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SATURATION AND INVERSE THEOREMS FOR 
COMBINATIONS OF A CLASS OF 

EXPONENTIAL-TYPE OPERATORS 

C. P. MAY 

1. Introduction. Rates of convergence, saturation theorems and the so-
called "inverse problems" for Bernstein polynomials have been intensively 
studied (see, e.g., [1 ; 4; 8; 14; 17]). The same problems for some other positive 
operators have also been investigated by many authors. In this paper, we shall 
use a uniform approach to study the saturation and inverse problems for a 
class of linear combinations of operators including Bernstein polynomials, 
and Szâsz, Post-Widder, Gauss-Weierstrass and Baskakov operators. 

In the literature, most saturation and inverse theorems for operators are 
on positive operators. Because of the Korovkin theorem, the optimal rate of 
convergence for a positive operator cannot be faster than that of C2 functions. 
Therefore, the saturation classes for positive operators would generally con­
tain functions with smoothness up to having second derivatives. In order to 
obtain more efficient approximation operators, one has to consider non-
positive linear operators. In one of our previous papers [9], Ditzian and the 
author proved a saturation theorem for Bn(f, k, t), a linear combination of 
Bernstein polynomials defined by Butzer [6]. In the present paper, we shall 
study a more general combination, which includes the combination discussed 
by Butzer. This new combination also answers a question of his [6] (c.f. 
Remark 2.3 later). 

A saturation theorem for a class of operators under this new combination 
is proved in this paper. We would like to point out that for some operators 
of the class, e.g., the Post-Widder operator, no saturation theorems even for the 
positive case, i.e., without combinations, were known. Moreover, if we apply 
the saturation theorem to some known cases, e.g., the theory of Baskakov 
operators, stronger results may be achieved (cf., Remark 9.7). 

We also prove an inverse theorem for these combinations. For Bernstein 
polynomials (without combinations), a global inverse theorem was proved 
by Berens and Lorentz [4]. Our theorem is a local theorem for the afore­
mentioned combinations. This result may apply to some other operators of 
the class for which no inverse theorems were known. 
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2. The main results. We shall first define a few notations. 

Definition 2.1. Let 5X(/, t) = flW(\ t, u)f(u)du, where W(\t,u) è 0 
is a kernel of distribution, be a positive operator on C(A, B) (A, B may be 
±oo ) into C°°. S\( • , 0 is said to be an exponential-type operator if 

(1) I W(\,t,u)du = 1; and 

(2) | W(X, /, w) = j ^ W(\, t, u)(u - t), 

where p(t) is a polynomial of degree ^ 2, p(t) > 0 on (̂ 4, 5 ) . 

It is said to be regular if it further satisfies 

(3) I W(X,/,tt)d* = a(X), 

where a (A) is a rational function of X, a(\) —> 1 as X —» oo . 

Note that the restrictions on £>(/) are not essential, but it is the simplest 
case that covers all the operators that we would like to discuss in this paper. 
On the other hand, as we shall see in Proposition 3.1, S\ maps polynomials to 
polynomials with the same degree if and only if p(t) is a polynomial of degree 
less than or equal to 2. 

Definition 2.2. Let d0, di, . . . , dk be k + 1 arbitrary but fixed distinct 
positive integers. The operator S\(f, k, t) ( = S\(f,k,t;do}di,..., dk)) is a 
linear combination of Sdj\(f, t), defined by 

(2.1) 5x( / ,* ,0 = E c(j,k)Saii(f,t), 

where 

(2.2) c(j,k) = I I T ^ r > k*°> a n d c(0,0) = l. 

Remark 2.3. (1) The operator Bn(f, k, t) investigated by Butzer [6] is a 
special case of the operator defined in the above definition. In fact, in this case, 
Bn(f, k, t) = 5 n ( / , k} t; 1, 2, 22, . . . , 2*), and Sn(f, t) = Bn(f, t), the Bern­
stein polynomials. 

(2) In [6] Butzer also asked if it is possible to define a linear combination 
Sn(f, k, t) of the Bernstein polynomials Bn(f, /), such that Bn(f, k, t) and 
Bn(fi k, t) are polynomials of the same degree but Bn(f, k, t) has faster rate 
of convergence than Bn(f, k, t). His question can be answered by considering 
the combination Sn(f, k, t) with Sn(f, t) = Bn(f, t) for some properly chosen 
d0l d1} . . . , dk. 
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For example, when dj = j + 1, Sn(f,2
k — 1, /) is a polynomial of degree 

2kn, the same degree as Bn(f, k, t). But we shall see in Proposition 3.6 t ha t if 
/(2*+1>(0 exists then Sn(f,2

k - 1 ,0 converges to f(t) a t the ra te of n~2\ 
while Bn(f, k} 0 converges to / ( / ) a t the ra te n~{k+1). Therefore, we give a 
positive answer to Butzer 's problem. 

We are indebted to the referee for bringing the reference [11] to our a t ten t ion , 
and for pointing out t ha t the combination S\(f, k, t) defined by (2.1) also 
covers the combination constructed by M. Frent iu in [11]. Frent iu ' s combina­
tion equals S\(f, k, t) when dj = j + 1. Therefore his result also answers 
Butzer ' s problem. 

Definition 2.4. Let œk(f,h;a,b) = s u p { | A / / ( x ) | ; \t\ ^ h, x, x + kt £ [a, b]} 
be the modulus of continuity. Then the generalized Zygmund class Liz (a, k; a, b) 
is the class of functions such tha t 032k(f1 h; a,b) ^ Mhak. 

Note tha t , when k = 1, Liz (a, 1) reduces to the Zygmund class Lip *a. 
Let ty(x) > 0 be a continuous function on (^4, B) such tha t 5 X (^ 2 , /) < oo. 

^ is called a "growth- tes t funct ion". In many examples, ^ can be chosen as 
N^^ for any N > 0. We shall see from Proposition 3.2 t ha t ^ can be chosen 
a t least as N(l + x2)N for any N > 0. (In a later result of M. Ismail and the 
author , we proved t ha t ^ can always be chosen as Ne^^K) Let C*(A, B) = 
{fe C(A,B);\f(t)\ ^ M^{t) for some M> 0 j , equipped with the norm 
| | / \\Cy = supi€(A i B) I f(t)\^~l{t). In the following two theorems, assume 

/ G C*(A, B) for some growth-test function ^ , and A < a\ < a2 < a3 < Z?3 < 
b2 <b1 < B. 

T H E O R E M 2.5 (Inverse theorem) . Let 0 < a < 2. If S \ ( / , k, / ) , defined by 
(2.1), is a linear combination of exponential operators Sdj\{f, 0> ^ ^ iw /fte 

following, the implications (1) => (2) => (3) => (4) /w/d. 
(1) | | 5 X B ( / , *, 0 - / (0 | | c [ a l l 6 l ] = 0(Xn-C*+D/2)f X w + i / X w g C for SQme c > 0 ; 

(2) fe Liz (a, * + l ; a 2 , 6 2 ) ; 
(3) (a) For m < a(k + 1) < m + 1, w = 0, 1, 2, . . . , 2k + 1 : / w exists 

andfw G Lip(a(k + 1) - ra; a2, 62), 
(b) For a(jfe + 1) = m + 1, m = 0, 1, 2, . . . , 2k : / ( m ) exists and 

f(m) £ L i p * ( l ; a 2 , 62); 

(4) | | 5 x ( / , f e , 0 - / ( O i l c[a,.6,] = 0(\-"W*). 

In the case a: = 2, wre have the following result. 

