BRAUER CHARACTERS AND GROTHENDIECK RINGS

B. M. PUTTASWAMAIAH

Let G be a group of finite order g, A a splitting field of G of characteristic p (which may be 0) and $R=A G$ the group algebra of G over A. In [2], the author studied some of the properties of the Grothendieck ring $K(R)$ of the category of all finitely generated R-modules, and derived a number of consequences. This paper continues the study carried out in [2]. The study is concerned with the structure and irreducible representations of $K(R)$. The ring $K(R)$ is proved to be semisimple and the primitive idempotents of $K(R)$ are explicitly constructed. If the ring $K(R)$ is identified with the 'algebra of representations', then Robinson's idempotent $[\mathbf{3} ; \mathbf{4} ; \mathbf{5}]$ follow from our description as a special case.

Through out the paper, the following notations will be kept fixed. Let $\mathscr{C}_{1}=\{1\}, \mathscr{C}_{2}, \ldots, \mathscr{C}_{n}$ be the p-regular conjugate classes of G, g_{i} be the number of elements in $\mathscr{C}_{i},\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ be a full set of pairwise nonisomorphic irreducible R-modules, m_{i} the equivalence class of R-modules isomorphic to $M_{i}, \varphi^{1}, \varphi^{2}, \ldots, \varphi^{n}$ be the irreducible Brauer characters of G at the prime $p, \varphi_{j}{ }^{i}$ be the value of φ^{i} at an element of \mathscr{C}_{j}, Z be the ring of rational integers and C be the field of complex numbers. Then $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ is a basis of $K(R)$ over Z. Therefore there are n^{3} unique integers $c_{i j k}$ in Z such that

$$
\begin{equation*}
m_{i} m_{j}=\sum_{k=1}^{n} c_{i j k} m_{k} . \tag{*}
\end{equation*}
$$

The n^{3} equations $\left({ }^{*}\right)$ expressed in terms of φ^{i} take the forms
$\left({ }^{* *}\right) \quad \varphi^{i} \varphi^{j}=\sum_{k=1}^{n} c_{i j k} \varphi^{k}$.
Lemma 1. The ring $K(R)$ is a torsion-free Z-module.
Proof. Let m an element of $K(R)$ and k an element of Z such that $k m=0$. If $m=\sum_{1}^{n} z_{i} m_{i}$, then $0=k m=\sum_{1}^{n} k z_{i} m_{i}=0$. Since $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ is a basis of $K(R)$, it follows that $k z_{i}=0$ for all i. Therefore either $m=0$ or else $k=0$. Hence $K(R)$ is a torsion-free Z-module.

Lemma 2. The ring $K(G)=K(R) \otimes_{z} C$ is an n dimensional vector space over C.

Proof. By Lemma 1, $K(R)$ is a torsion-free Z-module. The ring Z is a Dedekind domain with the rational field Q as the field of fractions. Therefore it follows from the material of Section 22, pp. 144-145 of [1] that $K(R) \otimes_{Z} Q$ is a
vector space of dimension n over Q. Since C is an extension of Q, it follows that $\left(K(R) \otimes_{z} Q\right) \otimes_{Q} C$ is a vector space of dimension n over C. By the associativity of tensor products, we have that

$$
\left(K(R) \otimes_{Z} Q\right) \otimes_{Q} C \cong K(R) \otimes_{Z}\left(Q \otimes_{Q} C\right) \cong K(R) \otimes_{Z} C=K(G)
$$

Hence $K(G)$ is a vector space of dimension n over C.
Theorem 3. The ring $K(R)$ is semisimple.
Proof. The ring $K(R)$ is a torsion-free module of rank n over Z. Since every submodule of $K(R)$ is a torsion-free module of rank at most n, it follows that $K(R)$ is an Artinian ring. Hence the (Jacobson) radical of $K(R)$ is nilpotent and it is the largest nilpotent ideal of $K(R)$. Thus the radical of $K(R)$ consists of all the nilpotent elements of $K(R)$. If m is any nilpotent element of $K(R)$, then $m \otimes k$ is a nilpotent element of $K(G)$ for any k in C. Therefore it suffices to show that $K(G)$ is semisimple.

