ON α -LIKE RADICALS OF RINGS

H. FRANCE-JACKSON™, T. KHULAN and S. TUMURBAT

(Received 9 September 2012; accepted 2 October 2012; first published online 12 December 2012)

Abstract

Let α be any radical of associative rings. A radical γ is called α -like if, for every α -semisimple ring A, the polynomial ring A[x] is γ -semisimple. In this paper we describe properties of α -like radicals and show how they can be used to solve some open problems in radical theory.

2010 Mathematics subject classification: primary 16N80.

Keywords and phrases: prime-like radical, α -like radical, special radical, Amitsur property of radicals, polynomially extensible radicals.

1. Introduction

In this paper all rings are associative and all classes of rings are closed under isomorphisms and contain the one-element ring 0. The fundamental definitions and properties of radicals can be found in [1] and [10]. A class μ of rings is called hereditary if μ is closed under ideals. If μ is a hereditary class of rings, $\mathcal{U}(\mu)$ denotes the upper radical generated by μ , that is, the class of all rings which have no nonzero homomorphic images in μ . As usual, for a radical γ , the γ radical of a ring A is denoted by $\gamma(A)$ and the class of all γ -semisimple rings is denoted by $S(\gamma)$. The class of all prime rings is denoted by π and $\beta = \mathcal{U}(\pi)$ denotes the prime radical. The notation $I \triangleleft A$ means that I is a two-sided ideal of a ring A. An ideal I of a ring A is called essential in A if $I \cap J \neq 0$ for every nonzero two-sided ideal J of A. A ring A is called an essential extension of a ring I if I is an essential ideal of A. A class μ of rings is called essentially closed if $\mu = \mu_k$, where $\mu_k = \{A : A \text{ is an essential extension of some } I \in \mu\}$ is the essential cover of μ . A hereditary and essentially closed class of prime rings is called a special class and the upper radical generated by a special class is called a special radical. Given a ring A, the polynomial ring over A in a commuting indeterminate x is denoted by A[x]. We say that a radical γ has the Amitsur property if $\gamma(A[x]) = (\gamma(A[x]) \cap A)[x]$ for every ring A. A radical γ is called polynomially

The authors gratefully acknowledge the support of the Foundation for Scientific Research Grant 'Radical theory and connections with other branches of mathematics 2013-2016'.

^{© 2012} Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

extensible if $A[x] \in \gamma$ for every ring $A \in \gamma$. It is well known [10, Proposition 4.9.21] that γ is polynomially extensible if and only if $\gamma = \gamma_x$, where $\gamma_x = \{A : A[x] \in \gamma\}$.

A radical α is said to satisfy the polynomial equation if $\alpha(A[x]) = (\alpha(A))[x]$ for every ring A. It was proved in [11] that α satisfies the polynomial equation if and only if it is polynomially extensible and has the Amitsur property.

A radical γ is called prime-like [18] if $A[x] \in S\gamma$ for any prime ring A. The importance of prime-like radicals stems from the fact that, as was shown in [18], they allow us to easily construct pairs of distinct special radicals that coincide on simple rings and on polynomial rings. This answers a question posed by Ferrero [19]. Also, Gardner's [8, Problem 1] long-standing open question whether $\beta = \mathcal{U}(*_k)$, is equivalent to the question whether the radical $\mathcal{U}(*_k)$ is prime-like, where * denotes the class of all *-rings (see [3–5, 12]), that is, semiprime rings R such that $R/I \in \beta$ for every nonzero ideal I of R.

It was shown in [18] that a radical γ is prime-like if and only if $A[x] \in S\gamma$ for every semiprime ring A. Inspired by this fact, we introduce the following definition.

Definition 1.1. Let α be any radical. We say that a radical γ is α -like if $A[x] \in S\gamma$ for any $A \in S\alpha$.

Alpha-like radicals with α satisfying the polynomial equation were introduced and studied in [7] where they were used to easily construct pairs of distinct special radicals that meet Ferrero's conditions [19].

