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Human obesity and its complications are an increasing burden in developed and under-
developed countries. Adipose tissue mass and the mechanisms that control it are central to
elucidating the aetiology of obesity and insulin resistance. Over the past 15 years tremendous
progress has been made in several avenues relating to adipose tissue. Knowledge of the lipo-
lytic machinery has grown with the identification of new lipases, cofactors and interactions
between proteins and lipids that are central to the regulation of basal and stimulated lipolysis.
The dated idea of an inert lipid droplet has been appropriately revamped to that of a dynamic
and highly-structured organelle that in itself offers regulatory control over lipolysis. The pres-
ent review provides an overview of the numerous partners and pathways involved in adipose
tissue lipolysis and their interaction under various metabolic states. Integration of these findings
into whole adipose tissue metabolism and its systemic effects is also presented in the context of
inflammation and insulin resistance.

Adipose tissue: Lipolysis: Lipase: Lipid droplet

Hormonal regulation of adipocyte lipolysis

White adipose tissue (WAT) essentially represents an
unlimited pool of energy. In WAT NEFA originating from
dietary intake or de novo synthesis are stored as TAG in
highly-structured hydrophobic lipid droplets (LD). With its
storage capacity and ability to hydrolyse TAG (a process
termed lipolysis) WAT provides a NEFA buffering system
for other organs'". Lipolysis is the breakdown of one TAG
molecule to three energy-rich NEFA and one glycerol
molecule, which are released into the bloodstream and are
available for uptake by other tissues. NEFA are not only
an energy source, they are also signalling molecules. Over-
abundance of NEFA can interfere with normal metabolism,
as is the case in obesity and type 2 diabetes. Chronically-
elevated NEFA alter glucose and lipid metabolism in
skeletal muscle and liver and may lead to insulin resist-
ance®.

Tight regulatory control of lipolysis is provided by
catecholamines and insulin (Fig. 1). The hormone

adrenaline and neurotransmitter noradrenaline stimulate
lipolysis through the activation of B1- and B2-adrenergic
receptors (AR). Coupling of B1- and B2-AR to stimulatory
GTP-binding protein receptors activate adenylyl cyclase,
increasing cAMP production. A rise in cAMP activates
protein kinase (PK) A, which phosphorylates hormone-
sensitive lipase (HSL) and LD-coating protein perilipin
(PLIN) to stimulate lipolysis. Conversely, catecholamines
can inhibit lipolysis via the activation of o2-AR and their
coupling to inhibitory GTP-binding protein receptors. The
latter inhibit adenylyl cyclase action and cAMP pro-
duction. Thus, AR-dependent lipolysis is dictated by the
combined effects of pro-lipolytic B-AR and anti-lipolytic
0a2-AR. Impairment in PKA-stimulated lipolysis observed
in obesity is thought to result from accentuated stimulation
of 02-AR®™. Insulin also regulates lipolysis when bind-
ing to its receptor on adipocytes. Insulin binding to insulin
receptor substrate 1 leads to phosphodiesterase 3B acti-
vation, which degrades cAMP, and consequently reduces
PKA activation. Thus, in a postprandial state insulin not
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Fig. 1. Signal transduction pathways implicated in hormonal control of human adipocyte
lipolysis. Coupling of B4 and B> (B1/2)- and ap-adrenergic receptors (AR) respectively stimu-
late and inhibit cAMP production by adenylyl cyclase (AC) and protein kinase A (PKA)
activation. Insulin favours cAMP degradation through activation of protein kinase (PK) B and
phosphodiesterase 3B (PDE-3B) activity. Natriuretic peptides promote cGMP accumulation
and PKG activation via type A receptor. PKA and PKG phosphorylate hormone-sensitive
lipase (HSL) and perilipin A (PLINA). Adipose TAG lipase (ATGL) and monoacylglycerol
lipase (MGL) are not thought to be directly hormonally-regulated. Gs, stimulatory GTP-
binding protein; Gi, inhibitory GTP-binding protein; IRS, insulin receptor substrate; PI3-K

phosphatidylinositol-3 phosphate kinase; GC, guanylyl cyclase; LD, lipid droplet.

only favours substrate uptake and storage but also mini-
mizes TAG breakdown in adipocytes.

