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ON THE CHARACTERS OF AFFINE KAC-MOODY GROUPS

by STEPHEN SLEBARSKI
(Received 18th October 1990, revised 17th March 1992)

Let G be an affine Kac-Moody group over C, and V“ an integrable simple quotient of a Verma module for g.
Let G™" be the subgroup of G generated by the maximal algebraic torus T, and the real root subgroups.

It is shown that € ®'" (the least positive imaginary root) gives a character 6 Hom(G,C*) such that the
pointwise character ¥® of ¥ may be defined on G™" ~ G>'.

1980 Mathematics subject classification: 17B67, 22E67.

0. Introduction

A Kac-Moody group G over C, is associated to a pair (4,h,) where A4 is a
generalized, indecomposable, Cartan n x n matrix of rank I, and b, is a free Z-module
such that n—I=rank h; —n. Then G has a (B, N) pair forming a Tits system with Weyl
group W=N/(Bn N) (see also [12, 4, 9]).

The Lie algebra g of G has a root space decomposition, and it is required that the
roots ®=Hom(hz, Z)=:h% We have ®=0" U ®™, where O™ is the W orbit of the
simple roots and @™ = Q\P™.

If G is affine (that is A is symmetrizable, positive semidefinite) then there is an
analytic construction as a loop group [3]. Take a central extension S‘—J‘K(O)ALK(O, of
the loop group of a compact, connected almost simple Lie group Ko, by the circle S!
(this is obtained [8] from a closed, left invariant integral 2-form on LK, if K, is
simply connected). Imbed K g, in a group of finite dimensional unitary matrices, and let
LK o) be the dense subgroup of LK 4, consisting of y: $'—K o, with each matrix entry
of y(z) a finite Laurent polynomial in z. The loop algebra Lt =C[z,z7'] ®xf,, has a
derivation d by z£ ® 1, and on Lf,,d(c)=0. In 3 the untwisted affine Lie algebra is
g=Cd @ Cc @ Lig,c. There is a subgroup S' of the group of diffeomorphisms of the
circle, having Lie algebra Rd as a subalgebra of the Virasoro algebra. Set G,=
($! x ZPO,K(O,)C. The Lie algebra g decomposes (restricting the adjoint representation of
G,) by characters of S' ® T,,), where T, is a maximal torus of K,. The Weyl group
W=W, x Y where W, is the Weyl group of (K, T(o)) and Y is the cocharacter lattice
Hom(S?, T\q)). The “twisted” loop groups are obtained by the outer automorphisms of
fo)c of orders 2,3.

An algebraic construction (as in [6, 9]) for general G is used here. This is obtained as
a subgroup of GL(V) where V is the direct sum of the “integrable” simple quotients V©
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of Verma modules for g. And see [12] for the Chevalley-Demazure, and Tits group
functor on the category of rings.

To briefly describe a correspondence between the analytic approach and the algebraic
of (1.3), (3.1):

Let B be the group of polynomial maps y: {zeC;|z| S 1} K restricted to S*,
with y(0)e By, where B, is the opposite Borel subgroup to B <Ky, the latter
associated to a choice of positive roots @, for (K, Tjo). Let Ug,, be the root
subgroup in K of ae®,,, and define U, ={y,eB,; Imy,={g}, ge Uy}, i#0,
U,o={7€B1;y(0)€ U4 7*(0)=0,5#1}, 6 D, . the highest root. Let B~ =S" k By.
Over a completion of G,/B~ there is a holomorphic G; vector bundle G, xg_C,,w
a character of B~ which is trivial on U~. The Borel-Weil theorem for compact
Lie groups has a generalization to loop groups (see for example [8]). In particular
the G,-space of holomorphic sections H%w) is g equivalent to V. The group G in
Section 3 is the homomorphic image in GL(V) of G, (and see [8, p. 144] for the Bruhat
decomposition of G,).

In this paper, for G affine, we give the subdomain of G™" on which a pointwise
character y“ of the representation (V, R), we #nt, nbh¥ can be defined. Here G™" is the
subgroup of G generated by the algebraic torus T=5h; ®,C* and the root subgroups
U,, ae ®*. We show that this domain is given by G*'={ge G;|6(g)|>1} where 5 ®"
is the least positive imaginary root trivially extended to éeHom(G,C*). The proof
holds for twisted G, and the present approach does not exploit the topology as a loop
group. The subdomain in T on which y® behaves well analytically is known in general
([4], and also [10] for N the normalizer of T in G). Then to prove that G>! is the set
of elements of G acting as Hilbert-Schmidt operators on V*, we use that (1) V¢ is a
pre-Hilbert space with K acting as unitary operators (2) the complex Iwasawa
decomposition G=KB, and (3) a Levi subgroup L, of G of finite type has a K, TK,
decomposition, K, =L, n K. These elements ge G>! have a trace which is denoted
x“(g), and x“ is shown to be G-conjugation invariant there. A corollary to this result is
an affirmative answer to the remark in [8, p.275].

1. Notation and preliminary results

1.1. Let G be a Kac-Moody group associated to the root datum (b, AV, A). That is
(see also (1.2). (1.3)) from a general Cartan nx n matrix A of rank ! we take a free Z-
module b, of finite rank and Z independent subsets AY ={h,,...,h,} =b, “the simple
coroots”, A={a,,...,a,} =bf=Hom(bh,, Z) “the simple roots” with a;(h;)=a;;,Vi, j and
n—Il=rankb, —n.

The Weyl group W of (h,Av,A) is a Coxeter group generated by reflections
r;:bz—bg, ri(h)=h—a,(h)h;, he b, and acts (faithfully) contragrediently on b3.

