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ON THE CHARACTERS OF AFFINE KAC-MOODY GROUPS

by STEPHEN SLEBARSKI

(Received 18th October 1990, revised 17th March 1992)

Let G be an affine Kac-Moody group over C, and V an integrable simple quotient of a Verma module for g.
Let Cmm be the subgroup of G generated by the maximal algebraic torus T, and the real root subgroups.

It is shown that <5eO'™ (the least positive imaginary root) gives a character (5eHom(G,C) such that the
pointwise character xa of V may be defined on Gmi° r\ G>1.

1980 Mathematics subject classification: 17B67, 22E67.

0. Introduction

A Kac-Moody group G over C, is associated to a pair (A, hz) where A is a
generalized, indecomposable, Cartan nxn matrix of rank /, and hz is a free Z-module
such that n — / = rank hz —n. Then G has a (B,N) pair forming a Tits system with Weyl
group W=N/(BnN) (see also [12, 4, 9]).

The Lie algebra g of G has a root space decomposition, and it is required that the
roots O£Hom(hz,Z) = :h|. We have O = <D" u Oim, where <&" is the W orbit of the
simple roots and <t>im = O\Ore.

If G is affine (that is A is symmetrizable, positive semidefinite) then there is an
analytic construction as a loop group [3]. Take a central extension S1 -*L.K(0)->LK{0) of
the loop group of a compact, connected almost simple Lie group Km by the circle Sl

(this is obtained [8] from a closed, left invariant integral 2-form on LKm, if Ko is
simply connected). Imbed Kw in a group of finite dimensional unitary matrices, and let
LpolK(0) be the dense subgroup of LK{0) consisting of 7: Si-*K^0) with each matrix entry
of y(z) a finite Laurent polynomial in z. The loop algebra Lf(0) = C[z, z"1] ®RI<O) has a
derivation d by z^® 1, and on Lf(0),d(c)=0. In 3 the untwisted affine Lie algebra is
g = Cd© Cc© Lf(0)C. There is a subgroup S1 of the group of diffeomorphisms of the
circle, having Lie algebra Ud as a subalgebra of the Virasoro algebra. Set Gt =
(S1 K LpoiK(0))c- The Lie algebra g decomposes (restricting the adjoint representation of
GJ by characters of S1 ® T(0), where T(0) is a maximal torus of K{0). The Weyl group
W= Wo K T where Wo is the Weyl group of (Km, T(0)) and Y is the cocharacter lattice
Hom(Sx, T(0)). The "twisted" loop groups are obtained by the outer automorphisms of
f(0)C of orders 2,3.

An algebraic construction (as in [6, 9]) for general G is used here. This is obtained as
a subgroup of GL(K) where V is the direct sum of the "integrable" simple quotients V°
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of Verma modules for g. And see [12] for the Chevalley-Demazure, and Tits group
functor on the category of rings.

To briefly describe a correspondence between the analytic approach and the algebraic
of (1.3), (3.1):

Let Bl be the group of polynomial maps y: {zeC;|z|^l}-+/£(0)C restricted to S1,
with y(0)eB(o) where B^O) is the opposite Borel subgroup to Bm^K(0)C, the latter
associated to a choice of positive roots O0+ for (K(0), T(0)). Let U(0)x be the root
subgroup in K(0)C of ae$0 + , and define Uai = {ygeBl; Imyg = {g}, geUW)0LI}, i#0,
Uvt = {yeBl;y

w(0)eUm-9,y
w(0) = 0,s¥'l}, 0e<Do+ the highest root. Let B- = S' K Bf.

Over a completion of GJB~ there is a holomorphic Gt vector bundle Gtxg-C^a)
a character of B~ which is trivial on U~. The Borel-Weil theorem for compact
Lie groups has a generalization to loop groups (see for example [8]). In particular
the Gj-space of holomorphic sections H0(co) is g equivalent to V. The group G in
Section 3 is the homomorphic image in GL(K) of Gt (and see [8, p. 144] for the Bruhat
decomposition of G2).