In human fat cells an additional signal transduction
pathway, independent of catecholamines and insulin, is
implicated in pro-lipolytic events. Natriuretic peptides bind
type A receptors, which possess intrinsic guanylyl cyclase
activity (Fig. 1). Rises in ¢cGMP activate PKG, which
similarly to PKA phosphorylates HSL and PLIN®. Stimu-
lation of lipolysis by natriuretic peptides is of similar
magnitude to that of catecholamines and is particularly
pronounced during exercise”®.

Natriuretic peptides, catecholamines and insulin provide
the main regulatory control of lipolysis in human adipo-
cytes. Additional hormones and factors such as growth
hormone, TNFo, and IL-6 also influence lipolysis by
altering the signalling pathways or lipolytic machinery
described earlier. There is also a wealth of anti-lipolytic
systems activated by catecholamines, adenosine, PG and
metabolites for which the physiological relevance is still
unknown.

Lipases in lipolysis regulation

Tremendous progress has been made in the regulation of
lipolysis over the past 10 years. For approximately three
decades HSL was thought to be the rate-limiting step in
lipolysis. It is now established that other lipases, cofactors
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and lipid-associated proteins each participate in the regu-
lation of lipolysis.

Hormone-sensitive lipase

In the 1960s HSL was characterized as a lipolytic enzyme
sensitive to adrenaline®'?. For the following 30 years
HSL remained the undisputed regulator of lipolysis. HSL
is highly expressed in WAT"D and displays in vitro
hydrolysis activity for TAG, diacylglycerols (DAG),
monoacylglycerols''?, cholesterol and retinyl esters''>'¥.
Its relative affinity is ten times greater for DAG than
TAG"*' and shows a preference for fatt;/ acids in the
sn-1 and sn-3 position of TAG molecules'®.

The cloning of HSL in the rat and human subjects
has provided an insight into its gene and protein structure.
The carboxy terminal of HSL harbours the active site
and regulatory module of the enzyme"®. The amino
terminal, although less characterized, appears to be
required for protein—protein interaction, notablgl with fatty
acid-binding protein (FABP) 4 (detailed later)*”. As allu-
ded to earlier, HSL action is in part regulated by PKA.
Three PKA ghosphogylation sites have been identified in
rat HSL: Ser 63; Ser® 9; Ser®D_ The corresponding sites
in human HSL are Ser552, Ser®® and Ser®“??. PKA
phosphorylation of rat HSL residue Ser’® appears to
regulate intrinsic activity® while residues Ser®” and
Ser®® favour the translocation of a predominantly cytosolic

(17,18)
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HSL to LD** 2", In human HSL PKA phosphorylation of
residues Ser®® and Ser®® has been shown to be the most
important in increasing enzymic activity®®. The pro-
lipolytic effect of PKA on HSL is therefore two-pronged:
increasing the enzyme’s intrinsic activity; promoting its
access to TAG molecules in a whole-cell context.
Additional HSL regulatory pathways include the extra-
cellular signal-regulated kinase and AMP-activated PK
(AMPK) pathways. HSL is positively regulated by the
extracellular signal—regulated kinase pathway via phos-
phorylation of Ser®®°®*3® and negatively regulated by
AMPK. AMPK, the cellular energy sensor, is activated
by increasing AMP:ATP to restore energy levels®". Once
activated AMPK phosphorylates HSL on Ser’® in human
adipocytes®?>¥ resulting in an anti-lipolytic effect®®.
Doubt on the lone regulatory role of HSL in lipolysis
slowly grew over the years. First, puzzlement revolved
around an important mismatch between HSL activity and
adipocyte lipolysis in response to PKA activation. PKA-
dependent phosphorylation of HSL leads to a two- to three-
fold increase in TAG hydrolase activity, while whole-cell
lipolysis increases < 100-fold. These contrasting obser-
vations suggested additional, yet unidentified, regulatory
steps in lipolysis. The critical role of the LD structural
protein PLIN would later shed light on this issue
(described later). Additionally, DAG accumulation in adi-
pose tissue of HSL-null mice®®> suggested the presence of
an alternative lipase targeting TAG molecules, possibly to
complement the strong affinity of HSL for DAG. The
identification of adipose TAG lipase (ATGL) in 2004 (see
later) supports more recent findings obtained from HSL
manipulation; for example, residual TAG hydrolase ac-
tivity and lipolysis despite HSL silencing®®>® or specific
pharmacological inhibition®*™*" and the failure of HSL

