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The near-surface locomotion of microswimmers under the action of background flows has
been studied extensively, whereas the intervening effects of complex surface properties
remain hitherto unknown. Intending to delineate the shear-driven dynamics near a
planar slippery wall, we adopt the squirmer model of microswimmers and employ
a three-dimensional analytical-numerical framework in bispherical coordinates. It is
interpreted that both the self-propulsion and the external shear flow are redistributed
due to hydrodynamic slippage, followed by modulations in the thrust torque on the
microswimmer. Phase portraits of the quasi-steady dynamics indicate that the stable
upstream swimming states, known as ‘rheotaxis’, are significantly modulated by the slip
length compared with the no-slip case. For puller swimmers, an intricate interplay among
the modulated interfacial friction near a slippery surface, velocity gradients of the shear
flow and the strength of the squirmer parameter promotes a critical shear rate beyond which
a wide range of new rheotactic states exist. Consequently, an escaping microswimmer
may exhibit rheotaxis or an existing rheotactic state annihilates due to crashing. Although
stable states are absent for pushers without steric interactions, transitions from escaping
and undamped oscillations to ‘rheotaxis’ occur in the presence of wall repulsion, but
only until the other characteristics are overwhelmed by escape due to enhanced shear.
Disclosing the ability of hydrodynamic slippage in broadening the scope of migration
against a background flow for a wide range of parameters, the present work paves the way
for investigations on the entrapment of microswimmers near complex pathways or sorting
using selective rheotaxis.

Key words: microfluidics, micro-organism dynamics, swimming/flying

1. Introduction

The booming importance of microswimmers, mainly in the biomedical sector and
environmental remediation, has fueled the research on both living and synthetic
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microswimmers surrounded by various challenging real-life environments. In addition to
developing an enhanced understanding of common biophysical processes, e.g. swimming
of spermatozoa through female oviduct (Guidobaldi et al. 2015; Ishimoto & Gaffney 2015)
and propagation of bacterial infection (Harkes, Dankert & Feijen 1992), the potential
applications of microswimmers range from lab-on-a-chip devices (Denissenko et al. 2012;
Bechinger et al. 2016), assisted fertilization (Magdanz et al. 2017; Bunea & Taboryski
2020), targeted drug delivery using bio-hybrid microbots (Wang & Gao 2012; Park et al.
2017; Li et al. 2022) to water treatment using Chlamydomonus sp. (Escudero et al. 2020)
and other artificial microswimmers (Poddar, Bandopadhyay & Chakraborty 2019; Chen
et al. 2021; Yuan et al. 2022).

Microswimmers often have to swim through complex physiological environments by
overcoming the effects of a counterflow, thus preventing their downstream transportation.
Conversely, a background flow can assist the entrapment of bacteria near surfaces and
facilitate surface attachment, which is an essential step for biofilm formation (Rusconi,
Guasto & Stocker 2014). The background conditions have also been found to influence
the migration of droplets (Poddar et al. 2018, 2019; Mantripragada & Poddar 2022). The
capability of certain microswimmers to change their orientation in response to velocity
gradients is known as rheotaxis (Bretherton & Rothschild 1961; Miki & Clapham 2013;
Ishimoto & Gaffney 2015; Sharan et al. 2022). A common example of this motion
characteristic exists during the fertilization process where sperms have to be navigated
through a long distance to reach the female eggs (Roberts 1970; Miki & Clapham
2013; Kantsler et al. 2014). Positive rheotaxis of motile spermatozoa in a Poiseuille flow
was reported by Bretherton & Rothschild (1961). Later, Rothschild (1963) explained the
boundary accumulation of sperms due to the difference of drag forces on the head and tail,
similar to a weather vane. Under a similar background flow, Kantsler et al. (2014) observed
that the sperm cells migrate differently for varying flow conditions, e.g. upstream spiraling
along the bounding substrates and downstream advection for low and high shear velocities,
respectively. These motion attributes were described as a combined effect of shear flow,
chirality of flagellar beat and steric interaction with the substrate.

Rheotaxis was also reported in bacteria Bacillus subtilis (Marcos et al. 2012),
Escherichia coli (Kaya & Koser 2012), and artificial microswimmers (Palacci et al. 2015).
Subsequently, the theoretical analysis of Uspal et al. (2015) revealed that rheotaxis could
also occur for spherical active particles, which do not possess shape asymmetry similar
to an elongated micro-organism, such as spermatozoa. They showed that the rheotaxis
of spherical microswimmers stems from a mechanism of shear-induced rotation near a
hard surface, leading to a constrained motion in the shear plane towards the upstream
direction at a steady height and orientation. In contrast, theoretical investigations on a
virtual monoflagellate Leishmania mexicana promastigote (Walker et al. 2018) predicted
no general stable guided taxis under background shear in the absence of a steric contact
force at the wall. However, Ishimoto (2017) showed that the inclusion of wall repulsion
results in rheotactic states for disc (two dimensional) squirmers, while the same effect
further stabilizes the motion of spherical (three dimensional) squirmers of different types.

Although rheotaxis is possible in bulk fluid (Marcos et al. 2012; Kumar & Ardekani
2019), various attributes of rheotaxis were found to be greatly influenced in the
neighbourhood of a liquid–solid interface (Hill et al. 2007; Kaya & Koser 2012; Mathijssen
et al. 2019). The microfluidic experiments of Hill et al. (2007) illustrated that the bacteria
at the channel centreline have an enhanced tendency of a cross-stream drift towards the
channel walls while orienting towards the upstream direction. An enhanced accumulation
of micro-organisms at the walls in a uniform shear and a parabolic flow was also reported
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through computer simulations Chilukuri, Collins & Underhill (2014). Similarly, the work
of Mathijssen et al. (2019) provided insights into different rheotaxis regimes near a surface,
e.g. upstream shifting of swimming orientation, oscillatory rheotaxis and coexistence of
rheotactic migration up or against the vorticity direction of the background flow, and
also identified the transitional shear rates. Nevertheless, the near-surface accumulating
tendency of microswimmers has also been observed even in a quiescent environment (Li &
Tang 2009; Tailleur & Cates 2009; Li et al. 2011; Elgeti & Gompper 2013; Kantsler et al.
2013). In addition, different other intriguing near-surface phenomena, such as bacterial
entrapment for biofilm formation (Costerton et al. 1987), directional circular motion of
cells (Lauga et al. 2006; Di Leonardo et al. 2011), pairwise dancing of Volvox (Drescher
et al. 2011) and tumbling trajectories of bacteria E. coli (Kantsler et al. 2013), etc. were
reported in the absence of a background flow. On the other hand, a significant volume of
theoretical studies (Berke et al. 2008; Shum, Gaffney & Smith 2010; Crowdy 2011, 2013;
Ishimoto & Gaffney 2013; Li & Ardekani 2014; Poddar, Bandopadhyay & Chakraborty
2020) has shed light on the crucial role of hydrodynamic interaction with the confining
substrates in affecting the biophysical dynamics of microswimmers.

The interfacial properties at the solid–fluid or fluid–fluid interfaces were reported to
have a substantial contribution in regulating the motion characteristics of a microswimmer
near a confining boundary (Lemelle et al. 2013; Lopez & Lauga 2014; Hu et al. 2015;
Pimponi et al. 2016). The deviation from the no-slip condition at a boundary leads to
modulations in the interfacial friction at the micro- and nano-scale (Chakraborty 2008;
Das et al. 2015; Maduar et al. 2015). The said deviation is often quantified by a slip
length, which is the fictitious distance below the physical wall where the no-slip condition
would apply. While, for the hydrophilic surfaces, the slip length is negligible, the same
parameter can be significantly higher for the hydrophobic surfaces (Huang et al. 2008;
Bocquet & Charlaix 2010). Different physical sources behind high slip length has been
proposed in the literature. For instance, the slip length can go upto micrometres when the
surface is in contact with a bacterial polymeric solution or due to a coating of monolayers
of hydrophobic molecules (Tretheway & Meinhart 2002, 2004; Lauga, Brenner & Stone
2007). Also, air bubble entrapment between the asperities of micro- and nano-structured
surfaces can be treated as an effective continuous partial slip boundary condition (Choi &
Kim 2006; Joseph et al. 2006; Lee et al. 2008; Nizkaya et al. 2015).