T H E O R E M 2.6 (Saturat ion Theorem) . Let S\(f, k, t) be defined by (2.1), 
where S\(f, t) are regular exponential-type operators. Denote I(f,\,k,a,b) = 
A*+1||.Sx(/, k, t) — f(t)\\C[a,b]' Then in the following the implications (1) => (2) => 
(3) and (4) => (5) =* (6) ÂoZd. 
(1) / ( / , XB, &, ttl, 6 0 = 0 ( 1 ) ; Xn+1/Xn g c; 
(2) / <**+« G AC. [a 2 , 62] and f^+v £ Lœ[a2, b2}; 

(3) / ( / f X , a 8 , 6 3 ) = 0 ( 1 ) ; 
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(4) / ( / , Xn, k,au 61) = o(l); Xn+i/\n ^ c 

(5) / G C 2 *+ 2 K 62] and ZZt^i Q(i, k, t)f <*>(*) = 0, te [a2, 62], 
where Q(i, k, t) are polynomials depending on k; 

(6) I(f,\,k,a„bz) = o(l). 

We remark t ha t the restriction \n+i/\n ^ c on Xn for the saturat ion theorem 
is only technical while for the inverse theorem it is essential. 

Moreover, we believe tha t the saturat ion theorem also holds for all expo­
nential operators. 

3. Pre l iminar ie s . Let S\( •, t) be an exponential operator. We shall show t h a t 
S\{ -, /) and hence S\{ -, k, I) are indeed approximation processes for functions 
/ bounded by some growth-test function ^ . 

P R O P O S I T I O N 3.1. / / ei(x) = x and e2(x) = x2, then 

(3.1) S\(ei, t) = t, and 

(3.2) Sx(e2,t) = t* + p(t)/\. 

In general, if f is a polynomial, then S\(f, • ) is also a polynomial of the same 
degree. 

Proof. Differentiating the identi ty J*f W(\, t, u)du = 1 on both sides, 

using the relation (2) of Definition 2.1, we obtain 

/

B rs 

W(\, t, u) (u - t)du = 0, or J W(X, t, u)u du = t. 
Similarly, differentiating (3.3), we obtain JAW(\, t, u)(u2 — ut)du = 
p(t)/\. Relation (3.2) then follows by the linearity of integration and (3.1). 

T o prove the last s ta tement of the proposition, let 

(3.4) Am(\, t) = Xm 1 W(\, t, u)(u - t)mdu. 
J A 

Then the property follows by the recursion relation 

(3.5) An+1(\, t) = XmpMA^Qi, t) + p{t) | ^ m ( X , t), 

the relations (3.1) and (3.2) and induction. 

PROPOSITION 3.2. Let Am{\ t) be defined in (3.4). We have 
(1) Am(\, t) is a polynomial in t and A; 
(2) The degree of Am(\, t) in X is [ra/2] while in t is less than or equal to m; 
(3) The coefficient of \m in the polynomial Am(\, t) is (2m — l)l\p(t)m, while 

in the polynomial A2m+i(X, t) is cmp(t)mp'(t) for some constant cm, where 
all is the semi factorial of a. 
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Proof. This proposition follows from the recursion relation (3.5), Proposition 
3.1 and induction. 

COROLLARY 3.3. For any ô > 0 and m > 0, A < a < b < B, we have, 

(3.6) I W(\,t,u)du = 0(\~m), X-> + oo, 
J \u-t\^h 

uniformly on [a, b] C (A, B). 

Proof. Without loss of generality, we may assume m is an integer. Then 
(3.6) follows from the following estimate and the above proposition: 

I W(\, t, u)du ^ 8-2m i W(X,t}u)(u - t)2mdu 

S o A A2m. 

Using the above properties of S\{ -, t) and the Cauchy-Schwarz inequality, 
the following proposition can be easily proved. 

PROPOSITION 3.4. If \f{t)\ ^ ^(t) for some growth-test function \F, then the 
relation 

(3.7) l imSx( / ,0 = / ( 0 
X->oo 

holds at each point of continuity of f. If f is continuous on \a, b], then (3.7) holds 
uniformly on every interial interval [au bî\ C (a, b). 

The following lemma concerning the properties of c(j, k), the coefficients 
in S\(f, k, t), is in fact well-known. For completeness, a short proof will be 
given. 

LEMMA 3.5. / / c(j, k), j = 0, 1, . . . , k are defined as in (2.2), then 

(3.8) ±,cu,k)*r = {l ZZl2,...,k. 
Proof. Consider the Lagrange polynomial LktTn(x) = 2Z/=o Ximli(x) — xm, 

where 

k 
li(p°) = n ~—— , xt = dr1. 

; = 0 _ 
j^é. f X j X^ 

Since Lk<m(xi) = 0 for i = 0, 1, . . . , k, and Lk/m(x) is a polynomial of degree 
k, we have Ik<m(x) = 0. In particular, 

h {' } d,m U*.TO(0) + 1 = 1, m = 0. 
Consequently, Proposition 3.4 also holds for S\(f, k, t). Moreover, we have 

the following asymptotic relation. 
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PROPOSITION 3.6. Let | / ( / ) | ^ V(t) for some growth-test function \F. If 
/<2*+2>(/) eswfc, /Ae» 

2fc+2 

(3.9) X*+1[Sx(/,*,/) - / ( * ) ] = E e 0 ' . * . 0 / ( , ) ( 0 + o ( l ) , 

where Q(jjk,t) are polynomials in t. Moreover, Q(2k + 2, k, t) — cip(t)k+l, 
Q(2k + l,k,t) = c2p(typ'(t). 

If f £ C2fc+2[a, fr], /Aen (3.9) is uniform in every interial interval 
[au &i] C (a, 6). 

As a special case, when £ = 0, the above proposition reduces to the following: 

COROLLARY 3.7 (Voronovskaja-type relation). Let | / | ^ SP. If f;/(t) exists, 
then 

(3.10) lim X[5x(/, 0 -f(t)] = hp{t)j'\t). 
X->oo 

Proof of Proposition 3.6. Suppose / (2k+^ (t) exists. By Taylor's expansion 
of/, we have 

k+l Ç B 

A*+1[Sx(/, *, 0 - )\t)] = \k+1 £ c(j, *) W(d,X, *, «) 
tv ii\ }=0 A 

^ . i l j |~2*+2 r(m)/,-. "I 
• J 3 •*—f1 (u - t)m + e(w, 0 (M - <)2*+2 <*«, 

L m = l ^ « -J 

where e(u, t)—* 0 as u—* t; also, it is obvious that for some M > 0, 
|eO, /)(w - /)2*+2 | ^ M(l + u2)k+1V(u) for all w. 

Using Proposition 3.2 and Lemma 3.5, we obtain the dominated part 
of (3.11) 

^k+1 E c(j, k) WidjX, t, u) X L~ST (w - t)ndu 
;=o ^ ^ m=i ml 

= L Q0".*, 0/w(0+o(i). 

The remaining part can be estimated as follows: For any e > 0, let 5 > 0 
be such that \e(u, t)\ < e, whenever \u — t\ S 5. Then 

(3.13) I W(\, t, u)e(u, t)(u - t)ik+2du\ = | + I = h+ h. 
I J A \ J \u-t\<ô J \u-t\^& 

By the Cauchy-Schwarz inequality and Corollary 3.3, 

|/2| = 0(X-(*+D). 

On the other hand, 

\IX\ = 0(\-(k+l)) • sup \e(u, t)\^e- 0(\~(k+l)). 
\u-t\<B 

Since e > 0 is arbitrary, these estimates together with (3.12) prove (3.9). 
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When / £ C2k+2[a, b], f (2*+2) is uniformly continuous in [a, b]. Let 
[ah 61] C (a, b). We observe for / Ç [ai, 6J: (1) the o(l) term in (3.12) is 
uniform (in fact, it is equal to a polynomial in X-1 and t) ; (2) in estimating 
(3.13), we can choose 8 ^ min{ai — a, b — bi] independent of /, by the 
uniform continuity of/ (2fc+2) in [a, b], and so the uniformity of (3.9) follows. 