overexpression to promote whole-cell lipolysis®®4?.

Adipose TAG lipase

In 2004 three groups independently identified an additional
lipase with TAG hydrolase activity®*™>. ATGL (also
known as desnutrin or phospholipase A2&) belongs to the
family of patatin-like phospholipase domain-containing
proteins. It is highly expressed in WAT and brown adipose
tissue and to a lower extent in testes, skeletal and cardiac
muscle®®*4349) The carboxy-terminal region of ATGL
contains a h_ydrophobic section permitting protein—lipid
interactions”. Accordingly, in mouse models and COS-7
cell lines native or ectopic ATGL is mostly associated with
LD“34748) - Also within the carboxy-terminal region of
ATGL are two phosphorylation sites, Ser*®* and Ser***“?).
The nature of the PK targeting ATGL and the functional
role of such sites are unknown. Last, the enzymic activity
of ATGL and its interaction with co-activator comparative
gene identification 58 (CGI-58) are dependent on the
carboxy-terminal region”.

Studies with ATGL-null mice have revealed the import-
ance of ATGL in energy homeostasis®”. ATGL-null mice
display increased WAT mass and ectopic TAG storage in
several tissues, including heart tissue, resulting in pre-
mature death. A strong body of evidence has further
established the central role of ATLG in lipolysis in murine
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adipocytes or non-adipocyte cell lines. Overexpression of
ATGL increases TAG hydrolysis“>*® and basal and iso-
proterenol-stimulated  lipolysis®® while its silencing
decreases TAG hydrolase activity®**?, TAG storage and
LD size®”. Unlike HSL, ATGL hydrolysis capacity is
mainly targeted towards TAG. In human adipocytes, how-
ever, the in vitro TAG hydrolase capacity of ATGL is
lower than that of HSL“". Nonetheless, ATGL plays a
crucial role in orchestrating lipolysis in human adipo-
cytes®®. Modulation of ATGL with adenoviral transduc-
tion and gene silencing dictates basal and PKA-stimulated
lipolysis®®. The latter study has also demonstrated, in
response to PKA-stimulation, translocation of ATGL from
the cytosol to LD and consequently its enrichment with
HSL. Collectively, these findings suggest that ATGL and
HSL act sequentially, despite their common capacity for
TAG hydrolysis. HSL remains the lone enzyme capable of
DAG hydrolysis, but DAG supply by ATGL controls PKA-
stimulated lipolysis in human adipocytes.

Monoacylglycerol lipase

Monoacylglycerol lipase (MGL) was purified from rat
adipose tissue in the 1970s". This enzyme is expressed in
WAT, lung, liver, kidney, testes, brain and heart®?,
Despite the in vitro capacity of HSL to hydrolyse mono-
acylglycerols, the presence of MGL in vivo is required for
complete lipolysis®>. MGL hydrolyses the 1(3) and 2-
ester bonds of monoacylglycerols at equal rates but has no
affinity for DAG, TAG or cholesteryl esters. Site-directed
mutagenesis has confirmed the importance of Ser'??,
Asp®” and His*® in the lipase and esterase activities of
MGL®?. MGL is not thought to be rate limiting in lipo-

lysis because of its abundance®™.

Lipid droplet-associated proteins and lipid-binding
proteins

It is now widely accepted that lipases do not act alone in
regulating lipolysis. Several proteins interact with LD,
lipases and NEFA to offer additional regulatory control of
lipolysis and lipid homeostasis.