In this paper, for G affine, we give the subdomain of Gmin on which a pointwise
character -f of the representation (V°,R),ae^nt+ nhfcan be defined. Here Gm'n is the
subgroup of G generated by the algebraic torus T = hz®2C* and the root subgroups
Ua, <xe<Dre. We show that this domain is given by G>1 = {geG;\8(g)\>l} where Se<S>'+
is the least positive imaginary root trivially extended to <5eHom(G, C*). The proof
holds for twisted G, and the present approach does not exploit the topology as a loop
group. The subdomain in T on which •£" behaves well analytically is known in general
([4], and also [10] for N the normalizer of T in G). Then to prove that G>1 is the set
of elements of G acting as Hilbert-Schmidt operators on V", we use that (1) Vw is a
pre-Hilbert space with K acting as unitary operators (2) the complex Iwasawa
decomposition G = KB, and (3) a Levi subgroup L, of G of finite type has a K^TK^
decomposition, Kl=LinK. These elements geG>i have a trace which is denoted
Xm(g), and xa is shown to be G-conjugation invariant there. A corollary to this result is
an affirmative answer to the remark in [8, p. 275].

1. Notation and preliminary results

1.1. Let G be a Kac-Moody group associated to the root datum (h2, A
v, A). That is

(see also (1.2). (1.3)) from a general Cartan nxn matrix A of rank / we take a free Z-
module hz of finite rank and Z independent subsets Av ={hlt...,hn}ebz "the simple
coroots", A = {a 1 , . . . , a n }£bJ = Hom(hz,Z) "the simple roots" with aJ(hi) = aij,Vi,j and
n —/=rankb 2 —n.

The Weyl group W of (bz,Av,A) is a Coxeter group generated by reflections
r,:bz-»hz, ri(h) = h—xi(h)hi,hel)z and acts (faithfully) contragrediently on hj.

There is a Lie algebra Q = Q(A) with bracket [ ] and adjoint representation ad,
generated by h = h z ® z C,e , , / , , i = l , . . . ,n with relations rji,/i'] = O, [ft,e,] = a,(/i)e,,
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je{l,...,n}. Also by taking the factor Lie algebra, we may assume that the h radical of
g is zero; that is every ideal of g which intersects h trivially is zero.

Then g is ZA-graded and has a triangular decomposition g = r t _ ® h ® n + over C. If
A is indecomposable, then g is simple if and only if detA^O. The root space
decomposition is g = £?el).ga where ga = {xeg;[7ix]=a(/i)x,VJjeh} with roots 4> =
{aeh^g^O}. The Cartan subalgebra h = g0. We have g ^ C e . - . g - ^ C / , - and n± =
Zf6o>+ 9±« where 0+ =O n NA,<D_ = -<S>+.

The root system O is invariant under W. The multiplicity of the root a, mult a is dim
ga = dimgM,(a),we W. Let <S>" = W.A the real roots, Oim = <t>\<J>re the imaginary roots. Then
mult <x= 1, VaeQ>". The set of positive imaginary roots &+ is W-invariant.

If A is symmetrizable (see also (2.1)) then g carries a symmetric nondegenerate C-
bilinear form (,), which is infinitesimally invariant under the adjoint representation ad.
This restricts to a nondegenerate form on h, and gives an isomorphism

1.2. The universal enveloping algebra u(g) is ZA-graded. Let b = h©rt+ , a standard
Borel subalgebra. The line C^coeh* is a u(b)-module by x.l=O, xen+,/j.l =
co(h)l,het). Then define the Verma module Mt° = u(g)®u(b)Ceo with u(g) acting on the
left. If M' is the maximal g-submodule not containing 1 ® C,,,, then V° = Ma/M' is
simple. In particular Va = YJTe\)* Vx an h-diagonalization into finite dimensional weight
spaces. Denote the set of weights by Pm: — P(Vm). This is partially ordered by the
natural filtration of u(g), with the highest weight a> minimal. If a=^jc1aje^lA) the
height ht(a)=£,-Cj. The support supp(a) = {i;c;#O} is connected as a subdiagram of the
Coxeter-Dynkin diagram of W, if aeO+. And if X = co—YJiCiaileoi — NA, the depth