4. The space C0(a, k; a, b). We shall prove Theorem 2.5 in this and the 
two following sections. The equivalence of (2) and (3) of the theorem is well 
known (cf., [20, pp. 257, 333 and 337]). The rest of the proof will be divided 
into two parts. We first prove the special case when / is of compact support 
strictly contained inside the open interval (a, b), and then pass to the general 
case. We shall show, under the restriction that s u p p / C (a, b), that the 
conditions (1) and (2) in the theorem, with (a*, bt) being replaced by (a, b), 
are both equivalent to the fact that / belongs to an intermediate space 
Co (a, k; a', b')} which will be defined in the following. 

Definition 4.1. Let [a, b] be a fixed interval, and let [a', b'} C (#, b). Denote 
^ = {g;ge C0

2k+2,suppgCW,b']}. For functions/ 6 C0 with supp / C [a', b'}, 
define 

K&f)= inf { | | / - g | | + E ( | | g | | + | |g<^||} 

where 0 < £ rg 1, and the norms are the supremum-norms on [a', b']. A 
function / G C0 with supp / C W, b'] is said to belong to Co(a, k + 1; a', 6'), 
0 <a < 2 if | | / | | a ^ s u p o < ^ i r W 2 ^ f e / ) < cx>. 

For other properties and further discussion of J. Peetre's i^-functionals, 
see, for example, [7]. 

We begin with some estimates involving the ^-functions defined above. 

LEMMA 4.2. Let a < a' < a" < b" <V < b. Iff G Co with supp / C [a", &"], 
and | |5Xn(/, ife, t) - f(t)\\c[aM S M\n-

a^+l),\ where \n+1/K ^ c, then 

(4.1) K&f) S M0[\-^k+l^/2 + X f c + 1^(X-^+ 1 \ / ) ] . 

Proof. First note that it is enough to show (4.1) when X is replaced by Xn. 
That is, 

(4.1') # ( { , / ) g Mo[X,T«<*+1>/2 + X / + 1 ^ ( X W - ^ 1 ) , / ) ] . 

This is because for each X we can choose Xw_i and \n such that Xn_i < X ̂  Xn+i, 
and (4.1r) yields 

(4.2) i£ (£ j ) ^ Mo[X-«^+1)/2 + c*+1X*+1^(X-<A:+1\/)] 

g Af,o[X-«(*+1>/2 + X^+ 1 )^ (X-^+ 1 \ / ) ] . 
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Next, since supp / C W, b"], there exists an h £ @ such that 

hKl)(t)-~iSK(f,k,t) ^ MX -(fc+D 

c[a,b] 

Therefore, 

K&f) £ 3 M V ( * + 1 ) + | | / (0 - Sx»(/,*,0llc[«.« 

+ «[||5xn(/,*, Oil C[a,« + 

i = 0 and 2k + 2 [Corollary 3.3]. 

d2Jc+2 

^2Â+2 S\n(f, k, 0 C[a,b] 

Hence it is sufficient to show that there exists an M, such that, for each g £ 

I d 2 k + 2 

di 
2k+2 SxU, k, t) 

C[a,b] 
^ M\K+l{\\f - g\\ + x -(fc+D I \„(2A;+2) I 

In fact, ^ ̂ ve have 

d2*+2 

b^Â+2 S\(f, k, o C[a,b] 

(4.3) ^ £ lC(J'k)l 

1 ^ + 2 r 

\dF+2 J 
A; 

+ E \c 
3=0 

(i, 
II ^72 f c+2 

M l \\a 

k)l\\dfk+2 

I P7(dj\, t, u)[f(u) — g(u)\du 

I W(dj\, t, u)g(u)du 

C[a,b] 

= h + It. 
C[a,b] 

We first estimate I\. From the relation (2) of Definition 2.1, we can easily 
obtain by induction that 

4 s W(\, t, u) = £ \m+iW(\, t, u)(u - t)nqt,2m(u, t) 
at i==o 

~2m+l m 

(4.4) ^ + r W(\, *, w) = E Xm+i+1 W{\, t, u) (« - t)u+1qu2m+1(u, t) 
ot i=o 

+ XmW(\,t,u)q2m+i(u,t) 

where qt,j(u, t) and q2m+i(u, t) are polynomials in u (and 1/X) and are 
bounded with respect to / for / £ [a, b]. Hence, we have [by Proposition 3.2], 

(4.5) 
72fc+2 f*B 

de I. 21+2 I W(dj-\, t, u)(f(u) - g(u))du 
C[a,b] 

^ M^Wf - g\ 

(supp/ U supp g C [#,&]), where Mj is independent of g. 
To estimate 72, first notice that J A W(\, t, u)uldu is a polynomial in / 

with degree i [Proposition 3.1], it follows that dk/dtkJ W(\, t, u)uldu = 0 
for k > i. Therefore, as a linear combination of these equations, we have 

(4.6) S'A dt 
k W(\, t, u) (u — t)xdu = 0 for k > i. 
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Now for g G Co2k+2, we first form 

•J A 
Jpra JA W(\,t,u)g(; u)du = I 

*2*+2 

dt 
2̂ +2 W(X, t, U) g(u)du. 

Then for the Taylor expansion 

a(lA ^él\t) (1J rti , « ( W ) (0 

and using (4.6), we have 

rs2fc+2 

(w - 0 2fc+2 

dt 
fc+2 S\(g, /) 2&+: 

1 

C[a,&] 

I! (2fc+2)i •1/ 
^2k+2 

•T2Â+2 W ( X , *, W) = (2£ + 2)! "* " || J | dt 

Applying (4.4) and using Proposition 3.2, we calculate that 

(u — t)2k+2du 
C[a,b] 

i2k+2 

JjW+2 S\(g,t) 
C[a,b] 

£M\\g 
(2fc+2) I 

Substituting into (4.3), we see (4.1) is true. 

LEMMA 4.3. Under the same assumption as in Lemma 4.2, there holds 
K&f) £ M'Ç"\ i.e.J € Co(«, k + l;a', b'). 

The proof of this lemma is standard and can be found in [4]. 

The previous two lemmas give one direction of the following theorem. 

THEOREM 4.4. Let a<a' <a" <b" <V <b. If f G C0 with supp f C !>",&"], 
then 

l|5x.(/, *, 0 - f(t)\\cM] ^ MK-~ik+l)/2, W \ , =2 c 

implies f £ Co (a, k + 1 ; a', &'), a?zd //^ /ai/er implies 

\\Sx(f,k,t) - / ( / ) | | c [« .« g m - W " ' . 

Proof. It remains to show the second implication. For this, it is enough to 
s h o w | | S x ( / , M ) - / W I U . M ^ M ( X - c + " , / ) . 

For g Ç f, we have 

| |5x(/, *, 0 - / ( O I U . w =£ | |5x(/ - g, k, t)\\claM 

+ | |Sx(g,M) -/(Ollcia.w. 

Clearly, the first term is bounded by Afi | | / — g\\ since supp( / — g) C [#, &]• 
To estimate the second term, expand g(u) by Taylor's Formula, and use 
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Proposition 3.2 and Lemma 3.5; we see it is bounded by 

2fc+2 

| | £ - / | | + M2X-(S+1) £ ||g(m)|| 
m=k+l 

^ llg-ZH + MA-^dlgll + l l^^l i ) 

where M' is an absolute constant . In other words, 

I I S x U M ) -f(t)\\aaM S MK(\-w\f). 

