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MINIMAX INEQUALITIES AND GENERALISATIONS OF
THE GALE-NIKAIDO-DEBREU LEMMA

Kok-KEONG TAN AND JIAN YU

Some minimax inequalities are first proved both in the compact case and in the
non-compact case using the concept of escaping sequences introduced by Bor-
der. Applications are given to deduce a generalisation of the Gale-Nikaido-Debreu
Lemma due to Mehta and Tarafdar and to obtain a new generalisation of the
Gale-Nikaido-Debreu Lemma from which the corresponding generalisation due to
Grandmont is derived.

1. INTRODUCTION

The Gale-Nikaido-Debreu Lemma (in short, the GND Lemma), see [4, 6, 12] (see
also (2, Theorem 18.1, p.81]), is fundamental to proving the existence of a market
equilibrium of an economy, for example, see Border [2] and Debreu {5]. Recently, there
have been many generalisation of this Lemma, see [7, 8, 10, 11, 14]. The objective of
this paper is two-fold:

(1) we first give some minimax inequalities both in the compact case and in the
non-compact case using the concept of escaping sequences introduced by Border [2];

(2) as applications of the minimax inequalities,

(a) we deduce a generalisation of the Gale-Nikaido-Debreu Lemma due to
Mehta and Tarafdar [10] which in turn generalises that of Yannelis [14]
and

(b) we obtain a new generalisation of the Gale-Nikaido-Debreu Lemma, from
which the corresponding generalisation due to Grandmont [8] is derived.

2. PRELIMINARIES

If Ais a set, 24 denotes the family of all subsets of A. If A is a subset of
a vector space, coA denotes the convex hull of 4. We shall denote by R and N
the set of all real numbers and the set of all natural numbers respectively. If A is
a non-empty subset of R™ and p € R™, dist (p, A) denotes the distance from p to
A. If p= (p1,--- yPm) € R™, then p > 0 (respectively, p > 0, p < 0)if p; > 0
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(respectively, p; >0, p; <0) forall i=1,--- ,m. If X and Y are topological spaces
and T : X — 2Y, then T is upper semicontinuous if for each open subset U of Y, the
set {z € X : T(z) CU} isopenin X. If X is a non-empty convex subset of a vector
space, then f: X — R is quasi-concave (respectively, quasi-convex) if for each A € R,
the set {z € X : f(z) > A} (respectively, the set {z € X : f(z) < A}) is convex.

3. GENERALISATIONS OF THE GND LEMMA: THE COMPACT CASE
We first prove the following minimax inequality:

THEOREM 1. Let X be a non-empty compact convex subset of a Hausdorff topo-
logical vector space E and let Y be a non-empty convex subset of a Hausdorff topo-
logical vector space F. Suppose that the real-valued function f: X xY — R and the
set-valued map T : X — 2Y satisfy the following conditions:

(i) for each fixed y € Y, z — f(z,y) is upper semicontinuous and quasi-
concave (respectively, z — f(z,y) is concave);
(ii) for each fixed z € X, y - f(z,y) is lower semicontinuous and quasi-
convex (respectively, y — f(z,y) is lower semicontinuous and convex);
(ili) for each = € X, T(z) is non-empty compact, convex andyxex;i(li) f(z,y) €
0;
(iv) for each z € X with {u € X : ygi(r;)f(u,y) >0} #0, thereis T € X

such that z € int{v € X : min_f(Z,y) > 0}.
y€T(v)

Then there exists (z*,y*) € X x Y with y* € T(2*) such that f(z,y*) < 0 for all
ze X.
PROOF: Define the set-valued map F : X — 2Y by F(z) = {u € X :

rexg(n)f(u,y) > 0} foreach z € X. Fixan z € X . For any u; € F(z) and u; € F(z),
¥y z

by (ii), (iii), there exist y3 € T(z) and y» € T(z) such that f(u,, 1) = gg(n)f(ul,y) >
¥ z
0 and f(u2,y2) = g)%(n)f(uz,y) > 0. For any a € [0,1], there exists yo € T(z) such
bl z

that f(au; + (1 — a)uz,¥a) = wén;:(r;)f(am + (1 — a)ua,y). By (i),

f(aul + (1 - a)u"hya) 2 m-in{f(ulvya)a f(uhya)}
Zmin{f(ulvyl)i f(u'hyZ)} > 0

so that au; + (1 — a)uz € F(z). Thus F(z) is convex for each z € X .
By (iii), z € F(z) forall z€ X.
Foreach z' € X, F}(z')={ve X: g;‘i(n)f(-’b",y) > 0}. By (iv), if F(z) # 0,
v v

then there is Z € X such that z € int F~1(Z).
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Theorem 4 of [10] implies that there exists z* € X such that F(z*) = 0, that is,

min u,y)<0forall ue X.
,Sin f(u,)

