:

THEOREM 1 . Let X be a. non-empty compact convex subset of a Hausdorff topo-
logical vector space E and let Y be a non-empty convex subset of a Hausdorff topo-
logical vector space F. Suppose that the real-valued function f : X x Y —» R and the
set-valued map T : X —» 2Y satisfy the following conditions:

(i) for each fixed y £ Y, x —* f(x,y) is upper semicontinuous and quasi-
concave (respectively, x —* f{x,y) is concave);

(ii) for each fixed x £ X, y —» f(x,y) is lower semicontinuous and quasi-
convex (respectively, y —* f(x,y) is lower semicontinuous and convex);

(iii) for each x G X, T(x) is non-empty compact, convex and min f(x,y) <

\
(iv) for each x £ X with {u £ X : min f(u,y) > 0} ^ 0, there is x £ X

y€T(z)

such that x £ int{« £ X : min f(x,y) > 0 } .

Then there exists {x*,y*) £ X x Y with y* £ T(x*) such that f(x,y*) < 0 for all

xex.
PROOF: Define the set-valued map F : X -* 2Y by F(x) = {u £ X :

min f(u,y) > 0} for each x £ X. Fix an x £ X. For any «i £ F(x) and w2 £ F(x),
1/GT(*)
by (ii), (iii), there exist j/i £ T(x) and y2 £ T[x) such that / («i , l / i ) = min / (u i , y ) >

»eT(z)
0 and f(u2,y2) = rnin f(u2ly) > 0. For any a £ [0,1], there exists ya £ T(x) such

y6T(js)

that / ( a u i + (1 - a)u2,ya) = min / ( a t t l + (1 - a)u2,y). By (i),
»6T(«)

+ ( 1 - a ) u 2 ) y a ) ^min{ / (u i ,ya ) , f(u2,ya)}

> 0

so that aui + (1 — a)u2 £ ^ ( s ) . Thus F(as) is convex for each x £ X.

By (iii), x £ F(z ) for all x £ X.

For each x' £ X, F-^x') = {v £ X : min / ( x \ y ) > 0} . By (iv), if F(x) ± 0,
V€T(r)

then there is x £ .X" such that x £ int F " 1 (x").
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Theorem 4 of [10] implies that there exists x* G X such that F(x*) = 0, that is,

min f(u,y) ^ 0 for all u G X.

Now, since conditions (i), (ii) and (iii) hold, by [13, Theorem 3.4] (respectively by
[7, Corollary 9.4 (b)]), we have

min max/fx .y) = max min f(x,y) ^ 0

(respectively, min sup f(x,y) = sup min f{x,y) ^ 0).

Hence there exists y* G Fix*) such that max /(as, y*) < 0 (respectively, sup f(x,y*)

^0) , tha t is, f(x,y*) ^ 0 for all i E A". D

As an application of Theorem 1, we have the following generalisation of the Gale-
Nikaido-Debreu Lemma due to Mehta and Tarafdar [10, Theorem 8]:

COROLLARY 1. Let E be a real Hausdorff locally convex topological vector
space, E* be the topological dual of E equipped with the weak* topology, C be a
closed convex cone of E having an interior point e, C* = {p € E* : (p,y) ^ 0 for all
y e C} ^ {0} be the dual cone of C, and A = {p G C* : (p,e) = - 1 } . Suppose that
the set-valued map T : A —> 2E satisfies the following conditions:

(i) for each p G A, T(p) is non-empty compact convex and min (p, y) ^ 0 ;
»er(p)

(ii) /or eacA p G A with {q G A : min (9, y) > 0} ^ 0, there is p G A sucA
v6T(p)

that p G int{o G A : min (p, 1/) > 0}.
Then there exists p* G A such that T(p*) DC ^ 0.

PROOF: Set Jf = A, then X is convex. Since A is equicontinuous and w*-closed,
the Alaoglu theorem [9, Theorem 3.8, p.123] implies that it is w* -compact.

Set Y — E and /(p, y) = (p, y), then the conditions of Theorem 1 hold so that
there exist p* G A and y* G T{p') such that (p,y*> < 0 for all p G A.