In this paper we study properties of α -like radicals for any radical α . We generalise some results of [7]. In particular, we characterise α -like radicals and give sufficient conditions for a radical γ to be α -like. For every proper radical α —that is, a radical $\alpha \neq \{\text{all rings}\}\$ —we construct a strictly ascending chain of radicals $\gamma_i \supseteq \alpha$ that are not α -like. This answers a question posed in [7]. Strong radicals are those containing all one-sided radical ideals. Since the class of strong radicals is not a sublattice of the lattice of all radicals [16], there are radicals that do not contain largest strong radicals. We use α -like radicals to construct those that do. This allows us to reformulate the famous Koethe problem which asks whether the nil radical is strong. All these give a reason for studying α -like radicals. We look at α -like radicals from the lattice theory point of view. We prove that the collection \mathbb{L}_{α} of all α -like radicals is a complete sublattice of the lattice of all radicals. This allows us to show that for any proper radical α , there exists a unique proper largest α -like radical. We prove that for a radical $\alpha \supseteq \beta$, the lattice \mathbb{L}_{α} is not atomic. We show, however, that for every proper radical α , the complete lattice $\mathbb{L}_{h\alpha}$ of all hereditary α -like radicals is atomic and we describe its atoms.

2. Main results

In this paper α denotes any radical. We will start with some examples and properties of α -like radicals.

It was shown in [7] that any radical α with the Amitsur condition is α -like. We will now show that it is not so in general.

Example 2.1. Consider the special radical $\gamma = \mathcal{U}(\{Z_p\})$, where p is a prime integer and Z_p denotes the field of integers modulo p. We have $Z_p \in \mathcal{S}(\gamma)$ but $Z_p[x] \notin \mathcal{S}(\gamma)$ because $0 \neq x^p - x \in \gamma(Z_p[x])$ since every $a \in Z_p$ satisfies the polynomial equation $x^p - x = 0$ and, γ being a special radical, $\gamma(Z_p[x]) = \bigcap \{I \triangleleft Z_p[x] : Z_p[x]/I \cong Z_p\}$. Thus γ is not γ -like.

Proposition 2.2. If a radical γ is α -like, then $\gamma_x \subseteq \alpha$ but the converse does not hold in general.

PROOF. Let $A \in \gamma_x$ and suppose $A \notin \alpha$. Then $A[x] \in \gamma$ and $0 \neq B = A/(\alpha(A)) \in S(\alpha)$. But, since γ is α -like, this implies that $B[x] \in S(\gamma)$. On the other hand, $B[x] = (A/(\alpha(A)))[x] \simeq A[x]/(\alpha(A))[x] \in \gamma$ in view of $A[x] \in \gamma$. This implies that B[x] = 0, a contradiction.

To see that the converse does not hold, consider again $\gamma = \mathcal{U}(\{Z_p\})$. Since for any radical ρ , $\rho_x \subseteq \rho$ [10, Proposition 4.9.17 (ii)], we have, in particular, that $\gamma_x \subseteq \gamma$ but γ is not γ -like as Example 2.1 shows.

However, we have the following generalisation of [7, Theorem 2.9].

Corollary 2.3. A radical γ with the Amitsur property is α -like if and only if $\gamma_x \subseteq \alpha$.

PROOF. If $\gamma_x \subseteq \alpha$, then $S(\alpha) \subseteq S(\gamma_x)$. Thus if $A \in S(\alpha)$, then $A \in S(\gamma_x)$ which, in view of [20, Theorem 3.5], implies that $A[x] \in S\gamma$ since γ has the Amitsur property. Thus γ is α -like.

The converse follows from Proposition 2.2.

A hereditary radical γ is said to be subidempotent if the radical class γ consists of idempotent rings.

It follows from [14, Proposition 4.1] that every subidempotent radical γ has the Amitsur property and $\gamma_x = \{0\}$. Thus Corollary 2.3 implies the following corollary.

Corollary 2.4. Every subidempotent radical γ is α -like for every radical α .

We also have another corollary.

Corollary 2.5. Let γ be a radical with the Amitsur property. Then any radical $\tau \subseteq \gamma$ is γ -like.