Now, since conditions (i), (i) and (iii) hold, by [13, Theorem 3.4] (respectively by
{7, Corollary 9.4 (b)]), we have

i = i <
,,g';t’,‘.)‘,‘?}‘f(”’y) ﬁ?,e"%ﬂ-)f(”y) <0

respectivel min su z,y) = sup min z,y) <0).
(resp Y S | sup f(z,y) zegyer(a')f( ,9) < 0)
Hence there exists y* € F(z*) such that max f(z,y*) < 0 (respectively, sup f(=z,y*)
z z€X

£ 0), that is, f(z,y*) <0 forall z € X. 0

As an application of Theorem 1, we have the following generalisation of the Gale-
Nikaido-Debreu Lemma due to Mehta and Tarafdar [10, Theorem 8]:

COROLLARY 1. Let E be a real Hausdorff locally convex topological vector
space, E* be the topological dual of E equipped with the weak® topology, C be a
closed convex cone of E having an interior point e, C* = {p € E* : (p,y) < 0 for all
y € C} # {0} be the dual cone of C, and A = {p € C* : (p,e} = —1}. Suppose that
the set-valued map T : A — 2F satisfies the following conditions:

(i) for each p € A, T(p) is non-empty compact convex and g}i(n)(p, y) <0;
VET(p

(ii) foreach pe A with {ge A : g?)(q,y) > 0} #0, thereis € A such
vET(p

that p€int{g € A: min (p,y) > 0}.
p €int{g yeT(a)(p y) >0}

Then there exists p* € A such that T(p*)NC #0.

PROOF: Set X = A, then X is convex. Since A is equicontinuous and w*-closed,
the Alaoglu theorem [9, Theorem 3.8, p.123] implies that it is w*-compact.

Set Y = E and f(p,y) = (p,y), then the conditions of Theorem 1 hold so that
there exist p* € A and y* € T(p*) such that (p,y*) <0 forall p€ A.

We shall prove that y* € C and hence y* € T(p*) N C.

If y* ¢ C, since E is locally convex and C is closed convex, by [3, p.111, Corollary

3.10}, there exists » € E* with r # 0 such that sup{r,y} < (r,y*). Since 0 € C and
yeC

C is a cone, we must have sup(r,y) = 0. It follows that » € C* and (r,y*) > 0. Since
yeC

e € int C, we have r(e) < 0. Let ¥ = —(r/r(e)), then ¥ € A. But (,y*) > 0 which
contradicts the fact that (p,y*) <0 for all p € A. Hence we must have y* € C. 1]

By [10, Remark 1] Corollary 1 is more general than Theorem 3.1 of [14]. Hence
Theorem 1 also generalises Theorem 3.1 of [14).

In what follows we deduce another minimax inequality from Theorem 1.
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THEOREM 2. Let X be a non-empty compact convex subset of a Hausdorff topo-
logical vector space E, and let Y be a non-empty convex subset of a Hausdorff topo-
logical vector space F. Suppose that the real-valued function f: X xY — R and the
set-valued map T : X — 2Y satisfy the following conditions:

(i) for each fixed y € Y, z — f(z,y) is upper semicontinuous and quasi-
concave (respectively, z — f(z,y) is concave);

(ii) for each fixed z € X, y — f(z,y) is lower semicontinuous and quasi-
convex (respectively, y — f(z,y) is lower semicontinuous and convex);

(ii) for each z € X, T(z) is non-empty compact convex and yg;'i(nz) f(z,y) <
0;

(iv) foreachze X, {ueX: énqi(n)f(z,y) < 0} is closed.
¥ uw

Then there exists (z*,y*) € X xY with y* € T(z*) such that f(z,y*) < 0 for all
zeX.