5. Proof of T h e o r e m 2.5 w h e n s u p p / C (a, b). In this section we shall 
show tha t / Ç Co (a, k + 1; af, br) is equivalent to / G Liz (a, & + 1; a, fr) for 
functions satisfying s u p p / C W» &"]• ^n combination with the result of 
Section 4, this yields t ha t | | 5 X ( / , &, 0 - /(0Hc[«,&] = 0(\-« (*+ 1 ) / 2) is equivalent 
t o / Ç Liz (a, fe + 1; a,b) whenever s u p p / C W, b"]. 

T H E O R E M 5.1. Let a<a' <a" <b" <bf <b. If f £ C0 wi/ft s u p p / C [a", &"], 

then f G Co (a, £ + 1; a', 6') if and 0ft/;y i / / £ Liz (a, k + 1; a, b). 

This theorem is probably well-known. For completeness, we shall give an 
outline of the proof: 

If / Ç Co (a, k + l ; a ' , & ' ) , in order to show co2 ,+ 2(/, ft) = 0(ft« (*+1)), let 
|<5| < ft and let g £ ^ . I t is easy to see |A5

2*+2/(/)| ^ 2 2 * + 2 | | / - g\\ + 

02*+2||g(2*+2)||> H e n c e | A Ô
2 ^ + 2 / ( / ) | S 22k+2K(ô2k+2,f) è 22k+2Mh^k+l\ Con­

versely, a s s u m e / £ Liz (a, & + 1; a, 6). I t is enough to show K(i;,f) ^ M%*12 

when £ is sufficiently small. If we define go G & by 

go(*0 = 
/2£ + 2\ 2, 2A+2 

+ 

• n • • • rz t(_ i)k^ v,**>+(?+12)/^]^ • • •****** 
where (fe + 1)77 < min (a" — a', V — &", & + 1) and Ah

m is the symmetr ic 
difference, it is straightforward to show 

11/ - go\\ Û M'r{k+1) and \\go(2k+2)\\ è A f " i r ( 2 * + 2 W + 2 ( / , 77). 

From this, it is easy to derive K(r]2k+2,f) ^ Mr)(k+1)a. 

6. Proof of T h e o r e m 2.5—The general case . In this section, we shall 
prove the Inverse Theorem 2.5 for the general case. The proof will be divided 
into two par t s : The implication (2) to (4) and the implication (1) to (3). The 
equivalence of (2) and (3) is known. 
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6.1. The implication (2) =» (4). Assume / Ç Liz (a, & + 1 ; a2, 62). Choose 
a', a", 6', 6" in such a way t h a t a2 < a' < a" < a3 < 6" < V < b2. Let 
g 6 Coœ be such t h a t g(x) = 1 for x £ [a", 6"], and supp g C [a', 6']- Then 
fg has compact support strictly in (a2,b2), and /g G Liz (a, & + l ; a 2 , 62) 
s i n c e / does. Hence by Theorems 4.4 and 5.1, 

||5x(/g,fe,0 -/g(*)IU,.w = OCX-^1»*). 
But, for / 6 [as, b3], 

Sx(fg,k,t)-f(t)g(t) = E c(j,*) f w(x, *,«)(/(«)-/('))<*" 

+ 0 (X" t t + 1 ) ) = 5x(/ , *, 0 - / ( * ) + o(X-a+1)), 

where the remainders o(\~(k+l)) are uniform for t G [a3, 63] (Corollary 3.3). 

Consequently, \\Sx(fyk,t) - / (Ol l c i a , .* . ] = C K X - ^ 1 " 2 ) . 

6.2. The implication (1) => (3). Now assume | |Sx„(/, k, t) — /(0||c[«i,&i] = 
0(Xn~ a ( / r + 1 ) / 2) , Xw/Xw_i < c. We shall prove the implication by induction on 
r == a(k + 1). T h e induction progresses as follows: 

First , we prove it for the case when 0 < r ^ 1. Then , for any ô 6 (0, 1), 
we prove the case when 1— <5 < r < 2 — 8. In general, assume the proposi­
tion holds for 0 < r ^ m - ô, m = 1, 2, . . . , 2k + 1, 0 < ô < i , and then 
prove the case when m — < 5 ^ r < r a + l — 26. Since ô > 0 can be chosen 
arbitrari ly small, the proposition holds for all r Ç (0, 2& + 2). 

6.2.1. 77^ case 0 < r g 1. Let a', a", ^ , 5" be chosen so t ha t ax < a' < 
a" < a2 and b2 < b" < V < bx. Also, let g G C0

œ be such tha t supp g C [a", b"} 
and g(x) = 1 on [a2, 62]-

L E M M A 6.1. Lc^ g be chosen as above. If 

| | S x „ ( / , M ) - / ( 0 l | c [ a , . W = OCX,,"7'2), 0 < T è 1 

\\s,,xfg,k,t)-fg(t)\\cu,',bn = o ( x r / 2 ) . 
Proof. For 2 G [a', ft'], we have 

SK(f,g,k,t) -f{t)g{t) 

(6.1) = git) E c(j, ft) f W(d,X». t, «)[/(«) - /(0|d« 

+ È c0", *) f61 WidjK, t, «)/(«)(g(«) - g (*))<*« + o(X»"(*+1)) 
j=0 */ a 1 

= hit) + h(t) + o(Xn-
(t+1)) 

where the 0-terms are uniform for / £ [a', &'] (Corollary 3.3). 
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The assumption ||5xn(/, k, t) — f(t)\\c[nithl] = 0(\n~
T'2) yields the estimate 

(6.2) \\h{f)\\cw,v\ è \\g\\ • | |5x,(/, *, 0 -/(/)||c[«'.»<] ^ MAr'2-

Next, by the mean value theorem, we reduce 72(0 to 

h(t) = £ c(j,k) f ' W(d,X». f, «)/(u 
7=0 •/ ai 

){g'(*)(«-'))<*«• 

Hence 

(6.3) 

|/*(0Hcra'.»<] ^ E \c(j,k)\ 

i II r 6 1 

X ) I |g'| I • WidjK, t, u) • | / («) | |M - /|d« 
v II J a\ 

è | | / | | c [ a ' , S ' ] | |g ' | | - (Z \c(j,k) 
\j=0 

C[a',b'] 

Il f 
X max I W(dj\n, t,u)\u — t\du 

O^j^k II •/ 

Using the Cauchy-Schwarz inequality, we obtain 

11̂ 2(011 C[a',b'] 

è H/11 Cla>.vA\g'\\(È, \c(j,k)\) 

I W(dfkn, t, u)(u — t)2du 

C[a' ,&'] 

(6.4) X max 
1/2 

C[a' ,b'] 

\(t \c(j,k)\) 
\ 7=0 / 

^ l l /IU' .nlls ' l l E k(j. *)l IIMO H1/2c[a<,nX-1/2 

= 0(A~1/2) g 0(X~r/2). 

Combining (6.1), (6.2) and (6.4) we conclude that 

||5Xn(/g,fe,0 -/g(0l|c[a',&<] = 0(X-/ 2 ) . 

LEMMA 6.2. Let ax < a2 < b2 < b,. If ||SX„(/, M ) —/(Oilc[«i.&i] = 
0(X»~r/2), Xw+i/Xn ^ c, 0 < r ^ 1, /Aen / G Lip(r; a2, fc2) if r < 1 and 
f e Lip*( l ;a 2 ,&2)i / r = 1. 

Proof. Let a', a", fr',&" and g be chosen as above. Since supp/g C [a/r, &"] C 
(a', bf), it follows from Theorems 4.4 and 5.1 and Lemma 6.1 that 
fg € Lip(r;a ' , b') if r < 1 and/g Ç Lip*(l;a ' , &') if r = 1. Noticing g(0 = 1 
for t £ [a2, 62], this reduces to the required result. 

