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ON A CHARACTERIZATION OF REAL HYPERSURFACES
OF TYPE A IN A COMPLEX SPACE FORM

U-HANG KI AND YOUNG-JIN SUH

ABSTRACT.  In this paper, under certain conditions on the orthogonal distribution
Ty, we give a characterization of real hypersurfaces of type A in a complex space form
M,(c),c #0.

0. Introduction. A complex n-dimensional Kaehlerian manifold of constant holo-
morphic sectional curvature c is called a complex space form, which is denoted by M,,(c).
A complete and simply connected complex space form consists of a complex projective
space P,C, a complex Euclidean space C" or a complex hyperbolic space H,C, accord-
ingasc > 0,c = 0or ¢ < 0. The induced almost contact metric structure of a real
hypersurface M of M, (c) is denoted by (¢, £, 7, g).

There exist many studies about real hypersurfaces of M, (c). One of the first researches
is the classification of homogeneous real hypersurfaces of a complex projective space
P, C by Takagi [13], who showed that these hypersurfaces of P, C could be divided into
six types which are said to be of type Aj, A, B, C, D, and E, and in [3] Cecil-Ryan and
[6] Kimura proved that they are realized as the tubes of constant radius over Kaehlerian
submanifolds. Also Berndt [1], [2] showed recently that all real hypersurfaces with con-
stant principal curvatures of a complex hyperbolic space H,C are realized as the tubes of
constant radius over certain submanifolds when the structure vector field £ is principal.
Nowadays in H,C they are said to be of type Ag, A;, A;, and B.

Now, let us consider the following conditions that the second fundamental tensor A
of M in M,(c), ¢ # 0 may satisfy

JCA) (Vad)Y = =2 {n(1)6X + g(6X. D)€},
0.2) g((A¢ — pAX,Y) =0,

for any tangent vector fields X and Y of M.

Maeda [8] investigated the condition (0.1) and used it to find a lower bound of || VA||
for real hypersurfaces in P,C. In fact, it was shown that | VA||*> > %}(n — 1) for such
hypersurfaces and the equality holds if and only if the condition (0. 1) holds. Moreover,
in this case it was known that M is locally congruent to real hypersurfaces of type A;, and
Aj;. Also Chen, Ludden and Montiel [4] generalized this inequality to real hypersurfaces
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in H,C and showed that the equality holds if and only if Mis congruent to of type Ay,
Ay, and A;.

On the other hand, the condition (0.2) was considered by Okumura [11] for ¢ > 0,
Montiel and Romero [10] for ¢ < 0 respectively. Also it was known that a real hypersur-
face satisfying (0.2) is locally congruent to one of type Ap, Aj, and A,. Now let us define
a distribution Ty by To(x) = {X € T.M | X L £} of a real hypersurface M of M,(c),
¢ # 0, which is orthogonal to the structure vector field £ and holomorphic with respect
to the structure tensor ¢. If we restrict the properties (0.1) and (0.2) to the orthogonal
distribution Ty, then for any vector fields X, Y, and Z in T the shape operator A of M
satisfies the following conditions

0.3) (VxA)Y = —§g<¢x, Y)¢
and
(0.4) (Ad — AIX = B(X)E

for a 1-form 6 defined on Ty. Thus the above conditions (0.3) and (0.4) are weaker than
the conditions (0.1) and (0.2) respectively. Then it is natural that real hypersurfaces of
type A in M, (c), ¢ # 0, should satisfy the conditions (0.3) and (0.4). From this point of
view we give a characterization of real hypersurfaces of type A in M, (c) as the following

THEOREM. Let M be a connected real hypersurface of M,(c), c £ 0, andn > 3. If it
satisfies (0.3) and (0.4), then M is locally congruent to one of the following spaces:
(1) Incase M,(c) = P,C
(A1) atube of radius r over a hyperplane P,_C, where 0 < r < I,
(A2) a tube of radius r over a totally geodesic P,C (1 < k < n — 2), where
0<r<i,
(2) Incase M,(c) = H,C
(Ao) a horosphere in H,C, i.e., a Montiel tube,
(A1) atube of a totally geodesic hyperplane H;,C (k = 0 orn — 1),
(Az) atube of a totally geodesic H,C (1 <k <n—2).