There is a Lie algebra g=g(A4) with bracket [ ] and adjoint representation ad,
generated by b=b,®,C,e, f,,i=1,...,n with relations [h,h']=0, [he]=0aih)e,
[h, fd=—aih) fi, Le; f;]1=04h;, (adei)—auﬂ(ej):(), (adfi)_a"+l(ﬁ)=0, Vh, W' eb,i,

j>
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je{l,...,n}. Also by taking the factor Lie algebra, we may assume that the b radical of
g is zero; that is every ideal of g which intersects | trivially is zero.

Then g is ZA-graded and has a triangular decomposition g=n_® h® n, over C. If
A is indecomposable, then g is simple if and only if det4#0. The root space
decomposition is g=)&,.q, where g,={xeg;[hx]=a(h)x,VYheh} with roots ®=
{eebh*;g,#0}. The Cartan subalgebra h=g,. We have g,,=Ce;,g_,,=C f; and n,=
Y& 0. 91, Where @, =0 NNAO_=—-0,.

The root system @ is invariant under W. The multiplicity of the root «, mult « is dim
g, =dim g,,i,,, we W. Let ®*=W.A the real roots, ®™ =@\ the imaginary roots. Then
mult a=1, Vae ®*. The set of positive imaginary roots @Y is W-invariant.

If A is symmetrizable (see also (2.1)) then g carries a symmetric nondegenerate C-
bilinear form (,), which is infinitesimally invariant under the adjoint representation ad.
This restricts to a nondegenerate form on [, and gives an isomorphism
v:h-b* v(h)(W)=(h,'),Yh, K €b.

1.2. The universal enveloping algebra u(g) is ZA-graded. Let b=h @ n,, a standard
Borel subalgebra. The line C,,webh* is a u(b)-module by x.1=0, xen,,h.1=
w(h)1,heh. Then define the Verma module M“=u(g) ®,:C, with u(g) acting on the
left. If M’ is the maximal g-submodule not containing 1 ® C,, then V°=M*/M’ is
simple. In particular V=) %, V, an h-diagonalization into finite dimensional weight
spaces. Denote the set of weights by P“:=P(V®). This is partially ordered by the
natural filtration of u(g), with the highest weight @ minimal. If a=);c,a;e NA, the
height ht(x)=Y;c;. The support supp(a)={i;c; #0} is connected as a subdiagram of the
Coxeter-Dynkin diagram of W, if ae®,. And if A=w-), ;e w—NA, the depth
dep(A:=) ;¢

Define for root datum (b, AV, A), Fnt={Aeh* A(h)eZ,i=1,...,n} “the lattice of
integral forms”, #nt,={leb*;A(h;)eN,i=1,...,n} “the dominant integral forms”,
gty ={AleSnt,;A(h)#0,i=1,...,n} “the strictly dominant forms”. Therefore ®<
Jnt. The “fundamental weights” are {w;i=1,...,n} which on restriction are dual to
AY ® 1. For wefnt,,P® is W-invariant, and the multiplicity mult,(A) =mult,(wi),
Vwe W, Vie P°. The root datum is “simply connected” if w; e hf < bh*,Vi, [4, 10].

1.3. Let the conjugate linear involution w, on g be given by wy(e)= —fi, wo(fi)=
—enie{l,...,n}, @o(h)= —h,hebg:=h, ®, R. If 4 is symmetrizable there is a hermitian
form (,)o on g by (x,y)o= —(x,@0(y)), X,y €.

Define V=32 5. npy V? then for each ie{l,...,n} the one parameter subgroups
U;:={expce; ceC},wo(U;)={expcf;;ceC} generate a subgroup G; <GL(V) isomorphic
to SL(2,C). The algebraic torus T:=b, ®,C* has character group bj. With n¥=
Y& o4 bt 8: let UY be the unipotent algebraic group with Lie algebra n,/n%ieN.
Let U=1lim.U% the inverse limit, and B=TU a semidirect product. Fiznally G<GL(V)
is defined to be the group generated by B and G,,i=1,...,n. The involution w, lifts to
G. There are monomorphisms ¢;: G;—G with ¢,{(§ {);ceC}=U,ie{l,...,n}, see [6].

Let v, be the highest weight vector of V*,we #nt, nbs. Now B={geG;g) ,Cv,=
Y »Cv, (the Borel subgroup with Lie algebra b). We may regard the maximal torus
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T=B N wy(B). Also let N=Ng(T) the normalizer of T in G. With n:=¢; (% &)=
(expe)(exp —fi)(expe), i=1,...,n and Nyy={n;i=1,...,n), there is an exact sequence
15 Tpy—Ng)—W, where T, =(nti=1,...,n), np—r. Then N=(T,N)>, T5)=Ngy,n
T={teG NnT;t*=1}~7%, and W—>N/T,r—n;T is an isomorphism.

For any ae®% let ie{l,...,n},we W be such that w(a;)=a and define root subgroup
U,=nU;n"Y,neN,nT=w. Each such U,,ae® is normalized by T with tu,(c)t™'=
ua(t)c),te T,ce C where u,(c):=¢; (5 ) [5 9]

Let Um"=({U_;axe®¢) and B™"=TU™ <B. And G™".=(T,G;;i=1,...,nd<G.

The group G acts on V® by representation R, and also G™" acts on g by the adjoint
representation Ad. In fact if (V, @) is a representation of g such that the action of b lifts
to T and e,, f; act locally finitely on V, e,eg, & n,/nY ht(e) < j,Vae®,,Vi, j, then there
is (V,R) of G satisfying (with exp:g,—G™" the exponential mapping, having domain
g,={yeg;y acts locally finitely on g by ad}), R(exp x)=exp ¢(x),xeg,. Thus ¢ =dR the
differential of R, ad =d(Ad). And dR(Ad(g)x) =R(g)dR(x)R(g) "}, ge G™", xeg,.

