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ON A CHARACTERIZATION OF REAL HYPERSURFACES 
OF TYPE A IN A COMPLEX SPACE FORM 

U-HANG KI AND YOUNG-JIN SUH 

ABSTRACT. In this paper, under certain conditions on the orthogonal distribution 
7Q, we give a characterization of real hypersurfaces of type A in a complex space form 
Mn(c), c ^ 0. 

0. Introduction. A complex ^-dimensional Kaehlerian manifold of constant holo-
morphic sectional curvature c is called a complex space form, which is denoted by Mn(c). 
A complete and simply connected complex space form consists of a complex projective 
space PnC, a complex Euclidean space Cn or a complex hyperbolic space HnC, accord­
ing as c > 0, c — 0 or c < 0. The induced almost contact metric structure of a real 
hypersurface M of Mn(c) is denoted by ((/>, £, 77, g). 

There exist many studies about real hypersurfaces of Mn(c). One of the first researches 
is the classification of homogeneous real hypersurfaces of a complex projective space 
PnC by Takagi [13], who showed that these hypersurfaces of PnC could be divided into 
six types which are said to be of type A\, A2, B, C, D, and £, and in [3] Cecil-Ryan and 
[6] Kimura proved that they are realized as the tubes of constant radius over Kaehlerian 
submanifolds. Also Berndt [1], [2] showed recently that all real hypersurfaces with con­
stant principal curvatures of a complex hyperbolic space HnC are realized as the tubes of 
constant radius over certain submanifolds when the structure vector field £ is principal. 
Nowadays in HnC they are said to be of type Ao, A\, A2, and B. 

Now, let us consider the following conditions that the second fundamental tensor A 
of M in Mn(c), c ^ 0 may satisfy 

(0.1) (VXA)Y= - ^ { r / ( W X + g(0X,y)C}, 

(0.2) g((A<l>-<l>A)X9Y)=0, 

for any tangent vector fields X and Y of M. 
Maeda [8] investigated the condition (0.1) and used it to find a lower bound of || VA|| 

for real hypersurfaces in PnC. In fact, it was shown that ||VA||2 > ^{n — 1) for such 
hypersurfaces and the equality holds if and only if the condition (0.1) holds. Moreover, 
in this case it was known that M is locally congruent to real hypersurfaces of type A1, and 
A2. Also Chen, Ludden and Montiel [4] generalized this inequality to real hypersurfaces 
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in HnC and showed that the equality holds if and only if M is congruent to of type A0, 
Ai, andA2. 

On the other hand, the condition (0.2) was considered by Okumura [11] for c > 0, 
Montiel and Romero [10] for c < 0 respectively. Also it was known that a real hypersur-
face satisfying (0.2) is locally congruent to one of type Ao,A\, and A-i. Now let us define 
a distribution To by To(x) = {XG TXM | X _L £(*)} of a real hypersurface M of Mn(c), 
c ^ O , which is orthogonal to the structure vector field £ and holomorphic with respect 
to the structure tensor </>. If we restrict the properties (0.1) and (0.2) to the orthogonal 
distribution 7b, then for any vector fields X, 7, and Z in 7b the shape operator A of M 
satisfies the following conditions 

(0.3) (VxA)Y=-lg(<l>X,Y)t 

and 

(0.4) (A</> - <j>A)X = 0(X)£ 

for a 1-form 6 defined on To. Thus the above conditions (0.3) and (0.4) are weaker than 
the conditions (0.1) and (0.2) respectively. Then it is natural that real hypersurfaces of 
type A in Mn(c\ c ^ 0, should satisfy the conditions (0.3) and (0.4). From this point of 
view we give a characterization of real hypersurfaces of type A in Mn(c) as the following 

THEOREM. Let M be a connected real hypersurface ofMn(c), c ^ 0, and n>3. If it 
satisfies (0.3) and (0.4), then M is locally congruent to one of the following spaces: 

(1) In case Mn(c) = PnC 
(A\) a tube of radius r over a hyperplane Pn-\C, where 0 < r < | , 
(A2) a tube of radius r over a totally geodesic P^C (I < k < n — 2), where 

0 < r < f, 
(2) In case Mn(c) — HnC 

(Ao) a horosphere in HnC, i.e., a Montiel tube, 
(A\) a tube of a totally geodesic hyperplane H^C (k — 0 or n — I), 
(A2) a tube of a totally geodesic H^C (I <k<n — 2). 

ACKNOWLEDGEMENT. The authors would like to express their sincere gratitude to 
the referee for his valuable comments and suggestions. 