Perilipins

Over the past 15 years it has become clear that LD are not
simple aggregates of lipids but rather dynamic and highly-
structured organelles, important for cellular homeostasis
and the synthesis of lipid signalling molecules. Providing
structure to LD is a family of lipid-coating proteins termed
PAT. The PAT family in human adipocytes includes peri-
lipin, adipophilin, tail-interacting protein of 47 kDa, S3-12
and oxidative tissues-enriched PAT protein. The proportion
of each lipid-coating protein on LD is altered as LD
mature®*+>>, Perilipin, which was discovered in 1991(56), is
highly expressed in WAT and brown adipose tissue>®~>%
and is the most abundant lipid-coating protein on mature
LD®®. Three isoforms arise from alternate splicing of a
single mRNA transcript, PLINA being most abundant in
WAT LD®%37, Ectopic expression of PLINA in 3T3 L1
preadipocytes naturally devoid of PLIN suggests that
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PLINA forms a physical barrier around LD to reduce lipase
(60) . .
access" . Three hydrophobic sequences play a major role
in anchoring PLINA to LD®" yet it is the amino and car-
boxy terminals that are critical in promoting TAG sto-

rage®?.

Investigations with PLIN-null mice clearly illustrate the
regulatory role of PLIN in lipolysis. PLIN-ablated mice are
lean, have smaller adipocytes and are resistant to diet-
induced obesity®*>*%¥_ In addition, they exhibit elevated
basal lipolysis and attenuated stimulated lipolysis. In-
terestingly, experiments with mouse embryonic fibroblasts
from PLIN—/— mice and COS-7 cells lacking PLIN have
shown that HSL fails to translocate to LD in response to
B-adrenergic stimulation®”. Additionally, live culture cell
experiments have demonstrated that PKA activation facili-
tates fluorescence resonance energy transfer between
fluorescent probes fused to HSL and PLIN®. Together,
these results not only highlight the regulatory role of PLIN
as a physical barrier to HSL, but also suggest that PLIN
may provide an HSL-docking site on LD.

PLINA has six serine phosphorylation sites targeted by
PKA?7:56:6566)  Of those sites, residue Ser’!” has been
demonstrated to be essential to ATGL-dependent lipolysis
in stimulated conditions®”. However, specific phosphory-
lation of Ser**? in murine adipocytes is also of importance
as it causes a remodelling of large LD into a myriad of
microLD, independently of lipolysis®®. On phosphory-
lation PLINA remains on the surface of LD but increased
LD surface area following fragmentation facilitates lipo-
lysis. Thus, PLINA limits lipase access to LD in the basal
state but provides greater access to lipases in stimulated
conditions by docking HSL and promoting fragmentation
of LD.

Caveolin-1

Caveolae are small invaginations on cell plasma mem-
branes®’”. They are common to many cell types but
highly expressed in adipocytes'’"”. Caveolin is the marker
protein for these structures such that ectopic expression of
caveolin results in the formation of invaginations on
cellular membranes”’?. Caveolae have several putative
functions, including participation in signal transduction’?,
membrane trafficking pathways and NEFA binding and
transport'’?. Interestingly, caveolin-1 also associates with
LD hinting at a role for caveolin-1 in lipolysis.
Accordingly, caveolin-1-deficient mice display a blunted
response to pharmacological and physiological lipolytic
stimuli”. Surprisingly, PKA activitg is not impaired in
this genotype, but rather increased”” as a result of the
absence of aromatic residues within the caveolin scaffold-
ing domain that mediate PKA inhibition®”. Despite
accentuated PKA activity, PLIN phosphorylation is dra-
matically reduced in the absence of caveolin-1. A likely
explanation has arisen from the in vivo and in vitro evi-
dence that caveolin-1 facilitates the interaction between the
catalytic subunit of PKA and PLIN®”. The heavy rep-
resentation of caveolae on plasma membranes therefore
suggests an important pro-lipolytic function for caveolin-1,
via PLIN phosphorylation. Importantly, the contribution
of caveolin-1 in the regulation of lipolysis has yet to be
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explored in human fat cells but certainly warrants atten-
tion.