Define for root datum (hz, A
v, A), J^nt = {A£h*;A(^)eZ,i=l,...,n} "the lattice of

integral forms", Jnt+ = {Xel)*;A.(hi)eN,i=l,...,n} "the dominant integral forms",
1/nt+ + = {Ae./nt + ;A(/i1-)#O,i=l,...,n} "the strictly dominant forms". Therefore <Ds
./nt. The "fundamental weights" are {co;;i=l,...,n} which on restriction are dual to
Av ® 1. For coe^nt + ,Pa> is W-invariant, and the multiplicity mult^A) =
Vwe W, VAePm. The root datum is "simply connected" if co,ehf=h*,Vi, [4, 10].

1.3. Let the conjugate linear involution cg0 on g be given by (Q0(
ei)= —/» Qoifi) —

— eh i6 {1,...,«}, (o0(h) = — h, h e hR: = hz ®z U. If A is symmetrizable there is a hermitian
form (, )0 on g by (x, y)0 = - (x, (O0(y)), x,yeq.

Define K=£®e-,nUnl )z V, then for each ie{l,...,n} the one parameter subgroups
l/,: = {expce,; ceC},(yo(l/,) = {expc/1;ceC} generate a subgroup G.<GL(F) isomorphic
to SL(2,C). The algebraic torus T: = hz®2C* has character group hj\ V/ith n(0 =
Z^o+.woxBa let [/'" be the unipotent algebraic group with Lie algebra n+/n{i),ieN.
Let l/ = lim_[/(1) the inverse limit, and B = TU a semidirect product. Finally G^GL(F)

is defined to be the group generated by B and G,,i=l,...,n. The involution cg0 lifts to
G. There are monomorphisms <t>i.Gi->G with <f>i{{o c

l);ceC} = Uhie{l,...,«}, see [6].
Let vm be the highest weight vector of V°,cosJnt+ nh j . Now B = {geG;gYd<a^

va> =

(the Borel subgroup with Lie algebra b). We may regard the maximal torus
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T=Bnq)0(B). Also let N = NG(T) the normalizer of T in G. With «,: = </>, (_°, £) =
(expe,)(exp —/i)(expe,-), i=l,...,n and N(1): = <n,;i=l,...,n>, there is an exact sequence
l-*Tm-*Nw^W, where T(2): = <n?;i = l,...,n>, «,i-»r,. Then JV = <T,Af(1)>, T(2) = W(1)n
T={reG'n T;t2 = \}~Tn

2, and W->Ar/T,>v->niTis an isomorphism.
For any aeOr+ let ie{l nj.weW be such that w(a,) = oc and define root subgroup

Ua = nUin~1,neN,nT=w. Each such l/a,ae<D" is normalized by T with ru.fc)!"^
«M0c) , t e T, c e C where u,(c): = & (J i) [5, 9].

Let l/min = <£/a;ae(Dr
+

e> and Bmin = Tl/mi"^B. And Gmi": = <T>G,;i = l,...,n>gG.
The group G acts on V° by representation /?, and also Gmin acts on g by the adjoint

representation Ad. In fact if (V,<j>) is a representation of g such that the action of h lifts
to T and ea,/, act locally finitely on V, e^eg,, <+ n+/nU),ht(a)gj,VaeO+,Vi,;, then there
is (V,R) of G satisfying (with exprg^-^G1""1 the exponential mapping, having domain
Qf = { y e Q; y acts locally finitely on g by ad}), R(exp x) = exp </>(x), x e Qf. Thus (f> = dR the
differential of R, ad = d(Ad). And dR(Ad(g)x) = R(g)dR(x)R(g)"1, geGmin, x e 8 / .