6.2.2. The induction process. Assume that the proposition holds for 
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0 < r ^ m - d(m = 1, 2, . . . , 2k + 1; 0 < ô < | ) and suppose that 

l |Sx„( / ,M) -/(Ollccax.w ^ M . X ^ 2 

where ra — dSr^m+l— 25, Xw+i/Xn ^ c. We must deduce (3) of 
Theorem 2.5 for that r. 

Let xt, yu i = 1, 2, 3 be chosen such that a,\ < xt < xi+i < a2 < b2 < 
yi+i < Ji < 6i. Let g G Co" with supp g C (xz, y3) and g(x) = 1 on [a2, 62]. 

LEMMA 6.3. Let g be chosen as above. If \\S\n(f,k,t) — /(0Hc[ai,&i] = 0(Xn~r/2), 
then 

\\Sxn(fg,k,t) -fg(t)\\c[x^] = 0 ( \ T T / 2 ) , 

w/zere m — ô ^ r ^ m + 1 — 25. 

Proof. First notice that, by the induction hypothesis, the condition of the 
lemma with r = m — <5 implies t h a t / (m-1) exists and 

f (m-i) ç Lip(l - ô;xi ,yi) . 

Next, for £ Ç [x2, 3̂ 2], we form 

SK(fi,k,t)-f(t)g(t) 

= É C{j,k) I W(d}\n,t,u)f(u)g(u)du-f(t)g(t) 
j = 0 «/ 

(6.5) 
+ E c0>k) I W(d3Xn,t,u)(g(u) - g(t))du-f(t) 

+ L cO,*) f raw», *, «)(/(«) -I(t))du • g(o + o(\-(*+1)) 

= J i + Z a + J s + oCX-^") 

where the 0-term is uniform for t £ [x2, 3/2] (Corollary 3.3). 
The estimates for I2 and J3 can be made immediately: 

(6.6) | |/, | |c[«.M] è \\g\\ • \\Sin(f,k,t) -f(t)\\c^,„i = 0(K-T/i) 

by the assumption of the lemma (and [x2, 3̂ 2] C (#i, &i)); and 

(6 .7) H^Hctxa ,^] ^ | | / | | cU2 , i /2 ] | | 5x„(g , *, 0 - g(0| |c[*2.*2] = 

0(X n -<* + 1 > / 2 ) = 0 ( X n " * / 2 ) 

as g G C0
œ C C2*+2. 

In the estimating of | |A|| ct^.^b w e s e e that by the induction hypothesis, 
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/ ( m _ 1 ) exists on [xi, 3; J . So tha t , for t £ [x2, y2], by Taylor 's expansion, 

m—1 xU)fi\ k 

( 6 g ) X J W(djK, t, u)(u - t)'(g(u) - g(t))du 

k 

x P1 widjK, t, «)(« - /r-V"1-1^) - /"-"(O) 

• g'(rj)(u — t)du = I A + 15 

where £ and rj are between ẑ  and t. 

Clearly, | |/4 | |c[x2,M] = 0{\n-*
+l) 2) = 0(X»- r / 2) . 

Also, since 

/ < — » € L ip( l - a . x i . y i ) , ! / ^ - » ^ ) - / " " " " ( O l 

for some M > 0. Therefore 

I/, 5 I I C[z2,2/2] 

^wn-^%-
(6.9) 

X max f W(dA> t, u)\u - t\m+l~"du /

'vi 
WidX, t, 

XI 

W(dj\n,t,u)\u - t\2(m+1)du 

C[X2,V2] 

(m+l-5)/2(m+l) 

C[X2.1/2] 

by Jensen's inequality. Thus | |J5 | | cix2,y2] = 0(X„- ( m + 1~ô ) / 2) = 0(\n~
T/2) by 

Proposition 3.2. 
Combining the above estimates, we obtain the lemma. 

LEMMA 6.4. Le* fll < a2 < ^2 < 61. / / | |Sx„(/, k, t) - f(t)\\c[aiM] = 0(A r e"' / 2), 
w — < 5 < r < m + l — 2<5, /&erc 

( 1 ) / (m~1} exists J (w~1} G Lip(r - m + 1 ; a2, 62), if m - ô < r < m; 
(2) / ^ - 1 } a m t e , / (w-1} G Lip*(l ; a2, &2), # r = w ; 
( 3 ) / (m) exists, f (m) G Lip(r - ra;a2, 62), tf m < r < m + 1 - 2<5. 

Proof. Let xt, yh i = 1, 2, 3 and g be defined as in Lemma 6.3. As an inter­
mediate result, Lemma 6.3 yields \\S\n(fg, k, t) — fg(t)\\ C[x2,y2] = 0 ( \ T T / 2 ) -
Fur thermore , since fg has compact support in [x3, 3̂ 3] C (#2, 3>2), Theorems 4.4 
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and 5.1 imply (by vir tue of the equivalence (2) <=> (3) of Theorem 2.5) t h a t 
the conclusions of the lemma hold for the function (fg). However, g(x) = 1 
on [a2, 52], so by restricting ourselves to this interval, we can r ep l ace /g by / 
in the results, which gives the desired relations of the lemma. 

7. O u t l i n e of t h e proof of t h e s a t u r a t i o n t h e o r e m . From now on, 
assume S\( -, i) is regular. 

Using the properties proved in the previous sections, the proof of the 
saturat ion theorem is considerably simple. First , by Theorem 2.5, the con­
dition | |5X n ( / f &, t) -}\t)\\c[aiM] = 0(\r*+1)) impl i e s / ^ G C[a2, b2]. More­
over it is easy to see t ha t the conditions | |S 2x n ( / , k, t) — S\n(f, k, 011c[ai,&i] = 
0(\rTk"1) and | |Sx„(/, k, t) - j{t)\\c[aiM] = 0(\n-

k-1) are equivalent . How­
ever, dealing with {S2\(f, k, t) — S\(f, k, t)} instead of {S\(ffk,t) — f(t)} 
will simplify much of the proof of one later step, Lemma 7.1. 

T h u s we may assume tha t {^n
k+l(S\n(f, k, t) — S\n(f, k, t))} is bounded in 

C[ai, &i] and hence in Lœ{ai, &J. Because Lœ[ai, &J is the dual space of 
Li[ai, 6i], by weak*-compactness, there is an h £ Lœ[ai, b{\ and a subnet 
{\ni} of {\n} such tha t K.k+1(S\ (f, k, t) — S\n.(f, k, t)) converges to h in 
the weak* topology. In part icular, for any g £ C^° with supp g C (#i, &i), we 
have 

(7.1) K,k+\SÏKi(f, k, t) - SKi(f, k, t), g ( 0 ) -> (h(t), g(t)), 

where 

(h,g)= I h(t)g(t)dt. 

In the case w h e n / £ C2Jc+2[ai, &J, by Proposition 3.6, we have 

lim A„/+1 [52Xn.(/, k, t) - Sx».(/, *, t)] 
{(.*) Xn^oo 

/ / l \ f c + 1 \ 2/C+2 

= " I1 " \V J Ml QU'k' t)jiJ)(t) " P2k+2(D)m' 
Therefore, for functions / G C2k+2 and g £ C0°°, we have 

k+l 

(7.3) 
lim XB,K+1 < S a (/, k, t) - SKXf, k, t), g(t)) 

= <Pa+8(P)/(0,g(0> = ( / W . ^ V ^ k W ) , 
where P* 2 ^ + 2 (P) is the dual operator of P 2 / t + 2 (D) . (In this case, in fact, it is 
a result of integration by par ts . ) 

Since C*(A, B) C\ C2k+2[au &J is dense in C*(A.B) with respect to [| • | | c *, 
there exists a sequence { fa} in C^(/ l , B) C\ C2k+2[<ii, 5 J , converging to / in 
t h e II ' | |c^-norm. 
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In considering the expression of 

lim lim X ^ S » , / / , , k, t) - 5x,.(/„ k, t), g(t)) 

for such a sequence fa, we need the following lemma. 