1. Preliminaries. We begin with recalling fundamental properties of real hypersur­
faces of a complex space form. Let M be a real hypersurface of a complex «-dimensional 
complex space form (Mn(c), g) of constant holomorphic sectional curvature c, and let C 
be a unit normal vector field defined on a neighborhood of a point x in M. We denote by 
J the almost complex structure of Mn(c). 

For a local vector field X on the neighbourhood of x in M, the images of X and C under 
the linear transformation J can be represented as 

JX = <t>X + r](X)C, JC = - £ , 
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where <j> defines a skew-symmetric transformation on the tangent bundle TM of M, while 
77 and £ denote a 1-form and a vector field on the neighbourhood of x in M, respectively. 
Then it is seen that g(£, X) = ry(X), where g denotes the Riemannian metric on M induced 
from the metric g on Mn(c). The set of tensors (0, £, 77, g) is called an almost contact 
metric structure on M. They satisfy the following 

</>2 = - / + 77®£, <fé = 0, TK</>X) = 0, 7 / ( 0 = 1 

for any vector field X, where I denotes the identity transformation. Furthermore the co-
variant derivatives of the structure tensors are given by 

(1.1) VxC = 4>AX, (VX$)Y = r](Y)AX - g(AX, Y)£ 

for any vector fields X and Y on M, where V is the Riemannian connection of g and A 
denotes the shape operator in the direction of C on M. 

Since the ambient space is of constant holomorphic sectional curvature c the equations 
of Gauss and Codazzi are respectively obtained: 
(1.2) 

R(X, Y)Z=C-{g(Y, Z)X - g(X, Z)Y + g(<j>Y, Z)cj>X - g(<j>X, Z)<t>Y - 2#(</>X, Y)<j>Z} 

+ g(AY, Z)AX - g(AX, Z)AY, 

(1.3) (VXA)Y-(VYA)X= C-{i](X)(i>Y-i1{Y)<i>X-2g{(t>X,Y)i}^ 

where R denotes the Riemannian curvature tensor of M and VxA denotes the covariant 
derivative of the shape operator A with respect to X. 

The second fundamental form is said to be r)-parallel if the shape operator A satisfies 
g((VxA)F, Z) = 0 for any vector fields X, Y and Z in T0. 

2. Proof of the Theorem. Let M be a real hypersurface in a complex space form 
Mn(c), c / 0 , and let To be a distribution defined by 7bQc) = {X G TXM \ X _L £(*)}• 
Now we prove the theorem in the introduction. In order to prove this Theorem we should 
verify that 4 is principal from the conditions (0.3) and (0.4). If we acquire this fact, from 
the condition (0.4) we can see that the structure tensor <j> and the shape operator A of a 
real hypersurface M in Mn(c), c ^ 0 , commute with each other. Then by using theorems 
of Okumura [11] for c > 0 and of Montiel and Romero [10] for c < 0 we get that a 
real hypersurface M satisfying (0.3) and (0.4) is locally congruent to one of type A1, and 
A2 in PnC and Ao, A\, and A2 in HnC respectively. Namely we can obtain another new 
characterization of real hypersurfaces of type A in Mn(c), c ^ 0. For this purpose we 
need a lemma obtained from the restricted condition (0.4) as the following 

LEMMA 2.1. Let M be a real hypersurface of Mn(c), c ^ 0. If there is a l-form 9 
satisfying the condition (0.4), then we have 

(2.1) g{(VxA)Y,z) - Sg(AX, Y)g(Z, V), 
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where S denotes the cyclic sum with respect to X, Y and Z in To and V stands for the 
vector field defined by V^£. 

PROOF. For any vector fields X, Y and Z orthogonal to £, the condition (0.4) implies 
that g((A</> — <f)A)Y, Z) — 0. Differentiating this equation covariantly in the direction of 
X, we get 

g((VxAW + A(\7X$)Y + A<t>VxY - (Vx<j>)AY - <j>(VxA)Y - <j>AVxY, Z) 

+ g((A<t>-<l>A)Y,VxZ)=0. 

By taking account of (1.1), the above equation is reformed as 

g((VxA)Y, <j>Z) + g((VxA)Z, <t>Y) = r1(AY)g(X,AZ) + rj(AZ)g(Y, AX) 

+ g(X,A<l>Y)g(Z9 V) + g(X9A<l>Z)8(Y9 V). 