We note that R(n)Vx= VwX and Ad(n)ga = gw(a), VAeP'0, VaeO where n£JV,«r=weH'.
The group G is said to have Lie algebra g and is associated to the root datum

(hz,A\A).
The properties of a Tits system are satisfied. The group G has (B,N) pair with

Coxeter group W. The Bruhat decomposition of G into a disjoint union of double cosets
of B in G is G = \JweWBwB; that is there is a bijection between the double cosets BnB
and W under the natural epimorphism N-*W. Also to multiply double cosets

(BsB)(BwB) = BswB if l(sw) = l{w) + 1

= BwB u BswB if l(sw) = /(w) - 1

welf ,s=r i , i6{l , . . . ,n}, where /(.) is the length function on W, [12].

1.4. Let JC = G*"0 the subgroup of fixed points of <w0; this is called the "unitary form".
The complex Iwasawa decomposition G = KB holds [5]. Moreover Gmin = KBmia.

From now on, unless stated otherwise, the superscript "min" will be omitted.

Proposition 1. Let aeO be such that the orbit W.OL = {OL}.
Then a e <I>im with a isotropic ((a, a) = 0). And a as an element of the character group h£

extends trivially to aeHom(G,C*)

Proof. Let ae<I>+ with wa = a,VweW. As w(x = txi=>a = ai=>ria= — a, = a, have aeG>im.
Also a = XiesuppaCiaj=>(«.a) = Li6supp«c1-(a,a1-)=0. The support of a, suppa, is connected
of affine type (see (2.1)).

In fact [4] conversely, aeNA, suppa connected and affine =>ae<l>T and a is isotropic
with wa. = a,Vwe W.

Let G' be the derived group of G. Decompose T=T0Tl with TlnG' = {l} and
G = TlG' a semidirect product. Define for we W,Q>(w) = {aeQ>+;w~1<xe<b-} and Uw =
Hbeofw) Up- There is a bijection [/„, x B -> BnB = :C(w), where nT=w, by (u,6)i->M«fc.

As a is zero on Av define a(G') = l. We have U<G', t/<a B, G.-^G'Vj, Nn)<G'. Now
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W a c t s o n T b y t\-*ntn~l. T h e r e f o r e w i t h unb = u n ' u l t e C ( w ) , n'eN{i), i ^ e l / , teT p u t
a(unb) = a{t). To check that a is a homomorphism take gieCiwj), g2eC(w2); now
gi=xitl,g2 = x2t2, XjeBrijBnG', j = l,2,tl,t2eTl gives gig2 = xl(t1x2ti

l)tit2.
Alternatively, after T=T0Ti one could observe that (tlgl){t2g2) = {tlt2)(t2

lglt2g1).
D

Proposition 2. Let Ll = (T,Ua,q)0(Uxy,ae<S>1 + y be a Levi subgroup of G of finite

^ where KY=L\r\B.

Proof. It is clear from (1.3) that L1 = K1B1,Bl =L, nB.
A real finite dimensional semisimple Lie algebra g0 has Cartan subalgebras h0, the set

of which having finitely many conjugacy classes under the adjoint group Intgo = AdGo,
(Go connected with Lie algebra g0). If go = t i © P is a Cartan decomposition with
involution 9, then under the action of the inner automorphisms Intg0 we can assume
that h0 is 0 stable. There are two extreme conjugacy classes; writing h = a{ |®ap these
are the fundamental class, when a,, is maximal abelian in tu and the split class, when ap

is maximal abelian in p. The pair (g0, h0) gives root system <J>0, and with the split class
(So>ai) t n e restricted root system 4V There is [13] the real Iwasawa decomposition
go = t i © O i © n i which is globally G0 = K1/4iN1,/l1 =expa1. Also g0 has one conju-
gacy class of Cartan subalgebras <*• a,, is maximal abelian in f1; (here h0 = a,1©o1).
Since any two maximal abelian subalgebras in p are conjugate under Ki,go =
U © L L K , AdCOa!, and so G0 = K1A1K1.