We note that R(n)V,=V,,, and Ad(n)g, =8, YA€ P°, Vac® where ne N,nT=we W.

The group G is said to have Lie algebra g and is associated to the root datum
(bZ, AY ’ A)

The properties of a Tits system are satisfied. The group G has (B,N) pair with
Coxeter group W. The Bruhat decomposition of G into a disjoint union of double cosets
of Bin G is G=|,.wBwB; that is there is a bijection between the double cosets BnB
and W under the natural epimorphism N—-W. Also to multiply double cosets

(BsB)(BwB) = BswB if l(sw)=I(w)+1

=BwB U BswB if l(sw)=I(w)—1
weW,s=r,ie{l,...,n}, where I(.) is the length function on W, [12].

1.4. Let K=G* the subgroup of fixed points of w,; this is called the “unitary form”.
The complex Iwasawa decomposition G= KB holds [5]. Moreover G™" = K B™i",
From now on, unless stated otherwise, the superscript “min” will be omitted.

Proposition 1. Let a ® be such that the orbit W.a={a}.
Then ae ®™ with a isotropic ((x,a)=0). And o as an element of the character group b}
extends trivially to x e Hom(G,C*)

Proof. Let ae®, with wa=a,Vwe W. As wo=a;=a=a;=>r,a= —a; =0a, have ac ®™.
AlsSo =Y ;ccuppa Ci%=>(%0) =Y icouppa Ci(@, @) =0. The support of a, suppa, is connected
of affine type (see (2.1)).

In fact [4] conversely, ae NA, supp « connected and affine =ae @' and « is isotropic
with wa=a,Ywe W.

Let G’ be the derived group of G. Decompose T=T,T, with T, nG'={1} and
G=T,G  a semidirect product. Define for we W,®(w)={ae®,;w 'aec®_} and U, =
Hﬂeo(w) Uy,. There is a bijection U,, x B— BnB=:C(w), where nT=w, by (u, b)->unb.

As o is zero on A" define a(G')=1. We have U<G’, U< B, G;<G'Vi, N4, <G'. Now
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W acts on T by t—ntn™'. Therefore with unb=un'u;te C(w), "€ N,, u; €U, teT put
a(unb)=a(t). To check that a is a homomorphism take g,eC(w,), g,€ C(w,); now
g1=X11, 82=Xpt5, X;€BN,BAG, j=1,2,1,,t,€ T, gives g,8,=x,(t; X5ty *)tyt,.
Alternatively, after T=T, T, one could observe that (t,g,)(t28,)=(t,t,)(t5 'g11,8,)-
0

Proposition 2. Let L, =<{T, U, wo(U,);aec®,,> be a Levi subgroup of G of finite
type &, , c®,.
Then L,=K,TK, where K,=L| nB.

Proof. It is clear from (1.3) that L, =K, B,,B,=L; nB.

A real finite dimensional semisimple Lie algebra g, has Cartan subalgebras b, the set
of which having finitely many conjugacy classes under the adjoint group Intg,=Ad G,,
(G, connected with Lie algebra g,). If go=f, @ p is a Cartan decomposition with
involution 6, then under the action of the inner automorphisms Intg, we can assume
that b, is @ stable. There are two extreme conjugacy classes; writing h=aqa, @ a, these
are the fundamental class, when a;, is maximal abelian in t,, and the split class, when a,
is maximal abelian in p. The pair (gg,b,) gives root system @,, and with the split class
(80,a) the restricted root system ¥, There is [13] the real Iwasawa decomposition
go="F, @ a; ®n; which is globally Go=K;4,N,, A, =expa,. Also g, has one conju-
gacy class of Cartan subalgebras<>q;, is maximal abelian in ,, (here ho=a;, @ a,).
Since any two maximal abelian subalgebras in p are conjugate under K,,go=
f; ® Ukex, Ad(k)ay, and so Go=K;4,K,.

In our situation K, is maximal compact in G,:=K,. <L, and p=./—1¥,. Then (the
centralizer of a, in ¥,)my:=2Z; (a;)=./—1a, is a Cartan subalgebra of f,. Thus
Y,=®,. And if My:=Z (a,), then By=MyA,(60(N,)) is a complex Lie subgroup of G,
asbo=my@a; ®On;=mec® Y o0, 6, and is closed.

The complex torus T has Lie algebra . And T=T,T, with T,<G, having Lie
algebra ho=mgye, b=bh,®bh,. Then I,=bh, Dg, with go=[[;;]=1;, and Gy=
K, ToK,=L,,L,=T, G, a semidirect product.

Let Ty, be the ‘real points’ that is byg={hebh,;a(h)e/— IR Yae®,}; here T may
not be central (see (3.1)). Now f,=./—1a,®Y2, Ru, where u,=(e,—e")+
v — (e, +e*) with e,eg,, —e:=0(e,)eq_,,ae®,,. We have [hu,]=—a(h)/— 14"
Yheb,q and so, since Ad(expx)=e®x, Vxef, and each point of K, lies on a one
parameter subgroup, then Ad(k)h;a<Sbh,p+F,,VkeK,. Thus , +(Jick, Ad(k)(h,q®
ho)=t, ® b a ® =1, over R. Next as T,y is contained in the normalizer of K, in L, it
follows that K, ToTygK; <L,.

Hence over C,L, =K, TK,. d

Note. For any subset JcI={l,...,n} let W,=({rzieJ><W, and
N;={n;ieJ>=<N. The conjugates in G of P;=BN,B are called the parabolic
subgroups of G. Such a group [1, 11] has a Levi decomposition P;=L; x U, where
L, is the Kac-Moody group associated to the root datum (b, Ay,A;) with A) =
{h;ieJ},A,={a;ieJ}. The parabolic subgroup P, is said to be of finite type if W, is
finite.
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The type of G is defined according to the type of A4 (with 4 indecomposable, see
(2.1)). We say (with 4 possibly not symmetrizable) that G is of type (3) if the orbits of
W acting on ®'™ are not all singleton sets. The group G is type (1) <> W is finite <> G is
the homomorphic image of an almost simple, complex Lie group (with fundamental
group b;/ZAY).