In this equation we shall replace X, Y and Z cyclically and we shall then add the second 
equation to (2.2), from which we subtract the third one. Consequently by means of the 
Codazzi equation we get 

2g((VxA)r, <f>z) = 2r](AZ)g(AX, Y) + g(X, V){g(Y,A<l>Z) ~ gVMY)} 

+ g(Y, V){g(XMZ) ~ g(Z,A<l>X)h 

from which together with the condition (0.4) we can get the equation (2.1). 
Next, from this lemma it remains only to show the following. 

LEMMA 2.2. Let M be a real hypersurface ofMn(c), n > 3, c ^ 0. If M satisfies 
(0.3) and (0.4), then the structure vector field £ is principal. 

PROOF. The purpose of this lemma is to show that the structure vector field £ is 
principal. In order to prove this, let us suppose that there is a point where £ is not principal. 
Then there exists a neighborhood 11 of this point, on which we can define a unit vector 
field U orthogonal to £ in such a way that 

(2.3) PU = A£- g(AÇ, Ot = AC - a£, 

where /3 denotes the length of vector field A£ — a£ and (3(x) ^ 0 for any point x in U. 
Hereafter, unless otherwise stated, let us continue our discussion on this neighborhood 
U. 

A vector field V is defined by V^£. Then, from this definition together with (1.1) it 
follows 

(2.4) V = (3(f>U. 

On the other hand, (0.3) implies that the shape operator A of M becomes to //-parallel, 
that is, g((VxA)Y,Z) = 0 for any vector fields X, Y and Z in T0. From this and (2.1) it 
follows that 

(2.5) Sg(AX,Y)g(Z,V) = 0, 
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for any vector fields X, Y and Z in 7b, where S denotes the cyclic sum with respect to X, 
Y and Z. When we put Z = V in (2.5), it reduces to 

(2.6) g(AX, Y)g(Y9 V) + g(AY, V)g(X, V) + g(AV, X)g(Y, V) = 0. 

Furthermore, we put Y = V in (2.6) and then X = V in the obtained equation. Then the 
following equations 

(2.7) 2g(AX, V)g(V, V) + *(AV, V)g(X, V) = 0, 

(2.8) S(AV,V)g(V,V) = 0 

are obtained. Then from (2.7) and (2.8) we know that g(AV, V) = 0 and g(AX, V) = 0 
for any vector field X in To orthogonal to V, which implies AV — g(AV, £)£. Substituting 
(2.3) into this equation and noticing that U and V are mutually orthogonal by (2.4), we 
get AV = 0. From this, together with (2.6), it follows 

(2.9) g(AX,Y) = 0 

for any vector fields X and Y belonging to 7b. So, it follows from this and (2.3) that 
AX = g(AX, OÊ = Pg(X, U)t, for any X G 7b, which means that 

(2.10) AX = 0, AU = (3£> 

for any XGTo orthogonal to U. 
Now let us keep on our discussion on the open set U. Then the condition (0.3) implies 

that 

(2.11) (VxA)r=A(X,F)£, 

where the function A(X, Y) is given by 

A(X, Y) = g{(VxA)Y, C) = g(Y, (VxA)t) 

= g(Y9 (Xa)£ + aVxC + « 3 ) ^ + /3VXU - A<t>AX) 

= ag{<i>AX, Y) + (XP)g(Y, U) + 0g(Y, VXU) - g(F, A<M*) 

for any vector fields X and Y in 7b. When we put X = U and Y = </>£/ in (2.11), then by 
(2.10) 

(2.12) (Vt,A)0£/ - /%(</>£/, VuU)Ç. 

On the other hand, from the equation of Codazzi (1.3) and (2.3), together with (2.10) 
it follows that 

C-$U = (VçA)U - (VuA)t = V^AU) - AVzU - V^AO + A V ^ 

= VztfO -AVZU-VU(PU+ aO 

= (C/3)€ + 0<MC - AVctf - (£//3)tf - PVVU - (Ua)Ç 

= (£/3 - Ua)£ + (32<j>U - AVçU - (U(3)U - f3VvU. 
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Then taking the inner product of the last formula with <j>U, we obtain 

(3g($U,VuU) = p2-^ 

where we have used g(AVçU, <\>U) — 0 which can be obtained by the first formula of 
(2.10). Substituting this equation into (2.12), we get 

(2.13) (VuA)<t>U = ((32 - C-)i. 

On the other hand, by the assumption (0.3) we have 

From this, comparing with (2.13), we have /? = 0. This makes a contradiction. The set 
U should be empty. Thus there does not exist such an open neighborhood U in M, which 
means that the structure vector field £ is principal. 
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