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Abstract

Let α be any radical of associative rings. A radical γ is called α-like if, for every α-semisimple ring A, the
polynomial ring A[x] is γ-semisimple. In this paper we describe properties of α-like radicals and show
how they can be used to solve some open problems in radical theory.

2010 Mathematics subject classification: primary 16N80.

Keywords and phrases: prime-like radical, α-like radical, special radical, Amitsur property of radicals,
polynomially extensible radicals.

1. Introduction

In this paper all rings are associative and all classes of rings are closed under
isomorphisms and contain the one-element ring 0. The fundamental definitions and
properties of radicals can be found in [1] and [10]. A class µ of rings is called
hereditary if µ is closed under ideals. If µ is a hereditary class of rings, U(µ) denotes
the upper radical generated by µ, that is, the class of all rings which have no nonzero
homomorphic images in µ. As usual, for a radical γ, the γ radical of a ring A is denoted
by γ(A) and the class of all γ-semisimple rings is denoted by S(γ). The class of all
prime rings is denoted by π and β =U(π) denotes the prime radical. The notation I C A
means that I is a two-sided ideal of a ring A. An ideal I of a ring A is called essential
in A if I ∩ J , 0 for every nonzero two-sided ideal J of A. A ring A is called an
essential extension of a ring I if I is an essential ideal of A. A class µ of rings is called
essentially closed if µ = µk, where µk = {A : A is an essential extension of some I ∈ µ}
is the essential cover of µ. A hereditary and essentially closed class of prime rings
is called a special class and the upper radical generated by a special class is called
a special radical. Given a ring A, the polynomial ring over A in a commuting
indeterminate x is denoted by A[x]. We say that a radical γ has the Amitsur property
if γ(A[x]) = (γ(A[x]) ∩ A)[x] for every ring A. A radical γ is called polynomially
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extensible if A[x] ∈ γ for every ring A ∈ γ. It is well known [10, Proposition 4.9.21]
that γ is polynomially extensible if and only if γ = γx, where γx = {A : A[x] ∈ γ}.

A radical α is said to satisfy the polynomial equation if α(A[x]) = (α(A))[x] for
every ring A. It was proved in [11] that α satisfies the polynomial equation if and only
if it is polynomially extensible and has the Amitsur property.

A radical γ is called prime-like [18] if A[x] ∈ Sγ for any prime ring A. The
importance of prime-like radicals stems from the fact that, as was shown in [18],
they allow us to easily construct pairs of distinct special radicals that coincide on
simple rings and on polynomial rings. This answers a question posed by Ferrero [19].
Also, Gardner’s [8, Problem 1] long-standing open question whether β =U(∗k), is
equivalent to the question whether the radical U(∗k) is prime-like, where ∗ denotes
the class of all ∗-rings (see [3–5, 12]), that is, semiprime rings R such that R/I ∈ β for
every nonzero ideal I of R.

It was shown in [18] that a radical γ is prime-like if and only if A[x] ∈ Sγ for every
semiprime ring A. Inspired by this fact, we introduce the following definition.

D 1.1. Let α be any radical. We say that a radical γ is α-like if A[x] ∈ Sγ for
any A ∈ Sα.

Alpha-like radicals with α satisfying the polynomial equation were introduced and
studied in [7] where they were used to easily construct pairs of distinct special radicals
that meet Ferrero’s conditions [19].

In this paper we study properties of α-like radicals for any radical α. We generalise
some results of [7]. In particular, we characterise α-like radicals and give sufficient
conditions for a radical γ to be α-like. For every proper radical α—that is, a radical
α , {all rings}—we construct a strictly ascending chain of radicals γi k α that are not
α-like. This answers a question posed in [7]. Strong radicals are those containing all
one-sided radical ideals. Since the class of strong radicals is not a sublattice of the
lattice of all radicals [16], there are radicals that do not contain largest strong radicals.
We use α-like radicals to construct those that do. This allows us to reformulate the
famous Koethe problem which asks whether the nil radical is strong. All these give a
reason for studying α-like radicals. We look at α-like radicals from the lattice theory
point of view. We prove that the collection Lα of all α-like radicals is a complete
sublattice of the lattice of all radicals. This allows us to show that for any proper
radical α, there exists a unique proper largest α-like radical. We prove that for a radical
α k β, the lattice Lα is not atomic. We show, however, that for every proper radical α,
the complete lattice Lhα of all hereditary α-like radicals is atomic and we describe its
atoms.

2. Main results

In this paper α denotes any radical. We will start with some examples and properties
of α-like radicals.