We shall prove that y* G C and hence y* G T(p*) n C.
If y* 0 C, since E is locally convex and C is closed convex, by [3, p.I l l , Corollary

3.10], there exists rg jB* with r ^ 0 such that sup(r,y) < (r,y*). Since 0 G C and
c

C is a cone, we must have sup(r,y) = 0. It follows that r G C* and (r,y*) > 0. Since

e G int C, we have r(e) < 0. Let r = - (r / r(e)) , then r G A. But (r,y*) > 0 which
contradicts the fact that (p,y*) ^ 0 for all p G A. Hence we must have y* G C. D

By [10, Remark 1] Corollary 1 is more general than Theorem 3.1 of [14]. Hence
Theorem 1 also generalises Theorem 3.1 of [14].

In what follows we deduce another minimax inequality from Theorem 1.
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THEOREM 2 . Let X be a non-empty compact convex subset of a Hausdorff topo-
logical vector space E, and let Y be a non-empty convex subset of a Hausdorff topo-
logical vector space F. Suppose that the real-valued function f : X x Y —> R and t ie
sei-vaiued map T : X —* 2Y satisfy the following conditions:

(i) for each fixed y G Y, x -* f(x,y) is upper semicontinuous and quasi-
concave (respectively, x —* f(x,y) is concave);

(ii) for each fixed x £ X, y —> f{x,y) is lower semicontinuous and quasi-
convex (respectively, y —* f(x,y) is lower semicontinuous and convex);

(iii) for each x G X, T(x) is non-empty compact convex and min f(x,y)
»€T(ji)

0;
(iv) for each x g X, {u £ X : min f{x,y) ^ 0} is closed.

6 T ( )
Then there exists {x",y*) E X x Y with y* G T(x*) such that f(x,y*) < 0 for all
xeX.

PROOF: We only need to prove that the condition (iv) of Theorem 1 holds: Indeed,
let x G X be such that {u G X : min f(u,y) > 0} ^ 0 and take x G {u G X :

y6T(O
min f(u,y) > 0}, that is, min f(x,y) > 0. Thus x g {u G X : min f(x,y)
eT(x) y€T(x) €T()

0}. Since {u G X : min f(x,y) < 0} is closed, it follows that x G int{u G X :
»eT(u)

min f(x,y) > 0}. D
eT()

As an application of Theorem 2, we derive the following minimax inequality due

to Granas and Liu [7, Theorem (13.1)]:

COROLLARY 2 . Let X be a non-empty compact convex subset of a Hausdorff

topological vector space E, and let Y be a non-empty convex subset of a Hausdorff

topological vector space F. Let T : X —> 2Y be upper semicontinuous with non-empty

compact convex values and g : X xY —» R satisfy one of the following conditions:

(I)

For each fixed j / g F , x -* g(x,y) is lower semicontinuous

and quasi-convex;

for each fixed x G X, y —> g(x,y) is upper semicontinuous

and quasi-concave.

For each fixed y G Y, x —» g(x,y) is convex;

(II) ^ for each fixed x G X, y —» g(x,y) is upper semicontinuous

and concave.

Then for each A G R, one of the following properties holds:

(A) there exists x G X such that max g{x,y) < X;
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(B) thereexists (x*,y*) G XxY with y* G T(x") such that ming(x,y*) ^ A.

PROOF: Assume that (I) (respectively, (II) ) holds. If (A) is not true, then for
each x G X, max [g(x,y)-\] ^ 0. Define / : X X Y -» R by f(x,y) - X-g(x,y) for

»GT(x)

each (x,i/) G X x Y. Then the conditions (i), (ii) and (iii) of Theorem 2 hold. Now fix
an x E X. Define W : X x Y -* R by W(u,y) = g{x,y) - A for each {u,y) £ X xY.
Then W is upper semicontinuous. Since T is upper semicontinuous such that for each
u G X, T{u) is compact, by [1, p.52, Theorem 5], the map V : X —» R defined by
V(u) = max [g{x,y) — A] for each u G X is upper semicontinuous. It follows that the

set {u e X : min f(x,y) < 0} = {u G X : V (̂u) ^ 0} is closed. Thus the condition
»eT(»)

(iv) of Theorem 2 also holds. Hence there exists (x*,j/*) G X X F with y* G T(a;*)
such that f(x,y*) ^ 0 for all x G X, that is, ming(x,y) ^ A. D

rex
The following simple example shows that Theorem 2 is a true generalisation of [7,

Theorem (13.1)].
EXAMPLE 1. Let E = F = R, X = [0,TT/2] and Y = R. Define g : X x Y -» R by
g(x,y) = y — sinx for all (x,y) G X x Y. Then for each fixed y G Y, x -» g(x,y)
is continuous and convex and for each fixed x G X, y —* g(x,y) is continuous and
concave. Define T : X —• 2Y by