In relation to microswimmers, Hu et al. (2015) predicted a transition of model E. Coli
bacteria from circular to snaking trajectories due to alterations in the slip length. Similarly,
the experimental observation of reversed circular motion of E. Coli due to added polymeric
inclusions were estimated to be an effect of intensified slip (Lemelle et al. 2013). Lopez &
Lauga (2014) employed a far-field analysis based on a force dipole swimmer incorporating
non-zero slip lengths and reported that slip induces an additional rotation towards the wall,
leading to attraction of pusher-type microswimmers. Very recently, Poddar et al. (2020)
provided theoretical insights into the effects of high slip on the near-wall trajectories of
different types of spherical micro-organisms. They also unveiled that slip length may be
chosen as an effective control mechanism for switching from a scattering trajectory to wall
entrapment. In another work, Ketzetzi et al. (2020) experimentally found that artificial
microswimmers show augmented swimming speeds near a hydrophobic surface. These
studies considered a quiescent flow condition only, and the effects of different background
flows were never looked into. At the other extreme, the literature on rheotactic migration
near confinement is limited to the no-slip condition at the wall. In view of the effects
brought in by the hydrodynamic slip, it is anticipated that the coupling of the slip condition
with the velocity gradients of an external flow (Loussaief, Pasol & Feuillebois 2015) may
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non-trivially alter the conditions of stable swimming states, thereby triggering unexplored
attributes of rheotaxis.

In the present work we attempt to address the above shortcomings in the literature
by formulating a mathematical model of a shear-driven spherical microswimmer in the
vicinity of a slippery plane wall. The Navier slip condition has been employed to track
the surface wettability condition at the wall. By incorporating the effects of an arbitrary
slip length in a squirmer model, the present study stands apart from the widely employed
models with asymptotically small slip lengths (Swan & Khair 2008; Willmott 2008). In
addition, using the bispherical coordinate system for obtaining an exact solution of the
creeping flow problem, the present model aptly captures the hydrodynamics at any distance
from the wall, outside the scope of an image-singularity-based analysis (Lopez & Lauga
2014). Furthermore, the effects of the Navier slip condition both on the shear flow and
the self-propulsion make the outcome of the study unpredictable beyond a simple linear
superposition of the slip effects and the corresponding effects with a no-slip boundary
condition (Uspal et al. 2015). We have further performed a detailed analysis of the
quasi-steady dynamics of both puller- and pusher-type microswimmers and investigated
the effects of different important dimensionless parameters, e.g. dimensionless slip length,
shear rate and the squirmer parameter. We also discuss the effect of steric contact
interactions on rheotaxis by employing a repulsive force at the wall. It has been found that
beyond a critical shear rate, enhancement of slip length can either create new rheotactic
states or destroy them depending on a critical interplay between the slip-induced effects
and shear flow.

2. Mathematical formulation

In the present problem, we consider a microswimmer immersed in a background pure shear
flow ũ(ex)

∞ = γ̇ (l̃s + z̃)ex near a planar wall that obeys the Navier slip condition (Navier
1823), as depicted in figure 1. The microswimmer is considered to have a spherical body of
radius a, and its centre (O) is located at a vertical distance h̃ from the neighbouring slippery
wall. The slip length (l̃s) can be interpreted as the distance below the plain wall where
the extrapolated velocity vanishes. The dimension of the microswimmer is assumed in the
range O(101–102) μm. The orientation of the microswimmer is represented by the director
p̂, defined as p̂ = pxex + pyey + pzez, where px = cos(θp) cos(φp), py = cos(θp) sin(φp)
and pz = − sin(θp). Here, we make an assumption that the slip length is uniform along the
wall and that the microswimming properties are unaffected by surface texture. Motility of
puller- and pusher-type microswimmers are illustrated in the inset, where the blue arrows
indicate the mobility direction of the surrounding fluid and green arrows orient towards the
local forcing direction of the model swimmer to the fluid if observed from the fixed frame.
At this point, we would like to highlight the significance of choosing a three-dimensional
(3-D) squirmer model instead of a two-dimensional (2-D) model (Ishimoto & Crowdy
2017). The physical phenomenon of upstream swimming or rheotaxis, which is the central
theme of the present work, cannot be captured by a 2-D model, while a 3-D model was
shown to be successful in this context (Uspal et al. 2015). It was also shown by Ishimoto
& Crowdy (2017) that a 2-D squirmer can only show stable swimming if the Hamiltonian
symmetry is broken by perturbations such as weak fluid viscoelasticity (Yazdi, Ardekani &
Borhan 2015) or repulsive potential at the wall. Thus, it is essential in the present scenario
to adopt a 3-D model of the squirmer to investigate the slip-modulated rheotaxis even in
the absence of such external perturbations.
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Figure 1. Illustration of a spherical microswimmer in a background pure shear flow ũ(ex)
∞ = γ̇ (l̃s + z̃)ex

adjacent to a slippery planar wall satisfying the Navier slip condition and having a slip length l̃s. The
microswimmer is of radius a, its orientation vector is designated with the vector p̂ and the centre (point
O) is located at a height of h̃ from the wall. Here, Ox′y′z′ denote the body-fitted reference frame for the
microswimmer. The vector p̂ makes an angle θp (also known as the pitching angle) with the wall, while φp
is its angle with the external flow direction, measured in the plane of the wall. The flow around the model
microswimmers in the laboratory frame, for both puller and pusher types, has been schematically shown as an
inset.

2.1. Governing equations and boundary conditions
Due to the low Reynolds numbers encountered in flow around microswimmers, the flow
field can be described by the Stokes equation (Lauga & Powers 2009; Michelin & Lauga
2014). In addition to this, application of the incompressibility condition leads to the
following governing equation for fluid flow:

∇ · ũ = 0 and − ∇p̃ + μ∇2ũ = 0. (2.1a,b)

Here ũ denotes the velocity vector and p̃ is pressure.
The hydrodynamic slip velocity ũ|| at the slippery plane wall is related to the shear rate

at the wall by the Navier slip condition (Navier 1823) as

at z̃ = 0, ũ|| = l̃Snw · (∇ũ + (∇ũ)T)(I − nwnw), (2.2a,b)

where nw stands for the unit normal at the plane boundary directed towards the fluid
domain and I represents the identity tensor. The presently developed mathematical model
remains applicable for an arbitrary magnitude of the slip length at the plane wall (l̃s),
in stark contrast to the earlier works with asymptotically small slip lengths (Swan &
Khair 2008; Willmott 2008). Moreover, the present model is applicable for a wide range
of heights of the microswimmer above the wall, starting from an unbounded domain to
the lubrication regime. Hence, the results of the present work cannot be obtained just
by considering a linear superposition of the slip-induced effects with those of a no-slip
problem. Rather, the slip effects are intrinsically coupled with the hydrodynamic problem,
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the effects of which can only be visualized through a detailed analysis, as performed
subsequently.

The linearity property of the Stokes flow (2.1a,b) and the boundary condition at the
microswimmer surface allow us to decompose the full flow problem in two sub-problems
‘sq’ and ‘ex’, to be discussed subsequently. Thus, different flow variables (ψ ∈ [ũ, Ṽ , Ω̃])
can be expressed as

ψ = ψ(sq) + ψ(ex), (2.3)

where Ṽ and Ω̃ denote the translational and rotational velocity components of the
microswimmer, respectively.

2.1.1. Sub-problem ‘sq’
Diverse swimming appendages, like cilia or flagella, create surface distortions and
work behind the motility of microswimmers. We model this swimming action by the
‘squirmer’ model proposed by Lighthill (1952) and Blake (1971), and extensively used in
literature (Uspal et al. 2015; Ishimoto 2017; Poddar et al. 2020) related to self-propelling
microswimmers. Accordingly, we impose a tangential surface velocity, given by

ũ(sq)
s =

(
p̂ · r
|r|

r
|r| − p̂

) ∞∑
n=1

2
n(n + 1)

BnP′
n

(
p̂ · r
|r|

)
. (2.4)