LEMMA 7.1. Let f £ C*(A, B), g £ C0
œ wi//& supp g C (a, &)• Then 

(7.4) IX^1 < 5 2 X ( / , * , 0 - S x ( / , M ) , g ( 0 > I^MH/l lc* , 

where M depends on g (and its derivatives). 

We reserve the proof for the next section. 
Thus, for /ff G CV(^4,i?) ^ C2*+2[ai, &i], converging to / in the || • | | c^ 

norm, wre have 

lim lim Xn<*+1<S2Xn,(/„M) - S^if^kJ)^®) 

( 7 ' 5 ) = lim K^\S^.(J, k, t) - 5 S ( / , *, 0, g(0>-

Combining (7.1), (7.3) and (7.5), we get (h(t),g(t)) = (f(t), P*ik+i(D)g(t)) 
for all g G Co00 with supp g C (#1, &i). 

This implies P2k+2(D)j(t) — h(t) since they are equal as generalized func­
tions. However, as a first order linear differential equation for / (2*+i)? with 
the non-homogeneous term, which can be represented in terms of / {i\ i ^ 2k 
(in C[a2, 62]), and h (in Z J a i , &i]), we deduce t h a t / (2*+1) G A.C.[a2, b2] and 
hence/<2*+2> G LJa2 > 62]. 

The "little 0" part is similar with only one difference: instead of 
(f(t), P*2k+2(D)g(t)) = (h(t), g(t)), we have </«), P*u+i(D)g{t)) = 0. 

The implications (2) =» (3) and (5) =» (6) in the theorem are slightly 
stronger than Proposition 3.6. But as f2k+» £ A.C.[a2, b2] and /(2*+2) G Lœ[a2,62], 
we have / (2A+1) Ç Lip(l ; «2, ô2). The rest of the proofs are computational 
and will be omitted. 

8. Proof of Lemma 7.1. To complete the proof of Theorem 2.6, it remains 
to prove Lemma 7.1. 

The proof of the lemma is divided into three parts. 

8.1. L e t / £ C*(A, B), g G C0
œ with supp g C (a, h). Denote 

2k+2 

(8.1) 52X(/, *, t) - 5x(/f k, t) = £ a( j , fe)5eyX(/, 0, 
7 = 1 

where e; Ç {do, dx, . . . , ^4, 2rf0, 2di, . . . , 2dk\. By Lemma 3.5 we have 

2k+2 

(8.2) 23 <*0'» k)ej~m = 0> ™ = 0, 1, 2, . . . , £. 
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We first get some integration in the representations of (7.4) over finite 
intervals, then use Taylor's expansion on g, and break the integration into 
several parts which are easier to estimate. That is, we have 

X*+1<S2x(/,*,0 - Sx(f,k,t),g(t)) 

/

B ÇB ( 2fc+2 \ 

J \ Z «0'. *) W(ej\, t, u)f(u)g(t) > dudt 

= xs+i r t*{...}dudt 
\°'d) J s u p p g d A 

= \k+1 f f "{...} dudt + o(DH/llc* 
** supp g " a 

= xm r r{...}dudt+aw Me*. 
J A J a 

By Fubini's theorem, this expression can be rewritten as 

A*+1 f fB {...}dtdu + o(l)\\f\\c* 
u a *> A 

/
*b f*B 2fc+2 2fc+2 -. 

Z E 1
]a{j,k)W{e1\t,u)j(u) 

a J A 7 = 0 .7=1 7 1 

X g{y\u)(t - u)ydtdu 
E «(j,^)I^(^X,/,w)/(w)e(/,w)(/ - u)Wdtdu 

a J A j=\ 

+ o(l)ll/l|c* 
2&+2 /»& ÇB 2fc+2 . 

(8.4) = g X*+1 J„ JA § ^ « O . W ( « , M , «)/(«) 

X g<7)^)(< - M)Tdft*K 

/

' B /*(> 2fc+2 

Z « 0 \ *)W(e>X. '. «)/(«)«(*. «) (< - u)U+2dudt 
A J a j=l 

+ «(DII/llc» 

= X >^+1 | I X) a(j,k)W(ej\,t,u)<t>y(u)tydtdu 
7 = 0 •/ a «^ A j=l 

/
B rb 2k+2 

E a(j,k)W(ej\,t,u)f(u)e(t,u)(t - tl)U+2dudt 

+ '(DII/llc* 

Z Iy + o(D\\f\\c^ 
7=0 
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where 

2A;+2 -. 

8.2. In order to est imate Iy, y ^ 2k + 2, we need the following lemma: 

L E M M A 8.1. i w ^^r^ non-negative integer m, there holds 

(8.5) I W(X, /, w)r<ft = P(u, X) + 0(X~*~2), 
J A 

where P(u, X) is a polynomial in u and X-1, the degree of P in u is m, and the 
remainder 0(\~k~2) is uniform for u G [a, b]. 

Proof. When m = 0, the lemma follows from condition (2) of Definition 2.1. 
For the induction step, use integration by par ts and (2) of Definition 2.1 to 
derive 

I W(\, t} u)tm+1dt 
J A 

/

B r B 

W(\, t, u)tmdt - I W(\, t, u)tm(u - t)dt 
A J A 

(8.6) r _ mi. i r u w . , , 
— W(\, t, it) 

A A */ A \-Ot 

= ufAW(xj,u)rdt-{fA[ft 

u I W(\,t,u)tmdt + l l 
J A X J / 

tp{t)dt 

W(\,t,u)tmdt + ^ W(\,t,u)(tmp(t))'dt. 
X J A 

Since degree p(t) ^ 2, degree (tmp(t))f ^ m + 1, (8.6) is indeed a recursion 
relation. Hence (8.5) holds for all m. 

Now the estimates of Iy, y ^ 2& + 2 are easy: applying Lemma 8.1 ,\ve get 

A;+I rt> 
(8.7) Iy = \k+1 X) oc{j,k) I <$>y(ii)P(ii,ej\)du + o ( l ) . 

.7=0 ^ fl 

Since P(u, X) is a polynomial in u and 1/X, by relation (8.2), we have 

(8.8) Iy = 0 ( 1 ) , T ^ 2& + 2. 

8.3. I t remains to est imate 72^+3. First notice tha t 

^•M)l = WTW l2<"+2>(£)1 = p*T2)I ll«(tt+,)ll^«-« < °° 
and | / ( w ) | g | | * | | e [ « . « | | / | | c * . I t follows tha t 

/
' B /*!> 2ft+2 

A •/ a j = l 
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In order to show I2k+z = 0(1), it is sufficient to show 

/

» B r*b 

W(X,t,u)(u- t)ikdudt = 0(1). 
A J a 

Let c, d be two finite numbers such that [a, b] \J {0} C (c, d) C (A, B). 
F\(k) can be rewritten as 

(8.11) Fx(fe) = ) ) + ) I ^ = Ji+ J2. 