It was shown in [7] that any radical α with the Amitsur condition is α-like. We will
now show that it is not so in general.
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E 2.1. Consider the special radical γ =U({Zp}), where p is a prime integer and
Zp denotes the field of integers modulo p. We have Zp ∈ S(γ) but Zp[x] < S(γ) because
0 , xp − x ∈ γ(Zp[x]) since every a ∈ Zp satisfies the polynomial equation xp − x = 0
and, γ being a special radical, γ(Zp[x]) = ∩{I C Zp[x] : Zp[x]/I ' Zp}. Thus γ is not
γ-like.

P 2.2. If a radical γ is α-like, then γx j α but the converse does not hold in
general.

P. Let A ∈ γx and suppose A < α. Then A[x] ∈ γ and 0 , B = A/(α(A)) ∈ S(α).
But, since γ is α-like, this implies that B[x] ∈ S(γ). On the other hand, B[x] =

(A/(α(A)))[x] ' A[x]/(α(A))[x] ∈ γ in view of A[x] ∈ γ. This implies that B[x] = 0,
a contradiction.

To see that the converse does not hold, consider again γ =U({Zp}). Since for any
radical ρ, ρx ⊆ ρ [10, Proposition 4.9.17 (ii)], we have, in particular, that γx j γ but γ
is not γ-like as Example 2.1 shows. �

However, we have the following generalisation of [7, Theorem 2.9].

C 2.3. A radical γ with the Amitsur property is α-like if and only if γx j α.

P. If γx j α, then S(α) ⊆ S(γx). Thus if A ∈ S(α), then A ∈ S(γx) which, in view
of [20, Theorem 3.5], implies that A[x] ∈ Sγ since γ has the Amitsur property. Thus γ
is α-like.

The converse follows from Proposition 2.2. �

A hereditary radical γ is said to be subidempotent if the radical class γ consists of
idempotent rings.

It follows from [14, Proposition 4.1] that every subidempotent radical γ has the
Amitsur property and γx = {0}. Thus Corollary 2.3 implies the following corollary.

C 2.4. Every subidempotent radical γ is α-like for every radical α.

We also have another corollary.

C 2.5. Let γ be a radical with the Amitsur property. Then any radical τ ⊆ γ
is γ-like.

P. Let A ∈ S(γ). Then A ∈ S(γx) since γx j γ implies that S(γ) ⊆ S(γx). But,
since γ is a radical with the Amitsur property, it follows from [20, Theorem 3.5] that
A[x] ∈ Sγ. This implies that A[x] ∈ Sτ because Sγ ⊆ Sτ as τ ⊆ γ. Thus τ is γ-like. �

Let N be the nil radical, J the Jacobson radical, G the Brown–McCoy radical and
ψ =U(P), where P is the class of all prime rings A such that every nonzero ideal of
A contains a nonzero element from the centre of A. It was shown in [10, Proposition
4.9.27] that Jx ⊆ N and it was proved in [15] that ψ = Gx. Since N , J and G are
radicals with the Amitsur property [10], Corollary 2.3 implies the following example.

E 2.6. The radical J is N-like and G is ψ-like.
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L 2.7. If σ and γ are radicals such that σ ⊆ γ and γ is α-like, then σ is also
α-like.

P. Let A ∈ S(α). Then A[x] ∈ Sγ since γ is α-like. But, since σ ⊆ γ implies that
S(γ) ⊆ S(σ), it follows that A[x] ∈ S(σ). This shows that σ is α-like. �

Our next result is a generalisation of [7, Theorem 2.9].

T 2.8. A radical γ is α-like if and only if γ(A[x]) ⊆ (α(A))[x] for any ring A.

P. Let γ be α-like and suppose that γ(A[x]) " (α(A))[x] for some ring A.
Then γ(B[x]) = 0 for any B ∈ Sα. In particular, for B = A/(α(A)), we have 0 =

γ(A/(α(A))[x]) � γ(A[x]/(α(A))[x]). On the other hand, since γ(A[x]) * (α(A))[x],

0 ,
(α(A))[x] + γ(A[x])

(α(A))[x]
�

γ(A[x])
γ(A[x]) ∩ (α(A))[x]

∈ γ.

But, since ((α(A))[x] + γ(A[x]))/α(A)[x] C A[x]/(α(A))[x],

0 ,
(α(A))[x] + γ(A[x])

(α(A))[x]
⊆ γ

( A[x]
(α(A))[x]

)
= 0,

and we have a contradiction.
Conversely, suppose that γ(A[x]) ⊆ (α(A))[x] for any ring A. Let A ∈ Sα. Then

α(A) = 0. Hence γ(A[x]) ⊆ (α(A))[x] = 0[x] = 0, which shows that γ is α-like. �

Alpha-like radicals can be used to easily identify radicals that are not polynomially
extensible, as our next result shows.