Here, r denotes the position vector of points on the microswimmer surface with reference
to its centre, Bn denotes the amplitude of the nth squirming mode and P′

n(p̂ · r/|r|) is
the derivative of the Legendre polynomial with respect to the argument p̂ · r/|r|. For an
unbounded creeping flow, the first squirming mode contributes solely to the propulsion
speed, whereas the second mode quantifies the strength of the stresslet exerted by the
squirmer (Ishikawa, Simmonds & Pedley 2006; Li & Ardekani 2014; Chisholm et al. 2016;
Pedley 2016; Pietrzyk et al. 2019). Thus, similar to a host of earlier works (Ishikawa et al.
2006; Li & Ardekani 2014; Uspal et al. 2015; Shaik & Ardekani 2017; Shen, Würger &
Lintuvuori 2018; Yazdi & Borhan 2017), we retain the first two squirming modes (B1 and
B2) only to capture the essential physics of squirming motion. The ratio of the first two
squirming modes β arises as an important parameter in the problem, and the parameter
helps categorizing the different members of the microswimmer family as puller (β > 0),
pusher (β < 0) and neutral (β = 0) types. We further adopt a non-dimensionalization
scheme based on reference values chosen for different variables as: length ∼ radius
of microswimmer (a), velocity vref ∼ B1, time tref ∼ a/B1 and pressure pref ∼ μB1/a,
and subsequently, remove the symbol ‘̃’ to represent the corresponding dimensionless
quantities. Thus, the boundary condition at the microswimmer surface can be expressed
as

at r = 1, u(sq) = V (sq) + Ω(sq) × r + u(sq)
s . (2.5)

2.1.2. Sub-problem ‘ex’
In this sub-problem we segregate the effects of a background pure shear flow of the
form u(ex)

∞ = S(z + ls)ex on the locomotion of an inert sphere, disregarding the squirming
action. Here, S denotes the dimensionless shear rate of the background flow, defined as
S = γ̇ a/vref . The sphere undergoes rigid body motion with velocities V (ex) and Ω(ex)

in the background flow field. In the presence of the sphere, the disturbed velocity can
be written as a superposition of the ambient flow (u(ex)

∞ ) and the perturbation velocity
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(u(ex)) as u(ex) + u(ex)
∞ . Since the no-slip condition holds true at the particle surface for the

disturbed flow, the perturbation velocity satisfies the following boundary condition:

at r = 1, u(ex) = V (ex) + Ω(ex) × r − u(ex)
∞ . (2.6)

The unknown velocity components (V and Ω) are evaluated by considering a neutrally
buoyant microswimmer within the flow field, leading to the following force and torque-free
conditions:

F =
∫∫
Sp

σ · np dS = 0 and L =
∫∫
Sp

r × (σ · np) dS = 0. (2.7a,b)

Now, the thrust force or torque experienced by the microswimmer originates from
the squirming action (F (sq)

(Thrust),L(sq)
(Thrust)) as well as the externally applied flow

(F (ex)
(Thrust),L(ex)

(Thrust)). The resultants of these thrusts are further balanced by the
hydrodynamic resistance on the rigid sphere (F (Drag),L(Drag)). Again exploiting the
linearity of the problem, two components of the thrust force can be linearly added,
reducing (2.7a,b) to

F (sq)
(Thrust) + F (ex)

(Thrust) + F (Drag) = 0 and L(sq)
(Thrust) + L(ex)

(Thrust) + L(Drag) = 0. (2.8a,b)

2.2. Solution strategy
In order to solve the above system of governing equations and boundary conditions,
together with the force-free constraint, we use eigenfunction expansion of the Stokes
flow problem in the bispherical coordinates (ξ, η, φ) (Happel & Brenner 1983). In the
bispherical system the plane boundary is located at ξ = 0 and the spherical swimmer
surface corresponds to ξ = ξ0 (Behera, Poddar & Chakraborty 2023; Poddar 2023). In
this solution method the expressions for the velocity components contain a set of unknown
coefficients Am

n ,Bm
n ,Cm

n ,Em
n ,Fm

n ,Gm
n and Hm

n (details in Appendix A). To solve for these
constants, we employ the different boundary conditions ((2.2a,b), (2.5) and (2.6)), the
no penetration condition at the solid surfaces and the incompressibility condition, and
apply the orthogonality property of the Legendre polynomials. Due to the decaying nature
of these constants, we truncate the infinite series solution of the flow field at large
values of N that give an accuracy of O(10−6) between successive values of each of the
constants considered. The linear algebraic equations to be solved simultaneously for the
unknown coefficients have been arranged as a banded matrix of size 7N × 7N, to be
solved numerically. Higher values of ls causes convergence issues and an increasingly
higher number of terms have to be retained before they are solved numerically. It is to be
noted that the simplicity of a no-slip boundary condition at the plane wall allows one to
explicitly relate all the other constants in terms of a single constant (O’Neill 1964) and only
a matrix of size N × N has to be inverted to obtain all the 7N desired unknown constants.
In contrast, the slip boundary condition complicates the numerical task by demanding a
matrix inversion of size 4N × 4N. Here, the conversion of an original 7N × 7N system to
a smaller matrix size is performed by considering the following compatibility condition
(Loussaief et al. 2015):

∂uz

∂z
= ls

∂2uz

∂z2 . (2.9)

The constants Xm
n , Ym

n and Zm
n (A15)–(A16), associated with the boundary conditions

on the swimmer surface, take different forms for different sub-problems. They were
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derived by Shaik & Ardekani (2017) in relation to the ‘sq’ sub-problem. We derive the
corresponding constants for the ‘ex’ sub-problem as

X1
n = 0, Y1

n = −2
√

2S sinh (ξ0) (2n + 1) exp(−(n + 1/2)ξ0) and Z1
n = 0.

(2.10a–c)

The axisymmetry of the truncated squirmer surface velocity model (2.4) confines the
orientation vector (p̂) of the body-fitted x′z′ plane as shown in figure 1. Consequently,
its rotation is fixed along the y′ axis. Thus, the squirmer velocities can be written as

V (sq) = V(sq)
z′ ez′ + V(sq)

x′ ex′ and Ω(sq) = Ω
(sq)
y′ ey′ . (2.11a,b)

In contrast, the symmetry of the pure shear flow imparts a velocity to the inert sphere
parallel to the flow direction only, i.e. V (ex) = V(ex)

x ex, while the rotational motion of the
sphere is triggered along the vorticity direction, i.e. Ω(ex) = Ω

(ex)
y ey. Thus, the resultant

microswimmer velocities in the fixed frame take the form

V = (V(sq)
x′ cos(φp)+ V(ex)

x )ex + V(sq)
x′ sin(φp)ey + (V(sq)

z′ + V(ex)
z )ez, (2.12a)

Ω = −Ω(sq)
y′ sin(φp) ex + (Ω

(sq)
y′ cos(φp)+Ω(ex)

y )ey. (2.12b)

The details of the ‘squirmer’ thrust components (sub-problem ‘sq’), as well as the
hydrodynamic resistance factors (common to both sub-problems ‘sq’ and ‘ex’), can be
found in Poddar et al. (2020). The thrust components associated with the external flow
(sub-problem ‘ex’) have been evaluated by solving the Stokes problem of pure shear flow
around a fixed sphere (i.e. only a part of sub-problem ‘ex’), i.e. considering the boundary
condition

at r = 1, u = −u(ex)
∞ . (2.13)

The thrust force and torque due to the external flow are thus obtained as

F(ex)
(Thrust,x) = −

√
2πS(ls + cosh(ξ0)) sinh(ξ0)

∞∑
n=0

[G1
n − H1

n + n(n + 1)(A1
n − B1

n)],

(2.14a)

L(ex)
(Thrust,y) =

√
2πS sinh2(ξ0)

∞∑
n=0

[coth(ξ0){n(n + 1)(A1
n − B1

n)+ (G1
n − H1

n)}

− 2n(n + 1)C1
n − (2n + 1)(G1

n − H1
n)]. (2.14b)

It is to be noted that the thrust due to the external flow can be alternatively calculated by
using the Lorentz reciprocal theorem (LRT) as outlined in Poddar et al. (2020) for motion
near a slippery plane, thus bypassing the solution to the full Stokes problem. We use LRT
only to verify the results obtained by the full solution technique, as presented above.

2.3. Swimming trajectories
The quasi-steady dynamics of the microswimmer (Spagnolie & Lauga 2012; Uspal et al.
2015; Mozaffari et al. 2016; Walker et al. 2018) can be fully described by simultaneously
determining the location of the microswimmer in space r(t) along with its preferential
orientation with respect to the plane wall, represented by p̂(t). Thus, the trajectories can
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Slippery rheotaxis of microswimmers

be obtained by simultaneously solving the following set of coupled ordinary differential
equations:

dr(t)
dt

= V (r(t), p̂(t)) and
dp̂(t)

dt
= Ω(r(t), p̂(t))× p̂(t) (2.15a,b)

for a given set of initial conditions (r0, p̂0). The different translational and rotational
velocity components at each time instant can be obtained by a combination of their
self-propulsion and external flow counterparts, as discussed in (2.12). We neglect the
effects of stochastic forces on the microswimmer motion and compute the trajectories
considering the deterministic forces only (Shum et al. 2010; Spagnolie & Lauga 2012;
Mozaffari et al. 2016; Poddar, Bandopadhyay & Chakraborty 2021).