Fatty acid-binding protein 4

FABP4, also known as adipocyte lipid-binding protein,
belongs to the large family of lipid-binding proteins. This
low-molecular-mass soluble protein is highly expressed in
WAT and displays a high affinity for hydrophobic species
such as NEFA and retinoic acids®'*?. FABP are thought
to provide solubility to NEFA and facilitate their intra-
cellular trafficking between metabolic enzymes and mem-
branes®***. FABP4 physically binds to HSL in vitro and
in vivo. The first 300 amino acids of HSL provide a
docking domain for FABP4*”. HSL and FABP4 bind 1:1
in the cytosol in response to accentuated lipolysis®>. As
demonstrated by fluorescence resonance energy transfer
analysis, this complex translocates to LD on PKA acti-
vation®®,

Comparative gene identification 58

CGI-58, also known as o/f-hydrolase domain-containing
protein 5, is yet another protein associated with LD. CGI-
58 is a o/B-hydrolase fold-containing protein that re-
sembles a lipase®™”. However, the putative catalytic triad of
CGI-58 contains an asparagine in place of the usual serine
residue. CGI-58 in itself therefore lacks lipase activity. In
the mouse CGI-58 is highly expressed in WAT and testes,
and to lower levels in liver, skin, kidney, heart, stomach,
and lung®. CGI-58 stimulates lipolysis by potently and
selectively activating ATGL®®. In mature murine adipo-
cytes CGI-58 is localized to the surface of LD via asso-
ciation with PLINA®*? On B-AR stimulation CGI-58 is
rapidly dispersed to the cytosol, an event reversible with
the addition of B-AR antagonists. Under these conditions
CGI-58 and ATGL co-localization is greatly accentuated
and tends to migrate to small LD®?_ Interestingly, CGI-58
has recently been found to exert lysophosphatidic acid
acyltransferase activity®". This activity is independent of
its functions as an activator of ATGL. Thus, while CGI-58
overexpression in yeast increases overall phospholipid
content, it reduces neutral lipid content.

In human subjects CGI-58 has been identified as a
causal gene of the Chanarin-Dorfman syndrome, a disorder
characterized by the accumulation of abnormally large
amounts of LD in several organs(gz). In total, nine mu-
tations of CGI-58 have been identified in patients with
Chanarin-Dorfman syndrome®*°®. CGI-58 mutants with
Chanarin-Dorfman syndrome point mutations are not
recruited to LD as expected and display weak interactions
with PLIN®?. This outcome may be physiologically rele-
vant to basal and PKA-stimulated lipolysis. Recently, the
importance of CGI-58 in both basal and PKA-stimulated
lipolysis has been shown in human adipocytes. Gene
silencing of CGI-58 not only reduces basal lipolysis by
half but also completely abrogates PKA-stimulated lipo-
lysis in hMADS adipocytes (a human white adipocyte
model)®®. The precise whole-cell dynamics involving
CGI-58, PLINA and ATGL in basal and PKA-stimulated
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Fig. 2. Hypothetical model of basal and protein kinase A (PKA)-stimulated lipolysis in human adipo-
cytes. In the basal state (a) adipose TAG lipase (ATGL) is found both in the cytosol and on the surface
of lipid droplets (LD). On LD ATGL is activated by comparative gene identification 58 (CGlI-58), which
is also bound to perilipin A (PLINA). During basal lipolysis ATGL and CGI-58 facilitate the hydrolysis of
TAG to diacylglycerols (DAG). Hormone-sensitive lipase (HSL) is mainly cytosolic but also is involved
in DAG degradation provided by ATGL action. In PKA-stimulated conditions (b) PLINA phosphorylation
(P) promotes LD fragmentation and the release of CGI-58. ATGL and CGI-58 form a highly-active
complex on small LD where they catalyse TAG degradation. Phosphorylated HSL associates with
FABP4 and translocates to LD where it hydrolyses DAG produced by ATGL. Monoacylglycerol (MAG)
lipase (MGL) completes lipolysis by hydrolysing DAG to a fatty acid (FA) and glycerol molecule. FABP4

ensures the intracellular trafficking of FA from LD to the plasma membrane.

lipolysis have not been fully elucidated but CGI-58 appears
important in both states.

