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SUMMAKY

The probability distribution of the heterogenic (non-identical by
descent) fraction of the genome in a finite monoecious random mating
population has been derived. It was assumed that in any generation the
length of both heterogenic and homogenic segments are exponentially
distributed. An explicit expression is given for the expected number of
'external junctions' (sites that mark the end of a heterogenic segment)
per unit map length in any generation. The latter necessitates the intro-
duction of two higher-order identity relations between three genes, and
their recurrence relations. Theoretical results were compared with the
outcome of a series of simulation runs (showing a very good fit), as well
as with the results predicted by Fisher's 'theory of junctions'. In contrast
to Fisher's approach, which only applies when the average heterogeneity
is relatively small, the present model applies to any generation.

1. INTRODUCTION

The inbreeding coefficient of an individual is defined as the probability that the
homologous genes at a randomly drawn locus are identical by descent (Malecot,
1948). For most breeding systems, including random mating populations of finite
size, this probability (F) can be calculated exactly, given the initial conditions, i.e.
the probabilities of identity by descent for genes in the base population. The
coefficient F represents the expected proportion of the individual's genome which
is identical by descent. Since blocks of linked genes rather than individual genes
are transmitted from one generation to the next, blocks of linked genes rather
than single genes become identical by descent as inbreeding proceeds. The length
of transmitted gene blocks (or chromosome segments) is variable; therefore, the
proportion of the genome identical by descent in a given generation will vary
between individuals, although the expected proportion may be the same for all
individuals of that generation. This paper deals with the probability distribution
of the fraction of the genome that is identical by descent in any generation of a
finite, monoecious random mating population with no selfing.

A problem rather similar to the one indicated above has been treated by Fisher
(1949, 1954,1959) and Bennet (1953, 1954) for full sib mating and parent-offspring
mating by means of the 'theory of junctions'. In their terminology a population
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is homogenic at a given locus if all the genes of the population at that locus are
identical by descent; otherwise the population is heterogenic. Since they mainly
dealt with populations of size 2, the terms homogenic and heterogenic applied to
four homologous genes or chromosome segments. The theory of junctions deals
with the fraction of the germ plasm (i.e. the total genetic content of the population)
that is heterogenic in a given generation. The analogy between the problem treated
in this paper and Fisher's problem is obvious: here we will consider one homologous
pair of chromosomes at a time, whereas Fisher considered all chromosome pairs of
the population simultaneously.

The basic approach to the problem used in this paper is the same as the one
introduced by Fisher (1949). I will therefore briefly outline his method. In the rest
of this paper the terms homogenic and heterogenic are used to indicate identity
and non-identity by descent of homologous pairs of genes or chromosome segments.

At any stage of inbreeding the genome of an individual will consist of alternating
heterogenic and homogenic segments ('tracts'). The sites that mark the ends of a
heterogenic tract are called external junctions, a term that will become clear later on.
The basic idea developed by Fisher is as follows. Let the mean number of external
junctions per unit map length in a given generation be Zt, and let Ht be the expected
heterogenic proportion of the genome (Ht = 1 — Ft). Then, for a diploid organism
with total genetic map length L, distributed over n chromosome pairs, the mean
number of ends of heterogenic tracts equals LZt + 2nHt; the second term here
represents the 2n chromosome termini, of which a fraction Ht is heterogenic. Thus
the mean number of heterogenic tracts (m) is

m = \Zt.L + nHt. (1)

If the distribution (pk) of the number of heterogenic tracts is known, and if further
the distribution of the lengths of heterogenic tracts is known, then the distribution
of the sum of all heterogenic tracts can be obtained. Fisher (1949) and Bennet
(1954) made the following basic assumptions about these distributions,

(i) The number of heterogenic tracts is Poisson-distributed, i.e.

pk = e-mmk/k\. (2)

(ii) The length of heterogenic tracts is distributed exponentially, i.e. the prob-
ability density function (p.d.f.) is

f(t) = ae-at, t > 0, a > 0.

The sum of fc-independent heterogenic tracts then follows a gamma distribution
with p.d.f. aHk-ie-at

fk{t) ~ (jfc-1)! •

By randomization of the latter distribution with respect to k, according to (2) one
obtains m

f(t) = £ aHk-1e-ate-mmk/(k-l)\k\
fc=i

= exp { - (TO + at)} J{ma/t) Ix{2<J(mat)), (3)
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where Ir{z) is the modified Bessel function of the first kind of order one (Bennet,
1954). The distribution has a probability condensation of e~mat< = 0, corresponding
to the probability of complete homogeneity. The mean of this distribution is m/a,
the expected length being heterogenic. Thus

m/a = LHt,

or, combined with (1), a = ~ +y. (4)

The relations (1) and (4) thus completely specify the probability distribution (3),
once Ht and Zt are known. In order to obtain Ht and Zt (in the sense of Fisher) for
full sib mating and parent-offspring mating, Fisher applied the elaborate method
of generation matrices.