PROOF. Let $A \in \mathcal{S}(\gamma)$. Then $A \in \mathcal{S}(\gamma_x)$ since $\gamma_x \subseteq \gamma$ implies that $\mathcal{S}(\gamma) \subseteq \mathcal{S}(\gamma_x)$. But, since γ is a radical with the Amitsur property, it follows from [20, Theorem 3.5] that $A[x] \in \mathcal{S}\gamma$. This implies that $A[x] \in \mathcal{S}\tau$ because $\mathcal{S}\gamma \subseteq \mathcal{S}\tau$ as $\tau \subseteq \gamma$. Thus τ is γ -like. \square

Let \mathcal{N} be the nil radical, \mathcal{J} the Jacobson radical, \mathcal{G} the Brown–McCoy radical and $\psi = \mathcal{U}(\mathcal{P})$, where \mathcal{P} is the class of all prime rings A such that every nonzero ideal of A contains a nonzero element from the centre of A. It was shown in [10, Proposition 4.9.27] that $\mathcal{J}_x \subseteq \mathcal{N}$ and it was proved in [15] that $\psi = \mathcal{G}_x$. Since \mathcal{N} , \mathcal{J} and \mathcal{G} are radicals with the Amitsur property [10], Corollary 2.3 implies the following example.

Example 2.6. The radical \mathcal{J} is \mathcal{N} -like and \mathcal{G} is ψ -like.

Lemma 2.7. If σ and γ are radicals such that $\sigma \subseteq \gamma$ and γ is α -like, then σ is also α -like.

PROOF. Let $A \in S(\alpha)$. Then $A[x] \in S\gamma$ since γ is α -like. But, since $\sigma \subseteq \gamma$ implies that $S(\gamma) \subseteq S(\sigma)$, it follows that $A[x] \in S(\sigma)$. This shows that σ is α -like.

Our next result is a generalisation of [7, Theorem 2.9].

THEOREM 2.8. A radical γ is α -like if and only if $\gamma(A[x]) \subseteq (\alpha(A))[x]$ for any ring A.

PROOF. Let γ be α -like and suppose that $\gamma(A[x]) \nsubseteq (\alpha(A))[x]$ for some ring A. Then $\gamma(B[x]) = 0$ for any $B \in S\alpha$. In particular, for $B = A/(\alpha(A))$, we have $0 = \gamma(A/(\alpha(A))[x]) \cong \gamma(A[x]/(\alpha(A))[x])$. On the other hand, since $\gamma(A[x]) \nsubseteq (\alpha(A))[x]$,

$$0 \neq \frac{(\alpha(A))[x] + \gamma(A[x])}{(\alpha(A))[x]} \cong \frac{\gamma(A[x])}{\gamma(A[x]) \cap (\alpha(A))[x]} \in \gamma.$$

But, since $((\alpha(A))[x] + \gamma(A[x]))/\alpha(A)[x] \triangleleft A[x]/(\alpha(A))[x]$,

$$0 \neq \frac{(\alpha(A))[x] + \gamma(A[x])}{(\alpha(A))[x]} \subseteq \gamma\left(\frac{A[x]}{(\alpha(A))[x]}\right) = 0,$$

and we have a contradiction.

Conversely, suppose that $\gamma(A[x]) \subseteq (\alpha(A))[x]$ for any ring A. Let $A \in S\alpha$. Then $\alpha(A) = 0$. Hence $\gamma(A[x]) \subseteq (\alpha(A))[x] = 0[x] = 0$, which shows that γ is α -like. \square

Alpha-like radicals can be used to easily identify radicals that are not polynomially extensible, as our next result shows.

PROPOSITION 2.9. If a radical γ is α -like, then any radical $\rho \subseteq \gamma$ with $S(\alpha) \cap \rho \neq 0$ is not polynomially extensible.

PROOF. Let $0 \neq A \in S(\alpha) \cap \rho$. Then, since γ is α -like, $A[x] \in S\gamma \subseteq S\rho$. Thus $A \in \rho$ but $A[x] \notin \rho$, which shows that ρ is not polynomially extensible.

EXAMPLE 2.10. Let \widehat{l}_W be the smallest special radical containing the nonnil Jacobson radical *-ring $W = \{2x/(2y+1): x, y \in \mathbb{Z} \text{ and } (2x, 2y+1) = 1\}$ (see [3, 4, 12]). Then, since $\mathcal J$ is $\mathcal N$ -like and $\widehat{l}_W \subseteq \mathcal J$ and $W \in \mathcal S(\mathcal N) \cap \widehat{l}_W$, it follows from Proposition 2.9 that \widehat{l}_W is not polynomially extensible.