Models of lipolysis activation

The recent identification of an additional lipase and its co-
activator, as well as the characterization of novel protein—
protein and lipid—protein interactions have drastically
changed the working model of basal and PKA-stimulated
lipolysis. Fig. 2 presents a hypothetical model of human
adipocyte lipolysis.

A model has been proposed that integrates the newly-
identified ATGL into lipolysis®®. It is hypothesized that
in the basal state ATGL is mostly located on the surface
of LD and exerts little activity because of the association
between CGI-58 and PLINA. HSL is mainly found in the
cytosol and has limited access to TAG or DAG. Only on
phosphorylation of PLINA would CGI-58 dissociate from
the latter to bind and activate ATGL on LD and initiate
TAG hydrolysis. HSL translocation to the surface of LD
via its docking on PLINA would allow the enzyme to
participate in PKA-stimulated lipolysis by catalysing DAG
hydrolysis. This model supports ATGL- and HSL-
dependent lipolysis in PKA-stimulated conditions but
offers limited insight into the control of basal lipolysis.
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A model has been proposed that addresses more ex-
plicitly the role of ATGL in basal lipolysis®>. It is sug-
gested that in the basal state ATGL is associated with LD in
a PLINA-independent manner. It is bound to its co-activator
CGI-58 despite the latter’s docking on PLINA. Together
ATGL and CGI-58 dictate the rate of basal lipolysis by
hydrolysing TAG to DAG. HSL is largely cytosolic and
has minimal access to TAG or DAG. On PKA activation
HSL and PLINA are phosphorylated. HSL translocates to
LD via phosphorylated PLINA and hydrolyses DAG.
PLINA phosphorylation also leads to the release of CGI-58
in the cytosol. Two scenarios are envisaged for ATGL and
CGI-58 in PKA-stimulated conditions; cytosolic CGI-58 is
either not involved in stimulated lipolysis or it forms a
complex with cytosolic ATGL and migrates to LD in a
PLINA-independent manner. Together ATGL and CGI-58
participate in PKA-stimulated TAG hydrolysis. Generated
DAG are further hydrolysed by HSL. MGL completes
lipolysis by generating NEFA and glycerol.

Results generated from a human adipocyte cell line
provide additional information®®. First, the data demon-
strate a 50% reduction in basal lipolysis following single
and dual gene silencing of ATGL and CGI-58, while HSL
silencing has no effect. This finding strongly suggests that
ATGL and CGI-58 govern basal lipolysis through TAG
hydrolysis. Second, immunofluoresence results indicate


https://doi.org/10.1017/S0029665109990279

%S Proceedings of the Nutrition Society

https://d

Regulation of adipose tissue lipolysis revisited 355

important amounts of cytosolic ATGL in the basal state,
with translocation to small LD on PKA activation. In this
condition a specific HSL inhibitor reduces NEFA release
by 60-65%, which suggests that in the whole adipocyte
uniquely ATGL hydrolyses TAG (HSL and MGL releasing
the second and third NEFA). This notion is further sup-
ported by complete abrogation of PKA-stimulated lipolysis
with single and dual silencing of ATGL and CGI-58. Thus,
it is believed that the increased number of ATGL-CGI-58
complexes formed following PLINA phosphorylation and
docked on small LD govern PKA-stimulated lipolysis.
Overall, it is the sequential effect of ATGL-accentuated
TAG hydrolysis, phosphorylated HSL and MGL action
that yields massive increases in NEFA release in response
to PKA activation.

A regulatory step is also provided by the association
between FABP4 and HSL. NEFA binding to FABP4 and
HSL phosphorylation precede the association between
FABP4 and HSL®®. Thus, in addition to supporting NEFA
trafficking to the plasma membrane in a reaction that is
independent of physical association with HSL, FABP4
bound to fatty acids associates with activated phosphory-
lated HSL on the surface of LD. Fatty acid-FABP4-HSL
association could either limit HSL activity or alter the
formation of the complex on LD®?, However, in the
absence of FABP4 lipolysis is decreased and the NEFA
content within adipocytes is three times greater than that
in wild-type littermates®”. As NEFA need to be trafficked
from the site of hydrolysis (LD) to the plasma membrane,
the loss of FABP4 may explain reduced NEFA release.