3. Results and discussion

In this section we illustrate the combined interaction of wall slip and a background
shear flow in dictating the locomotion characteristics of both puller- and pusher-type
microswimmers. The dimensionless analysis presented above can fully describe the
rheotactic swimming near a slippery plane using the parameters dimensionless shear
rate S , slip length ls and squirmer parameter β; in addition to the positional (r) and
orientational variables of the microswimmer (p̂). In the following subsections we discuss
the 3-D trajectories under the influence of different dimensionless parameters involved.
Subsequently, we summarize these effects in the form of regime maps and illuminate on
the governing physics behind contrasting motion characteristics.

In order to estimate the practical values of the parameter S = γ̇ a/vref , we consider
realistic ranges of the dimensional quantities in different microfluidic experiments related
to microswimmers (Kantsler et al. 2014; Ohmura et al. 2021), as stated below: shear rate
γ̇ = 0.1 s−1 to 20 s−1, velocity of a typical microswimmer vref = 10 to 100 μm s−1

and the length scale of the microswimmer a = 10 to 100 μm. Although S ranges in
O(10−2–102), a high value of the same parameter amounts to sweeping away of the
microswimmer along the external flow. Consequently, the competitive effects of the
shear flow and self-propulsion remain obscure. Thus, motivated by the earlier theoretical
investigations (Uspal et al. 2015; Walker et al. 2018), we choose S between 0 to 1.
Similarly, considering previous experimental observations, the dimensionless slip length
(ls) is varied between 0 and 10 (Zhu & Granick 2001; Tretheway & Meinhart 2002; Huang
et al. 2008).

3.1. Swimming states for puller microswimmers
Here, we investigate the modulations in the rheotactic states of puller microswimmers
brought in by the near-wall hydrodynamic slip. Consideration of only hydrodynamic forces
can resolve the microswimmer dynamics only upto a finite gap with the solid flat surface
(Shum et al. 2010; Spagnolie & Lauga 2012; Uspal et al. 2015) due to the requirement
of infinite computational resources. Thus, the present trajectory simulations based on
forces of pure hydrodynamics origin have been performed by considering a minimum
distance between the microswimmer surface and the wall as δ = 0.01. Consequently,
any swimming state indicating a downward descend below this gap is considered as a
‘crashing’ or ‘collision’ state (Uspal et al. 2015). This mathematical treatment is justified
since below this small gap, nanoscale interaction forces other than a hydrodynamic
origin (Klein, Clapp & Dickinson 2003) become prominent and are expected to influence
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Figure 2. Trajectories of a puller microswimmer (β = 7) in background pure shear flow (S = 0.1), starting
from the same set of initial conditions x0 = 0, y0 = 0, h0 = 2, φ0 = 270◦ but different pitch angles, (a,b) θ0 =
10◦ and (c,d) θ0 = 150◦. The effects of the slippery (ls = 1) and no-slip boundary conditions on the trajectories
are studied. Red solid trajectories are 3-D representations of motion. Blue and black dashed lines are the
projections of the 3-D trajectories on the xz and yz planes, respectively. Arrowheads represent the directions of
motion of the microswimmer.

the motion characteristics. However, to facilitate a direct comparison of the present
results with the previously reported no-slip cases (Uspal et al. 2015), we have not
considered any non-hydrodynamic repulsive force at the plain surface. On the other hand,
a microswimmer going beyond a height of h = 15 marks its ‘escape’ from the wall, similar
to earlier works (Ishimoto & Gaffney 2013; Poddar et al. 2020).

The 3-D trajectories of the microswimmer moving in a background pure shear flow with
or without near-wall slippage for different initial orientations (θ0) have been compared
in figure 2. Figure 2(a) demonstrates that near a no-slip wall the microswimmer swims
against the flow with damped amplitude oscillations in the vertical direction and finally
shows a sliding motion after reaching an out-of-plane angle φp = 83◦, keeping a constant
height h = 1.23 and orientation θp = 27.5◦. These motion characteristics have been
termed as ‘upstream rheotaxis’ in the literature (Uspal et al. 2015; Ishimoto 2017; Walker
et al. 2018).

In stark contrast, in the presence of wall slip (ls = 1), the microswimmer comes in close
proximity to the wall and descends below δ = 0.01, which indicates a ‘collision’ state in
the absence of an additional contact force (shown in figure 2b). It is worth mentioning that
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the cutoff distance for trajectory simulations leaves the possibility for the mathematical
model to predict more stable swimming states against the flow (rheotaxis) instead of the
collision states presented here if the numerical simulations were performed for wall gaps
below δ = 0.01. Thus, the collision states predicted through a pure hydrodynamic analysis
may not be observed if a non-hydrodynamic repulsive interaction at the wall is considered.

However, an altered orientation angle (θ0 = 150◦) results in an escaping trajectory
for the no-slip case, as presented in figure 2(c). Near the boundary, the microswimmer
experiences a strong counterclockwise (CCW) reorientation torque due to hydrodynamic
interaction with the wall. This enhanced torque has a tendency to rotate the director away
from the wall and the vertical velocity switches from Vz < 0 to Vz > 0 at a point, resulting
in a rapid reorientation of the microswimmer.

The collision states created by the wall slip in figures 2(b) and 2(d) suggest that the said
torque is weakened by the slip effects, thus failing to supply the required reorientation for
rheotactic sliding or escape. Further comparing the two collision states in the presence
of the wall slip, it is found that collision occurs much earlier with θ0 = 10◦ (at tc = 2.8)
than θ0 = 150◦ (at tc = 12), despite the director p̂ initially tilting more towards the wall
in the latter scenario. Here, tc refers to the collision time, which is the duration until the
microswimmer descends to δ = 0.01 within the flow field. This is due to the contrasting
consequences of the slip-induced torque in the two situations. While for θ0 = 10◦, the
said torque assists rotation towards the wall, it favours a director movement away from the
wall for θ0 = 150◦. However in the latter case, this slip-triggered torque is not sufficient
for escaping or rheotactic sliding since the cutoff height δ = 0.01 has already been
encountered.

A comprehensive understanding of the non-trivial motion characteristics due to the
diverse plausible combinations of the parameters ls, β and initial conditions demands a
large number of individual long-time trajectory simulations in three dimensions, calling for
a massive computational time. However, the analysis can be greatly simplified by using the
theory of dynamic systems and considering the symmetries in the system. In this regard,
we align the plane of microswimmer motion (x′z′) along the plane of the background
flow (xz), and thus preventing rotation out of the shearing plane. Hence, the pitch angle
θp fully parametrizes the angular orientation of the director p̂, without loss of generality.
As a result, the dynamics of the microswimmer can be described by a plane autonomous
system, i.e.

dh(t)
dt

= V(sq)
z′ + V(ex)

z and
dθp(t)

dt
= Ω

(sq)
y′ +Ω(ex)

y . (3.1a,b)

The relevance of the above dimensionally reduced system in predicting the behaviour
of the full system was thoroughly examined by Walker et al. (2018), and long-time
simulations of the full system (2.15) were found to be in accordance with the restricted
system.