We say that radicals γ and τ are like each other if γ is τ -like and τ is γ -like. Our next result shows how to construct them.

Corollary 2.11. Let γ be a radical with the Amitsur property. If τ is a radical such that $\gamma_x \subseteq \tau \subseteq \gamma$, then τ and γ are like each other. In particular, γ and γ_x are like each other.

PROOF. Let $A \in \mathcal{S}(\gamma)$. Then, since $\gamma_x \subseteq \tau \subseteq \gamma$ implies that $\mathcal{S}(\gamma) \subseteq \mathcal{S}(\tau) \subseteq \mathcal{S}(\gamma_x)$, it follows that $A \in \mathcal{S}(\gamma_x)$. But, as γ is a radical with the Amitsur property, it then follows from [20, Theorem 3.5] that $A[x] \in \mathcal{S}\gamma \subseteq \mathcal{S}(\tau)$. Thus τ is γ -like.

To show that γ is τ -like, we will first show that $\gamma(A[x]) \subseteq (\gamma_x(A))[x]$ for any ring A. Indeed, since γ is a radical with the Amitsur property, $(\gamma(A[x]) \cap A)[x] = \gamma(A[x]) \in \gamma$ for every ring A. This means that $\gamma(A[x]) \cap A \in \gamma_x$ and, since $\gamma(A[x]) \cap A \lhd A$, it follows that $\gamma(A[x]) \cap A \subseteq \gamma_x(A)$. Then, $\gamma(A[x]) = (\gamma(A[x]) \cap A)[x] \subseteq (\gamma_x(A))[x]$ for any ring A.

Now, if $A \in \mathcal{S}(\tau) \subseteq \mathcal{S}(\gamma_x)$ then $\gamma_x(A) = 0$ and so $\gamma(A[x]) \subseteq (\gamma_x(A))[x] = 0[x] = 0$, which means that $A[x] \in \mathcal{S}\gamma$ and shows that γ is τ -like.

Since $\mathcal{J}_x \subseteq \mathcal{N} \subseteq \mathcal{J}$ and $\mathcal{G}_x = \psi \subseteq \mathcal{G}$, Corollary 2.11 gives us the following example.

Example 2.12. The radicals \mathcal{N} and \mathcal{J} are like each other and so are ψ and \mathcal{G} .

Corollary 2.13. Let α and γ be radicals satisfying the polynomial equation. Then α and γ are like each other if only if $\alpha(A[x]) = \gamma(A[x])$ for every ring A.

PROOF. If α and γ are like each other, then it follows from Theorem 2.8 that $\gamma(A[x]) \subseteq (\alpha(A))[x]$ and $\alpha(A[x]) \subseteq (\gamma(A))[x]$ for every ring A. But, since both α and γ satisfy the polynomial equation, $(\alpha(A))[x] = \alpha(A[x])$ and $(\gamma(A))[x] = \gamma(A[x])$ for every ring A. Thus $\alpha(A[x]) = \gamma(A[x])$ for every ring A.

Conversely, let $\alpha(A[x]) = \gamma(A[x])$ for every ring A. Then $\gamma(A[x]) \subseteq \alpha(A[x]) = (\alpha(A))[x]$ since α satisfies the polynomial equation. This, in view of Theorem 2.8, means that γ is α -like. Similarly, $\alpha(A[x]) \subseteq \gamma(A[x]) = (\gamma(A))[x]$ since γ satisfies the polynomial equation. This, in view of Theorem 2.8, means that α is γ -like. Thus α and γ are like each other.

THEOREM 2.14. Let α and γ be radicals with the Amitsur property. Then α and γ are like each other if and only if $\alpha_x \cup \gamma_x \subseteq \gamma \cap \alpha$.

PROOF. Since both α and γ are radicals with the Amitsur property and they are like each other, Corollary 2.3 implies that $\gamma_x \subseteq \alpha$ and $\alpha_x \subseteq \gamma$. But, as $\gamma_x \subseteq \gamma$ and $\alpha_x \subseteq \alpha$, it follows that $\gamma_x \subseteq \gamma \cap \alpha$ and $\alpha_x \subseteq \gamma \cap \alpha$. Consequently, $\alpha_x \cup \gamma_x \subseteq \gamma \cap \alpha$.