In our situation K^ is maximal compact in G0: = Klc^L1 and p = y/—lt1. Then (the
centralizer of ax in f1)m0: = Z(l(a1) = N/—lax is a Cartan subalgebra of ft. Thus
1'0 = <D0. And if Mo: = ZKl(o1), then B0 = M0Al(6(Nl)) is a complex Lie subgroup of Go,
as bo = mo @ a! ® 0n! =moc ® Xf6fl)o+ Q-a, and is closed.

The complex torus T has Lie algebra b. And 7 = ^ ^ with T0^G0 having Lie
algebra ho = moc, b = ho@b1. Then I 1 =b 1 ©g 0 with go = [ l i l i ]^ l i , and Go =
KiT0Kj ^ L , , L 1 = 'T1Goa semidirect product.

Let T1R be the 'real points' that is h1R = {/jeh1;a(/i)eN/^TlR VaeOj ; here Tt may
not be central (see (3.1)). Now fj =s/^la1 ©X?6®i R"a where ua=(ea-e") +
y ^ T + e") with eaega, - e ' : = 0(ea)eg_a,ae<I>1 + . We have [/IMJ = - a ( h ) ^ l u a ,

and so, since Ad(expx)=ead*, Vxefj and each point of Kt lies on a one
parameter subgroup, then Ad(fc)h1Rsh1R + fi,V/cei1C1. Thus ti + U*eKi Ad(fe)(f)1R ©
^o) = î © hm © P^li over U. Next as T1R is contained in the normalizer of Kj in Lx it
follows that K^T^K^Li.

Hence over C,Ll=KlTKl. D

Note. For any subset j £ / = {l,...,n} let W, = </-,•;ie./> g W, and
Nj = <n,;ieJ> ^N. The conjugates in G of Pj = BNjB are called the parabolic
subgroups of G. Such a group [1, 11] has a Levi decomposition PJ = LJ (< l/(/) where
Lj is the Kac-Moody group associated to the root datum (t)z,AJ,Aj) with A / =
{/ij;i£j},AJ = {a,;i6J}. The parabolic subgroup Pj is said to be of finite type if W} is
finite.
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The type of G is defined according to the type of A (with A indecomposable, see
(2.1)). We say (with A possibly not symmetrizable) that G is of type (3) if the orbits of
W acting on <&f are not all singleton sets. The group G is type ( l ) o W is finite oG is
the homomorphic image of an almost simple, complex Lie group (with fundamental
group hz/ZAv).

Proposition 3. Let G be of type (2) or (3). For each a. e Ore denote by Vm,meN the
standard simple Gx = 0a(SL(2, C)) module; then {meN; Vm<LGa V

w} is unbounded.

Proof. By W conjugacy it suffices to prove this for a simple root <xhie{l,...,n}. We
have for type (1), (2), or (3) that P°'=(a) + IA) n convex hull (W.co), [4].

Type (2). The simple roots are (see (3.1)) labelled {a o ,a , , . . . , a ,} . Let del)* be the
positive imaginary root of least height. Then supp(<5) = {0,1,...,/} and <D'f = {n<5;neN}.
Define maximal weights max(cu) = {-lePfl);l + ^eh*\Pc"}. Then P0) = (JAEmai(0) ){A-
nd;neN}. The weight system lies in the paraboloid whose boundary intersects Pm in the
orbit W.co. Also max(<u) consits of the highest weights of simple subquotients of V°
under the action of Levi subgroups of G of finite type.

Type (J). There exists a unique ae®1? of minimal height with supp(a) = {l , . . . ,n}
and a(/i()<0,Vi. For O^veV^^^ the mapping n _ - » F m , yi-*y.v is injective.
As {ja;jeN}^<5>T we now have that {co-kot.;keN}cp<°, and Vi{(co-fca)(/ji);keN} is
unbounded in r̂ J. •

Proposition 4. Let L} be a Levi subgroup of G of finite type. Denote by Vj the simple
Lj module with highest weight L Then Vcu e . /nt + n h& the set {AeP"; V^LjV°} is
infinite.

