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Abstract. We show in a direct and elementary way that the spherical building at
infinity of every rank 3 affine building which satisfies Tits’ Moufang condition, is itself a
Moufang building. This result is also true for higher rank affine buildings by Tits’
classification [4].

1. Introduction. The Moufang condition for—not necessarily spherical—buildings
was introduced by Tits [S]. It generalizes the usual Moufang condition for spherical
buildings, see Tits [3], which on its turn was a generalization of the Moufang condition for
projective planes. The Moufang condition seems to be the most natural condition under
which a classification of certain classes of buildings is possible. For spherical buildings of
rank = 3, and for affine building of rank = 4, this is trivially true for all those buildings are
classified without any supplementary condition. For spherical buildings of rank 2, Tits [3]
announces such classification and partial results have been published. There seems to be
no further explicit classification of Moufang affine buildings of rank 3 in the literature. In
this short note, we show that such a classification can be reduced to checking the Moufang
property in the ‘‘known classical buildings”. Our method uses the building at infinity of
the affine building. The definition of Moufang affine building does not imply ipso facto
that the building at infinity also satisfies the Moufang condition. We will show that this is
however a consequence, using elementary techniques. So our main result reads:

MaiN REesuLt. The building at infinity of an irreducible Moufang rank 3 affine
building is a Moufang rank 2 spherical building.

CoroLLARY. The irreducible Moufang rank 3 affine buildings are amongst the affine
buildings arising from an algebraic group of relative rank 2 defined over a field with
discrete valuation (with respect to which the field is complete), which is invariant under the
field involution that is possibly needed to define the group; also, the local field has equal
characteristic.

2. Preliminaries. In this paper, we take the original viewpoint of Tits [2]. So
buildings are thick simplicial chamber complexes endowed with a set of thin sub-
complexes (these subcomplexes are called apartments) such that every two simplices are
contained in a common apartment, and such that for any pair of apartments (Z,Z'), there
exists an isomorphism 6:X— X' fixing every simplex contained in the intersection of =
and Z'. It turns out that the apartments of a building A are Coxeter complexes and that
the Coxeter diagram of this complex is the same as the Buekenhout diagram of the
geometry associated to A (see Tits [2]). In this paper, we are concerned with the
(irreducible) rank 3 affine cases, i.e. the types A,, C, and G,. We briefly describe the
Coxeter complexes of each of these types.
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(A;)  Consider the triangulation of the real euclidian plane E with equilateral triangles.
The vertices of the Coxeter complex are the vertices of the triangles, the edges
form simplices of dimension 1 and triangles itself define simplices of dimension 2.
This Coxeter complex can also be defined as the barycentric subdivision of the
tiling of [ into regular hexagons.

(C;) Here we triangulate E with isosceles right triangles. Or we consider the
barycentric subdivision of the tiling of E into regular octagons and squares.

(G;)  Here we triangulate E with right triangles having an angle of 30°. Or we consider
the barycentric subdivision of the tiling of E into regular 12-gons, hexagons and
squares.

A special vertex in these complexes is a vertex lying in a maximal number of
chambers (these numbers are respectively 6, 8 and 12). A ray is the set of vertices lying on
a half line in E starting at a special vertex and containing edges of triangles of the
respective triangulation. A sector is the set of all vertices belonging to the convex closure
in E of two rays starting at the same special vertex and forming a minimal angle (i.e. 60°,
45° and 30° in the three respective cases). A special vertex, a ray or a sector in a rank 3
affine building A is a special vertex, a ray of a sector respectively in some apartment of A.
Also, a panel is a simplex consisting of two vertices.

Let A be a rank 3 affine building. Suppose that we endow A with a maximal set of
apartments (this is always possible by Tits [4]). Note that the metric of E induces a metric
in A. The relation R: ““... is at bounded distance from...” is an equivalence relation in
the set of all rays. We define the following simplicial complex A.. The vertices of A, are
the equivalence classes of rays with respect to R; the simplices of dimension 1 (also the
chambers) are the pairs of such classes for which there exist respective representatives
which lie in a common sector. It can be shown that A, is a rank 2 spherical building and
every automorphism of A also preserves the structure of A, (see Tits [4]). Note that, by
Tits [4], each equivalence class of rays has a (unique) representative starting at any special
vertex.