P 2.9. If a radical γ is α-like, then any radical ρ ⊆ γ with S(α) ∩ ρ , 0 is
not polynomially extensible.

P. Let 0 , A ∈ S(α) ∩ ρ. Then, since γ is α-like, A[x] ∈ Sγ ⊆ Sρ. Thus A ∈ ρ but
A[x] < ρ, which shows that ρ is not polynomially extensible. �

E 2.10. Let l̂W be the smallest special radical containing the nonnil Jacobson
radical ∗-ring W = {2x/(2y + 1) : x, y ∈ Z and (2x, 2y + 1) = 1} (see [3, 4, 12]). Then,
sinceJ isN-like and l̂W ⊆ J and W ∈ S(N) ∩ l̂W , it follows from Proposition 2.9 that
l̂W is not polynomially extensible.

We say that radicals γ and τ are like each other if γ is τ-like and τ is γ-like. Our
next result shows how to construct them.

C 2.11. Let γ be a radical with the Amitsur property. If τ is a radical such
that γx ⊆ τ ⊆ γ, then τ and γ are like each other. In particular, γ and γx are like each
other.

P. Let A ∈ S(γ). Then, since γx ⊆ τ ⊆ γ implies that S(γ) ⊆ S(τ) ⊆ S(γx), it
follows that A ∈ S(γx). But, as γ is a radical with the Amitsur property, it then follows
from [20, Theorem 3.5] that A[x] ∈ Sγ ⊆ S(τ). Thus τ is γ-like.
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To show that γ is τ-like, we will first show that γ(A[x]) ⊆ (γx(A))[x] for any ring A.
Indeed, since γ is a radical with the Amitsur property, (γ(A[x]) ∩ A)[x] = γ(A[x]) ∈ γ
for every ring A. This means that γ(A[x]) ∩ A ∈ γx and, since γ(A[x]) ∩ A C A,
it follows that γ(A[x]) ∩ A ⊆ γx(A). Then, γ(A[x]) = (γ(A[x]) ∩ A)[x] ⊆ (γx(A))[x]
for any ring A.

Now, if A ∈ S(τ) ⊆ S(γx) then γx(A) = 0 and so γ(A[x]) ⊆ (γx(A))[x] = 0[x] = 0,
which means that A[x] ∈ Sγ and shows that γ is τ-like. �

SinceJx ⊆ N ⊆ J and Gx = ψ ⊆ G, Corollary 2.11 gives us the following example.

E 2.12. The radicals N and J are like each other and so are ψ and G.

C 2.13. Let α and γ be radicals satisfying the polynomial equation. Then α
and γ are like each other if only if α(A[x]) = γ(A[x]) for every ring A.

P. If α and γ are like each other, then it follows from Theorem 2.8 that γ(A[x]) ⊆
(α(A))[x] and α(A[x]) ⊆ (γ(A))[x] for every ring A. But, since both α and γ satisfy the
polynomial equation, (α(A))[x] = α(A[x]) and (γ(A))[x] = γ(A[x]) for every ring A.
Thus α(A[x]) = γ(A[x]) for every ring A.

Conversely, let α(A[x]) = γ(A[x]) for every ring A. Then γ(A[x]) ⊆ α(A[x]) =

(α(A))[x] since α satisfies the polynomial equation. This, in view of Theorem 2.8,
means that γ is α-like. Similarly, α(A[x]) ⊆ γ(A[x]) = (γ(A))[x] since γ satisfies the
polynomial equation. This, in view of Theorem 2.8, means that α is γ-like. Thus α
and γ are like each other. �

T 2.14. Let α and γ be radicals with the Amitsur property. Then α and γ are
like each other if and only if αx ∪ γx ⊆ γ ∩ α.

P. Since both α and γ are radicals with the Amitsur property and they are like
each other, Corollary 2.3 implies that γx ⊆ α and αx ⊆ γ. But, as γx ⊆ γ and αx ⊆ α, it
follows that γx ⊆ γ ∩ α and αx ⊆ γ ∩ α. Consequently, αx ∪ γx ⊆ γ ∩ α.

Conversely, if αx ∪ γx ⊆ γ ∩ α, then γx ⊆ αx ∪ γx ⊆ γ ∩ α ⊆ α and αx ⊆ αx ∪ γx ⊆

γ ∩ α ⊆ γ. But, since both α and γ are radicals with the Amitsur property, it follows
from Corollary 2.3 that γ is α-like and α is γ-like. Thus α and γ are like each other. �

In what follows, for any classσ of rings, the lower radical generated byσ is denoted
by L(σ). A radical γ is said to be small if L(γ ∪ τ) is proper for any proper radical τ.
It was proved in [9] that the lower radical generated by a set of rings is small.