It will be clear that the calculations leading to the p.d.f. (3) tacitly assume a
genome of infinite length. When the average length of heterogenic tracts is short,
relative to the total map length, this introduces no serious error. However, in early
generations, when heterogenic tracts are still relatively long, the p.d.f. (3) cannot
be applied.

This paper presents an extension of Fisher's theory. I will introduce two modifi-
cations. First, by using identity relations between genes, instead of a generation
matrix, a generalization to any finite population size is obtained. Second, I will
assume that at any stage of inbreeding the lengths of both heterogenic and homo-
genic tracts are distributed exponentially, each with its own parameter. The
external junctions can then be regarded as events in two alternating Poisson
processes. The probability distribution of the sum of heterogenic segments in any
finite interval can then be obtained.

The first modification necessitates the introduction of two higher-order identity
relations between genes in order to obtain the mean number of external junctions
per unit map length. The second modification enables application of the theory
to early generations, because the average length of heterogenic tracts, relative to
the map length considered, is irrelevant. The crucial assumption of my approach
is that both heterogenic and homogenic tract lengths are distributed exponentially.
The validity of this assumption has been verified by means of a series of Monte
Carlo simulations.

A different approach to the distribution of heterogeneity has been indicated by
Franklin (1977). This approach uses the concept of joint identity by descent for
pairs of loci, developed by Cockerham and Weir (Cockerham & Weir, 1968; Weir &
Cockerham, 1974). As pointed out by Franklin (1977), summation of this prob-
ability over all possible pairs of loci on a chromosome gives the second moment of
the total number of homogenic loci on that chromosome. Some of Franklin's
results will be discussed further on.

https://doi.org/10.1017/S0016672300014002 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300014002


134 P. STAM

2. ANALYSIS

(i) Junctions

An exchange between two unlike strands leads to a junction. The formation of
a junction is a unique eTent, since no two crossovers will occur at exactly the same
site. A junction can therefore be regarded as a unique point mutation, and the fate
of a junction is the same as that of a unique mutation: ultimately it will either be
lost or become fixed. Considering the state at the site of a junction in a diploid we
can distinguish two types, i.e. internal and external ones. Let j denote a junction
between unlike strands (a and 6). We will denote a strand which is, at the site of
the junction, identical to either a or 6 by a;; a strand unlike both a and b is denoted
by y. Then, at the site of a junction the possible genotypes are xx, xj, xy, jj, jy and
yy (see Fig. 1). In the genotypes^ (i.e.ja and jb) the genome switches from hetero-

L
V///////////7Z4

V/////A i

V/////A i

V//////////77M

L Y//////A i

External

V//////A I

V/////A i

V/////A I
Internal

Fig. 1. The concept of external and internal junctions: j is a junction resulting from
a crossover between two unlike strands (here denoted by o and 6). The genotypic
notation, qj, bj, etc., refers to the status at the site of the junction: y denotes a
strand unlike both a and b. For further explanation see text.

genie to homogenic at the site of the junction. Here, the junction is external; it
marks the end of a heterogenic tract. In the other genotypes there is no switch
from heterogenic to homogenic. In jj the genome is homogenic at either side of the
junction; io.jy it is heterogenic at either side. Therefore the junction is said to be
internal in the genotypes jj and jy. Notice that an internal junction may become
external in a later generation, and vice versa. The concept of the state of a junction
in a diploid (i.e. internal or external) also applies to randomly sampled gametes
from distinct individuals. Fig. 1 further illustrates the concept of internal and
external junctions.
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(ii) Identity relations

We will develop the theory for a finite population of constant size N that repro-
duces by random union of gametes, while selfing is excluded (i.e. monoecy). Genera-
tions are assumed to be non-overlapping. Besides the usual identity relations
between two genes, we introduce two higher-order identity relations between three
genes (S and R, below). In the following we will use the term 'unlike' in the sense
of non-identity by descent; so when three genes, a, p and y, are unlike, this means
CL-^kfi, a^ky, ft^ky. We will use the following probabilities (indices refer to
generations):

S,.: the probability that the homologous genes of an individual at a randomly
chosen locus are unlike (1 — Ht = Ft, the inbreeding coefficient).

Kt: the probability that two homologous genes sampled from distinct individuals
are unlike.

St: the probability that three genes, a, /? and y are unlike, when two of the genes
constitute a homologous pair of a single individual and the third is sampled from a
distinct individual.

Rt: the probability that three homologous genes, a, ft and y are unlike when
these genes are drawn from three distinct individuals. These relations are shown in
Fig. 2.

H K

S R
Fig. 2. Identity relations between two (H and K) and three (S and R) genes.

Higher-order identity relations have been discussed by, among others, Harris
(1964) and Cockerham (1971). In Cockerham's (1971) notation, R and S read as

S = l-2dxy-Ft +2ySy.

For H and K we have the well-known recurrence relations

(5)

GBH 35
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General rules for the computation of higher-order identity relations are
given by Cockerham (1971). We will here derive the recurrence relations for S
andi?.