PROOF: We only need to prove that the condition (iv) of Theorem 1 holds: Indeed,
let z € X be such that {u € X : '(n)f(u,y) >0} #0 and take z € {u € X :

yET
min_f(u,y) > 0}, that is, in f(Z,y) > 0. Thus z u€ X : min f(z,y) <
,Tin f(u,y) > 0} is, min f(z.y) ¢{ min f(Z,9)
0}. Since {u € X : énT'(n)f(i,y) < 0} is closed, it follows that = € int{u € X :
v u
min f(Z,y) > 0}. 0
min f(z,) >0}

As an application of Theorem 2, we derive the following minimax inequality due
to Granas and Liu [7, Theorem (13.1)]:

COROLLARY 2. Let X be a non-empty compact convex subset of a Hausdorff
topological vector space E, and let Y be a non-empty convex subset of a Hausdorff
topological vector space F'. Let T : X — 2Y be upper semicontinuous with non-empty
compact convex values and g: X x Y — R satisfy one of the following conditions:

For each fixedy € Y, z — g(z,y) is lower semicontinuous
and quasi-convex;
0 for each fixed ¢ € X, y — g(z,y) is upper semicontinuous

and quasi-concave.

For each fixedy € Y, z — g(z,y) is convex;
(IIm) for each fixed z € X, y — g(=z,y) is upper semicontinuous
and concave.
Then for each A € R, one of the following properties holds:
(A) there exists ¥ € X such that yglq%)g(’f,y) < A;
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(B) thereexists (z*,y*) € X xY with y* € T(z"*) such that néi}lrlg(z,y‘) 22

PROOF: Assume that (I) (respectively, (II) ) holds. If (A) is not true, then for
eachz € X, HIenqé'lil;::)[g(z,y)—A] > 0. Define f: X xY — R by f(z,y) = A —g(z,y) for
each (z,y) € X x Y. Then the conditions (i), (i) and (iii) of Theorem 2 hold. Now fix
an z € X. Define W:X xY — R by W(u,y) = g(z,y) — X for each (u,y) € X xY.
Then W is upper semicontinuous. Since T is upper semicontinuous such that for each
u € X, T(u) is compact, by [1, p.52, Theorem 5], the map V : X — R defined by

V(u) = ma.x [g(:c y) — A] for each u € X is upper semicontinuous. It follows that the

set {u E X : mi!(n)f(z,y) £ 0} = {u € X : V(u) > 0} is closed. Thus the condition
y€T(u

(iv) of Theorem 2 also holds. Hence there exists (z*,y*) € X x Y with y* € T(z*)

such that f(z,y*) <0 for all z € X, that is, néi}}g(z,y) Z A

The following simple example shows that Theorem 2 is a true generalisation of [7,
Theorem (13.1)].

EXAMPLE 1. Let E=F =R, X =[0,7/2] and Y = R. Define g: X xY — R by
9(z,y) = y —~sinz for all (z,y) € X x Y. Then for each fixed y € Y, z — g(z,y)
is continuous and convex and for each fixed z € X, y — g(z,y) is continuous and
concave. Define T : X — 2Y by

lsinz,sinz], if o,
T(z) = (3 inz], ifz#
{1}, fz=0
for each 2z € X. Then T has non-empty compact convex values but T is not upper

semicontinuous at z = 1 so that {7, Theorem (13.1)] is not applicable. However, if we
let f = —g, then we have én;:(n)f(z,y) £ 0 for each z € X. We shall show that for
v z

each z € X, theset {u€ X : g?)f(z,y) > 0} is open in X . Indeed, let z € X be
v u
arbitrarily fixed. If u € X is such that lel;i(n)f(z,y) > 0, we must have 0 < u < z. Let
v u

§ > 0 be such that (v — 8,u+ §) C (0,z). It follows that for each v € (u — §,u + §),

g?)f(z,y) =sinz — sinv > 0. This shows that the set {u € X : mm f(z,y) > 0}
yET

is open in X so that the set {u € X : é%'m f(z,y) < 0} is closed in X . Therefore

Theorem 2 is applicable.

4. GENERALISATIONS OF THE GND LEMMA: THE NON-COMPACT CASE
We need the concept of an escaping sequence introduced in [2, p.34]: Let X bea

oo
topological space such that X = |J C, where {C,}32, is an increasing sequence of
n=1
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non-empty compact sets. Then a sequence {z,}52, in X is said to be escaping from
X (relative to {Cn}2,) if for each n € N, there exists M € N such that y, ¢ C,, for
all k> M.