ACKNOWLEDGEMENT. The authors would like to express their sincere gratitude to
the referee for his valuable comments and suggestions.

1. Preliminaries. We begin with recalling fundamental properties of real hypersur-
faces of a complex space form. Let M be a real hypersurface of a complex n-dimensional
complex space form (M,,(c), g’) of constant holomorphic sectional curvature c, and let C
be a unit normal vector field defined on a neighborhood of a point x in M. We denote by
J the almost complex structure of M,(c).

For alocal vector field X on the neighbourhood of x in M, the images of X and C under
the linear transformation J can be represented as

JX = ¢X +9(X)C, JC = —¢,
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where ¢ defines a skew-symmetric transformation on the tangent bundle 7M of M, while
1 and £ denote a 1-form and a vector field on the neighbourhood of x in M, respectively.
Then it is seen that g(&, X) = n(X), where g denotes the Riemannian metric on M induced
from the metric § on M,(c). The set of tensors (¢, &, 7, g) is called an almost contact
metric structure on M. They satisfy the following

PP=—1+n1Q¢ ¢E=0, n(¢X)=0, nE =1

for any vector field X, where I denotes the identity transformation. Furthermore the co-
variant derivatives of the structure tensors are given by

1.1 Vx§ = ¢AX, (Vx9)Y = n(1)AX — g(AX, V)¢

for any vector fields X and Y on M, where V is the Riemannian connection of g and A
denotes the shape operator in the direction of C on M.

Since the ambient space is of constant holomorphic sectional curvature ¢ the equations
of Gauss and Codazzi are respectively obtained:
(1.2)

RX.NZ = g{g(Y, D)X — g(X, 2)Y + g(¢Y, Z)pX — g(¢X, Z)PY — 2g(dX, Y)$Z}
+8(AY, D)AX — g(AX, 2)AY,

(1.3) (VxAY — (VyAX = Z{n(08Y — (18X — 2g(6X. N)E},

where R denotes the Riemannian curvature tensor of M and VxA denotes the covariant
derivative of the shape operator A with respect to X.

The second fundamental form is said to be n-parallel if the shape operator A satisfies
g((VxA)Y,Z) = 0 for any vector fields X, ¥ and Z in T.

2. Proof of the Theorem. Let M be a real hypersurface in a complex space form
My(c), ¢ # 0, and let Ty be a distribution defined by To(x) = {X € .M | X L &}
Now we prove the theorem in the introduction. In order to prove this Theorem we should
verify that ¢ is principal from the conditions (0.3) and (0.4). If we acquire this fact, from
the condition (0.4) we can see that the structure tensor ¢ and the shape operator A of a
real hypersurface M in M,(c), ¢ # 0, commute with each other. Then by using theorems
of Okumura [11] for ¢ > 0 and of Montiel and Romero [10] for ¢ < O we get that a
real hypersurface M satisfying (0.3) and (0.4) is locally congruent to one of type A;, and
Ay in P,C and Ay, A}, and A; in H, C respectively. Namely we can obtain another new
characterization of real hypersurfaces of type A in M,(c), ¢ # 0. For this purpose we
need a lemma obtained from the restricted condition (0.4) as the following

LEMMA 2.1. Let M be a real hypersurface of My(c), ¢ # 0. If there is a 1-form 0
satisfying the condition (0.4), then we have

@.1) g((VxAY,Z) = Sg(AX, V)g(Z, V),
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where S denotes the cyclic sum with respect to X, Y and Z in Ty and V stands for the
vector field defined by V(&.

PROOF. For any vector fields X, Y and Z orthogonal to &, the condition (0.4) implies
that g((A¢ — QA)Y, Z) = 0. Differentiating this equation covariantly in the direction of
X, we get

8((VxA)oY + A(Vx§)Y + ApVxY — (Vx$)AY — ¢(VxA)Y — pAVxY, Z)
+8((4¢ — 9A)Y, VxZ) = 0.