Considering St+1 we see that with probability 2/N the three genes derive from
two distinct parents; in that case the probability of being unlike equals %St. With
probability (1 — 2/N) the genes derive from three distinct parents, in which case
the probability of being unlike equals Rt. Thus,

*• (6)

Next consider Bt+1. With probability 1/N2 the three genes derive from a single
parent; the probability of being unlike then is zero. With probability d(N— l)/N2

the genes derive from two distinct parents; in that case the probability of being
unlike is %St. With probability (N— 1) (N — 2)/N2 the genes derive from three
distinct parents, in which case the probability of being unlike is Rt. Thus,

3(jy-l) (N-l){N-2)
t + 1 = 2iVa t + N* *• ( )

Equations (5)—(7) are the basic recurrence relations needed for the calculation of
the mean number of external junctions per unit map length in any generation.

(iii) The mean number of external junctions per unit map length

New junctions are formed at the rate Ht; i.e. the expected number of new junc-
tions per 100 centimorgans formed in generation t equals Ht. We now define the
quantity Pt as the mean number of external junctions (per 100 centimorgans)
considering one of the two homologous chromosomes, that is the mean number of
junctions in external state on one of the two homologous chromosomes of an
individual. Then the mean number of external junctions per individual (Zt) equals
2Pt. Analogously we define Qt as the mean number of external junctions on one
chromosome of a homologous pair, drawn at random from two distinct individuals
of generation t. In the following, j indicates a junction between strands a and b,
and c is the homologous site of this junction in either the same individual or in a
distinct individual.

We will now set up recurrence relations for P and Q using the identity relations
denned in the previous section. It will be clear that the contributions to both
Pt+1 and Qt+1 come from distinct sources: we can distinguish a part that comes
from junctions that already existed in generation t and a part coming from junctions
that were first formed in generation t.

First consider Pi+1 (cf. Fig. 3a). The contribution to Pt+1 from existing junctions
simply equals Qt. The expected number of new junctions equals Ht. From this we
must subtract those that lead to the internal condition in the next generation. A
junction formed in generation t will be internal in the next generation if in the
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gamete from the other parent the corresponding site is unlike both a and b. The
latter occurs with probability St. Thus,

Pt+i = Qt+Ht-St. (8)

Next consider Qt+1 (cf. Fig. 36). The contribution from existing junctions to Qt+1

equals R.

Pr =(1.-*,)

B

Fig. 3. Contributions to P<+1 (A) and Qt+i (B). Left: from junctions formed before
generation t; right: from junctions formed after generation t. j denotes a junction
between unlike strands a and 6; c denotes a gene at the site of the junction in the
homologous chromosome (A) or in a chromosome from a distinct individual (B).

which is analogous to the equation for Kt+X (5). In order to obtain the contribution
to Qt+1 from new junctions (formed in generation t) we subtract from Ht the part
that leads to the internal condition. The internal condition occurs only if the sites
j and c derive from distinct parents and if c is unlike both a and 6 (Fig. 36). This
has probability (1 — 1/N) St. Taking these contributions together we have

•t- (9)
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Combining equations (5)-(9) in matrix notation, with

we have
where the

0

0

0

transition matrix

( '

1

4)
0

0

X'

Gis

1

0

J_

= (P,Q,

^t+i=

d

H,K,8,R),

= cxt,

0

0

1

-±\

-(

- 1

'4)
0

0

0

0

0

0

It is easy to see that the eigenvalues of the transition matrix are the roots of

[**-{l-l/N)\-l/2N]*[\*-{l-2(N-l)/N*}\-(N-l)(N-2)/2N*\ = 0.

This has two double roots, i.e.

Ax = A2 = (JV - 1 + V(i^2 + 1))/2N,

and A3 = A4 = (N-1 - V(#2 + l))/2iV,

and further A5/ 6 = (a + D)/2N,

where a = N+(N-l)(N-2),

and Z> = J(a? + 2N(N-l)(N-2)).

The explicit expression for Zt = 2Pt is then of the form

Zt= (c1 + tc2)A
t
1+(c3 + tc4)A* + c5At + c6X*, (11)

the constants cx ca depending on the initial conditions. Assuming that initially
all genes in the population are unlike, the initial conditions are

Po = Go = 0; H0 = K0 = 80 = B0= 1.

The constants Cj-c6 are given in the Appendix.
For N = 2, i.e. full sib mating, the sixth eigenvalue is zero because the relation

R between three genes does not exist. It is straightforward to verify that the ex-
plicit expression for Zt is then

z*={~i(3+38e) +3{i }
_jA(n_i9e) _|(3-4«)*J(i-e)* + 4(i)*, (13)

where e = Ax =
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Table 1. The mean number of external junctions (Zt), per 100 centimorgans in full sib
mating, t, generation; A, theoretical value (equation 13); B, simulation results

Zt

t

1
2
3
4
5
6
7
8
9

10

A

00000
20000
30000
3-7500
4-1250
4-2500
41875
4-0000
3-7344
3-4258

B

000
201
300
3-77
4 1 1
4-26
412
4 0 3
3-65
3-34

t

11
12
13
14
15
16
17
18
19
20

A

31000
2-7734
2-4590
21636
1-8914
1-6442
1-4225
1-2255
10519
0-8999

B

306
2-75
2-38
2 1 1
1-90
1-64
1-42
1-24
108
0-90

20 -

-

10 -

-

0 -

^ .