The fact that J\ = 0(1) follows from Lemma 3.2, as the integration in t 
is only over a finite interval. Since J2 = (J A + J a ) JL w e shall only estimate 
Jf fi Notice that / ^ , 0 < / - B I - M . Hence 

/

*B r*b ÇB Çb 

] è X* I W(X, /, M 
d J a J d J a 

2(k+N) 
x (W - J ) , , 
) (/ _ h)2N d l l d t 

*b ) 1/2 

(8.12) s > ' / ; F ^ { / , ' H , ( x ' ' - " ) ( " - , ) " + * ' i " 

•{/; 
b ) 1/2 

Recall that (Lemma 3.2) \~m J A W(\, t, 11) (u — i)mdt is a polynomial in t 
with degree less than or equal to m\ moreover, \~mAm{\, t) = 0(\~ [ ( m + 1 ) / 2 ])-
Therefore, 

[ / > — — 1/2 rg MX- (^-1/2) |P^-2(0f / 2 (8.13) J W(\,t,u)(u-ty-'du 

where PiN^i{t) is a polynomial in t of degree 4iV — 2. Hence 

(8.14) /, ^ M\k-N+1'2 £ ^ f f 2 ^ { /* W{\, t, u) (« - tY^du}1"' dt. 

By the Cauchy-Schwarz inequality, we can further estimate 

U B Çb •) 1/2 

J wxx.f.ttXM-o^M^J 
= MX t + 1 , 2 - A , - I 1

1 / 2 - I 2
1 ' 2 . 

It is sufficient to show L\ and L2 are finite integrals, for then by choosing 
N^k + l,J* = 0(1). 

The estimate Lx is trivial, since the integrand \Pm-2(t)\/(t — b)m is domi­
nated by Mt~2 for some M > 0 and J /° t~2dt is convergent. To estimate L2, 
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following Lemma 8.1, 

W(X,tJu)(u - t)A1c+2dtdu *J7" 
*J a u A 

fc-2x 
P,k+,(u,\)du + 0(\-^), 

where P^+^u, X) is a polynomial in u and X-1. Hence L2 = 0 ( 1 ) . This proves 
hk+z = 0 ( 1 ) . 

Combining this with the estimates (8.8), the proof of Lemma 7.1 (and hence 
the proof of the saturat ion theorem) is completed. 

9. Appl i ca t ions . The theorems proved in the previous sections can be 
applied to a number of operators, for example, Bernstein polynomials, Szâsz 
operators, Post-Widder operators etc. For certain operators, some modifi­
cations may be necessary. 

9.1. Post-Widder operators and Gauss-Weierstrass operators. The Post-Widder 
operator Sn1 and the Gauss-Weierstrass operator S\2 are defined as follows: 

(9.1) Sn\f, t) = ~ { - ~ ( " )" / " e-^'V-'fMdu 

and 

(9.2) 5x2(/, t) = ^ ± / " e^-'^fMdu. 

(In the l i terature, the Gauss-Weierstrass operator is of ten defined for X = l / 2 r 
and r —* 0+ .) I t is easy to see tha t Sn1 and S\2 satisfy Definition 1.1: for con­
dition (2), pr(t) = t2 and p2(t) = 1 ; for condition (3), ai(X) = n/(n - 1) 

/ fœ ni+1(n — 2 — / ) ' 
I in particular, I Wi(n, t, u)t3dt = -, rrr u* 
\ Jo (n — 1 ) ! 

and a2(X) = 1. Also, for the underlining space, A = 0, B = + co for Sn
l and 

A = -oo, B = +oo for Sx2. 
Moreover, in the application, SJ generally apply on functions in C[0, oo ) 

instead of C(0, oo). Therefore, for both operators, their growth-test functions 
^ i ( / ) and ^ ( O can be chosen as eN\tl for any TV > 0. 

Note t ha t in both inverse and saturat ion theorems which we have jus t 
proved, the theorems are applicable to the case when X runs through integers 
only, for in particular, Xn+1/\n = (n + \)/n ^ 2. 

T H E O R E M 9.1. The saturation and inverse theorems corresponding to Theorems 
2.5 and 2.6 hold for the Post-Widder operators and the Gauss-Weierstrass operators 
(where the growth-test functions ^ i ( t ) = ^ ( 0 = eN][t\for any N > 0) . 

9.2. Bernstein polynomials and the Szâsz operators. The two theorems proved 

https://doi.org/10.4153/CJM-1976-123-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-123-8


1244 C. P. MAY 

in the previous sections hold for Bernstein polymonials 

^(/ ,O-B.(/ ,O=L(ÏV(I-O-V(J) 
k=0 

and the Szâsz operators 

-A* £>>''(!)• SxV, 0 = e 

I t is straightforward to verify conditions (1) and (2) of Definition 2.1 for 
both operators (for SJ, 

wMt,U) = ±{n
k)ni-tr*{u-k^ 

b(x) being the delta function, A = 0, B = 1, pz{t) = t(\ — t)\ similarly, for 
Sx4, A = 0, B = oo, £>4(/) = / ) . We only remark tha t now the relation (2) of 
the definition is in the sense of distr ibution. 

Hence they are operators of exponential type. As for condition (3), they 
satisfy a modified version: 

(3*) If h e Co2*+1, supp h C (a, b), then 

h(u) I W(\,t, u)dtdu = a(X) I 7 ^ - ^ - • ^ - * - ^ (9.3) I fc(w) W(\t,a)dtdu = a(\) I / * ( z 0 ^ + OCX"*"1) | |/t| | c™ + i 

where a(X) —> 1 is a rational function of X, and ||&||C2A+i = \\h\\ + ||/z(2fc+1) | |. 
This would be enough for proving Lemma 7.1, which is the only place tha t 

condition (3) has been used. The reason is as follows: If ||.Sxn(/, k, t) — 
f(P)\\c[aM = CKX*-*"1), by Theorem 2.o, we g e t / G C2*+1(", &)• Therefore the 
functions 

defined in (8.4) are in Co2fc+1(a> &)• Now by (3*) and following similar pro­
cedures as in Section 8.2, Lemma 7.1 can be proved. 

T h e fact t ha t the Bernstein polynomials satisfy (3*) is not difficult to see. 
First Ave calculate 

(9.4) f 1 W*(n, t, u)dt = S — j — dlu - - ) . 
J o ^To n + 1 \ nl 

Therefore, for h £ CQU+1, with supp h C (a, b), 

(9.5) J= i h(u) I W,{n,t,u)dtdu = ir —\—h\-\ . 
J a J o m=o n -\- Ï \ n J 
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By the Euler-Maclaurin formula ([5, pp. 268-275]), we obtain 

(9.6) / = n+l\J h(u)du 
a 

+ R 
where 

R = 
(b-a 

2n 
)2 
LA'({), a ^ 

) . 

a ^ £ S b, for k = 0, and 

1 no ri 
R = -2*TiT, P2k(t)h

(U\a + n-\t + m))dt} n0 - h g n - 1, 
U m=kQ J 0 

For k 9^ 0, using the fact tha t 

for jfe ^ 0. 

l ^ | | c [ o , i ] = ( - ! ) % ( ! ) = ( - 1 ) . (2*)! ~. 

where 1 ^ ( 4 ) is the value of the Bernoulli polynomial a t \ and Bu is the 
Bernoulli number, R is estimated as 

\Pu( i)l f ^ l ^ ^ J J ^ l * -
The condition (3*) for the Szâsz operators can be verified similarly. 
Since the Bernstein polynomials are usually defined on C[0, 1] functions 

while the Szâsz operators are defined on C[0, GO ) functions, the growtli test 
function for the Bernstein polynomials is not necessary and for the Szâsz 
operators can be chosen as eNt for any N > 0. 

T H E O R E M 9.2. The corresponding saturation and inverse theorems hold for 
Bernstein polynomials and Szâsz operators (where ^\{t) = eNt, N > 0) . 

9.3. Baskakov operators. The Baskakov operator S\b(f, i) is a generalization 
of the Bernstein polynomial and the Szâsz operator. However, our result is 
only applicable to functions with growth not faster than some ^-0(t) = 
(1 + 0 " , N > 0. 