The union of two rays in an apartment = of a rank 3 affine building A which start
from the same vertex and which form an angle of 180° is called a wall; each wall w in T
divides ¥ in two half apartments « and —a which share the vertices in w. We denote w by
da. Parallel walls are walls which lie on parallel lines in some apartment. Each half
apartment is called a root. Let @ be the set of roots in a given apartment X of A. Given
a € ®, we denote, as above, by —a the complementary root in X (so a and —a meet in
the wall da = d(—a)). For two roots a and B, we write, following Tits [5],

[a,B]={y e ®:aNBcyand (-a)N(-B)c (-7)}

We call A a pre-Moufang building if, for some apartment Z, there is a family of
automorphism groups (U, ), ¢ (Where ® is defined as above) of A satisfying the following
two conditions:

(pM1) For each a € ® and each panel p in a N (—a), the group U, fixes every vertex of
a and acts transitively on the set of chambers containing p and not contained in
Q.

(pM2) If a,8 €@ and da and 98 are not parallel, then the commutator [U,, Ug] is
contained in the group generated by all U,, where y € [a, B]\{a, B}.
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A Moufang building satisfies two further properties (and stronger versions of both (pM1)
and (pM2)), but we will not need these here. It suffices to remark that every Moufang
rank 3 affine building is a pre-Moufang building, and that the Moufang condition requires
that the transitive action in (pM1) is simply-transitive. This follows immediately from Tits
[5]; see also Ronan [1].

Finally, we define a Moufang rank 2 building, as introduced by Tits [2,3]. Let I' be a
rank two spherical building and let Z be some apartment in I'. We can view X as a 2n-path
(connected vertices form a panel;, such vertices are also called adjacent), for fixed
n e N\{0, 1,2} (and T corresponds to a so-called generalized n-gon). If for each n-path
(x0, X4,...,x,) in Z, the group of automorphisms of I" fixing all vertices of I" adjacent to
one of xy,x3,...,X,_; acts transitively on the set of vertices of I" adjacent to x, but
distinct from x,, then T’ is called a Moufang rank 2 building.

3. Proof of the main result. From now on, we suppose that A is a pre-Moufang rank
3 affine building containing an apartment X (with corresponding set of roots ®) and such
that there exists a family of groups (U, ). e Which satisfy (pM1) and (pM2). We consider
the rank 2 spherical building A. and we let s be any special vertex in Z. By the previous
section, we may identify the vertices of A, with the rays starting at s. It follows from Tits
[4] that adjacent vertices correspond to rays forming a minimal angle.

The rays in X starting in s define a 2n-path IT of A.(s), n = 3, 4, 6 for respectively A of
type A,, C,,-G, Note that II does not depend on s. The rays starting in s and
corresponding to an n-path 7z contained in II all lie in a unique well-defined root =, with
s € an,. Let &= (xo,xy,...,X,), then we show that every element of U,, for arbitrary s,
fixes every vertex of A, adjacent to x;.

Indeed, let r be the ray starting in s and representing the vertex x of A. which is
adjacent to x,. Let r; be the ray starting in s and representing x;. Since x is adjacent to x;,
the ray r “leaves” the apartment T at a vertex s’ of r, or r, (i.e. the vertex s’ is the
common vertex of r and £ at maximal distance from s). By considering the intersection of

= with a sector containing r and r, (and noting that this intersection is convex in the sense
of Tits [2]), one sees that s’ is a special vertex (because it is contained in two rays forming
a minimal angle).

From now on, the term ‘“distance”, denoted by &, applies to the natural distance in
the adjacency graph of A. We show by induction on m, that the vertex v,, on r at distance
m from s’ and distance m + 8(s,s’) from s is fixed by every element 8 of U,. So let
0 € U,,. In view of (pM1) the claim holds for vo=s', i.e. for m =0. Now let v,, be
arbitrary on r and suppose 8(s’,v,,) =m >0. Let &' be the n-path (x;,x3,...,%X, Xp41)
(with x,4, in II). By (pM1), there exists 8’ € U,. mapping v, in Z. By the induction
hypothesis, vg, is fixed by @ (even if 8’ does not preserve s) and hence we obtain that
v8 %" =y, But (pM2) implies 6'68' ™! = @, hence the claim. So we have shown that 8
preserves r and hence x.