3.1.1. Annihilation of rheotactic states
Here we provide a concise representation of puller dynamics by analysing the phase
portraits obtained from (3.1), the results of which are shown in figures 3(a)–3( f ). The
justification behind the consideration of the phase-plane dynamics instead of analysing
all possible out-of-plane dynamics has been discussed in Appendix B. The results
corresponding to the no-slip wall in figures 3(a) and 3(d) are in perfect agreement with
the work of Uspal et al. (2015). As shown in figure 3(a), in a quiescent environment
(S = 0), two stable dynamical attractors (black square markers) appear between θp = 0◦
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Figure 3. Phase space diagrams (θp-h plot) for the reduced dynamical system in the x–z plane for a puller
microswimmer (β = 7). Absence of external flow presented in (a–c) for ls = 0 , 0.36 and 1 slip lengths.
The dimensional shear rate has been chosen as S = 0.1 in (d–f ) along with the same environment for the
microswimmer. Green circular markers indicate the rheotactic attractor whereas black squares imply the
non-rheotactic attractor that is unstable for φ /= 0. (g) Range of the rheotaxis zone is shown for different slip
lengths before annihilation by the plotting vertical distance (h∗) of the rheotactic attractor for different slip
lengths. (h) Behaviour of the saddle point (near θ∗ > 270◦) is plotted for different slip lengths ls. The green
and red superimposed lines in (d, f ), respectively, denote the sample phase space trajectories starting from
h0 = 2 and θp,0 = 153.8◦.

and 180◦ at mirror symmetric locations about θp = 90◦. These points indicate the final
swimming states of the microswimmer as sliding at a steady height and fixed orientation
but in opposite directions along the x axis. However, the invariance of the dynamic system
along x in the absence of a background flow leads to the same sense of these swimming
states, similar to the reported results of Uspal et al. (2015). This stable swimming state is
a sole consequence of the propulsive torque generated beyond a critical value of β (Li &
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Slippery rheotaxis of microswimmers

Ardekani 2014; Poddar et al. 2020). In addition, two unstable fixed points (red triangles)
and a saddle point (denoted with an orange cross) are observed in the same phase portrait.
The slip condition at the wall (ls > 0) severely influences the dynamics, as can be found by
comparing figures 3(b) and 3(c) with figure 3(a). For a low value of slip length ls = 0.36,
the unstable fixed points disappear from the phase portrait and the steady-state height (h∗)
corresponding to the attractors comes downward. While this trend of downward shifting
fixed points retained for higher slip lengths (e.g. ls = 1 in figure 3c), the microswimmer
gradually descends below a height δ = 0.01, and finally, collides against it, thus wiping
out the attractors from the phase portrait. As a concurrent effect, the unstable fixed points
are also suppressed.

The physics behind the above observations can be described by analysing the time
variations of different velocity components of the microswimmer, as shown in figure 4.
Figure 4(c) shows that the rotational velocity due to squirming action (Ω(sp)

y ) has a
clockwise (CW) magnitude at the initial times, leading to a rotation of the director p̂
towards the wall. A further illustration of figure 4(d) reveals that with the increase in time,
the CW magnitude strengthens for a slip length of ls = 1. On the other hand, consideration
of the other source of microswimmer rotation, i.e. the background shear flow, reveals that
Ω
(ex)
y remains unaffected by the slip length in the far field (δ → ∞) and attains a constant

magnitude Ω(ex)
y = S/2. However, Ω(ex)

y becomes a function of ls in the wall-adjacent
region. It was shown that the magnitude of Ω(ex)

y decreases with increasing slip length,
with a maximum change (for δ = 0.01) of 3.7 % and 11.7 % for ls = 1 and 10, respectively
(Loussaief et al. 2015).

The velocity component in the vertical direction Vz remains unaffected by the
background shear flow. In the absence of wall slip, the vertical velocity is less reduced
as compared with the ls = 1 condition (see figure 4d), which retains the microswimmer
at a greater height at the collision time ‘tc’. A simultaneous strong CCW rotation of the
director (Ωy > 0) lifts off the microswimmer from the collision zone and subsequently
imparts a vertically upward velocity (Vz > 0). After the microswimmer attains a certain
height, the transition from CCW to CW rotation takes place, which facilitates switching of
the vertical motion (Vz > 0 to Vz < 0). This cycle continues with a damped amplitude of
oscillations and finally leads to the rheotactic attractor. In comparison, stronger magnitudes
of the CW rotation (Ωy < 0) and downward movement (Vz < 0) results in the presence of
wall slip. Therefore, at time tc, the height from the wall (h) is also reduced under the action
of slip, and, as a consequence, the microswimmer does not face enough force required to
run away from the trapped condition of crashing against the wall.

Although the velocity component of the microswimmer parallel to the wall Vx does not
directly influence the phase portraits, the time variation of the microswimmer position
along its trajectory is highly dependent on it. In the absence of shear flow, the wall slip
causes drastic changes in the near-wall self-propulsion velocity of the squirmer (V(sq)

x ),
with V(sq)

x becoming higher or lower than the far-field velocity V(sq)
x |z→∞ = cos(θp),

depending on the influence of the wall slip on the propulsive thrust and the resistance
factors (Poddar et al. 2020). Now, a background shear flow always contributes a positive
velocity V(ex)

x for S > 0 irrespective of the orientation of the director or the slip length.
However, the magnitude of V(ex)

x is highly dependent on slip length in the near-wall
zone (Loussaief et al. 2015). It is found that the magnitude of V(ex)

x enhances with a
corresponding increase in slip length. For example, the said enhancement is 257.62 %
for ls = 1 and 1989.68 % for ls = 10 at the minimum wall gap considered, i.e. δ → 0.01.
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Figure 4. Time variation of different microswimmer velocity components corresponding to the sample
trajectories highlighted in figure 3. Panels (a,c) correspond to no-slip results, while (b,d) correspond to the
case with ls = 1. In each panel, the contributions from shear flow and squirming action are also presented.
Panel (e) shows the behaviour of Vz for ls = 0 (dashed green line) and for ls = 1 (red line). The blue dashed
line indicates the collision time of the microswimmer.

Thus, different combinations of ls and S would cause drastic modulations in the overall
velocity Vx of the microswimmer up or against the flow, the direction of which is decided
by the relative importance of the V(sq)

x and V(ex)
x for the situation under consideration.

For the case demonstrated in figure 4(a), the sign of Vx remains unchanged (<0) under
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the additional shear component V(ex)
x but faces significant changes in magnitude and

modulation of the amplitudes of damped oscillations in Vx.
The inclusion of background shear flow retains the attractors for puller dynamics

at almost the same locations, but the dynamic properties of these attractors become
contrasting in nature (compare figures 3a and 3d). The attractor located in the region
90◦ < θp < 180◦ (green dot in figure 3d) was shown to be a global attractor displaying
stability even against out-of-plane (xz) perturbations (Uspal et al. 2015). This attractor
represents a sliding state of the microswimmer with its orientation vector directed against
the background flow and towards the wall. This motion behaviour of the microswimmer
is known as the upstream rheotaxis. In stark contrast, the attractor at θp < 90◦ is unstable
for out-of-plane perturbations (φ /= 0) and remains stable for in-plane perturbations only
(Uspal et al. 2015). The rheotactic attractor comes with an accompanying saddle point just
above it (black cross-marker in the figure). In addition, the existing saddle point, which
appears at 270◦ for S = 0, shifts towards the right of the phase portrait due to the action
of the shear flow. For example, with S = 0.1, the orientation angle corresponding to this
saddle point shifts from 270◦ to 283◦.

The slip-induced modulations to the near-wall rheotaxis discussed above are also
highlighted in figures 3(e) and 3( f ) for two different values of slip length ls = 0.36 and 1,
respectively. It is found that the wall slip causes a downward shift of the rheotactic attractor
and finally leads to its annihilation, keeping its angular location unaffected. The effect of
increasing slip length on the height of the rheotactic attractor h∗ has been portrayed in
figure 3(g). It depicts that h∗ decreases monotonically until a threshold value of the slip
length ls ≈ 0.5 is reached and causes the disappearance of the rheotactic state beyond this
threshold. It is interesting to note that the shear-induced saddle point above the rheotactic
attractor hardly faces any change in its location in the phase portrait for non-zero slip
lengths. However, the shear-induced rightward shifting of the other saddle is suppressed
with increased slip length, as shown in figure 3(h). It can also be observed from the same
figure that the saddle point orientation saturates to a value of ≈273◦ for increasing slip
lengths. Furthermore, similar to the attractors, this saddle point also moves downward.