Proposition 3. Let G be of type (2) or (3). For each ac®" denote by V,,meN the
standard simple G, = ¢,(SL(2, C)) module; then {meN;V,, < ;. V*} is unbounded.

Proof. By W conjugacy it suffices to prove this for a simple root a;,ie{l,...,n}. We
have for type (1), (2), or (3) that P®=(w+ZA) n convex hull (W.w), [4].

Type (2). The simple roots are (see (3.1)) labelled {ao,a;,...,a;}. Let debh* be the
positive imaginary root of least height. Then supp(6)={0,1,...,I} and ®'"={nd;neN}.
Define maximal weights max(w)={Ae P°;A+deh*\P°}. Then P°=|);cmaxw {4—
nd;ne N}. The weight system lies in the paraboloid whose boundary intersects P in the
orbit W.w. Also max(w) consits of the highest weights of simple subquotients of V¢
under the action of Levi subgroups of G of finite type.

Type (3). There exists a unique ae® of minimal height with supp(a)={1,...,n}
and a(h)<O0,V¥i. For O#veV,_, the mapping n_-V® y>y.v is injective.
As {jo; je N} =®'" we now have that {w—ka;keN}< P®, and Vi{(w—ka)(h;); ke N} is
unbounded in N. O

Proposition 4. Let L; be a Levi subgroup of G of finite type. Denote by V} the simple
L; module with highest weight . Then Yoe #nt, nb}, the set {1e P*, Vi<, V) is
infinite.

Proof. Any AeP® can be uniquely written A=w—) ;s Ci%i—D ey Cit; Where
c;eN,Vi. Define dep;(1)=Y icry¢i. Then Vi:=Y8, 1<mVismeN is a finite dimen-
sional P, submodule of V. And V* is completely reducible as an L;-module. Thus
{dep,(A); A€ P*} and ieJ, {meN;31€ P® with ¢;=m} are unbounded.

The result is now a consequence of Proposition 3. O

If i,je{l,...,n} with m=a;a;22 then label the (i, j) edge in the Coxeter graph

jis=
O—O. It can be seen as in the examples affine 020 w= w,, and hyper-

cO20—0, w= o, that in Proposition 4 the multiplicity dim Hom, (V®,V})=0
or oo.

2. Hilbert space structure and trace class operators

2.1. Let A be a symmetrizable Cartan matrix; so there is a positive rational matrix D
with D~! A symmetric. Then there are three types:

(1) A has rank n and D! A has signature n
(2) A has corank | and D! A has signature n—1
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(3) The signature of D~ ! A4 is less than the rank of A,
of finite, affine and indefinite type respectively.

The simple quotient V¢, we fnt, is, [6], a pre-Hilbert space via a contravariant,
K-invariant, positive definite hermitian form ¢,) which is unique with norm ||v,|=1.
Order the weights P® by the depth, with @ minimal. Then V,;1V,,A#pu,4, ue P®; and
the completion also denoted by V' is separable. We fix an orthonormal basis {z;};.n of
V' where z; is of weight A, zo=w and dep,(4;) 2dep,(4)),i= j.

In the representation (V,R) of G=G(A4) we will say that an operator R(g),geG is
traceable if the complex series Y 2o (R(g)z; z;) is convergent; then this value is written
trace,, R(g). “

2.2. As in a general separable Hilbert space, let Bd(V), Fr(V), Kp(V), St(V) and
Tr(V) be the set of bounded linear, finite rank, compact, Hilbert-Schmidt and traceable
(with absolute convergence) operators on V. That is St(V)={TeEnd(V);||T||.< o}
where ||T)|,=Y;||Tz||* (the TeSHV) are ). And Tr(V)={TeEnd(V); ¥ Tz;,z)|<
o}. In fact St(V)<Bd(V) and (St(V),||-||.) is a Banach * algebra. A Te Tr(V) may not
be bounded. For TeSt(V), the Hilbert—-Schmidt norm is independent of the complete
orthonormal basis. Then Kp(V) is the unique maximal ideal in Bd(V) which is closed in
the operator norm; and Fr(V) is the unique minimal ideal in Bd(V). The ideal St(V)
is not closed. In fact Kp(V)="Fr(V).

One says that TeBd(V) is I' if Y,||Tz||<oo; in fact T is I'<TeSt(V)2. Then
St(V) <Bd(V) Tr(V) and trace(T), Te St(V)? is independent of the orthonormal
basis. Also trace(ST)=trace(TS) for SeBd(V), TeSt(V)2. These give a chain of (two
sided) ideals

{0} sFr(V)=St(V) = St(V) = Kp(V) <= BA(V)

A TeEnd(V) is said to be closed if its graph is closed in V'x V; and closeable if
graph(T) is a graph. If T is closeable then there is a unique TeEnd(V) with
graph(T) =graph(T); the domain being dom(T)={x € V;3 sequence (x,) in dom(T) with
x,~x and (Tx,) convergent}, and Tx=lim Tx,. A TeEnd(¥) is said to be hermitian if it
is a formal adjoint of itself, and symmetric if it is hermitian and densely defined.