In [7] it was noted that for some radicals α, there exist radicals γ k α that are not
α-like and the question was asked whether this is so for any radical α. Our next two
results answer this question.

T 2.15. For every proper radical α, there exists a strictly ascending chain of
proper radicals γi ⊇ α, i = 1, . . . , n, which are not α-like.

P. Since α is a proper radical, there exists 0 , A1 ∈ Sα. Then A1[x] < α
since otherwise A1, being a homomorphic image of A1[x], would be in α, giving
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a contradiction. But A1[x] ∈ L(A1[x]) ⊆ L(α ∪ L(A1[x])). Thus α $ α1 =L(α ∪
L(A1[x])) and it follows from [9] that α1 , {all rings}. So, arguing as before,
there exists 0 , A2 ∈ Sα1. Then again A2[x] < α1 which shows that α1 $ α2 =L(α ∪
L(A1[x]) ∪ L(A2[x])) and, by [9], we again obtain α2 , {all rings}. Continuing
this process, we get a strictly increasing chain of proper radicals α & α1 $ α2 $
· · · $ αi $ αi−1 $ · · · , where αi =L(α ∪ L(A1[x]) ∪ · · · ∪ L(Ai[x])) , {all rings} and
0 , Ai ∈ Sαi−1 for i = 1, 2, 3, . . . . Moreover, every radical αi in this chain is not α-like
because the ring 0 , Ai ∈ Sαi−1 ⊆ Sα but, since 0 , Ai[x] ∈ L(Ai[x]) ⊆ αi, it follows
that Ai[x] < Sαi. �

Note that if α = {all rings}, then 0 is the only ring in Sα. Therefore A[x] = 0[x] =

0 ∈ Sγ for every A ∈ Sα. Thus we have the following corollary.

C 2.16. Every radical γ is α-like for α = {all rings}.

We will now use α-like radicals to construct radicals that contain largest strong
radicals.

We say that a radical γ satisfies condition (z) if, for every ring A, A ∈ γ implies that
Ao ∈ γ, where Ao is the zero-ring built on the additive group of A.

T 2.17. Let α be a radical such that, for some α-like left and right strong
radical γ which satisfies condition (z), M2(A) ∈ α implies that A[x] ∈ γ, where M2(A)
denotes the ring of all 2 × 2 matrices with entries from A. Then γx is the largest left
and right strong radical contained in α.

P. Since γ is α-like, Proposition 2.2 implies that γx j α. Since γ is a left and right
strong radical satisfying condition (z), it follows from [21] that so is γx. Now, let ρ be
a left and right strong radical contained in α and let A ∈ ρ. Clearly

(
A 0
0 0

)
is a right ideal

of
(

A1 0
A1 0

)
, where A1 is the Dorroh extension of A to a ring with unity. Since

(
A 0
0 0

)
' A ∈ ρ

and ρ is right strong, the ideal
(

A 0
A 0

)
of

(
A1 0
A1 0

)
generated by

(
A 0
0 0

)
is also in ρ. But

(
A 0
A 0

)
is a left ideal of

(
A1 A1

A1 A1

)
so, since ρ is left strong, it follows that the ideal

(A A
A A

)
of

(
A1 A1

A1 A1

)
generated by

(
A 0
A 0

)
is also in ρ. Now, since M2(A) ∈ ρ ⊆ α, our assumption implies that

A[x] ∈ γ, which means that A ∈ γx. Thus ρ ⊆ γx. So γx is indeed the largest left and
right strong radical contained in α. �

Our next result gives a necessary and sufficient condition for the Koethe problem to
have a positive solution.

C 2.18. A radical N is left and right strong if and only if N =J x.

P. First we will show that J and N satisfy the assumptions of Theorem 2.17. It
is well known [10] that J is left and right strong and Example 2.6 shows that J is
N-like. Moreover, J satisfies condition (z) since β ⊆ J . Let M2(A) ∈ N . Then it
follows from [10, Proof of Theorem 4.9.13] that Mn(A) ∈ N for every n = 1, 2, . . . .
But this, in view of [13], implies that A[x] ∈ J . Hence J and N satisfy the
assumptions of Theorem 2.17.
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So, taking α =N and γ =J in Theorem 2.17, we can conclude thatJx is the largest
left and right strong radical contained in N . Thus, since Jx ⊆ N , it follows that, if N
is left and right strong, then N =J x. Conversely, if N =J x, then N is left and right
strong since, by [21], so is Jx as J is a left and right strong radical which satisfies
condition (z). �

It is well known [1, 17] that the collection L of all radicals forms a complete lattice
with respect to inclusion of radical classes, where the meet and the join of a family
of radicals γi, i ∈ I, are defined by ∧i∈Iγi = ∩i∈Iγi and ∨i∈Iγi =L(∪i∈Iγi), respectively.
We will now consider some sublattices of L that consist of α-like radicals.