/
/

1
1

1
1

1
1
1

:

• /
i /
i i
11

i /

n ' '
1 '

*l '
. /
/

,^ N=20
\

\
\
\
\
\

Af=10

N

N = 4

I t m
^ •

\
\
\\

\
\
\
\\

\ \

H

Fig. 4. Trajectories of H (mean heterogeneity) and Z (mean number of external
junctions) for different values of N (population size). Dots indicate successive
generations (starting at H = 1, t = 1). In the dashed part of the graphs the gen-
erations are not indicated.

Table 1 gives the values of Z for the first 20 generations of full sib mating (equation
(13)), together with the mean values obtained in 500 replicate simulation runs (see
the section on simulation). In Fig. 4 are plotted corresponding values of Z and
H for several population sizes. It is seen that at a given level of H, Z increases as
population size increases. This is because it takes longer for a large population to
reach a given value of H than for a small one. Let us compare two populations of
different size (small and large). The initial rate of increase of Z per generation is
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smaller for the large population because a larger fraction of its junctions will then
be internal ones. However, the quick drop of H in the small population rapidly
reduces the opportunity to create new junctions. The net effect is a larger value
of Z for the large population at a given level of H.

(iv) The limiting number of junctions

When complete identity by descent has been attained, the genome of every
individual consists of a number of segments of different origin separated by internal
junctions that have become fixed. The mean number of these junctions is found as
follows. In any generation the expected number of junctions formed in the total
population equals 2NHt. Since each junction has probability 1/2N of surviving, the
expected number still present in the limit equals H,f=0Ht. It is easily verified that
Ht can be written as

Ht = {(l-A,)/(A1-A,)}Ai-{(l-A1)/(A1-A,)}AS, (14)
so that

S ^ = {(l-A,)/(l-A1)-(l-A1)/(l-A8)}/(A1-A3) = 2(iy+l). (15)
t = o

For an organism with total map length L, distributed over n chromosome pairs,
the expected number of distinct segments of a given origin thus equals

2(N+l)L + n.

This result was obtained by Bennet (1953) for full sib mating (N = 2).

(v) The distribution of heterogeneity

In order to obtain the probability distribution of the heterogenic fraction of the
genome, we will assume that in any generation the lengths of both homogenic and
heterogenic segments are distributed exponentially, each with its own parameter.
External junctions can then be regarded as events in two alternating Poisson
processes. Let us denote these alternating states by A (heterogenic) and B (homo-
genie). Let /(*) = A«H* (16)

be the p.d.f. of the length of a heterogenic tract, and let

g(z) = ae-°* (17)

be the corresponding p.d.f. for homogenic tracts. The mean lengths of heterogenic
and homogenic tracts then are I/A and I/a, respectively. Since a junction cannot
coincide with a chromosome end, the latter (or any other point on the chromosome)
can be considered as a random point in the process. In other words, a chromosome
(or any other segment of finite length) can be considered as a section of the process
in stationary phase. From elementary renewal theory (see e.g. Cox, 1962) it can be
shown that the probability, pA, that at a random point the process is in state A, is

PA = MA/^A+^B) = a/(a

Similarly, pB
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In terms of flf this is Ht = a./(a. + \), 1-Ht = A/(A + a). (18)

It can further be shown (cf. Cox, 1962) that the mean number of events per unit
length in the stationary process equals 2aA/(a +A). Thus,

Zt = 2aA/(a + A). (19)

Combining (18) and (19) allows us to calculate the parameters a and A for any

generation, i.e. a - Z t / 2 ( l - ^ ) , X = Ztf2Ht. (20)

The p.d.f. of the heterogenic fraction in a segment of length L, in terms of a, A and
L, reads (see Appendix for a derivation):

l()

-z))} + 2I0{2Lj(*Ax(l-»))}], (21)

where Io and It are modified Bessel functions of the first kind of order zero and one,
respectively. The probability condensations Po at x = 0 and P1 at x = 1 are

P ———p-aL p — a
 r->. T. /t>o\

r°-a + A€ ' ^ " a + A6 " (22)

The result (21)-(22) is not particularly useful because the second and higher
moments cannot be obtained directly from it.

Numerical evaluation of (21) however is quite feasible. The variance can best be
obtained by a direct argument (see Appendix ); it reads

. . {2H{\-H)f\T 2H{1-H)\i I ZL . . .