3.1.2. Emergence of new rheotactic states
Here, we elaborate on the slip-induced transitions in puller dynamics at a higher shear
strength S = 0.15. The phase portraits in figures 5(a) to 5(c) highlight three different
cases of slip length ls = 0, 0.137 and 1, respectively. In addition, figure 5(d) displays
three contrasting in-plane trajectories exhibited by microswimmers starting from the same
initial condition h0 = 2 and θ0 = 150.69◦ but for varying slip lengths at the wall. The
corresponding phase space trajectories (θp vs h) have also been superimposed on the phase
portraits. Unlike the situation presented for S = 0.1 in § 3.1.1, upstream rheotaxis is not
observed for a no-slip wall when S = 0.15. This phenomenon can be substantiated by
considering the relative importance of the two driving mechanisms involved, namely, the
squirming action and the background flow. The term proportional to β in the expression
of squirmer surface velocity (2.4) represents the intensity of vorticity generated by the
self-propulsion mechanism. It was identified that the hydrodynamic rotation of a squirmer
in wall proximity is considerable only when β is sufficiently high (Ishimoto & Gaffney
2013). Thus, increasing the shear strength (S) calls for a higher value of the squirmer
parameter (here β > 7) so that the necessary competitive behaviour of the two flows can
be achieved. As a result, the rotational dynamics imparted by the shear flow dominate,
leading to the disappearance of the rheotactic attractor, and the microswimmer escapes
from the near-wall region.
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Figure 5. Phase space diagrams for (a) ls = 0, (b) ls = 0.14 and (c) ls = 1. (d) In-plane trajectories (x vs
z) of the microswimmer for these slip lengths when released from location h0 = 2 and θ0 = 150.7◦. The
corresponding phase space trajectories have been highlighted in (a–c). Other parameters β = 7 and S = 0.15
are common for all the panels. Initial launching conditions are highlighted with circular yellow dots. Note
that we have shown the phase portraits only in the region 90◦ ≤ θp ≤ 270◦ and h ≤ 4 in order to focus on the
rheotactic attractor.

Although the interaction between the shear flow and squirming action in this case is not
sufficient to result in a rheotactic attractor, the said interaction is non-trivially intervened
by the wall slip, and a new rheotactic attractor comes into existence. This outcome
demonstrated for a low value of slip length ls = 0.14 in figures 5(d) and 5(b), constitutes
the most counterintuitive result of the present work. In this case, the microswimmer
reaches a steady sliding state opposite to the flow direction with a fixed height h∗ = 1.12
and orientation θ∗

p = 153.46◦. The saddle point accompanying the rheotactic attractor has
been highlighted with a black cross in 5(b). While annihilation of the rheotactic attractor
can be attributed to the mathematical limitation of predicting motion behaviour below a
cutoff height (δ = 0.01), the ‘emergence’ is a novel physical consequence of the combined
interplay between slip and shear.

In order to bring out the contrasting physics of the in-plane dynamics with or without the
wall slip, we appeal to the sample trajectories highlighted in figure 5(d). For the no-slip
case, the combination of the squirming action and shear flow results in a strong CCW
rotation throughout the trajectory of the microswimmer. This causes the director p̂ to point
away from the wall even if the swimmer is very close to the wall. As an ensuing effect,
the downward velocity (Vz < 0) also reduces in magnitude, and switching in the direction
of the vertical motion sets in at θp ≈ 153◦, h = 1.21. The lack of a mechanism capable of
triggering an opposing propulsive torque causes the microswimmer to finally escape from
the wall. Now, in the presence of wall slip, both the propulsive torques due to the squirming
action and shear flow are greatly modified. As a net effect, the microswimmer gains a
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tendency to rotate its director in the opposite direction (i.e. CW), with an accompanying
downward movement of the microswimmer. Subsequently, a switching of vertical motion
takes place, followed by an oscillatory motion with damped amplitude, leading to a stable
rheotactic state, similar to the discussion in § 3.1.1.

With further enhancement in the slip length (ls), however, the height (h∗) of the
rheotactic attractor reduces, and finally, a collision state results when a critical slip length
is exceeded (see figure 5c). This result unravels the fact that the slip-induced rheotactic
attractors are observed only for some intermediate range of slip lengths pertaining to a
specific value of the dimensionless shear rate S .

The slip-induced modulations to the near-wall rheotaxis discussed above are also
highlighted in figures 3(e) and 3( f ) for two different values of slip length ls = 0.36 and 1,
respectively. It is found that the wall slip causes a downward shift of the rheotactic attractor
and finally leads to its annihilation, keeping its angular location unaffected. The effect of
increasing slip length on the height of the rheotactic attractor h∗ has been portrayed in
figure 3(g). It depicts that h∗ decreases monotonically until a threshold value of the slip
length ls ≈ 0.5 is reached and causes the disappearance of the rheotactic state beyond this
threshold. It is interesting to note that the shear-induced saddle point above the rheotactic
attractor hardly faces any change in its location in the phase portrait for non-zero slip
lengths. However, the shear-induced rightward shifting of the other saddle is suppressed
with increased slip length, as shown in figure 3(h). It can also be observed from the same
figure that the saddle point orientation saturates to a value of ≈273◦ for increasing slip
lengths. Furthermore, similar to the attractors, this saddle point also moves downward.

3.1.3. Summary of slippery rheotaxis for pullers
In order to obtain a comprehensive understanding of the combined effects of the key
dimensionless parameters, i.e. slip length ls and shear rate S , we analyse the in-plane
phase portraits described by (3.1) for all possible combinations of ls and S in the regime
0 ≤ ls ≤ 10 and 0 ≤ S ≤ 1, and the results are summarized in figure 6. In this figure we
show regime maps demarcating different motion characteristics for a wide range of values
of positive β.

In the absence of the background flow, mirror symmetric sliding states (shown with red
dots) are observed, as described earlier in figures 3(a) and 3(b). The transition from the
red to grey zone corresponding to the S = 0 case signifies the suppression of attractors
by wall slip, the details of which have been shown in figure 3(c). One of these mirror
symmetric sliding states, located in the pitch angle range 90◦ ≤ θp ≤ 180◦, transforms
into the upstream rheotactic state upon strengthening of the external shear (S > 0).
Thus, a band of rheotactic states is developed in the (ls,S) map, dividing two types
of non-rheotactic zones (marked as A and B in the regime maps) in figure 6. Zone B
corresponds to suppression of the rheotactic attractors and occurrence of collision states
due to high slip length. Zone A develops above a critical shear rate (Scr), where external
shear washes out the rheotactic states to result in escape states in the absence of adequate
wall slip. The influence of the squirmer parameter β can be observed by comparing the
regime maps for low to high values of the same parameter. While in the limit of a low value
of β (e.g. β = 3 in figure 6a) zone B is absent, the other extreme condition of very high
β (e.g. β = 30 in figures 6e) does not exhibit the characteristics of zone A. The sequential
appearance/disappearance of the non-rheotactic zones A and B as well as the different
spans of the rheotactic zone in these panels provide a general understanding of the impact
of β on the rheotactic states in the presence of wall slip.
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Figure 6. Regime maps demarcating different motion characteristics of puller microswimmers with (a) β = 3,
(b) β = 4.5, (c) β = 6, (d) β = 7 and (e) β = 30. The filled green circles represent parametric combinations
(ls,S) giving rise to upstream rheotaxis, while the grey triangular markers correspond to non-rheotactic states,
i.e. either collision or escape. The blue dashed lines mark the critical dimensionless shear rates Scr (= 0.04,
0.1 and 0.14 for (b), (c) and (d), respectively) required for achieving a rheotactic state caused exclusively by the
presence of slip. The red dots indicate the mirror symmetric sliding states in the absence of shear flow. Also,
A and B zones in each figure denote two types of non-rheotactic zones.

It is noteworthy that below Scr the rheotactic attractors are present at lower values of slip
length for intermediate magnitudes of β (see figure 6b–d), even for a no-slip condition.
Here, the insufficient strength of the background shear flow is unable to wash out the
steady-state motion of the microswimmer. However, upstream rheotaxis is reported for
higher values of the slip length above the critical shear rate (e.g. for β = 7, at S = 0.15
the squirmer exhibits upstream steady rheotactic motion at ls = 0.07). Thus, increasing the
shear rate shifts the rheotactic zone towards the right, which implies that strengthening the
external shear requires an intense hydrodynamic interaction between the squirming action
and the boundary slip for rheotaxis to occur.
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The critical shear rates Scr increase with the squirmer parameter β. For instance, a
comparative analysis of figures 6(b)–6(d) brings out that Scr is raised from 0.04 for β =
4.5 to 0.14 for β = 7. Moreover, a lower range of the squirmer parameter widens the span
of the rheotactic zone along the ls axis.