Conversely, if $\alpha_x \cup \gamma_x \subseteq \gamma \cap \alpha$, then $\gamma_x \subseteq \alpha_x \cup \gamma_x \subseteq \gamma \cap \alpha \subseteq \alpha$ and $\alpha_x \subseteq \alpha_x \cup \gamma_x \subseteq \gamma \cap \alpha \subseteq \gamma$. But, since both α and γ are radicals with the Amitsur property, it follows from Corollary 2.3 that γ is α -like and α is γ -like. Thus α and γ are like each other. \square

In what follows, for any class σ of rings, the lower radical generated by σ is denoted by $\mathcal{L}(\sigma)$. A radical γ is said to be small if $\mathcal{L}(\gamma \cup \tau)$ is proper for any proper radical τ . It was proved in [9] that the lower radical generated by a set of rings is small.

In [7] it was noted that for some radicals α , there exist radicals $\gamma \supseteq \alpha$ that are not α -like and the question was asked whether this is so for any radical α . Our next two results answer this question.

THEOREM 2.15. For every proper radical α , there exists a strictly ascending chain of proper radicals $\gamma_i \supseteq \alpha$, i = 1, ..., n, which are not α -like.

PROOF. Since α is a proper radical, there exists $0 \neq A_1 \in S\alpha$. Then $A_1[x] \notin \alpha$ since otherwise A_1 , being a homomorphic image of $A_1[x]$, would be in α , giving

a contradiction. But $A_1[x] \in \mathcal{L}(A_1[x]) \subseteq \mathcal{L}(\alpha \cup \mathcal{L}(A_1[x]))$. Thus $\alpha \subsetneq \alpha_1 = \mathcal{L}(\alpha \cup \mathcal{L}(A_1[x]))$ and it follows from [9] that $\alpha_1 \neq \{\text{all rings}\}$. So, arguing as before, there exists $0 \neq A_2 \in S\alpha_1$. Then again $A_2[x] \notin \alpha_1$ which shows that $\alpha_1 \subsetneq \alpha_2 = \mathcal{L}(\alpha \cup \mathcal{L}(A_1[x]) \cup \mathcal{L}(A_2[x]))$ and, by [9], we again obtain $\alpha_2 \neq \{\text{all rings}\}$. Continuing this process, we get a strictly increasing chain of proper radicals $\alpha \subsetneq \alpha_1 \subsetneq \alpha_2 \subsetneq \cdots \subsetneq \alpha_i \subsetneq \alpha_{i-1} \subsetneq \cdots$, where $\alpha_i = \mathcal{L}(\alpha \cup \mathcal{L}(A_1[x]) \cup \cdots \cup \mathcal{L}(A_i[x])) \neq \{\text{all rings}\}$ and $0 \neq A_i \in S\alpha_{i-1}$ for $i = 1, 2, 3, \ldots$. Moreover, every radical α_i in this chain is not α -like because the ring $0 \neq A_i \in S\alpha_{i-1} \subseteq S\alpha$ but, since $0 \neq A_i[x] \in \mathcal{L}(A_i[x]) \subseteq \alpha_i$, it follows that $A_i[x] \notin S\alpha_i$.

Note that if $\alpha = \{\text{all rings}\}\$, then 0 is the only ring in $S\alpha$. Therefore $A[x] = 0[x] = 0 \in S\gamma$ for every $A \in S\alpha$. Thus we have the following corollary.

Corollary 2.16. Every radical γ is α -like for $\alpha = \{all\ rings\}$.

We will now use α -like radicals to construct radicals that contain largest strong radicals.

We say that a radical γ satisfies condition (z) if, for every ring $A, A \in \gamma$ implies that $A^o \in \gamma$, where A^o is the zero-ring built on the additive group of A.

THEOREM 2.17. Let α be a radical such that, for some α -like left and right strong radical γ which satisfies condition (z), $M_2(A) \in \alpha$ implies that $A[x] \in \gamma$, where $M_2(A)$ denotes the ring of all 2×2 matrices with entries from A. Then γ_x is the largest left and right strong radical contained in α .