2.3. Subsets of G are defined
G*={geG;R(g)e Bd(V°),Vwe £nt, nh¥}

G"={geG;R(g) is traceable on V°,Ywe £nt, N bh}}
Thus G*={Vuesm, ey R7HR(G) N BA(V?), and (Nyecsnr, ny R™HR(G) N TH(V) =G
Also define G™ the set of “Hilbert-Schmidt” elements, G°® the set of “compact”

elements, G the set of “finite rank” elements, giving G S(G*)’ = G* < G** =G’ And
G¥™ the set “symmetric” elements, G the set of “closeable” elements.
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Lemma 1. (i) KG*K =G"® where G® is the semigroup G® G®, G** or (G*)?.
(i) G'"=0 if A is not of type (i).

Proof. (i) This follows from R(K)= U(V“),Vw (the unitary group).

(ii) The Iwasawa decomposition G=KB gives G"=KB. Further R(b)V,<
Y8 pu <2 V. with CR(B)V;, V> #0,Vbe B,VAe P>. Hence B = O

Proposition 5. Let A be of type (2) or (3). Then
UnG*={1}

Proof. For each a;eA there is the Levi subgroup Ly, of the parabolic subgroup P,
of G (see (1.4)) ie{l,...,n}. And if o € @™ with we W, w(a;)=« and ne N, n—we N/T, we
have L,=nLgyn"'=(T,U,, @o(U,))>. The derived group L;~SL(2,C). The simple
G-module V*,we #nt, Nnb¥ is semisimple under L,, which is such that this decompo-
sition under ¢,(SU(2)) is a complete orthogonal direct sum.

Also recall that GL(2,C) acts on \/™(C?), the symmetric polynomials of degree m in
X, Y, by (g.p) (¥) =p(g'(})). The standard basis vectors are

Z= L iX“Y" b=
= a—'b_' ,a+b=m,

and the unipotent element u=u(c)=(5 ¢),ceC, acts as

W7 i c,(b)((a+r)!(b—r)!>* Xetryb-r
r=0

r a'b! ((@a+)b—rhY

The superdiagonal entries are with =1, c(a+ 1)*b* which with a=0, b=m is cm*. Label
the weight vectors

k3
zO=Y"',zl=((;i—1)—‘) XYm ...z =X"

with weights —m, 2—m,...,m under h;. This {\/™(C?);me N} is a complete set of simple
finite dimensional SL(2, C)-modules.

Let u=u,---u,eU, u;=uyc;) with ¢;#0 some j and for each je{l,...,k} we have
u;e Uy, B;e®y. There is w,eW with w,(B,)=a; for some ie{l,...,n}. Let K;=
¢:(SU(2)), ie{l,...,n}. As a product of fundamental reflections w, =r; --'r, say, so
taking conjugates wu, mun;', m,_ naun'n',..., where nor eN/T, n, =
$:i,(° o)eK;, and using the fact that V#, (r.(®) e ®¥, Yae®F,asa;), we stop this
sequence when a conjugate of u contains a term in the product belonging to a simple
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root subgroup. Therefore we may as well start with u=u, - u, such that f;=a; some
i, j.

Let such {z,...,z2,} with weights {14,4,,...,4,} refer to a simple module in the L,
decomposition of V. We have

R(u)zo=R(u3))(z0 +2) if By #a;
=R(u)(zo+cim?z, +2) if fr=0;

where uy)=u; " ""u,_4_yy and z is a sum of weight vectors (or zero) with weights
Ao+rB, and r=1 f B#a; or r=x2, A=Ayt if Pr=a; Next R(u)zo=
R(u@))R(uy - 1) R(1) 2, etc. to obtain finally

RWzo=zo+ Y, c¢;m*z,+2" and (R(W)zg,z, )= ), c;m?.

J.Bj=ai Bi=ai

The result now follows immediately from Proposition 3 if Zﬁ = €j#0.
Otherwise proceed as follows. The L;, decomposition of V' is such that

b k3 4+
R(uj(cy)z.= Y c; (a+r) <t> Zgepatb=m.

r=0 r

Again under L,, the matrix elements m,.(u) of R(u) are polynomials in the c;, je{
1,...,k} with positive integer coefficients. Then, and using convex properties of P®
described in (1.4), one sees that ue G®=V/',l” each polynomial in m,.,.(u) which involves
and is homogeneous in the c; f;=a; must be zero. Thus ue G*=u=u"" (obtained from
u be deleting the u;e U,,). Continuing, up to conjugation by N n K the element 4 has
u;eU,, for some i, j. Finally, ue G®>=>u=1.

To make the previous section more precise we include the following auxiliary results:

Let [ ] denote the group commutator, that is [x,y]=x"'y !xy,x,yeG. Define
inductively [x;,...,X,]:=[[X1,---sXm-1), Xm),m>2,x;€G. Sometimes we denote
x’:=y " 'xy, therefore x* =x[x, y],x,yeG.

Here A need not be symmetrizable. Recall that U =U™",

Lemma Sa. If Waw=r, --'r, is a reduced expression (where r; =r, ) then

a‘]
O(w)={0,,7:,(0;,),- -, 1i, 1, ()}

In particular I(w)=|®(w)|.
For we W, let UW=H,,€0(W) Uy; this expresses an element uniquely as a product.

Proof. See for example [1]. v

Lemma 5b. Let w,,w, € W,®(w,) n®(w,)=0. Then
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weW,Yc®, wPcd, =>WY¥ nO(w,)s®(ww,) and w¥ n ®(ww,) n O(ww,)=0). ¥

Let W, ={weW,D(w)u —®(w) is a closed subsystem of roots in ®} and N =
{neN;n—weWg,)}.

Lemma Sc. Let we W), B, ' e D(w), ye @I \D(w). Then
[Up, UJSUnnUn"!,Nan—w
[[Us, U-,], UplsUn nUn~1.