3.2. Swimming states for pusher microswimmers
The phase portrait of a pusher, in the absence of a non-hydrodynamic repulsive force
at the wall, can be obtained by simply taking a mirror image of the phase portrait of
a corresponding puller and reversing the streamlined directions (not shown for brevity).
This is due to the phenomenon of puller–pusher duality associated with time reversal
(Ishimoto 2017; Poddar et al. 2020). Similar to Ishimoto (2017), we find a fixed point
(θ∗

p , h∗) for a puller with a squirmer parameter β also indicating the existence of a fixed
point at (−θ∗

p , h∗) for a corresponding pusher with a squirmer parameter −β. However,
the stability property of the fixed point is inverted for the pusher. This indicates the
absence of any stable swimming state in the case of pusher microswimmers, reaffirming
the observations of Walker et al. (2018) related to virtual Leishmania promastigotes.
In contrast to the scenario depicted above, stable swimming trajectories were reported
for pusher swimmers under the action of short-range, non-hydrodynamic repulsive
interactions with the nearby wall (Spagnolie & Lauga 2012; Lintuvuori et al. 2016;
Walker et al. 2019; Poddar et al. 2020). The distinctive near-wall swimming characteristics
induced by the additional repulsive interactions irrespective of the background flow were
termed as thigmotaxis (Ishimoto 2017).

In an effort to investigate the combined effects of background flow and the slip condition
on the contrasting pusher trajectories, we incorporate the following form of repulsive
force (Spagnolie & Lauga 2012): F rep = (α1 exp (−α2δ)/1 − exp (−α2δ))ez, where α1 =
100, α2 = 100 have been chosen to ensure a minimum wall-swimmer distance of δ = 0.01.
The repulsive nature of wall breaks the puller–pusher duality (Ishimoto 2017), and the
pusher trajectories can no longer be predicted from the puller trajectories presented in
§ 3.1. This additional repulsive force has the effect of stabilizing the motion for both pullers
and pushers, and thus, stable fixed points can be observed for both swimmer types. The
pushers also show the unique trend of attraction towards the wall even if the director is
initially tilted away from the wall (θ0 > 180◦) for both no-slip (Lintuvuori et al. 2016) and
slip conditions (Poddar et al. 2020).

Pusher microswimmers have been found to exhibit three types of trajectories – escape,
upstream oscillations with decaying amplitudes (attractors) and periodic oscillations (limit
cycles) in the upstream direction for different combinations of shear rate S and slip length
ls. The regime map in figure 7(a) describes the different swimming states depicted by a
pusher (β = −7) for different plausible combinations of the parameters S and ls when
launched from the same initial state θ0 = 187◦, h0 = 2. Here, the upstream rheotaxis
(damped oscillations) and undamped oscillations have been numerically distinguished by
setting a tolerance of 5 % on the amplitude difference between the first and last oscillations.
In the absence of a background shear (S = 0), the brown markers denote the mirror
symmetric damped (for lower ls) and periodic (for higher ls) oscillatory features of the
trajectories.

For S > 0, the figure shows that lower values of slip length result in undamped
oscillations in the upstream direction (red markers) when the external flow intensity is in
the range S � 0.01. This trajectory feature gives rise to a limit cycle in the phase portrait.
For this low range of S , upon crossing a critical slip length ls ≈ 0.1, a transition from
undamped to damped oscillations takes place in the upstream direction, thereby giving
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Figure 7. (a) Regime map of a pusher (β = −7) type microswimmer launched from the initial condition
θ0 = 187◦, h0 = 2. Green circular markers represent damped oscillation of the trajectories in the upstream
direction, whereas black square markers and red triangular markers represent escaping and periodic oscillation
behaviours, respectively. The brown markers at S = 0 denote the mirror symmetric damped or periodic
oscillation in the absence of a background shear. Beyond S = 0.13, for all slip lengths, trajectories become
escaping in nature; therefore, in the case of pushers the critical shear line is marked in between S = 0.13 and
0.14. (b) Three different values of shear rate (marked with square, triangular and circular enclosures in three
different domains) are chosen at ls = 0.1 for plotting the trajectories in the xz plane. The inset in (b) is a phase
space trajectory, showing the attractor for S = 0.01, limit cycle for S = 0.1 and escaping nature for S = 0.15.

rise to rheotactic attractors. The phase space trajectory in the inset to figure 7(b) (green
line) exemplifies the above-mentioned rheotactic attractor for S = 0.01.

Further enhancement of S beyond S = 0.01 drives the microswimmer to escape (black)
from the near-wall region when the no-slip condition applies at the wall. However, a
simultaneous enhancement in ls and S causes a transition from escape to undamped
oscillating trajectories (red). The line separating these two contrasting zones in the regime
map thus becomes a piecewise function of both ls and S until a critical shear rate
Scr = 0.13 is encountered. Beyond this limit, all combinations of ls and S promote only
the escaping trajectories of the microswimmer. An example of escaping trajectory (black)
at ls = 0.1 and S = 0.15 has been shown in figure 7(b). It is also identified from the
regime map that the critical slip length ls,cr required for the transition from undamped
oscillations (red) to rheotactic states (green) increases as the external flow strengthens.
The uneven phase boundaries in the regime map as a function of both slip length and shear
strength indicate the rich interplay between the two competing mechanisms in deciding the
swimming state of the microswimmer.

The variations of swimming states for different intensities of external flow can be
explained by comparing the trajectories in figure 7(a). For a high shear rate S = 0.15,
a strong CW rotationΩ(ex)

y overwhelms the tendency of the squirmer to rotate towards the
wall under a CCWΩ

(sq)
y . Thus, an escaping trajectory results. However, at an intermediate

strength of the external shear rate (S = 0.1) the Ω(sq)
y and Ω(ex)

y become competitive in
magnitudes, as highlighted in figure 8(b). Although the microswimmer initially rotates
with a resultant CW Ωy, the enhanced near-wall hydrodynamic interaction attracts the
microswimmer towards the wall with Vz < 0. A subsequent repulsive interaction imparts
an upward motion to the microswimmer. Upon overcoming the short-range repulsive
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Figure 8. Variation of rotational velocity and its components along the trajectory of a pusher (β = −7)
launched at h0 = 2 and θ0 = 187◦ under external shear (S = 0.1) and slip length (a) ls = 0.1 and
(b) ls = 0.15.

interaction, the microswimmer again moves downward. This motion behaviour becomes
periodic in nature and undamped oscillations emerge.

The mechanism behind rheotactic migration found exclusively in the presence of
hydrodynamic slip can be explained by considering the effects of ls on the rotational
velocity components Ω(sq)

y and Ω(ex)
y (see figure 8b) adjacent to the wall where repulsive

interaction with the wall plays a prominent role. As the slip length crosses a threshold,
the CCW rotation due to self-propulsion (Ω(sq)

y ) is perfectly balanced by an opposing
shear-induced rotation Ω

(ex)
y in the CW direction. On the other hand, the downward

propulsive thrust is balanced by the repulsive forces, leading to a net zero velocity in the
vertical direction. Consequently, a steady-state stable swimming results.

4. Conclusions and remarks

We have performed a theoretical investigation to elucidate the combined interplay of a
background flow field and hydrodynamic slippage at a nearby plane wall in dictating
the swimming characteristics of a model microswimmer. The self-propelling features of
the microswimmer have been captured through the squirmer surface velocity condition
at the sphere surface, while the Navier slip condition has been employed to track the
surface wettability condition at the wall. We have presented an exact solution of the
Stokes flow equation by exploiting the eigenfunctions in the bispherical coordinate system.
Consequently, all the sub-problems associated with the flow dynamics have been summed
up by exploiting the linearity of the flow problem. Furthermore, going beyond the widely
employed image-singularity-based singularity analysis (Lopez & Lauga 2014) and the
assumption of an asymptotically small slip length, we have provided a comprehensive
solution of the flow problem for a diverse range of distances from the wall and arbitrary
slip lengths.

The quasi-steady dynamics of a puller in three dimensions explicate that the
enhancement of wall slip transforms an escaping or rheotactic trajectory (depending upon
the orientation of the director) to a crashing one, as shown in figure 2. Subsequently, we
have restricted the swimmer dynamics in the plane of shear and simplified the analysis
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based on phase portraits of a plane autonomous system. Our analysis aptly predicts
near-wall trapping tendency of a puller (Li & Ardekani 2014; Daddi-Moussa-Ider et al.
2018; Poddar et al. 2020) in the absence of an external flow field. Correspondingly, a
pair of oppositely directed mirror symmetric sliding states in the phase portrait has been
reported. However, the application of a small strength of background flow alters one
mirror symmetric sliding state to a rheotactic state, favoured by the orientation of the
director (figure 3a,d). It is further reported that the rheotactic attractor appears along
with a saddle point without affecting other fixed points in the phase portrait. Although
the upstream rheotaxis of squirmers can be observed even in the presence of a no-slip
wall (Ishimoto 2017; Walker et al. 2018; Uspal et al. 2015; Sharan et al. 2022), here,
we bring out the immense characteristic modulation of rheotactic conditions and new
rheotactic states triggered by finite slippage at the wall. Additionally, a minor enhancement
of slip length (ls) from the no-slip condition draws the rheotactic attractor towards the
wall (figure 3b,e) due to the action of an additional CW torque, and finally, the attractor
annihilates (figure 3c, f ) at the minimum separation distance (δ = 0.01). The evolution of
velocity componentsΩy and Vz (figure 4c–e) reveal that the slip-mediated torque enhances
the negative magnitude of the corresponding velocities, resulting in the squirmer to collide
before the CCW shear-assisted torque could reverse the motion direction.