By taking account of (1.1), the above equation is reformed as

8((VxA)Y, 6Z) + 8((VxA)Z, $Y) = n(AY)g(X, AZ) + N(AZ)g(Y, AX)
+8(X,ApY)(Z, V) + g(X,ApZ)g(Y, V).
In this equation we shall replace X, Y and Z cyclically and we shall then add the second

equation to (2.2), from which we subtract the third one. Consequently by means of the
Codazzi equation we get

28((VxA)Y, $Z) = 2(AZ)g(AX, Y) + g(X, V){g(Y,A$Z) — g(Z,ApY)}

from which together with the condition (0.4) we can get the equation (2.1).
Next, from this lemma it remains only to show the following.

(2.2)

LEMMA 2.2. Let M be a real hypersurface of Mu(c), n > 3, ¢ # 0. If M satisfies
(0.3) and (0.4), then the structure vector field & is principal.

PROOF. The purpose of this lemma is to show that the structure vector field £ is
principal. In order to prove this, let us suppose that there is a point where £ is not principal.
Then there exists a neighborhood U of this point, on which we can define a unit vector
field U orthogonal to £ in such a way that

(2.3) BU = A — g(AE, )¢ = AL — o,

where (3 denotes the length of vector field A — € and 3(x) # O for any point x in U.
Hereafter, unless otherwise stated, let us continue our discussion on this neighborhood

Uu.

A vector field V is defined by V€. Then, from this definition together with (1.1) it
follows
2.4 V = BoU.

On the other hand, (0.3) implies that the shape operator A of M becomes to n-parallel,
that is, g((VXA)Y, Z) = 0 for any vector fields X, Y and Z in Ty. From this and (2.1) it
follows that

2.5 Sg(AX,Y)g(Z,V) = 0,
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for any vector fields X, Y and Z in Ty, where § denotes the cyclic sum with respect to X,
Y and Z. When we put Z = Vin (2.5), it reduces to

(2.6) 8(AX,Y)g(V,V) + g(AY, V)g(X, V) + g(AV,X)g(Y,V) = 0.

Furthermore, we put Y = Vin (2.6) and then X = V in the obtained equation. Then the
following equations

2.7 28(AX, V)g(V, V) + g(AV, V)g(X, V) = 0,

(2.8) 8(AV, V)g(V,V) =0

are obtained. Then from (2.7) and (2.8) we know that g(AV,V) = 0 and g(AX,V) =0
for any vector field X in T, orthogonal to V, which implies AV = g(AV, £)&. Substituting
(2.3) into this equation and noticing that U and V are mutually orthogonal by (2.4), we
get AV = 0. From this, together with (2.6), it follows

2.9) gAX, V) =0

for any- vector fields X and Y belonging to Ty. So, it follows from this and (2.3) that
AX = g(AX, )€ = Bg(X, U) for any X € Ty, which means that

(2.10) AX =0, AU=p¢

for any X € Ty orthogonal to U.
Now let us keep on our discussion on the open set U. Then the condition (0.3) implies
that

(2.11) (VxA)Y = MX, Y)§,
where the function A(X, Y) is given by
MX,Y) = g((VxA)Y, €) = g(Y. (VxA))
= g(¥,(Xa)€ + aVxé + (XB)U + BVxU — ApAX)
, = ag(¢AX, V) + (XB)g(Y, U) + Bg(Y, VxU) — g(¥,A¢AX)
for any vector fields X and Y in Ty. When we put X = U and Y = ¢U in (2.11), then by

(2.10)
(2.12) (VyA)oU = Bg(oU, VyU).

On the other hand, from the equation of Codazzi (1.3) and (2.3), together with (2.10)
it follows that

26U = (VeA)U ~ (VUA)E = Ve(AU) — AVU — Vy(AE) + AV €
= V(B8 — AV U — Vy(BU + af)

= (EP)E + BAL — AV U — (UB)U — BV yU — (Ua)§
= (€8 — Ua)¢ + B2pU — AV U — (UB)U — BV U.
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Then taking the inner product of the last formula with ¢U, we obtain

c

4 ’

where we have used g(AV U, ¢U) = 0 which can be obtained by the first formula of
(2.10). Substituting this equation into (2.12), we get

Be(¢U, VyU) = §* —

(2.13) (VoAU = (62 = DE.
On the other hand, by the assumption (0.3) we have
(VoAU = 86U, $U)E = —3€.

From this, comparing with (2.13), we have 8 = 0. This makes a contradiction. The set
U should be empty. Thus there does not exist such an open neighborhood U in M, which
means that the structure vector field € is principal.
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