Now suppose that x is a vertex of A, adjacent to x,. In order to show that 6 € U,
fixes the ray r representing x, we can copy the above proof up to the very last point, i.e.
we obtain v5,% " =v,,, with v,, defined similarly as before as the vertex in A at distance
m from the vertex s’ (r “leaves” X at s') and distance m + 8(s,s’) from s, and with
0' € Uy, where &' = (X, X3,. .., Xp41,Xs42) is @ sub-n-path of IL. But now (pM2) implies
6'60' "' € U,.. 6, where n" = (x;,X3,...,Xn,X,+1) and s” is the intersection of ax, and
9y This notation includes the case where s” is not a special vertex, and then one must
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put U,.={1}. But in this case the result follows similarly as before. Hence, we may
assume that s” is a special vertex. Substituting n” for 7 and s” for s in the previous claim
one sees that each element of U,. fixes v,. Hence the result again follows.

Similarly, one shows that each element of U, fixes every vertex of A. adjacent to x;,
ie€{1,2,...,n -1} (actually, by symmetry, there is only one case left: (n, i) = (6, 3)).

Now we define V; to be the automorphism group of A. generated by all U,, for all
special vertices s in 2. The group V, cannot be the right choice for U, since it certainly
cannot act transitively on the set § of vertices of A. adjacent to xy and different from x;.
Indeed, S has a higher cardinal number than V,, e.g. if A is locally finite, then V, is
countable and S is not (that is because we are considering the maximal set of apartments
for A).

Let s be any special vertex in £ and let V, be the automorphism group of A
generated by all U, , for all s’ such that the root m,. contains s as a vertex. It is clear that
V., preserves the sphere of radius m in A centered at s, for all positive integers m. When

restricting these spheres to vertices on rays starting in s, and by defining a new
suitable—but obvious—adjacency relation, one sees easily that A. can be identified with

the inverse limit of all these restricted spheres. Now we denote by U,,, the group of all
automorphisms of A. obtained by considering all possible inverse limits of automorphisms
of these spheres induced by elements of V. Finally, we define U, as the group generated
by all U, for all special vertices s in =. We show that U, acts transitively on S (and from
our proof it will follow that U, is in fact the union of all U,).

Let x_, € § be the vertex in II adjacent to x, and different from x,. Let x € § be
arbitrary. As before we consider a ray r respectively r; representing x respectively x; and
starting at some special vertex in Z, i = —1,0. Again the vertex s where r leaves Z is
special and we can assume without loss of generality that r, r, and r_, all start in 5. Denote
by v,, respectively v_,, the vertex of r respectively r_, at a distance m from s. Condition
(pM1) implies the existence of an element 8, € U, mapping v, to v_;. If v, v, #s, is the
special vertex of r closest to s, then as before one sees by considering the intersection of z
with any sector containing r and ry that v{' =v_,. Let 8, € U, be such that it maps v,
to v_,_. It is now clear how to continue and to define 6,, for all positive integers [ It is
also clear that the inverse limit of (8, 6,6,, 6,6,8;,...) maps r to r_;. Hence the Main
Result is proved.

RemaRKs. It is easily seen in A, that U, acts simply-transitively on S. Hence U, is
indeed the (non-disjoint) union of all U, by the last paragraph of the proof.

The restricted spheres of radius m that turn up above are in case of type A,
Hjelmslev-planes of level m, see Van Maldeghem [6]. These geometries were used by Van
Maldeghem in various papers to characterize affine buildings of type A, and C,, for
instance in terms of valuations on their spherical building at infinity [7].

If we endow A with a symmetric system of apartments (see Tits [4]), then our main
result still holds since the building at infinity of such a system of apartments is a
subbuilding of the one obtained from the full system of apartments.

4. Proof of the corollary. The corollary follows immediately from section 14 of Tits

[4]. By Tits (2], this determines all irreducible rank 3 affine buildings. The assertion about
the residue field follows directly from the fact that the root groups in A are subgroups of
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root groups in A,. Since for a Moufang rank 3 affine building, the root groups of A act
simply-transitive on an “affine line” in the residue of a special vertex, the characteristics
in question must be the same. However, it is not clear to us whether this condition is also
sufficient to imply the Moufang condition. In fact, this is an open question for affine
buildings of arbitrary rank.
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