PROOF. Since γ is α -like, Proposition 2.2 implies that $\gamma_x \subseteq \alpha$. Since γ is a left and right strong radical satisfying condition (z), it follows from [21] that so is γ_x . Now, let ρ be a left and right strong radical contained in α and let $A \in \rho$. Clearly $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ is a right ideal of $\begin{pmatrix} A^1 & 0 \\ A^1 & 0 \end{pmatrix}$, where A^1 is the Dorroh extension of A to a ring with unity. Since $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \simeq A \in \rho$ and ρ is right strong, the ideal $\begin{pmatrix} A & 0 \\ A & 0 \end{pmatrix}$ of $\begin{pmatrix} A^1 & 0 \\ A^1 & 0 \end{pmatrix}$ generated by $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ is also in ρ . But $\begin{pmatrix} A & 0 \\ A & 0 \end{pmatrix}$ is a left ideal of $\begin{pmatrix} A^1 & A^1 \\ A^1 & A^1 \end{pmatrix}$ so, since ρ is left strong, it follows that the ideal $\begin{pmatrix} A & A \\ A & A \end{pmatrix}$ of $\begin{pmatrix} A^1 & A^1 \\ A^1 & A^1 \end{pmatrix}$ generated by $\begin{pmatrix} A & 0 \\ A & 0 \end{pmatrix}$ is also in ρ . Now, since $M_2(A) \in \rho \subseteq \alpha$, our assumption implies that $A[x] \in \gamma$, which means that $A \in \gamma_x$. Thus $\rho \subseteq \gamma_x$. So γ_x is indeed the largest left and right strong radical contained in α .

Our next result gives a necessary and sufficient condition for the Koethe problem to have a positive solution.

COROLLARY 2.18. A radical N is left and right strong if and only if $N = \mathcal{J}_x$.

PROOF. First we will show that \mathcal{J} and \mathcal{N} satisfy the assumptions of Theorem 2.17. It is well known [10] that \mathcal{J} is left and right strong and Example 2.6 shows that \mathcal{J} is \mathcal{N} -like. Moreover, \mathcal{J} satisfies condition (z) since $\beta \subseteq \mathcal{J}$. Let $M_2(A) \in \mathcal{N}$. Then it follows from [10, Proof of Theorem 4.9.13] that $M_n(A) \in \mathcal{N}$ for every $n = 1, 2, \ldots$. But this, in view of [13], implies that $A[x] \in \mathcal{J}$. Hence \mathcal{J} and \mathcal{N} satisfy the assumptions of Theorem 2.17.

So, taking $\alpha = \mathcal{N}$ and $\gamma = \mathcal{J}$ in Theorem 2.17, we can conclude that \mathcal{J}_x is the largest left and right strong radical contained in \mathcal{N} . Thus, since $\mathcal{J}_x \subseteq \mathcal{N}$, it follows that, if \mathcal{N} is left and right strong, then $\mathcal{N} = \mathcal{J}_x$. Conversely, if $\mathcal{N} = \mathcal{J}_x$, then \mathcal{N} is left and right strong since, by [21], so is \mathcal{J}_x as \mathcal{J} is a left and right strong radical which satisfies condition (z).

It is well known [1, 17] that the collection \mathbb{L} of all radicals forms a complete lattice with respect to inclusion of radical classes, where the meet and the join of a family of radicals γ_i , $i \in I$, are defined by $\wedge_{i \in I} \gamma_i = \cap_{i \in I} \gamma_i$ and $\vee_{i \in I} \gamma_i = \mathcal{L}(\cup_{i \in I} \gamma_i)$, respectively. We will now consider some sublattices of \mathbb{L} that consist of α -like radicals.

Proposition 2.19. For any radical α , the collection \mathbb{L}_{α} of all α -like radicals is a complete sublattice of the lattice \mathbb{L} and $\phi = \mathcal{U}(\{all\ rings\})$ is its smallest element.

PROOF. Every ring is in $S(\phi)$ —in particular, $A[x] \in S(\phi)$ for every $A \in S(\alpha)$ —which shows that $\phi \in \mathbb{L}_{\alpha}$. Clearly ϕ is the smallest element of \mathbb{L}_{α} .

Let γ_i , $i \in I$, be a family of α -like radicals.