Integration of lipolysis into adipose tissue biology
Lipolysis and re-esterification

Attention in WAT metabolism thus far has been mainly
directed towards catabolic pathways but WAT mass is also
dependent on NEFA esterification. Lipolysis and esteri-
fication are not limited to fasted and postprandial states
respectively, but rather undergo constant cycling in both
anabolic and catabolic states®®. In postprandial states
glucose is the main source of the glycerol backbone. The
abundance of both NEFA and glucose facilitates esteri-
fication. In catabolic states glucose levels cannot support
esterification; rather, phosphoenolpyruvate carboxykinase
provides glycerol backbones from pyruvate via the gl;/—
ceroneogenesis pathway (for review, see Forest et al. ©).
Accordingly, phosphoenolpyruvate carboxykinase ex-
pression and activity are increased with fasting'°” and
B-AR agonist treatment'°", both highly catabolic states.
Re-esterification is the esterification of NEFA on exist-
ing acylglycerol molecules. Similarly to esterification, re-
esterification occurs concurrently with lipolysis!' %1%
The regulation of re-esterification is unclear. Strong cor-
relations between re-esterification and lipolysis rates over a
wide range of lipolytic flux have been observed in mature
adipocytes'? and a human adipocyte cell line®®. In
hMADS adipocytes altering lipase content quantitatively
changes lipolysis and re-esterification fluxes, the coupling
of the two variables remaining constant and elevated at
86%®. In human subjects re-esterification is estimated at
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50-75%"%>1% but can decrease to 20-35% with fasting
and exercise!!?71%®,

It was previously thought that re-esterification of NEFA
occurs through an extracellular route'””. With current
knowledge of LD structure, questions relating to trafficking
dynamics extend beyond NEFA. They also apply to acyl-
glycerol species that are synthesized in association with the
smooth endoplasmic reticulum but stored and hydrolysed
in LD. Preferential hydrolysis or esterification of one
acylglycerol species over another is therefore of interest.
It has previously been shown that DAG are preferentiall;/
hydrolysed over TAG during PKA-stimulated lipolysis'?.
Despite overall activation of lipolysis, this preferential
hydrolysis occurs because of the strong capacity and af-
finity of HSL for DAG in human WAT®*D_ Conversely,
it has been found that DAG are preferentially re-esterified
in the basal state and crucial to the preservation of a fixed
fractional re-esterification rate in hMADS adipocytes.
While forskolin uncouples re-esterification from lipolysis,
inhibition of HSL restores the coupling®®. The impli-
cation of these findings in human adipocytes could be
favoured re-esterification in obese individuals, for whom
PKA-activated DAG breakdown by HSL is chal-
lenged 40111,

Lipolysis and adipose tissue inflammation

The past 15 years have provided evidence of the endocrine
function of WAT. WAT secretes numerous proteins
implicated in the control of energy homeostasis, blood
pressure and coagulation, vasculature and the immune
system. Immune system proteins are not only intrinsically
produced and secreted by adipocytes but also by WAT-
resident macrophages. As adiposity increases, so does
WAT infiltration of macrophages"'*'"'®. WAT-resident
macrophages express and secrete pro-inflammatory factors
and establish the low-grade inflammation state observed in
WAT with obesity and believed to be an important me-
diator of insulin resistance'''*''*. FABP are involved in
linking WAT inflammation and systemic effects. Targeting
FABP with a small-molecule inhibitor reduces WAT
macrophage infiltration and the expression of inflammatory
products by macrophages"''>. Moreover, FABP deficiency
in either macrophages or adipocytes improves insulin
action and signalling”"'®. This process is thought to occur
as a consequence of a unique lipid profile in FABP-null
mice' ",