We shall prove the following minimax inequality on a non-compact set.
THEOREM 3. Let X be a non-empty subset of a Hausdorff topological vector
oo
space E such that X = |J C, where {Cn}32, is an increasing sequence of non-empty
n=1

compact convex subsets of X, and Iet Y be a non-empty convex subset of a Hausdorff
topological vector space F'. Suppose that the real-valued function f: X xY — R and
the set-valued map T : X — 2Y satisfy the following conditions:

(i) for each fixed y € Y, z — f(z,y) is upper semicontinuous and quasi-
concave (respectively, z — f(z,y) is concave);

(it) for each fixed z € X, y — f(z,y) is lower semicontinuous and quasi-
convex (respectively, y — f(z,y) is lower semicontinuous and convex);

(iii) for each z € X, T(z) is non-empty compact convex and g(n)f(:v,y) <
b z
0;

(iv) for each n € N and each z € Cp, with {u € Cp : n;i(n)f(u,y) >0} #0,
VvET(z
there is T € Cn such that z € int{v € C,,: min f(Z,y) > 0};
yET(v)

(v) foreachsequence {zn}32,,where 2, € Cy, foreachn =1,2,---, which is
escaping from X relative to {Cpn}32, and each sequence {y,}32,, where
yn € T(zn) for each n = 1,2, -, there exist ng € N and 2;0 € Cp, with
f(z'no,yno) > 0.

Then there exists (z*,y*) € X xY with y* € T(z*) such that f(z,y*) <0 for all
zeX.

PRrROOF: For each n € N by Theorem 1, there exists (zn,yn) € Cn X Y with
Yn € T(z,) such that f(z,yn) <0 forall z € Cy.

Suppose that the sequence {z,}32.; were escaping from X relative to {Crn}3%,. By
(v), there exist ng € N and z;, € Cp, with f(z;o,yno) > 0 which is a contradiction.
Therefore the sequence {z,}32, is not escaping from X relative to {Cn}32,, so that
some subsequence of {2,}32; must lie entirely in some C,, . Since Cp, is compact,
there exist a subnet {za}acr of {zs}32, in Cn, and z* € C,, such that z, — z*.
Let 2o = Z,(a) Where n(a) — oo.

If {ue X: Gnq]%n )f(u,y) > 0} # 0, there exists ny > n; such that {u €
vET(2*

Chn, : x;rlén )f(u,y) > 0} # 0. By (iv), there is T € Cyn, such that z* € int{v €
yET(=*

Cn, : minger) f(Z,y) > 0}. Since z, — z*, there is ao such that n(ag) > na
and minyeT( sap) f(Z,y) > 0, hence f (i,y,,(ao)) > 0. This contradicts the fact that
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Z € Cp(ay) and f(i,y,,(ao)) £ 0. Therefore {u € X : mingeq(.+) f(u,y) > 0} =0,
that is, minyeq(.+) f(u,y) <0 forall v € X.
By [13, Corollary 3.5] (respectively, by [7, Corollary 9.4 (b)]), we have

min su F = sup min <0
GT(Z')zEpf( ) sex veT(z ')f( =)

Hence there exists y* € T(z*) such that sup f(z,y*) < 0, that is, f(z,y*) <0
z€X

forall z € X. . 1

As an application of Theorem 3, we obtain the following generalisation of the Gale-
Nikaido-Debreu Lemma:

THEOREM 4. Let A={pec R™:p 20, pi=1},S={pecR™:p>

0, Y. pi =1} and C, = co{p € S : dist(p,A\S) > 1/n} for n = 1,2,--- . Suppose
=1

that the set-valued map T : § — 2B" satisfies the following conditions:
(1) T is upper semicontinuous such that for each p € S, T(p) is non-empty
compact convex;

(ii) for each p€ S and each y € T(p), (p,y) =0;

(1) for each sequence {p,}2,, where p, € C, for each n =1,2,-.., which
is escaping from X relative to {Cn}22., and for each sequence {yn}32,,
where yn € T(py) for each n = 1,2,-- -, there exist no € N and pl, €
Chno with (pr,,Yne) > 0.

Then there exists p* € § such that 0 € T(p*).

PRroOF: The conclusion clearly holds for m = 1. Now suppose that m > 1. We
may assume that each C, is non-empty. Note that each C, is compact and convex

and § = |J Cn. Set X = Sand Y = R™. Let f: X xY — R be defined by

n=1
f(p,y) = {p,y) for each (p,y) € X x Y. Then similar to the proof of Corollary 2, we
can prove that for each n € N and each p € Cy,, theset {u € C, : n}i(n)f(p,y) £ 0}is
y€T(u

closed. Also, similar to the proof of Theorem 2, the condition (iv) of Theorem 3 holds.
By Theorem 3, there exists (p*,y*) € § x Y with y* € T(p*) such that (p,y*) <0 for
al pe §.