Proof. Take w=r; ‘-'r; a reduced expression. First consider f=q«;,. The +a;, chain
of roots through y is C; ,=® n {y+sa;,;seN}. Using the L, decomposition of g we
see that C; , is finite and “unbroken”. Let x; (c)=expce;,,x,(c)=expce, (where
e,=Ad(n)e,,,,n'—>w, w~(y)=a; for chosen w', ;). We have

[xy(c)’ x;,(c1)] =xy(_c)xil(—cl)xy(c)xil(cl)

=x,(—c)exp Ad(x;,(—c,))(ce,)

=x,(—c)exp(e ' (ce,))

=x,(—¢) exp(c(ey —c,[e;e,] +c_2f [e:, [ei,e,]1]

ci
- e le e, 10+

a finite series h
(=1if y+o;, € £nt\D).

Next d(w) is a system of positive roots for a semisimple Lie subalgebra of g, with
Cartan subalgebra contained in b. Also mult = 1,Vae ®™. It follows that

Y450, €@W)=0#[fi ... Lfi,Lfi ey 45, ]1-.. T€O(W) =y € D(W)
s times

We conclude that C;, ,n ®, = ® . \®(w). Hence n~ ' [x,(c), x;,(c,)IneU.

Secondly, with any Be®(w), use induction on I(w). Suppose l[(w)=1, w=r; . Therefore
p=a;. We want to show [Uq;,,U,]JSUnn, Un;; !, which follows from (). Suppose
I(wy=m>1. Again by the first part we need only consider B#a;. Therefore
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ri (B) e ®(r; w), r;,(y) e ®E\®(r;,w). Thus if we have the assertion for length=m~1, it
follows that
nfUUIn ' =[U, U, ,p]SUN n;nUn"'n;!
which on conjugation by n;, gives the result.
From (}) with «; replaced by B and using the commutator formula [xy,z]=
[xz¥[yz], x, v, ze G, we see by a similar argument that

{(y+sB)+5B;s,seN} n @, =D, \D(W)
and
[[x,(c), x5(c1)), xpAc' )] €U AnUn~" Ve, cy,c'eC

as required. \Y
Proposition 5d. U=U, kX (UnnUn""), Nan—we W), Ywe Wy,

Proof. A ueU can be expressed u=uou, --u, where uoeU, and Vj(u;eU,,,
O(w) N B(w;) =0 or ;e D(w), y;€ DT \D(w) with uje[U,,jU”]”W).

Let je{l,...,k} with u;e U, and ®(w) N @(w;)=0. Then Uy<W, =w™ 'f=0acdf=
B=wa=Uz=nU,n"". Thus also using Lemmas 5a, 5c, we have U=U,(U~nUn"").
Also U,~nUn"'={1}, and with ueU nnUn"!, veU,, ac®(w) it follows that u’=
uj - ul=u,[u, 0] u[wv]eU nnUn"'. Hence U nmUm ™' < U, Vme N ). \V/

Lemma Se. Let Ugy=\neno,U NnUn"" and Uggy=(aenU nnUn"'. Then Ug<
U,UpoySU’ and any ueU g, can be expressed u=u,---u, with each u; of the form

x=[Xy,...,%n], X €Ug,, B;;€®% or x~' and Vj, u;e U,

Proof. Let ue U, First write u=u'u" with 4"eU’. Now '=v,---v,. a product of
elements of U each lying in real root subgroups. Similarly u” can be so expressed. If
there are i, j with v;eU,, then using Proposition 5d, we can reexpress u=0v'v" where
v"eU’ and v is the product of £k'—1 elements of U lying in real root subgroups.
Otherwise, there is a sequence (i, iy,...,i,) and an i such that {u'",u""} U and the o
root subgroup contains an element occurring in u'* (see the first part of the proof),
where NnKan—w=r;r,-r, .. Now u"eU ), also if k'=1 we must have v, =1.
Hence by induction on k’,ue U'. And U, the intersection of normal subgroups, is
therefore normal in U.

Although U is not locally nilpotent in type (2) or (3), the lower central series gives
that u=v, --- v, with each v; of the form x=[x,,...,x,] or x~! as in the statement of
the result. Next

IneN,n"'xneG\U=3j,n" 'x;ne G\U = ;e ®(w),n—we W.
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If 35, j"€{1,...,m}, m=2 with B;e®(w), B;-eDs\®(w) for we W), then Lemma 5c,
Proposition 5d and induction on m give n~'xne U. Thus for ne N g, n”'xne G\U<=VYj,
Bic®(w). Set I={1,....k'}, I,={jel;, ImneNg,n vneG\U}. Then jel,,j'el\l,=
[vjv; 1€ U, and can be written in the required form. Finally using U n @o(U)={1} we
see that the result follows.

Note that xe U goy=> .1, Zf; n O™ #0. v

If w=w,w, e W where l(w)=I(w,)+1(w,), then ®(w,) =®(w) and (1) (with a;, replaced
by Be®(w), ye®T\®(w)) give that we Wy, implies U nnUn"'SUnNnUn' "', Nan—
w, Nan'+sw,.

Let we W, and u=uqu, - u, with ugeU,, and u;, j#0 as in the proof of Proposition
5d. From Lemma 5a we can further write uniquely uo=ug,  ""Up, With
uos€Ur; ...1r;_ (), m=I(w). Suppose that ue G®. Then as in the first part of the proof
we see that uy, =1. Next let ug, = =ug,_,=1 and put w, =r; -'r;,_,,sSm. Now
w, @(wi 'w) S ®(w), Lemma 5b and (1) give that we W,, NnKan'—w,, u"eG°=
uos=1. Thus uo=1. And as this holds Ywe W, we have shown U nG®cU 4. Note
that in general one has U=U_ (U nnUn"1) for any we W. In fact for we W, use
induction on I(w). Suppose u™ € U. Then as u}y e U we have (u,...u,)" e U giving ug,= 1.
Therefore uy=1 and u"=u"""meU. Thus U N G*SU 4o,

Let ue U ooy G®. From Lemma Se we write u=u,u’,u; =x=[x,,...,X,,] or u; =x"1.
And show u, =1. This is by induction on m.