Proof. Any Aei"° can be uniquely written X = (o—Y,UI\J ciai—Zie^c>ai where
c,6r\l,Vi. Define depJ(l) = X,e/\jC,- Then K(m): = ^e p - ,Ws( BKA,mer\l is a finite dimen-
sional Pj submodule of V°. And Vw is completely reducible as an Ly-module. Thus
{depy(A);kePw} and ieJ, {meN;3AeP'a with c.-^m} are unbounded.

The result is now a consequence of Proposition 3. •

If i,je{l,...,n} with m = aiJaji^2 then label the (i,j) edge in the Coxeter graph
O—O- It can be seen as in the examples affine O—O (o = a>u and hyper-
6b l ic a t )—O—O, (0 = 0)! that in Proposition 4 the multiplicity dimHomi,J(F<o, Fj)=O
or oo.

2. Hilbert space structure and trace class operators

2.1. Let A be a symmetrizable Cartan matrix; so there is a positive rational matrix D
with D~l A symmetric. Then there are three types:

(1) A has rank n and D~1A has signature n

(2) A has corank 1 and D~l A has signature n — 1
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(3) The signature of D~l A is less than the rank of A,

of finite, affine and indefinite type respectively.

The simple quotient Vc>,(oeJn\+ is, [6], a pre-Hilbert space via a contravariant,
K-invariant, positive definite hermitian form <,> which is unique with norm ||fa>H = 1-
Order the weights F° by the depth, with co minimal. Then Vx ± V^, X / \i, X, \i e Pa\ and
the completion also denoted by Va is separable. We fix an orthonormal basis {ZJ}I6N of
V° where z( is of weight Xi,zo = co and depJA;) ̂  dep^A,), i ̂  j .

In the representation (V°,R) of G — G{A) we will say that an operator R(g),geG is
traceable if the complex series Y.?=o <R(lf)z>>zi> is convergent; then this value is written
tracemR(g).

2.2. As in a general separable Hilbert space, let Bd(K), Fr(K), IKp(F), St(K) and
Tr(K) be the set of bounded linear, finite rank, compact, Hilbert-Schmidt and traceable
(with absolute convergence) operators on V. That is St(F) = {TeEnd(K);||T||2<oo}
where ||T||2=X.||Tzi||2 ( the TeSt(V) are I2). And Tr(K) = {TGEnd(K); Y.k'Tz^K
oo}. In fact St(F)£lBd(K) and (St(F),||| |2) is a Banach • algebra. A TeTr(F) may not
be bounded. For TeSt(F), the Hilbert-Schmidt norm is independent of the complete
orthonormal basis. Then IKp(F) is the unique maximal ideal in Bd(F) which is closed in
the operator norm; and Fr(F) is the unique minimal ideal in Bd(K). The ideal St(K)
is not closed. In fact IKp(F) = Fr(K).

One says that TeBd(F) is I1 if S,||Tzi||<oo; in fact T is /1<=>TeSt(K)2. Then
St(K)2sBd(K)nTr(F) and trace(T),Te§t(K)2 is independent of the orthonormal
basis. Also trace(ST) = trace(TS) for SeBd(K),T6St(F)2. These give a chain of (two
sided) ideals

{0} E Fr( V) c St( V)2 s St( V) £ (Kp( V) c Bd( V)

A_TeEnd(K) is said to be closed if its graph is closed in VxV; and closeable if
graph(T) is a graph. If T is closeable then there is a unique TeEnd(F) with
graph(T) = graph(T); the domain being dom(T) = {xe V;3 sequence (xn) in dom(T) with
xn-*x and (Txn) convergent}, and Tx = lim Txn. A TeEnd(K) is said to be hermitian if it
is a formal adjoint of itself, and symmetric if it is hermitian and densely defined.