The distribution (21)-(22) applies to a single chromosome or chromosome segment
of length L. In order to obtain the corresponding distribution for n independently
segregating chromosomes, each of length L, the rc-fold convolution should be taken,
together with a transformation of scale. However, in most cases we can, without
serious error, treat n chromosomes of length L as if they were a single one of length
n. The reason for this is that the approach to stationarity of the alternating process,
given the state at t = 0, is rather fast. In fact,

-l-exp{-(a + A)«}]+^(O)exp{-(a + A)<},

~ ( a + A ) *H +PB(°) exp { - (a

(24)

wherepA(t) are the probabilities of being in state A and B, respectively, at a distance
t from the origin (cf. Cox & Smith, 1961). It is seen from (24) that for (a+A) t > 1,
the state at t = 0 hardly influences the values of pA(t) and pB(t). This means that a
long segment may, for our purposes, be treated as a number of independent smaller
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ones, provided the latter are not too short. Since the reverse is also true, we may
treat independent segments as if they constituted a single one. In Fig. 5 values
of <x + A(= Z/2H(1 — H)) are plotted against the corresponding value of H for
some population sizes. It is seen that in general (a +A) is much larger than unity.
The lower boundary of (a + A) can be shown to be 4. This justifies treating inde-
pendent chromosomes as if they constituted a single one.

2 5 6 -

<< 64 -

1 6 -

4 -

1

H

Fig. 5. Trajectories of H and a + A for different population sizes {N). a: N = 2;
b: N = 4; c: N = 10; d: N = 20. Trajectories start at the right at generation 2.
Further legend as Fig. 4.

As an example we compare the variance for a single chromosome of length nL,
var (x; nL), with that for n independent chromosomes of length L, i.e. var (x; L)/n.
These are given in Table 2 for N = 4 and N = 16 in generations 4 and 16 for nL = 20.
From Table 2 it is seen that, unless L < 0-5, there is no substantial discrepancy
between var [x; nL) and var (a;; L)/n.

Several numerical examples of the distribution (21)-(22) are given in the next
section.

Table 2. Vanance of the heterogenic fraction for a total genome length of 20 morgans
with different numbers (n) of chromosomes of equal length (L). N, population size;
t, generation

t= 4 t = 16

n

1
2
4
8
10
20
40
80

L

20
10
5
2-5
2
1
0-5
0-25

N = 4

00031
00031
00029
00029
00029
00027
00022
00016

N = 16

00013
00013
00013
00012
00012
00011
00009
00006

JV = 4

000076
000076
000075
0-00074
000074
000072
000068
000060

JV = If

00013
00013
00013
00013
00013
00012
00012
00010

https://doi.org/10.1017/S0016672300014002 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300014002


Distribution of identity by descent in finite populations 143

3. SIMULATION

The crucial assumption of the model concerns the probability distribution of
homogenic and heterogenic tract lengths. Both distributions are assumed to be
exponential. In order to test the validity of this assumption a series of Monte
Carlo simulations was run. In the simulation each chromosome was described by
the following characteristics: (1) the number of junctions (n), (2) the sites of the
junctions: s1( . . . ,sn and (3) the 'origin' of the chromosome between any two
junctions, being one of the numbers 1,2,..., 2N (corresponding to the 2N possible
origins). From these characteristics the number of external junctions and the
heterogenic fraction can be obtained for a pair of homologous chromosomes.
Random mating with the exclusion of selfing was simulated by repeated sampling
of two distinct individuals as the parents of a new zygote (this implies monoecy).
Crossover sites were generated by successive sampling from an exponential
distribution (i.e. no interference was assumed) until a site fell outside the pre-
assigned chromosome length. After recovering the gamete (a rather complicated
procedure because for each gamete the sites of the junctions and the origins must
be determined from the parental homologues and the crossover sites), this was
stored until 2N gametes had been generated. The parental population was then
replaced by the offspring. At pre-assigned generation intervals output was gathered
and stored; this was used after all replicates had been run. From the results of
replicate runs a frequency diagram, the overall mean and overall variance of the
heterogenic fraction were calculated. The histograms with 20 classes of width 0-05,
plus the classes 0 and 1 (complete homogeneity and complete heterogeneity) can
be compared with the theoretical distribution (21-22). The mean and variance of
the number of external junctions per 100 centimorgans were also recorded. The
number of independently segregating chromosomes could be varied, as well as the
chromosome lengths.

With this method the chromosome is 'continuous' rather than 'discontinuous',
as it is in the more familiar ' one locus-one bit' simulation technique. With the
latter a segment between junctions cannot be smaller than the total map length
divided by the number of bits used. This may result in an underestimation of the
number of junctions. A similar ' continuous chromosome' procedure was used by
Robertson (1977) in simulating artificial selection.

4. SOME NUMERICAL RESULTS

Graphs of the p.d.f. (21)-(22) are shown in Figs. 6-9. In Fig. 6 a sample of simu-
lation results is also shown. In Fig. 6 also the p.d.f. according to Fisher's approach
has been plotted (i.e. equation (3) after scale transformation). I t is seen from Figs.
6 and 7 that the fit between the theoretical distribution and the simulation results
is surprisingly good. Fisher's approximation, which was stated to hold for later
generations, shows a poor fit indeed in early generations, the fit becoming increasingly
better as H decreases.