We have reported the existence of a critical shear rate Scr, beyond which the
slip-induced swimming characteristics bifurcate into two distinct regimes of emergence
and annihilation (see regime maps in figure 6a,b). Initially, the strength of the background
flow washes out the microswimmer due to insufficient torque triggered by low strengths
of wall slip. However, the subsequent increase in slip length opens up a window of
parametric combinations of S and ls by virtue of a strengthened CW torque acting on the
microswimmer. As a consequence, the shear-dominated escaping trajectories transform
to upstream rheotaxis for an intermediate zone of slip lengths, whereas crashing states
reappear at higher values of ls due to wall contact.

In line with the earlier investigations (Lintuvuori et al. 2016; Poddar et al. 2020), we have
observed both damped and undamped oscillations of pushers near a no-slip repulsive wall.
The combined presence of slip and shear modulates the interaction between a repulsive
wall and the hydrodynamic forces in such a fashion that many of the escaping and
undamped oscillation states are converted to upstream damped oscillations or rheotaxis
(figure 7a). Similar to the pullers, above a limiting strength of background shear, the
microswimmer is forced to swim away from the wall (i.e. escape) due to a weaker
contribution of the opposing slip-mediated torque (figure 7a). Thus, the pushers exhibit
a set of rich thigmotaxis-assisted (Ishimoto 2017) motion governed by the strengths of the
wall slip and background flow. The genesis of new rheotactic states for both pullers and
pushers as an exclusive outcome of hydrodynamic slip is termed as slippery rheotaxis in
the present work.

It is important to note that the current results of high wall slip in the micrometre
scale should be used cautiously for a nano-engineered surface having inhomogeneous
surface asperities of the order of the slip length (Choi & Kim 2006; Joseph et al. 2006).
Moreover, a further detailed study on microswimmer movement near superhydrophobic
confinements would account for the variable slippery condition along the wall (Ybert
et al. 2007; Asmolov et al. 2013; Pimponi et al. 2014; Hu et al. 2015; Nizkaya et al.
2015). However, the present assumption of uniform surface slip remains applicable
to the scenarios where the surface is atomically smooth, and ‘intrinsic slippage’ is
exhibited due to monolayers of hydrophobic molecules (Huang et al. 2008; Sega et al.
2013; Gentili et al. 2014). Thus, the present study provides fundamental insights into
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the various complicated motion characteristics near hydrophobic confinements in the
presence of a background flow encountered in diverse in vivo and in vitro conditions.
Furthermore, the intriguing locomotion characteristics of spherical microswimmers
regulated by well-defined combinations of the background flow strength (S) and slip
length (ls) may motivate the choice of parameters in future experiments on the navigation
of microswimmers in complex and confined environments, and sorting of microswimmers
based on the knowledge of sustained motion against the flow. In addition, it would be
interesting to analyse the effects squirming modes of higher orders (Pak & Lauga 2014)
and the role of non-spherical body shapes of micro-organisms (Shum et al. 2010; Ishimoto
& Gaffney 2013) on the complicated flow physics considered in the present model.
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Appendix A. Details of the bispherical eigenfunction expansion

The pressure and velocity field (in cylindrical coordinates) of the fluid can be expressed as
(Lee & Leal 1980)

p =
∞∑

m=0

pm(ξ, η) cos(mφ + αm), (A1)

pm = 1
c

√
(cosh(ξ)− ζ )

∞∑
n=m

[
Am

n sinh(βnξ)+ Bm
n cosh(βnξ)

]
Pm

n (ζ ), (A2)

u = ρp
2

+ u0 cos(α0)+ 1
2

∞∑
m=1

(γm + ξm) cos(mφ + αm), (A3)

v = v0 sin(α0)+
∞∑

m=1

(γm − ξm) sin(mφ + αm), (A4)

w = zp
2

+
∞∑

m=0

wm cos(mφ + αm), (A5)

where Pm
n denotes the associated Legendre polynomial of the first kind, ζ = cos(η) and

βn = n + 1/2. In addition, different terms in the above series are defined as

u0 =
√

cosh(ξ)− ζ

∞∑
n=1

[E0
n sinh(βnξ)+ F0

n cosh(βnξ)]P1
n(ζ ), (A6)

v0 =
√

cosh(ξ)− ζ

∞∑
n=1

[G0
n sinh(βnξ)+ H0

n cosh(βnξ)]P1
n(ζ ), (A7)
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γm =
√

cosh(ξ)− ζ

∞∑
n=m+1

[Em
n sinh(βnξ)+ Fm

n cosh(βnξ)]Pm+1
n (ζ ), (A8)

χm =
√

cosh(ξ)− ζ

∞∑
n=m−1

[Gm
n sinh(βnξ)+ Hm

n cosh(βnξ)]Pm−1
n (ζ ), (A9)

and

wm =
√

cosh(ξ)− ζ

∞∑
n=m

[Cm
n sinh(βnξ)]Pm

n (ζ ). (A10)

The surface velocity components of the swimmer are expressed as

us =
∑

m

um
s (ξ, η) cos(mφ + αm), (A11)

vs =
∑

m

vm
s (ξ, η) sin(mφ + αm), (A12)

ws =
∑

m

wm
s (ξ, η) cos(mφ + αm), (A13)

where for m = 0,

u0
s =

√
cosh(ξ0)− ζ

∑
X0

n(ξ)P
1
n(ζ ), (A14a)

v0
s =

√
cosh(ξ0)− ζ

∑
Y0

n (ξ)P
1
n(ζ ), (A14b)

for m ≥ 1,

um
s + vm

s =
√

cosh(ξ0)− ζ
∑

Xm
n (ξ)P

m+1
n (ζ ), (A15a)

um
s − vm

s =
√

cosh(ξ0)− ζ
∑

Ym
n (ξ)P

m−1
n (ζ ), (A15b)

for all m,

wm
s =

√
cosh(ξ0)− ζ

∑
Zm

n (ξ)P
m
n (ζ ). (A16)

Appendix B. Comparison between the in-plane dynamics and the full dynamics

Here, we compare the trajectories of a puller microswimmer (β = 7) obtained from full
3-D simulations with those obtained from its in-plane (plane of external flow) dynamics,
i.e. in the xz plane. The projections of the 3-D trajectories with φ0 = 15◦ on the phase
plane (θp − h) have been superimposed on the phase portraits for the in-plane dynamics
in figures 9(a)–9(c). Also, the xz projections of the 3-D cases have been compared with
the 2-D simulations obtained by setting φ0 = 0, i.e. the plane of the external flow. It is
observed that the in-plane dynamics predict the same swimming states and the differences
between the 2-D and 3-D results are not significant. The non-existence of any new
dynamic behaviour can be further confirmed from Uspal et al. (2015), who analysed the
trajectories for 0◦ < φ0 < 360◦. Hence, it is justified to analyse the motion characteristics
by considering the phase-plane dynamics, as presented in figures 3–7. This reduces the
computational time and the different trajectories can be classified by analysing the cases
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Figure 9. Phase portraits describing different motion characteristics at S = 0.15 for different slip lengths
(a) ls = 0, (b) 0.14 and (c) 1. In each case, sample phase-plane trajectories (θ0 = 150.7◦, h0 = 2) are marked
with red, and the projections of the 3-D trajectories for φ0 = 15◦ on the phase plane (θp − h) are shown as
black dashed lines. The corresponding xz projections of the 3-D cases are compared with the 2-D simulations
obtained by setting φ0 = 0 in (d–f ).

with φ0 only. For example, the number of swimming states computed to plot figure 6(d)
is 42 × 91, where the numbers denote the instances of ls and S considered, respectively.
Here, an analysis of all out-of-plane dynamics would require classifying 42 × 91 × 17
swimming states, considering 17 equally spaced values of φ0 similar to (Uspal et al. 2015),
thereby indicating 61,152 additional cases to be analysed.
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