If m=2, x=[x,(c,), xg,(c;)] and refer to (). We can assume B, +f, e®,. Note as
before that A, ueP® (R(x)V,V,>#{0}=>pu=Ai+sB;+5,B8, 1, s;€N\{0}. Consider
Cp,.p. NP5 and recall WO'P=@'". If the +f, chain of roots through B, contains at
least two real roots then Iwe W,3se N\{0}, w™'(Cy, ; \{B:}) =P, and w (B, +sB,)=
a;€A. (Also w™'f, e®, if ®(rw;) is a system of positive roots). Otherwise Cy, g, N @ =
{B,} which is false. Thus also using u'e U’, we have u, =1.

For the induction step, x=[[x;,.--,Xm-11%m] =[X1se s Xm-11" [X1s-verXme 117
Firstly, suppose 3we W,, with u,:=[x,,...,x,-,]€U,. Now (sec Lemma 5a)

u,=yz,y,z€e Uwa [)’Z, xm] = [yxm]z[zxm] = [yxm] [yxmz] [me],

and therefore by a second induction on the “length” of an element in U, one sees that
ue U goyn G*=[yx,]=1, [zx,]=1. Secondly, suppose u,:=[Xy,...,Xpn_;]€ U, Then
u=u; Y(uk"u')e G®=u, =1. And argue similarly if u=x"".

Hence if follows that U 4o, N G®={1}, which completes the proof of the proposition.

a

3. Characters of affine Kac—-Moody groups

It is the aim of this section to give the subdomain in G on which a (pointwise)
character of V*,we #nt, n b can be defined.

3.1. Let A be a type (2) affine Cartan matrix. Index the simple roots by {0, 1,...,1}
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where A,, of finite type (1), is obtained by deleting the O vertex in the Coxeter—Dynkin
diagram of A. Here {hg,h,,...,h,d} b, where a,(d)=0, ie{1,...,1}, ag(d)=1 and rank
bz=1+2 (see (1.1),(2.1)). Let the components of the least positive imaginary root
deYi_o Na; be §=(aq,ay,...,a). That is aeN'*! is of least height and Ra is the kernel
of the quadratic form on R'*! associated to A. In the dual AV =4" write §¥ =
(ag,ay,...,a’), (so in each case ag =1 [4]); then the affine Kac-Moody Lie algebra
g=g(A) has a 1-dim centre containing the canonical central element c=Yi_, a;’ h;.

In general a real root ae ®§ has coroot a¥ e NAY by W. The reflection r,=wr,w™! if
wa; =a. For symmetrizable 4, the W invariant form (,) on g (see (1.1)) is chosen such
that v(A¥)=AD. And for A affine take D=diag(apay ~',a,a; ~},...,qa’ ~'). Define
Ao =A\{ao}, Boz=b2 N QAG, Wy =(r;i#0) S W, ®o=W,A, and go=g(4,). Denote by
fed, ., the highest root; then hy=c—ao0", d=ayao+0. Let Y be the translation
subgroup of W generated by wroryw ™!, we W,. Then Y« W and W=W, Y.

32. Lemma 2. (i) The “derivation element” d acts semisimply on V® with finite
dimensional eigenspaces.

(ii) The character 6 e Hom(T,C*) extends trivially to 6 e Hom(G,C*).

Proof. (i) If A=w—Y, c,0;€ P* we have d.V;=(w(d)—c,)V;. The parabolic subgroup
P;, J={1,...,1} of G is of finite type. Thus (see (1.4)) V=D (1ysmV, is finite
dimensional Vme N.

(ii) This is a corollary to (1.4) Proposition 1. O

Let G, be the almost simple, complex Lie group with root datum (Y52, Ay ,A,). Thus
b§z is the character group of To=TnNG,<G, a maximal (algebraic) torus, and
boz/ZAg is the fundamental group. There is a homomorphic image of G, as a subgroup
of G. Now T=ZT,T, where Z={expac;ceC} is contained in the centre of G and
T, ={exp(a/ao)d;acC}. Thus ¢ is trivial on ZT, and é(t)=e* teT,. Denote T,=
TnK.

Lemma 3. KcKer|d|

Proof. This is because K'=(K;;i=0,1,...,1>, K;=¢{SU(2)} and K,~=U,‘E,(i k,Tk™1
with ;T=TnK;~U(1). Then ZK'cKerd. Also T,n T,={exp/ —1nad;aeR} and
G=Tx X G’. D

33. In general the set of functions {f:b*—>Z; suppf<|Jf=, 4,—NA, 1;eb*}
becomes a commutative associative algebra E, with unit, under convolution. Introduce
e'€E, Aeh* by e*(y)=5,,. The formal character y* of V*, wefnt, nh¥ is given by
X' =Y icpo (dim V;)e* € E, which can be expressed as the “Weyl-Kac” formula. The exact
sequence 0— b, H5HZF T—1 where 1(h)=h® 1 and exp(h® a)=h® ez"\/'—'“, heb,, aeC,
gives to leb? the character of T, e*(t)=e? 1" t=exp(h ® a). Then, analytically, the
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region of absolute convergence of y“ (an open, convex, W-invariant set in b) has been
found in [4].

Returning to A affine, define for a subgroup (or subset) H of G, H>'={he H;|5(h)|>
1} and similarly H<!, H=!. Also H*'=H<' UH>".

Theorem 1. (i) T*¥=T>!=(T™)?,
Gi) T°=ZT,uT>.