Fig. 8 exemplifies the effect of the total map length, L, under consideration: at
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4 - (6)
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See legend for Fig. 6 on opposite page.
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(O

4 -

2 -

Fig. 6. Probability density function of the heterogenic proportion of the genome.
x = heterogenic proportion;/ = probability density. Drawn curve: equation (21);
dashed curve: Fisher and Bennet's approximation (equation (3)); histogram:
simulation results. Arrows indicate the mean of the distribution. N: population
size; t: generation; L: genome length (morgans; single chromosome), (a) N = 2,
t = 2, L = 2; (6) N = 2, t = 4, L = 2; (c) N = 2, t = 6, L = 2.

a given level of H, the variance of the heterogenic proportion is inversely propor-
tional to L.

Fig. 9 shows the effect of population size on the distribution with given mean.
An increase in Z will reduce the variance, because the heterogenic fraction becomes
distributed over a larger number of distinct segments. Increasing population size,
which corresponds to an increase in Z (cf. Fig. 4), therefore reduces the variance.

Expression (22) makes possible calculation of the probability of 100% homo-
geneity in any generation. This has been plotted for a few values of N in Fig. 10.
I t is seen that the variance of the time to 100% homogeneity increases with
population size.

5. DISCUSSION

The probability distribution of the heterogenic fraction of the genome in a finite
population has been derived under the assumption of selective neutrality. The
approach of this paper uses the concept of junctions, developed by Fisher (1949,
1954) and Bennet (1953, 1954). In most of the previous work on inbreeding only
expected values were considered. Knowledge of the probability distribution of the
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Fig. 10. The probability of complete homogeneity (P) as a function of generation
{t), for populations of different size (N). Total genome length is 20 morgans in all
cases.

heterogenic proportion of the genome adds a new dimension to the familiar calcu-
lation of inbreeding coefficients. I t allows us to calculate the probability that a
given proportion or more of the genome is homogenic at a certain stage of in-
breeding. For practical plant and animal breeding such probabilities are of far
more concern than the mean, especially since the variance may be substantial.

Franklin (1977) has presented a method of deriving the variance of the hetero-
genic fraction using the concept of joint identity by descent at two loci. The basic
idea of this method is as follows (see also the Appendix). Let d(rtj) be the probability
that two loci with recombination rti are both homogenic (recurrence relations for
6(r) have been given by Cockerham & Weir (1968) for sib mating and by Weir &
Cockerham (1974) for monoecious populations of finite size). Then, with n loci,
the sum i « n

is the second moment of the homogenic fraction. Changing to an infinite number of
loci, uniformly distributed over a chromosome of length L, this can be written as

[*£

(x x Wdx dx (25^^ J o Jo
where r(x1, x2) now denotes the recombination fraction between loci at sites xx and
x2. A genetic mapping function relating the distance \x1 —x2\ to r{xx, x2) is used to
evaluate the integral (25). (When interference is present, r{xx,x2) may not only
depend on the distance \xx — x2\ but also on xx and x2 themselves; cf. Stam, 1979.)
In general, the probability 6(r) can be written as a polynomial in (1 — 2r), i.e. as
Sjj. ak{l — 2r)k. Franklin (1977) has given numerical values of the ak for the first six
generations of full sib mating and parent-offspring mating. For numerical work,
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d(r) can be tabulated using the transition matrix given by Weir & Cockerham
(1974); (25) can then be integrated numerically.

The variance of the distribution proposed by Fisher and Bennet, i.e. equation (3),
is 2m/a?I?. Table 3 gives a sample of variances calculated in three ways, i.e. (1)
Franklin's (1977) method, using his expressions for 6(r); (2) Fisher and Bennet's
approximation, using the values of Zt and Ht given in this paper, and (3) according
to equation (23).

Table 3. Variance of the heterogenic proportion with full sib mating. L, total genome
length; n, number of chromosomes; t, generation. A, Fisher and Bennet's approxima-
tion; B, Franklin's method (1977); C, equation (23) of the text, assuming independence
of unlinked loci

t L n A B C

10

20

10

20

I t is seen from Table 2 that the values according to equation (23) are very
close to those obtained by Franklin's method, whereas Fisher and Bennet's approxi-
mation largely overestimates the variance in early generations.

In terms of H and Z, the variance of Fisher and Bennet's distribution reads

1
5
1
10
1
20
1
5
1
10
1
20

00962
00735
00500
00368
00255
00184
00196
00176
00100
0-0089
00050
0-0044

00154
00131
00079
00065
00040
00033
00109
00095
00055
0-0048
0-0028
0-0024

0-0142
00124
00072
0-0062
00036
00031
0-0090
0-0082
0-0045
0-0041
0-0023
0-0020

In later generations, when H becomes very small, and Fisher and Bennet's
approximation becomes increasingly better, this can be approximated by

var (x) = 4H2/LZ,
which then hardly differs from (23). Taking the limit of var (x) as L -> 0 in (23) we
obtain var (x) = H(1- H),
which is the correct expression for the one-locus case.