_,, . / [Isinx.sinz], if x ^ 0,
i (35) = <

I {1}, if * = 0

for each x G X. Then T has non-empty compact convex values but T is not upper
semicontinuous at x — 1 so that [7, Theorem (13.1)] is not applicable. However, if we
let / = —g, then we have min f(x,y) ^ 0 for each x G X. We shall show that for

each x G X, the set {ix G X : min f(x,y) > 0} is open in X. Indeed, let x £ X be
y€T(u)

arbitrarily fixed. If u G X is such that min f(x,y) > 0, we must have 0 < u < x. Let
vGT(«)-'v ""

6 > 0 be such that (u - 6,u + S) C (0,x) . It follows that for each v G (u- S,u + S),

min f(x,y) = sinz — sinv > 0. This shows that the set {u G X : min f(x,y) > 0}

is open in A" so that the set {u G X : min f(x,y) < 0} is closed in X. Therefore

Theorem 2 is applicable.

4. GENERALISATIONS OF THE GND LEMMA: THE NON-COMPACT CASE

We need the concept of an escaping sequence introduced in [2, p.34]: Let X be a
oo

topological space such that X = |J Cn where {Cn}^=1 is an increasing sequence of
n=l
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non-empty compact sets. Then a sequence {a5n}^Li in X is said to be escaping from
X (relative to {Cn}£Li) if for each n £ N, there exists M £ N such that yk <£ Cn for
all k > M .

We shall prove the following minimax inequality on a non-compact set.

THEOREM 3 . Let X be a non-empty subset of a Hausdorff topological vector
oo

space E such that X = \J Cn where {Cn}^=i is an increasing sequence of non-empty
n=l

compact convex subsets of X, and let Y be a non-empty convex subset of a Hausdorff
topological vector space F. Suppose that the real-valued function f : X x Y —» K and
the set-valued map T : X —> 2Y satisfy the following conditions:

(i) for each fixed y € Y, x —» f(x,y) is upper semicontinuous and quasi-
concave (respectively, x —• f(x,y) is concave);

(ii) for each fixed x £ X, y —* f(x,y) is lower semicontinuous and quasi-
convex (respectively, y —* f(x,y) is lower semicontinuous and convex);

(iii) for each x £ X, T(x) is non-empty compact convex and min f(x,y) ^
»€T(r)

0;
(iv) for each n G N and each x £ Cn witi {u £ Cn : min f{u,y) > 0} ̂  0,

v€T(i)

there is x G Cn such that x £ int{« £ Cn '• min f(x,y) > 0};
(v) for each sequence {xn}^=i, where xn € Cn for each n = 1,2, • • • , which is

escaping from X relative to {Cn}%Li a n c ' each sequence {yn}%Li, where
yn £ T(xn) for each n = 1,2, • • • , there exist no £ N and x'nQ £ Cno with
/«o'^o)>0.

Then there exists (x*,y*) £ X x Y with y* £ T{x*) such that f(x,y*) < 0 for all
x£X.

PROOF: For each n £ N by Theorem 1, there exists (xn,yn) £ Cn x Y with
yn E T(xn) such that f(x,yn) ^ 0 for all x £ Cn.

Suppose that the sequence {xn}^=i were escaping from X relative to {Cn}^-i • By
(v), there exist no £ N and x ^ £ Cno with / ( s ^ y n o ) > 0 which is a contradiction.
Therefore the sequence {zn}jJLi *s no* escaping from X relative to {Cn}%Li, so that
some subsequence of {xn}S!Li must lie entirely in some Cni • Since Cni is compact,
there exist a subnet {za}a€r of {in}™=1 in Cni and x* £ Cni such that za —» x*.
Let za = xn(a) where n(a) —> oo.

If {u £ X : min f(u,y) > 0} 5̂  0, there exists n2 ^ ni such that {u £
y€T(j!*)

Cni : min f(u,y) > 0} ^ 0. By (iv), there is x £ Cn, such that x* £ int{v £
»€T(x«)

Cn j : minj,ex(t))/(^>y) > 0}- Since za —• x*, there is oto such that n(ao) ^ n2

and min eT/z<j \ /(x,y) > 0, hence /(2,yn(a0)) > 0- This contradicts the fact that
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x £ Cn ( a o ) and f(x,yn{ao)) ^ 0. Therefore {u £ X : miny6T( j . .) f{u,y) > 0} = 0,

that is, minj,GT(r.) f(u,y) < 0 for all u £ X .