A selected group of pro-inflammatory cytokines directly
promote lipolysis. The resulting elevated circulating levels
of NEFA further aggravate insulin resistance. TNFq is a
pro-inflammatory cytokine highly expressed in obesity.
Chronic TNFa treatment induces a process termed adipo-
cyte de-differentiation, whereby PPARY expression levels
are drastically reduced"'®. Consequently, expression of
its target genes is reduced, including HSL'”  and
ATGL"?*'*D However, TNFo exerts pro-lipolytic effects
independently of lipase content. First, TNFo. interferes
with the anti-lipolytic action of insulin. Specifically, TNFo
inhibits insulin receptor substrate 1 activation by promot-
ing its serine phosphorylation through the p42-44 mitogen-
activated PK pathway(122’123). Second, TNFo increases
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stimulatory GTP-binding protein-coupled receptors:inhibi-
tory GTP-binding protein-coupled receptors by markedly
reducing the protein content of all three inhibitory GTP-
binding protein subtypes on fat cells"'**. Although this
effect is limited to rodent fat cells"?>, TNFo-induced
degradation of inhibitory GTP-binding proteins by the
proteasomal pathway''*® mitigates the anti-lipolytic action
of adenosine. Last, TNFo treatment reduces total PLINA
content in adipocytes®*'?” and their phosphorylation by
PKA"?®_ This effect promotes lipolysis by increasing
exposure of lipids to ATGL and HSL.

IL-6 is a pro-inflammatory cytokine heavily secreted
from visceral WAT!?”_ 1Its expression is elevated in
patients suffering from obesity and type 2 diabetes''**'?".
IL-6 stimulates basal’*® and PKA-activated lipolysis''*®
and induces insulin resistance''**!*>_ Stimulation of lipo-
lysis is thought to take place independently of PKA,
through the extracellular signal-regulated kinase pathway,
resulting in diminished PLINA content*®. However, IL-6
also promotes fatty acid oxidation"**'*” via the AMPK
pathway'**13? Thus, despite the pro-inflammatory status
of IL-6, its overall systemic effects have been rather chal-
lenging to discern”"*"'*"_ Conversely, the action of IL-1pB
is better defined. IL-1B stimulates lipolysis in cultured
adipocytes''**!'** and inhibits lipogenesis in bone marrow
adipocytes''*?. These effects are thought to partially occur
as a result of impaired phosphorylation of insulin receptor
substrate 14,

While certain pro-inflammatory cytokines stimulate
lipolysis, products of lipolysis have been shown to mediate
inflammation in adipose tissue''*®. Using co-cultures of
adipocytes and macrophages it has been demonstrated that
saturated NEFA can activate macrophages and lead to the
up-regulation of macrophage-related genes'*”. Saturated
NEFA can therefore be defined as adipocyte-derived para-
crine mediators of WAT inflammation. This response is
thought to take place through the mitogen-activated PK
and NF-xB pathways"'*"'*®  Thus, the presence of a
paracrine loop between adipocytes and macrophages
probably aggravates adipose tissue inflammation. The
existence of a cross talk between adipocyte fat metabolism
and macrophage activation is supported by in vivo clinical
data on the regulation of WAT gene expression during a
dietary weight-loss programme"'*”.

Summary

Knowledge about adipose tissue lipolysis has been con-
siderably expanded in the recent years. The hormonal
regulation of lipolysis is no longer limited to HSL. Other
key players have been characterized. ATGL, CGI-58 and
PLIN each play an important role in the regulation of basal
and stimulated lipolysis. Co-activation mechanisms, e.g.
CGI-58 action on ATGL, have been identified. Protein—
protein interactions such as FABP4-HSL and caveolin—
PLIN have been shown to influence cellular lipid stores.
Cellular trafficking and distribution of the lipolytic
machinery under various physiological conditions is of
current interest and should provide an important insight
into whole-adipocyte lipolysis. The understanding of the
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cross talk within adipose tissue between metabolism and
inflammation may constitute a promising avenue for the
understanding of obesity- and type 2 diabetes-related
complications.
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