Avery & Hill (1979) followed an approach similar to Franklin's method (i.e. by
deriving the relevant expressions for two loci, and averaging over all pairs of loci)
to obtain the various components of variance in heterozygosity in a finite random
mating population (including random selfing). The main components of variance
are the between-population and within-population variances, although Avery &
Hill (1979) considered several other components as well, such as within- and
between-half sib families. Unfortunately, the method of the present paper does not
allow such a subdivision of the variance in a simple way.
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Sved (1971, see also Sved & Feldman, 1973) has calculated the limiting prob-
ability that the genes at two loci, with recombination r, are identical by descent
through the same pathway. From this probability,

Sved (1971) derived the p.d.f.

(26)

for the length of an unbroken homogenic segment (through the same pathway)
attached to a given homogenic locus. This p.d.f. is length-biased because a randomly
sampled locus is more likely to fall in a large segment than in a small one. Denoting
the length-unbiased or 'true' p.d.f. of such segments by f{x), the relation between
f(x) and <b(x) is F( .

f-x

where F(x) = I f(u) du
Jo

and fi = I uf(u) du.
Jo

(See e.g. Cox, 1962 for an instructive treatment of this 'waiting time paradox'.)
I t is easily verified that with (26) the true p.d.f. reads

/ ( )JX ' (l+4JSfx)3'

with mean u, = -r^. (27)
4./V

From (15) we see that in the limit the mean length of homogenic segments from a
given origin, without the restriction of having descended through the same path-
way, equals 1/2(N +1), which is approximately twice the mean length of unbroken
segments descended through the same pathway (27). Sved (1971) has calculated
the expected length of homogenic segments (same pathway) surrounding a given
locus, using the p.d.f. (26). This value is then interpreted by Sved as the mean
length of homozygous segments (as opposed to heterozygous segments) in an
equilibrium population. It is hard to understand the logic behind this interpretation.
First, only segments are considered that have remained unbroken (same pathway)
since the initial generation; second, the mean length is over-estimated because of
the length-bias in the p.d.f. (26), and third, the equilibrium population in the strict
sense is completely homozygous, so that it makes little sense to consider homo-
zygous segments as opposed to heterozygous ones.

The model of this paper implies that the identity states at unlinked loci are
independent; i.e. the joint probability of non-identity equals Hz for unlinked loci
(this follows directly from (24)). This is correct for full sib mating (N = 2), but not
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for populations of size > 2, in which case the identity states at unlinked loci are
(positively) correlated (cf. Weir & Cockerham, 1974). As a consequence, the model
slightly underestimates the variance of the heterogenic proportion for long chromo-
somes. If fitness is related to the homogenic fraction of the genome (as indicated
by the phenomenon of inbreeding depression), selection will retard the approach
to homogeneity. One might then formulate 'infinite-locus' or 'strand' models of
selection, as suggested by Franklin & Lewontin (1970), and applied by Robertson
(1977) in the context of artificial selection. With such a model, the variance of the
homogenic fraction directly corresponds to variance of fitness. Since variation in
fitness is essentially equivalent to selection, the effect of selection on the rate of
approach to homogeneity in a finite population is expected to depend on the two
factors that determine the variance, i.e. the total genome length L and Z which,
for given level of H, in turn depends on population size. Of course, selection will
also affect the variance itself; therefore, predictions concerning the effect of selection
on the distribution of heterogeneity can only be speculative and at most qualita-
tively correct. A simulation study of the effect of selection is now under progress.

Franklin & Lewontin (1970) and Lewontin (1974) have raised the question as
to whether the analysis of multi-locus selection models can really contribute to our
understanding of selection in natural populations. The results obtained by Franklin
& Lewontin (1970) indicate that relatively large blocks of linked genes rather than
single genes may govern the process of selection (gene frequency changes) at
individual loci. They found that the alleles at individual loci are being 'locked up '
in semi-permanent super-alleles and that the behaviour of single genes and pairs
of genes can hardly be predicted from single- or two-locus theory. Similar results
were obtained by Wills, Crenshaw & Vitale (1969) for a rank order selection model.
In addition, Avery (1978) has pointed out that the results of deterministic two-
locus theory may be of little value as to what may actually happen in a finite
population. He showed that genetic drift causes D (measure of linkage disequili-
brium) to vary considerably about the values predicted by deterministic theory,
so that observed D-values provide no reliable information on the selection regime
in a natural population. Although the theory presented in this paper applies to
neutral genes only, it is hoped that it contributes to future thinking of 'infinite-
locus ' models of selection.

The author is indebted to Dr P. van Beek for his suggestions concerning the analysis of
alternating renewal processes and to Drs B. Charlesworth and W. G. Hill for their comments
on an earlier draft of the paper.
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APPENDIX
In order to obtain the constants cx, ...,c6 in equation (11), we observe that the

relation QM _ A p m = aX{Qt _ APt) + Yt

holdsfor (*):A = A1) a = A3/A1; Yt = ( l - A ^ - A a - S , = Ut

and for (M):A = A3, a = A1/A3, Yt = ( l - A ^ - A ^ , = Vt.