Proof. Using the estimate multi,A < K(w—A) (where K(-) is the Kostant partition
function) and multa=1, ae®", mult y=1,yc®™ one sees that the region of absolute
convergence of y” is given by the interior of the “Tits cone”, {heh; Re (h) >0} where
defines a holomorphic function (see [4, p. 138]).

Let b§=Y2_, mult,(A—md)e”™, and W, the stabilizer of A in W. Notice that
W, Y={1},Ae P®. Then the formal character splits into a sum over the orbits of Y on
max(w) as

R

Aemax(w) Aemax(w) \teY
AmodY

The powers of the translation element 7,4, ,=r,,7s are given by (see [4, p. 74])

Tyou)(A) =2+ () v(0") —(A6Y) +4]0"|*A(c)) 6
ov)(A) = A+ mi(c)v(8”)—(mA(6" )+§|ev I? 4(c)

+1m(m—1)Ac)v(8")(0"))5,meZ, Leh*.

Here ayv(60)=0 the highest root of ®,,. We know wd=45, Ywe W. Also d(d)=
aq,0(c)=0=06(d).

Let te T with |[5(t)| <1 so t=exph, Re (k) <0. Consider the translations wry, ,w™ (1)
with we W, chosen so that w™!(hmodCc+Cd+./—1bys) lies in the fundamental
chamber for (go,boz), and 1=w(w) to see that y“(t) diverges.

The assertions follow. O

Proposition 6. (i) B*=B>!<B®,
(i) B> =(B™).

Proof. (i) It is evident (since unipotent elements are upper triangular) that b=
tueB¥<>te T" and B*=T"U=T>'U=B>'. The Levi subgroup L, has, by Proposi-
tion 2, the Cartan decomposition L,=K,TK, where K,=L,n K<L, is maximally
compact, ae ®*. Then by Lemma 3, we have L' =K, T>!K,<G® from Theorem 1. An
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element b=tu, --u,eB,te T>!, on taking “mth root” t=t,---t, can be written
b=t,u} " t,u,, with eachtu veL;!, B;e®y, je{l,...,m}. Hence B>'<B".

(ii) Follows from (i) and Theorem 1 as
L>*"B=T>' (L' n B)c T>'B*™c(B™)?
Also (B™)’< B". O
Lemma 4. (G*)"'=G".

Proof. We know that T/T.n T, =GY™<=G*. Also given any geG, using (1.4) and
Proposition 6(i), 3te T/T,~ T3! with R(tg~!) bounded.

Let (x,) be a convergent sequence in V¢ with R(g)x,—»0. Then R(t)x,=
R(tg”')R(g)x,—0. But R(z™') is closeable, thus x,—0.

Hence we have shown that if ge G then R(g) is injective on dom R(g) which gives
the lemma. O

Corollary. G=0G.

Proof. We know that G'G®<=G*' and G*<=G*°'.
Let geG. So as above Jte T>! with tg~'eGP® Therefore gt~ 'eG® giving g=
(gt™Hte G, |

Proposition 7. (i) B<'=T<'U<G\G",
() T='(U\{1})<G\G"

Proof. One has T-'=ZT,T§™ Taking into account (2.3) Proposition 5 and
Theorem 1 (ii) in (3.3), we want to show that tque G\G, with t,e T§™, to#1, ue U\{1}.

The formula in (3.3) for the power of an element in Y and the character formula x®
give that for lemax(w), taking a conjugate p=wiye.,w™ (1), we W,, to=exph and
w~1(h) in the fundamental chamber of (go, },;), we have

CR(tou)z, z) = (R(to) 2, z) =M+ meicote™iieo
where z has weight p,||z[|=1. a

Theorem 2. (0) G®*=KB® B*=B>' U(B=! N T"),
(1) G°AG*2G>! =(G™)2=G"
Q) G =G,

Proof. (0) We have G=KB, KG*=G® B>'<B® B<'nB°=0. Also B='nB°=
ZT,=T '~ T"
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(1) Follows from (3.2) Lemma 3 and (3.3) Proposition 6.
(2) From (1) and (3.3) Theorem 1, G**=KB*®'=KB>!=G>!=G", m|

3.4. Conjugation invariance. Let G be of type (1), (2) or (3). Take G(@) the union of
the Borel subgroups of G; that is the set of elements of G which are conjugate under G
(= under K) into the standard Borel subgroup B.

Proposition 8. Let xe(G™)? n G(0), and ge G with gxg~* €(G")?, then

trace, R(gxg ~ ') =trace, R(x), Yo € #nt, N bhE.

Proof. By definition 3k, € K with k;'xk, =beB. Also 3ke K, b, € B with gk, =kb,
giving gxg~!=kb,bb] 'k~ 1. Then from (2.2), Vwe #nt . N b,

trace, R(gxg ~!)=trace,R(b,bb; ') =trace, R(b) = trace ,R(x). O
Lemma 5.
trace, R(tgt ') =trace,R(g),VgeG,Vte T,Vwe £nt, N hE.

Proof. In fact writing t=tt,,t, eTnK,t,e T¥" (the polar decomposition), a
matrix element

(R(tgt™")z,z> =e*(t™"){(R(®)z, R(t1 't;)2)
=e}(e71)el iy De(,)CR(8)2,2) =<R(g)z, 2)
where z is of weight A. O
Now let G be of type (2).
Theorem 3.
trace, R(gxg ~ ') =trace R(x),Vxe G>!,Vge G

Proof. With g=kb, keK, beB, b=u modT, x=x,x,,X;,x,€G>! we have from
(2.2), Lemma 5 and Theorem 2 that

trace,R(gxg ') =trace,R(uxu~')=trace, R((ux,)(x,u""))
=trace,R(x,x,)=trace,R(x). 0
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