Let $\Gamma = \bigvee_{i \in I} \gamma_i$. We will show that Γ is α -like. Let $A \in S\alpha$ and suppose that $A[x] \notin S\Gamma$. Then $\Gamma(A[x]) \neq 0$. Hence there exists a nonzero subring I_1 such that $I_1 \leq \cdots \leq I_n = A[x]$ and I_1 is a homomorphic image of a ring $B \in \gamma_i$ for some i. Therefore $I_1 \in \gamma_i$ and, since semisimple classes are hereditary, it follows that $\gamma_i(A[x]) \neq 0$. On the other hand, since γ_i is α -like for each $i \in I$, $\gamma_i(A[x]) = 0$, a contradiction. It follows that $\Gamma(A[x]) = 0$ for every $A \in S\alpha$, which means that Γ is α -like.

Let $\Delta = \wedge_{i \in I} \gamma_i$. To see that Δ is also α -like observe that, since $\Delta \subseteq \gamma_i$ for all $i \in I$ and since each γ_i is α -like, it follows that, for every $A \in \mathcal{S}\alpha$, $\Delta(A[x]) \subseteq \gamma_i(A[x]) = 0$. \square

Lemma 2.20. The trivial radical $\gamma = \{all\ rings\}$ is not α -like for any proper radical α .

PROOF. Suppose that $\gamma = \{\text{all rings}\}\ \text{is } \alpha\text{-like for some proper radical } \alpha$. Then, since α is proper, there exists $0 \neq A \in S \alpha$. But then, since γ is $\alpha\text{-like}$, it follows that $0 \neq A[x] \notin \gamma$. On the other hand, $A[x] \in \gamma$ since $\gamma = \{\text{all rings}\}\ \text{and}$ we have a contradiction which ends the proof.

Proposition 2.19 and Lemma 2.20 imply the following corollary.

Corollary 2.21. For any proper radical α , $\gamma = \bigvee \{ \gamma_i : \gamma_i \in \mathbb{L}_{\alpha} \}$ is a unique largest proper α -like radical.

PROPOSITION 2.22. If $\alpha \supseteq \beta$ is a radical with the Amitsur property, then the lattice \mathbb{L}_{α} is not atomic.

PROOF. Let $\gamma \subseteq \beta$ be a radical that does not contain atoms of the lattice \mathbb{L} . Such a radical was constructed in [2] by Beidar. Then, as $\beta \subseteq \alpha$, we have $\gamma \subseteq \alpha$ and, since α is a radical with the Amitsur property, it follows from Corollary 2.5 that γ is α -like. Suppose that γ contains some atom σ of the lattice \mathbb{L}_{α} . Then σ is not an atom of the lattice \mathbb{L} and therefore there exists a radical $\rho \neq \{0\}$ such that $\rho \subseteq \sigma$. But, since $\sigma \subseteq \gamma \subseteq \alpha$, it follows that $\rho \subseteq \alpha$. So, since α is a radical with the Amitsur

property, Corollary 2.5 implies that ρ is α -like, which is impossible as σ is an atom of \mathbb{L}_{α} . Thus γ does not contain atoms of \mathbb{L}_{α} , which shows that the lattice \mathbb{L}_{α} is not atomic.

PROPOSITION 2.23. The collection $\mathbb{L}_{h\alpha}$ of all hereditary α -like radicals is a complete atomic sublattice of the lattice \mathbb{L} . Any atom of $\mathbb{L}_{h\alpha}$ is of the form $\mathcal{L}(\{\mathbb{Z}_p^0\})$ or $\mathcal{L}(\{A\})$, where \mathbb{Z}_p^0 is a zero-ring on a cyclic additive group \mathbb{Z}_p of prime order p and A is a simple idempotent ring.

PROOF. Let γ_i , $i \in I$, be a family of hereditary α -like radicals. It follows from [17] and Proposition 2.19 that $\wedge_{i \in I} \gamma_i$ and $\vee_{i \in I} \gamma_i$ are hereditary and α -like radicals. Hence $\mathbb{L}_{h\alpha}$ is a complete sublattice of the lattice \mathbb{L} .