Thus Qt-^Pt = A3(£0- A ^ ) + S 1 A*-i-**7fc (A 1)
fe = 0

and Qt- A3Pt = A\(Q0 - A3P0) + J? A | - i - % (A 2)

Since Qo = Po = 0, combination of (A 1) and (A 2) yields

A l~ A 3l fc = 0 fc=0

Evaluation of the sums in (A 3) is straightforward because Ht and St can be written
a S H
where A = (l-A,)/^-*,,); B^l-A; C = (A1 + A3-A6)/(A5-A6)
and D=l-C.

https://doi.org/10.1017/S0016672300014002 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300014002


Distribution of identity by descent infinite populations 153

Evaluation of the geometric series occurring in (A 3) and collecting the coefficients
of A*, A|, Af and A£ directly yields the constants c1(..., c6. These are

= 2/2A1A_3_A_1/_6
Cl a\ a? f U

_ 1 n-hv
"AA a j '
_2(-2A 1 A, A, / b d \\

a\ a2 + / U-A5 -A3-Aj/ '

c5 = 26{A1/(A1 - A6) - A3/(A3 - A5)}/o/,

c6 = 2d{A3/(A3 - A.) - X1/(A1 - Ae)}/o/f
where o = A1-A3; 6 = A1 + A3-A6; d = A1 + A3-A5; / = A 5 - A 6 .

Consider two alternating Poisson processes (A and B) in stationary phase. Let
the p.d.f.s of the 'waiting times' be

/(<) = Ae~At (stated)

and g(t) = cce~at (state £).

The cumulative distribution functions then are

Pr(x < t) = f(«) = f'/(«)du = l-e~At (state^4)
Jo

and Pr (y ^ t) = G(t) = f g(u)du = 1 - e " a t . (state 5)
Jo

We further define the p.d.f.s of ^-independent waiting times:

M*)= (k_iy (stated)

l p att y k f k l p a t

and flrfcW=___ (Btate B).

Suppose that at < = 0 the process is in state A (this has probability pA = a/(a+A)),
and let there be an even number of events (2k) in the interval (0, T). See diagram
below.

I I I I I
I I I I I
i l l I I
! ! 1 1 l

Then at t = T, the process is in state A, the number of type A waiting times is
k+1, and the number of type B waiting times is k. Let the probability of this state

11-2
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of affairs be p2k (given state A at t = 0). Then the conditional p.d.f. of

18 ~ r~l gk(t)Mz){l-F{T-z-t)}dz. (A 4)
PzkJO

The factor gk(t) in the above expression is the &-fold convolution of g(t), corre-
sponding to the k type B waiting times. The factor fk(z) corresponds to the first k
type A waiting times, whereas the last factor expresses the fact that the sum
x1 + x2 + ... +xle+1 + y1+... + yk = Sx + Sy is greater than T. The integration is
over all possible values of z. Now

T-t

So (A 4) can be written as

The conditional p.d.f. of the sum of type A waiting times (=~Lx = T — "Ly) thus is

Next consider the case of an odd number (2k +1) of events in (0, T). By the same
argument as for an even number of events, we then find that the conditional p.d.f.
of the sum of type A waiting time is

fk+i(t)9k+i(T-t)/ocp2k+1.

Using a similar argument for the case that at t = 0 the process is in state B (by
interchanging the roles of/ and g and those of 2 a; and Sy), and adding over all
possible number of events (excluding zero events) one obtains

i

taking gk = 0 for k < 1. After applying a change of scale, such that the entire
distribution is within the interval (0,1) (it then applies to the proportion of time
spent in state A), we obtain, after some rearrangements

X \ ^ j ^ ^ I1{2T^(aXt{l-t))} + 2IQ{2T^(a.Xt(l-t)))\, (A 5)

where Io and 7X are modified Bessel functions of the first kind of order zero and one,
respectively.

Besides the continuous part (A 5), there are probability condensations at t = 0
and t = 1, corresponding to the case that no events occur in (0, T); the process is
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then in either of the two states during the complete interval. It is easily seen that
the probability condensation at t = 0 equals

Similarly, at t = 1 P\= PB e~XT = T e~XT.
ot + A

In order to obtain the variance of the distribution we use the argument applied by
Franklin (1977). Let zt be a variable defined as follows

n i
Ho i

1 if the process is in state A at t,

if the process is in state B at t.

Then E{zt) = E{z\)=pA.

Further E(zh. zto+t) = pA{pA{\ -

^ - ( A 6 )

(Cf. equation (24).) If we now think of a finite number (n) of points (loci) in the
interval (0, T), the proportion of loci in state A equals 1/n S ^=i2i-

The variance of this proportion is

Changing to an infinite number of loci (n ->• oo), uniformly distributed over the
interval (0, T), this becomes

'T E(zto.zto+t)g(t)dt-pA, (A 7)
o

where g(t) is the p.d.f. of the distance between two random points in (0, T), i.e.

g(t) = 2(T-t)/T2. (A 8)

Insertion of (A 8) and (A 6) into (A 7) gives

—rpr~ dt

h-
which, noting thatp^ = H and a + X = Z/2H(1 — H), is equation (23) of the text.
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