If Z_{n} is the ring of all n by n matrices over Z, then the mapping T from $K(R)$ to Z_{n} given by $m T=\left(a_{i j}{ }^{m}\right)$, where $m m_{i}=\sum_{j} a_{i j}{ }^{m} m_{j}$, is a regular representation of $K(R)$ over $Z[\mathbf{2}]$. Hence $K(R) T \otimes_{z} C$ is a regular representation of $K(G)$. The n by n matrix $\Phi=\left(\varphi_{j}{ }^{i}\right)$, where $\varphi^{i}=\left(\varphi_{1}{ }^{i}, \varphi_{2}{ }^{i}, \ldots, \varphi_{n}{ }^{i}\right)$, is a non-singular matrix. It is proved in [2] that

$$
\Phi^{-1} m_{k} T \Phi=\left[\begin{array}{c}
\varphi_{1}{ }^{k}, 0, \ldots, 0 \\
0, \varphi_{2}{ }^{k}, \ldots, 0 \\
\ldots \ldots . . \\
0,0, \ldots, \varphi_{n}{ }^{k}
\end{array}\right]
$$

for $k=1,2, \ldots, n$. Hence Φ diagonalizes the matrices $m_{1} T, m_{2} T, \ldots, m_{n} T$ simultaneously. Since $\left\{m_{1} T, m_{2} T, \ldots, m_{n} T\right\}$ is a basis of $K(R) T$, it follows that $K(G)$ is a completely reducible algebra over C. Hence $K(G)$ is semisimple, so that $K(G)$ has no non-zero nilpotent elements. Therefore $K(R)$ has no non-zero nilpotent elements and hence it is semisimple.

Irreducible representations of $K(G)$. The algebra $K(G)$ is a commutative algebra over an algebraically closed field C and hence every irreducible representation of $K(G)$ is one-dimensional. Therefore an irreducible representation of $K(G)$ can be considered as an algebra homomorphism from $K(G)$ to C.

Theorem 4. The mapping θ^{k} from $K(G)$ to C defined by

$$
\left(\sum_{j=1}^{n} z_{j} m_{j}\right) \theta^{k}=\sum_{j=1}^{n} z_{j} \varphi^{j}{ }_{k}
$$

is an irreducible representation of $K(G)$. Moreover $\left\{\theta^{1}, \theta^{2}, \ldots, \theta^{n}\right\}$ is a full set of pairwise inequivalent irreducible representations of $K(G)$ over C.

Proof. By definition of θ^{k}, it is a vector space homomorphism. Let $\sum_{i=1}^{n} x_{i} m_{i}$
and $\sum_{1}^{n} y_{i} m_{i}$ be two arbitrary elements of $K(G)$. Then we have

$$
\begin{aligned}
\left(\sum_{i} x_{i} m_{i} \cdot \sum_{j} y_{j} m_{j}\right) \theta^{k} & =\left(\sum_{i} \sum_{j} x_{i} y_{i} m_{i} m_{j}\right) \theta^{k} \\
& =\sum_{i} \sum_{j} \sum_{l} x_{i} y_{j} c_{i j} m_{l} \theta^{k} b y\left(^{*}\right) \\
& =\sum_{i} \sum_{j} x_{i} y_{j} \sum_{l} c_{i j l} \varphi_{k}{ }^{l} \\
& =\sum_{i} \sum_{j} x_{i} y_{j} \varphi_{k}{ }^{i} \varphi_{k}^{j} b y\left({ }^{* *}\right) \\
& =\left(\sum_{i} x_{i} \varphi_{k}{ }^{i}\right)\left(\sum_{j} y_{j} \varphi_{k}^{j}\right) \\
& =\left(\sum_{i} x_{i} m_{i}\right) \theta^{k}\left(\sum_{j} y_{j} m_{j}\right) \theta^{k} .
\end{aligned}
$$

Hence θ^{k} is a representation of $K(G)$. Since the degree of θ^{k} is 1 , it is obviously irreducible.

Suppose π is an isomorphism of the algebra $K(G) \theta^{i}$ to $K(G) \theta^{j}$. Then $\theta^{i} \pi=\theta^{j}$ Since $m_{k} \theta^{i} \pi=m_{k} \theta^{j}$, we get $\varphi_{i}{ }^{k} \pi=\varphi_{j}{ }^{k}$ for all $k=1,2, \ldots, n$. But $\varphi_{i}{ }^{k} \pi=$ $\left(1 \varphi_{i}{ }^{k}\right) \pi=1 \pi \varphi_{i}{ }^{k}=\varphi_{i}{ }^{k}=\varphi_{j}{ }^{k}$. Hence $i=j$. Therefore it follows that $\theta^{1}, \theta^{2}, \ldots$, θ^{n} are pairwise inequivalent irreducible representations of $K(G)$. Since the degree of $K(G)$ over C is $n,\left\{\theta^{1}, \theta^{2}, \ldots, \theta^{n}\right\}$ is a full set of pairwise inequivalent irreducible representations of $K(G)$.