Let $\{0\} \neq \gamma \in \mathbb{L}_{h\alpha}$. Then, since γ is hereditary, it follows from [17] that γ contains \mathbb{Z}_p^0 for some prime p or a nonzero simple idempotent ring A. Then $\gamma \supseteq \rho$ where ρ denotes one of the following radicals $\mathcal{L}(\mathbb{Z}_p^0)$ or $\mathcal{L}(A)$ and, since γ is α -like, it follows, by Lemma 2.7, that ρ is α -like. Moreover, since ρ is also a hereditary radical, it follows that $\rho \in \mathbb{L}_{h\alpha}$. Since ρ is an atom of the lattice of all hereditary radicals [17], ρ is also an atom of the lattice $\mathbb{L}_{h\alpha}$, which ends the proof.

References

- [1] V. A. Andrunakievich and Yu. M. Ryabukhin, *Radicals of Algebra and Structure Theory* (Nauka, Moscow, 1979) (in Russian).
- [2] K. I. Beidar, 'Atoms in the "lattice" of radicals', Mat. Issled. 85 (1985), 21–31 (in Russian).
- [3] H. France-Jackson, '*-rings and their radicals', Quaest. Math. 8 (1985), 231–239.
- [4] H. France-Jackson, 'On atoms of the lattice of supernilpotent radicals', Quaest. Math. 10 (1987), 251–255.
- [5] H. France-Jackson, 'Rings related to special atoms', Quaest. Math. 24 (2001), 105–109.
- [6] H. France-Jackson, 'On supernilpotent radicals with the Amitsur property', *Bull. Aust. Math. Soc.* 80 (2009), 423–429.
- [7] H. France-Jackson, 'On α -like radicals', Bull. Aust. Math. Soc. **84** (2011), 111–115.
- [8] B. J. Gardner, 'Some recent results and open problems concerning special radicals', *Radical Theory, Proceedings of the 1988 Sendai Conference*, Sendai, 24–30 July 1988 (ed. Shoji Kyuno) (Uchida Rokakuho, Tokyo, 1989), pp. 25–56.
- [9] B. J. Gardner and Liang Zhian, 'Small and large radicals', Comm. Algebra 20 (1992), 2533–2551.
- [10] B. J. Gardner and R. Wiegandt, Radical Theory of Rings (Marcel Dekker, New York, 2004).
- [11] M. A. Khan and M. Aslam, 'Polynomial equation in radicals', Kyungpook Math. J. 48 (2008), 545–551.
- [12] H. Korolczuk, 'A note on the lattice of special radicals', Bull. Pol. Acad. Sci. Math. 29 (1981), 103–104.
- [13] J. Krempa, 'Logical connections between some open problems concerning nil rings', Fund. Math. 76 (1972), 121–130.
- [14] N. V. Loi and R. Wiegandt, 'On the Amitsur property of radicals', *Algebra Discrete Math.* **3** (2006), 92–100.
- [15] E. R. Puczylowski and Agata Smoktunowicz, 'On maximal ideals and the Brown-McCoy radical of polynomial rings', *Comm. Algebra* 26 (1968), 2473–2482.
- [16] A. D. Sands, 'On relations among radical properties', Glasgow Math. J. 18 (1977), 17–23.
- [17] R. L. Snider, 'Lattices of radicals', *Pacific J. Math.* **42** (1972), 207–220.
- [18] S. Tumurbat and H. France-Jackson, 'On prime-like radicals', Bull. Aust. Math. Soc. 82 (2010), 113–119.

- [19] S. Tumurbat and R. Wiegandt, 'A note on special radicals and partitions of simple rings', Comm. Algebra 30(4) (2002), 1769–1777.
- [20] S. Tumurbat and R. Wiegandt, 'Radicals of polynomial rings', Soochow J. Math. 29(4) (2003), 425–434.
- [21] S. Tumurbat and R. Wiegandt, 'On the matrix-extensibility of radicals', J. Appl. Algebra Discrete Struct. 2(2) (2004), 119–130.

H. FRANCE-JACKSON, Department of Mathematics and Applied Mathematics, Summerstrand Campus (South), PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa

e-mail: cbf@easterncape.co.uk

T. KHULAN, Department of Algebra, University of Mongolia, PO Box 75, Ulaan Baatar 20, Mongolia e-mail: hulangaaa@yahoo.com

S. TUMURBAT, Department of Algebra, University of Mongolia, PO Box 75, Ulaan Baatar 20, Mongolia e-mail: stumurbat@hotmail.com