By [13, Corollary 3.5] (respectively, by [7, Corollary 9.4 (b)]), we have

min sup f(x,y) = sup min f(x,y) < 0.
€T{x')x€X *GX»eT(**)

Hence there exists y* £ T(x*) such that sup/(z,y*) ^ 0, that is, f{x,y*) < 0
xex

for all x £ X . D

As an application of Theorem 3, we obtain the following generalisation of the Gale-

Nikaido-Debreu Lemma:

T H E O R E M 4 . Let A = {p G K m : v > 0, J ] p i = l } , 5 = { p e r : p >

m
0,Y,Pi- ! } aad Cn - co{p £ 5 : d i s t ( p , A \ 5 ) ^ l / n } f o r n = 1 , 2 , ••• . Suppose

i=l

that the set-vaJued map T : S —> 2fl satisfies the following conditions:

(i) T is upper semicontinuous such that for each p 6 5 , T(p) is non-empty
compact convex;

(ii) for each p £ S and each y S T(p), (p,y) — 0;

(iii) for each sequence {pn}£"Li > where pn G Cn for each n — 1,2, • • • , which

is escaping from X relative to { C n } ^ = 1 and for each sequence {yn}^Lu

where yn £ T(pn) for each n — 1,2, ••• , there exist no £ N and p'nQ G

Cn o with (p'no,yno)>0.

Then there exists p* £ S such that 0 £ T(p*).

PROOF: The conclusion clearly holds for m = 1. Now suppose that m > 1. We

may assume that each Cn is non-empty. Note that each Cn is compact and convex

and 5 = U Cn- Set X = S and Y = Rm. Let / : X x Y -> R be denned by
n = l

f(p>y) = (Pi2/) f°r each (p,y) G X x Y. Then similar to the proof of Corollary 2, we
can prove that for each n G N and each p £ Cn, the set {u £ Cn : min /(p, y) ^ 0} is

y€T(t»)

closed. Also, similar to the proof of Theorem 2, the condition (iv) of Theorem 3 holds.
By Theorem 3, there exists (p*,y*)£ S xY with y* £ T(p*) such that (p,y*) < 0 for
all p£ S.

If y* ^ 0 does not hold, there is i £ {1, • • • ,rn) such that y,* > 0. We choose a
with 0 < a < 1 such that
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Let pi = a, pj = ( l - o ) / ( m - l ) (j^i). Then p E S and <p,y*> > 0, which
is impossible. Thus we must have y* ^ 0. On the other hand, since p* E S and
(?*»!/*> = 0, we obtain y* = 0 and hence 0 E T(p'). D

Finally, we shall deduce the following generalisation of the Gale-Nikaido-Debreu
Lemma due to Grandmont [8, Lemma 1]:

m

COROLLARY 3 . Let A = {p e Rm: p ^ o, £ p< = 1} and 5 = {p e Rm : p >
» = 1

m

0, 5]) P< = 1}- Suppose that the set-valued map T : S —• 2m satisfies the following

conditions:

(i) T is upper semicontinuous such that for each p E S, T(j>) is non-empty
compact convex;

(ii) for each p E S and each y 6 T(p), (p,y) = 0;
(iii) for eacA sequence {pn}%Li in S witA p n - » p £ A \ 5 and eacA sequence

{yn}%Li, where yn 6 T(pn) for each n = 1,2, • • • , there is p E S such
that (p,yn) > 0 for infinitely many n.

Then there exists p* E S such that 0 E T(p*).

PROOF: We shall show that the condition (iii) of Theorem 4 holds. Indeed, let
{Pn}£Li be a sequence, where pn E Cn — co{p E S : dist(p, A\5) ^ 1/rc} for n =
1,2,--- , which is escaping from 5 relative to {Cn}^=i and let {j/n}jJLi be another
sequence, where yn E T(pn) for n = 1,2, • • • . Since {pn}£Li is a sequence in A and A
is compact, without loss of generality, we may suppose that p n —> p* E A\S. By (iii),

oo

there is p E S such that (p,yn) > 0 for infinitely many n. Since S = \J Cn, there is
n=l

Tii € N such that p E Cn for all n~^ n\. Choose any no ^ nj such that (p, yno) > 0.

The condition (iii) of Theorem 4 holds so that the conclusion follows. D

By [2, p.86, Remark 18.15], the hypotheses of [8, Lemma 1] are weaker than the
hypotheses of [11, Lemma 2]. Hence Theorem 4 also generalises [11, Lemma 2].
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