If y* < 0 does not hold, there is i € {1,--- ,m} such that y} > 0. We choose a
with 0 < @ < 1 such that

l1—-a

Z y; +ay; > 0.

j#i
1€jsm
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Let p; = a, pj = (1—a)/(m—1) (j#i). Then p € § and (p,y*) > 0, which
is impossible. Thus we must have y* < 0. On the other hand, since p* € S and
(p*,y*) =0, we obtain y* = 0 and hence 0 € T(p*). 0

Finally, we shall deduce the following generalisation of the Gale-Nikaido-Debreu
Lemma due to Grandmont (8, Lemma 1]:

COROLLARY 3. Let A={peR™:p2>0, S p;=1}and S={peR™:p>
=1

0, 3 pi = 1}. Suppose that the set-valued map T : § — 28" satisfies the following
=1
conditions:

(i) T is upper semicontinuous such that for each p € S, T(p) is non-empty
compact convex;
(ii) for each p € S and each y € T(p), (p,y) =0;
(iit) for each sequence {p,}3>, in § with p, — p € A\S and each sequence
{yn}2,, where y, € T(p,) for each n = 1,2,--- , there is p € S such
that (P,yn) > 0 for infinitely many n.

Then there exists p* € S such that 0 € T(p*).

PROOF: We shall show that the condition (iii) of Theorem 4 holds. Indeed, let
{Pn}2, be a sequence, where p, € C, = co{p € S : dist(p,A\S) = 1/n} for n =
1,2,---, which is escaping from § relative to {Cr}32, and let {yn}32, be another
sequence, where y, € T(p,) for n =1,2,---. Since {pn}32, is a sequencein A and A
is compact, without loss of generality, we may suppose that p, — p* € A\S. By (iii),

o

there is p € S such that (p,yn) > 0 for infinitely many n. Since § = |J C,, thereis
n=1

ny € N such that § € C,, for all n > n;. Choose any ng > n; such that (p,yn,) > 0.
The condition (iii) of Theorem 4 holds so that the conclusion follows. a

By (2, p.86, Remark 18.15], the hypotheses of [8, Lemma 1] are weaker than the
hypotheses of [11, Lemma 2]. Hence Theorem 4 also generalises [11, Lemma 2].

REFERENCES

[1] J.P. Aubin and A. Cellina, Differential inclusion (Springer-Verlag, Berlin, Heidelberg,
New York, 1984).

[{2] K.C. Border, Fized point theorems with applications to economics and game theory (Cam-
bridge University Press, Cambridge, 1985).

[3] J.B. Conway, A course in functional analysis (Springer-Verlag, Berlin, Heidelberg, New
York, 1990).
(4] G. Debreu, ‘Market equilibrium’, Proc. Nat. Acad. Sci. 42 (1956), 876~-878.

https://doi.org/10.1017/50004972700016336 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700016336

[9]

(5]

(6]

Minimax inequalities 275

G. Debreu, ‘Existence of competitive equilibrium,’, in Handbook of Mathematical Eco-
nomics II, (K.J. Arrow and M.D. Intriligator, Editors) (North-Holland, Amsterdam,
1982), pp. 697-743.

D. Gale, ‘The law of supply and demand’, Math. Scand. 3 (1955), 155-169.

A. Granas and F.-C. Liu, ‘Coincidences for set-valued maps and minimax inequalities’, J.
Math. Pures Appl. 65 (1986), 119-148.

J.M. Grandmont, ‘Temporary general equilibrium theory’, Econometrica 45 (1977),
535-572.

G. Jameson, Ordered linear spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1970).

[10] G.Mehta and E. Tarafdar, ‘Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed
point theorem of Tarafdar’, J. Econom. Theory 41 (1987), 333-339.
[11] W. Neuefeind, ‘Notes on existence of equilibrium proofs and boundary behavior of supply’,
Econometrica 48 (1980), 1831-1837.
[12] H. Nikaido, ‘On the classical multilateral exchange problem’, Microeconomica 8 (1956),
135-145.
[13] M. Sion, ‘On general minimax theorems’, Pacific J. Math. 8 (1958), 171-176.
[14] N.C. Yannelis, ‘On a market equilibrium theorem with an infinite number of commodities’,
J. Math. Anal. Appl. 108 (1985), 595-599.
Department of Mathematics, Statistics Instituet of Applied Mathematics
and Computing Science Guizhou Institute of Technology
Dalhousie University Guiyang, Guizhou
Halifax, Nova Scotia China 550003

Canada B3H 3J5

https://doi.org/10.1017/50004972700016336 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700016336