Definition 9.3. The Baskakov operator S\r° is defined as 

(9.8) 5 x 8 ( / , 0 = t ( - l ) * ^ ( i l ^ ( f ) . 

where {#x} is a family of real-valued functions such tha t (1) (j>\(x) can be 
expanded in Taylor ' s series in [0, 0) (f3 may be equal to GO ) ; (2) </>\(0) = 1; 
(3) (- l)*0x ( A ! )(*) è 0 (& = 0 , l , 2 , . . . ) for * € [ 0 , / 3 ) ; (4) - « x ( * } W = 
\(/>x+c

(A;_1)(x) (& = 1 , 2 , . . . ) , x G [0, ]S), for some constant c; (5) For any 
fixed constant M, l i m ^ œ <l>\(x)xk = 0 for £ = 0, 1, 2, . . . , M. 

The kernel for the Baskakov operator is 

Wi{\,t,u)= t ( - D * - ^ ^ ( « - f ) . 
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It is trivial that 5\5 satisfies condition (1) of Definition 2.1. However, to see 
that it also satisfies the other two conditions is not so easy. We show it satisfies 
condition (2) in the following lemma. 

LEMMA 9.4. The kernel W$ satisfies the following differential equation: 

(9.9) !- W,(\, t, u) = -J~ Ws(\, t, u)(u - t), 
dt ph(t) 

where p-0(t) = t(l + ct). 

Proof. Recall that <£\(x) can be expanded in a Taylor's series. Hence we have 

, / \ V^ </>X (0) jc i , / \ \ ^ <fo+ç (0) a 

<M#) = 2^ —rr~~ X » a n d </>x+c(x) = XJ r*—x • 
From (4) and (2) of Definition 9.3, we have 

*x+e<*>(0) = (-1)*(X + c)(X + 2c) . . . (X + kc) 
= 0x(*>(O)(X + ftc)/X. 

Hence, 

^ ) = §irl1 + i;c) * 

>x(x) — CX X I —7TC_ n , ** '* = <#>X(x) — CX 4>\+c(x). 

Or, 

Now 

*=1 (* - 1)' 

<̂ >x+c(x) = j - ^ . — 4>x(*)-

Thus, 

4>x+c
tt)(x) = (-1)*(X + c) . . . (X + *c)*x+tt+i)e(*) 

= (-1)*X(X + c) . . . (X + (* - l)C)<^x+*c(x) T ^ ( M ^ ) 

=-^ s ( x , / ,M ) M_^_g (_1 )^ !(1 +^) 
X 4>xtt)«)s(M - ~) 

= j W,{\, t, u)u - -~^t Ws(\, t, u) - Y~t W,{\, t, u)u 

Wt>(\J,u)(u - t). 
t{\ + a) 
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To show S\5 satisfies (3*), we can proceed similarly as in Section 9.2. There­
fore, it is sufficient to show the following lemma. (The stronger form we prove 
in the lemma is useful in practice.) 

LEMMA 9.5. If f d Co (a-, b), and M > 0 is a fixed integer, then for y = 
0, 1, 2, . . . , M, the following equation holds 

f J W,(X, t, u)f(u)tydt du= X / ( - ) 

x (m + 7) ! 1 
ml (X - c)(X - 2c) . . . (X - (7 + l)c)' 

Proof. First, we prove the following assertion: 

(9.11) ( - l ) w f <h}n\t)t*dt 1 

J o o (X - c)(X - 2c) . . . (X - (k - m + l)c) 

for non-negative integers k and m such tha t k — m rg M. 
The proof is by induction. First, from 

A — C 

we have 

P P 1 1 
*x(0<ft = - 7 4>X-c'(t)dt = — 

»/ 0 */ o A — C A — 

*x(0) 
\ — c X — c 

Hence, (9.11) holds for m = 0, k = 0. For ra = 0 fixed, we proceed by induc­
tion on k. Suppose k + 1 rg M, using conditions (4), (2) and (5) in Definition 
9.3 and integration by parts , we have 

r 4>,(t)tk+idt = F-7-1 

J 0 J 0 A — 
4>x-/(t)r+ldt 

A — C »/ n X - c J o ™_cV ' (X - c) . . . (X - (k + 2)c) ' 

by the induction hypothesis. Therefore, (9.11) is valid for m = 0 and 
k = 0, 1, . . . , M. 

Now, assume (9.11) holds for (m — 1) and all positive integers k S M. 
We first show by induction tha t (9.11) holds for m and k — m ^ M — 1. 
By using a technique similar to the above, we have 

p <t>sm\t)tkdt=- r x <^+e
im-i\t)tkdt 

•^ 0 «^ 0 

A! 
^ ; (X - c) . . . (X - (k - m + l )c) " 

Next, for m and k — w = Af, by using conditions (4), (2) and (5) of Défini-
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tion 9.3, integration by par ts , and the induction hypothesis, we obtain 

P 4>xm\t)tm+Mdt = - f X ^m-x\t)tm+Mdt 
J o «^ o 

= X(m + M) f <t>^c
{m\t)tm+M-ldt 

J o 

(m + M - 1)! 
= (-l)m\(m + M) X(X - c) . . . (X - (M - l)c) 

Hence the proof of equation (9.11) is completed. 
Using relation (9.11) for k = m + 7 7 = 0, 1, . . . , M, we have 

J o m=o ml J o \ A/ 

f i (w + 7)! i _ w\ 
H m\ (X - c)(X - 2c) . . . (X - (7 + l)c) \ X/ 

Hence, 

W&(\,t,u)f(u)tydtdu IT 
= y f( m.\ A (m + 7)!  

m,éta,by\ X / m! (X - c){\ - 2c) . . . (X - (7 + i)c) ' 

Therefore, following the same proof as in Section 9.2, using the Euler-
Maclaurin formula, we prove the saturat ion and inverse theorems for 
Baskakov operators. 

T H E O R E M 9.6. The corresponding saturation and inverse theorems hold for 
Baskakov operators. 

Remark 9.7. (1). The conditions in Definition 9.3 are slightly different from 
those in the original definitions (cf. [2] and [17]). The differences are, the 
corresponding intervals in conditions (1), (3) and (4) have been changed to 
[0, jS), where 0 satisfies condition (5). These modifications are based on the 
concrecated examples (e.g., if Sn

5(f, t) = Bn(f, t), then <j)n(t) = (1 — t)n, 
/3 = 1. In this case, </>n(x) does not satisfy the conditions in the original 
definition). 

(2) T h e condition (5) in Definition 9.3 is in fact equivalent to the condition 

{-lY^-^x'dx = — — , Z = 0 , 1 , 2 , . . . 
o /! X — c 

used by Suzuki in his saturat ion theorem for Baskakov operator ([17, p. 441]). 
(The technique of the proof for the equivalence is similar to t ha t used in this 
section. We shall omit the proof here.) 

T h e condition (9.12), as being equivalent to condition (5) of Definition 9.3, 
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is enough for proving the saturat ion theorem, while the other conditions, i.e., 
conditions (20), par t of (21), and (22) of [17], are redundant for this purpose. 

We would like to point out tha t the notation E(c) used by Suzuki is equal 
to the fi in our definition. The value of E(c) is equal to oo when c ^ 0 and is 
equal to l / | c | when c < 0. The formula tha t 

given by Suzuki is valid only if c = — 1. 
(3) Let us recall some of the known results for this operator. Baskakcv 's 

original work [2] investigated the convergence theorems of bounded con­
tinuous functions; Suzuki [17] studied saturation classes for continuous 
functions with compact supports ; a result of Berens [3] is also for bounded 
continuous functions. Such restrictions on / l i m i t the applications. Our results 
are for functions with growth less than some (1 + x)N for some N > 0. 
(From the remark on ^(t) in Section 2, we see tha t the results are actually 
true for functions with growth less than eNx for some TV > 0.) This class is 
considerably wider. 
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