P 2.19. For any radical α, the collection Lα of all α-like radicals is a
complete sublattice of the lattice L and φ =U({all rings}) is its smallest element.

P. Every ring is in S(φ)—in particular, A[x] ∈ S(φ) for every A ∈ S(α)—which
shows that φ ∈ Lα. Clearly φ is the smallest element of Lα.

Let γi, i ∈ I, be a family of α-like radicals.
Let Γ = ∨i∈Iγi. We will show that Γ is α-like. Let A ∈ Sα and suppose that

A[x] < SΓ. Then Γ(A[x]) , 0. Hence there exists a nonzero subring I1 such that I1 E
· · · E In = A[x] and I1 is a homomorphic image of a ring B ∈ γi for some i. Therefore
I1 ∈ γi and, since semisimple classes are hereditary, it follows that γi(A[x]) , 0. On
the other hand, since γi is α-like for each i ∈ I, γi(A[x]) = 0, a contradiction. It follows
that Γ(A[x]) = 0 for every A ∈ Sα, which means that Γ is α-like.

Let ∆ = ∧i∈Iγi. To see that ∆ is also α-like observe that, since ∆ ⊆ γi for all i ∈ I
and since each γi is α-like, it follows that, for every A ∈ Sα, ∆(A[x]) ⊆ γi(A[x]) = 0. �

L 2.20. The trivial radical γ = {all rings} is not α-like for any proper radical α.

P. Suppose that γ = {all rings} is α-like for some proper radical α. Then, since α is
proper, there exists 0 , A ∈ Sα. But then, since γ is α-like, it follows that 0 , A[x] < γ.
On the other hand, A[x] ∈ γ since γ = {all rings} and we have a contradiction which
ends the proof. �

Proposition 2.19 and Lemma 2.20 imply the following corollary.

C 2.21. For any proper radical α, γ = ∨{γi : γi ∈ Lα} is a unique largest
proper α-like radical.

P 2.22. If α k β is a radical with the Amitsur property, then the lattice Lα is
not atomic.

P. Let γ ⊆ β be a radical that does not contain atoms of the lattice L. Such a
radical was constructed in [2] by Beidar. Then, as β ⊆ α, we have γ ⊆ α and, since
α is a radical with the Amitsur property, it follows from Corollary 2.5 that γ is
α-like. Suppose that γ contains some atom σ of the lattice Lα. Then σ is not an
atom of the lattice L and therefore there exists a radical ρ , {0} such that ρ $ σ. But,
since σ ⊆ γ ⊆ α, it follows that ρ ⊆ α. So, since α is a radical with the Amitsur

https://doi.org/10.1017/S0004972712000895 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000895


338 H. France-Jackson et al. [8]

property, Corollary 2.5 implies that ρ is α-like, which is impossible as σ is an atom
of Lα. Thus γ does not contain atoms of Lα, which shows that the lattice Lα is not
atomic. �

P 2.23. The collection Lhα of all hereditary α-like radicals is a complete
atomic sublattice of the lattice L. Any atom of Lhα is of the form L({Z0

p}) or
L({A}),where Z0

p is a zero-ring on a cyclic additive group Zp of prime order p and
A is a simple idempotent ring.

P. Let γi, i ∈ I, be a family of hereditary α-like radicals. It follows from [17] and
Proposition 2.19 that ∧i∈Iγi and ∨i∈Iγi are hereditary and α-like radicals. Hence Lhα is
a complete sublattice of the lattice L.

Let {0} , γ ∈ Lhα. Then, since γ is hereditary, it follows from [17] that γ contains
Z0

p for some prime p or a nonzero simple idempotent ring A. Then γ ⊇ ρ where ρ
denotes one of the following radicals L(Z0

p) or L(A) and, since γ is α-like, it follows,
by Lemma 2.7, that ρ is α-like. Moreover, since ρ is also a hereditary radical, it follows
that ρ ∈ Lhα. Since ρ is an atom of the lattice of all hereditary radicals [17], ρ is also
an atom of the lattice Lhα, which ends the proof. �
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