Theorem 5. If $\eta^{1}, \eta^{2}, \ldots, \eta^{n}$ are the projective indecomposable Brauer characters of G, then

$$
f_{i}=\frac{g_{i}}{g} \sum_{j=1}^{n} \overline{\eta_{i}{ }^{j}} m_{j}
$$

is a primitive idempotent of $K(G)$ for $i=1,2, \ldots, n$.
Proof. By Theorem 3, $K(G)$ is a semisimple algebra of dimension n over C. Since $K(G)$ is commutative, $K(G)$ has n primitive idempotents, say f_{1}, f_{2}, \ldots, f_{n}. There are unique complex numbers $a_{i j}$ such that $f_{i}=\sum_{j=1}^{n} a_{i j} m_{j}$. If θ^{i} is the irreducible representation of $K(G)$ corresponding to the simple ideal $f_{i} K(G)$, then $f_{i} \theta^{i}=1$ and $f_{j} \theta^{i}=0$ for $i \neq j$. Hence

$$
f_{i} \theta^{k}=\delta_{i k}=\sum_{j=1}^{n} a_{i j} m_{j} \theta^{k}=\sum_{j=1}^{n} a_{i j} \varphi_{k}^{j} .
$$

Multiplying both sides of

$$
\delta_{i k}=\sum_{j=1}^{n} a_{i j} \varphi_{k}^{j} \text { by } g_{k} \overline{\eta_{k}{ }^{l}}
$$

and summing over k, we obtain that

$$
\sum_{k} \delta_{i k} g_{k} \overline{\eta_{k}{ }^{l}}=\sum_{j=1}^{n} a_{i j} \sum_{k=1}^{n} g_{k} \varphi_{k}{ }^{j} \overline{\eta_{k}} \bar{l} .
$$

By orthogonality relations for Brauer characters [1, p. 600], we have $\sum_{k=1}^{n} g_{k}$ $\varphi_{k} \bar{\eta}_{k}{ }^{l}=g \delta_{i l}$, so that $a_{i j}=g_{i} \overline{\eta_{i}{ }^{j}} / g$. Hence

$$
f_{i}=\frac{g_{i}}{g} \sum_{j=1}^{n} \overline{\eta_{i}{ }^{j} m_{j}}
$$

is a primitive idempotent of $K(G)$ for $i=1,2, \ldots, n$.
Example. We illustrate the construction of the primitive idempotents of $K(G)$ by means of an example. Let $L_{2}(5)$ be the simple group of order 60 and A a splitting field of characteristic 5 . The group G has three 5 -regular conjugate classes containing 1, 15 and 20 elements. Hence $K(G)$ has dimension 3 over C. Let $\left\{m_{1}, m_{2}, m_{3}\right\}$ be a basis of $K(G)$ determined by the equivalence classes of irreducible $A L_{2}(5)$-modules. The irreducible Brauer characters φ^{1}, φ^{2} and φ^{3} are given in [2] by

$$
\varphi^{1}=(1,1,1), \quad \varphi^{2}=(3,-1,0) \quad \text { and } \quad \varphi^{3}=(5,1,-1)
$$

The Cartan matrix of $A L_{2}(5)$ is

$$
\left[\begin{array}{lll}
2, & 1, & 0 \\
1, & 3, & 0 \\
0, & 0, & 1
\end{array}\right] .
$$

Therefore the projective indecomposable Brauer characters $\eta^{1}, \eta^{2}, \eta^{3}$ at prime 5 are given by

$$
\eta^{1}=(5,1,2), \quad \eta^{2}=(10,-2,1) \quad \text { and } \quad \eta^{3}=(5,1,-1) .
$$

Hence the primitive idempotents are:

$$
\begin{aligned}
& f_{1}=\frac{1}{60}\left[5 m_{1}+10 m_{2}+5 m_{3}\right], \\
& f_{2}=\frac{15}{60}\left[m_{1}-2 m_{2}+m_{3}\right], \\
& f_{3}=\frac{20}{60}\left[2 m_{1}+m_{2}-m_{3}\right] .
\end{aligned}
$$

Referbnces

1. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience, New York, 1962), pp. 144-145 and pp. 598-600.
2. B. M. Puttaswamaiah, Determination of Brauer characters, Can. J. Math. 26 (1974) 746-752.
3. G. deB. Robinson, The algebras of representations and classes of finite groups, J. Mathematical Phys. 12 (1971), 2212-2215.
4. -_Tensor product representations, J. of Algebra 20 (1972), 118-123.
5. —— The dual of Frobenius' reciprocity theorem, Can. J. Math. 25 (1973), 10.51-1059.
[^0]
[^0]: Carleton University, Ottawa, Ontario