23. Subsets of G are defined

Gb = {g e G; R(g) e Bd( V°), V<u e ./nt + n h?}

G" = {geG;R(g) is traceable on Kco,V(oeJ^nt+ nhf}

Thus G^n^nu^R-'WGJnBdtF")), and n ^ ^ u n ^
Also define G"5 the set of "Hilbert-Schmidt" elements, Gcpt the set of "compact"
elements, Gfr the set of "finite rank" elements, giving GfrS(Ghs)2sGhseGcpl£Gb. And
Gsym the set "symmetric" elements, Gcl the set of "closeable" elements.
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Lemma 1. (i) KGSK = GS where Gs is the semigroup Gb, Gcpt, G"5 or (G**)2.

(ii) G f r =0 if A is not of type (i).

Proof, (i) This follows from R(K)cU(V°),Vco (the unitary group),
(ii) The Iwasawa decomposition G = KB gives G(r = KBfr. Further

I?.*-.,.si V, with <R(b)Vlt Vi>*O,VbeB,neP°. Hence Bfr = 0. D

Proposition 5. Let A be of type (2) or (3). Then

C7nGb = {l}

Proof. For each a, e A there is the Levi subgroup Lm of the parabolic subgroup P{i]

of G (see (1.4)) ie{l, . . . ,n}. And if <xeC>re with we W, w(a,) = a and HEJV, n\-*weN/T, we
have La = nL{On"1 = <T, [/a,«y0([/J>. The derived group L;^SL(2,C). The simple
G-module V°, co e ̂ n t + n hj is semisimple under La, which is such that this decompo-
sition under 0a(SU(2)) is a complete orthogonal direct sum.

Also recall that GL(2, C) acts on V"1^2)- ^ e symmetric polynomials of degree m in
X, Y, by (g.p) (Y)~P(S1(Y))- The standard basis vectors are

and the unipotent element M = M(C) = (Q \),ceC, acts as

u Z = y .(b\((a + r)l{b-r)\\* X°+'Yb~r

rh \r)\ a\b\ ) ((fl + r)!(i-r)!)*'

The superdiagonal entries are with r= 1, c(a+ l)*fc* which with a = 0, b = m is cm*. Label
the weight vectors

/ 1 \±
—V" 7 —I I YYm~1 7 —Ym

~Y Z l - { ) X Y ' • • • ' Z » - - X

with weights —m,2 — m,...,m under ht. This {\/m(C2);m£^J} is a complete set of simple
finite dimensional SL(2, C)-modules.

Let u = ul-ukeU, MJ = MJ(CJ) with c,-#0 some j and for each je{l,...,k} we have
UjeUpj,Pje<t>". There is w , € W with vv1()S1) = aI for some i e { l , . . . , n j . Let K ,=
</>,(SU(2)), ie{ l , . . . ,w}. As a product of fundamental reflections wl=ril-rit say, so

^ 1 1
ntj =taking conjugates u, nitun^, nI1.1«Ituni7

1ni7.11,..., where n^r^eN/T, ntj

4>ij(-i o)e/C,v, and using the fact that Vi', (ri(a)e<I>+) Vae^ . a^a , . ) , we stop this
sequence when a conjugate of u contains a term in the product belonging to a simple
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root subgroup. Therefore we may as well start with u = ui-uk such that /?;=<*; some

Let such {zo,...,zm} with weights {A0,A1,...,Am} refer to a simple module in the Lxt

decomposition of V°. We have

= R(u(2))(zo+cfcm*z1+z) if jSt = ai

where u{kl = Ui •••Mt_(t-_1) and z is a sum of weight vectors (or zero) with weights
and r ^ l if 0 t # a , or r ^ 2 , A1=A0 + ai if Pk = <xt. Next R(u)zo =

etc. to obtain finally

R(u)zo = z o + Y Cjirtzi+z' and <JR(U)ZO,Z1>=

The result now follows immediately from Proposition 3 if j
Otherwise proceed as follows. The Lflj decomposition of F™ is such that

R(Uj.(c,.))za= £ c)

Again under Lai, the matrix elements mvr{u) of R(w) are polynomials in the Cj,je{
\,...,k} with positive integer coefficients. Then, and using convex properties of Pa

described in (1.4), one sees that weGb=>V/',/" each polynomial in mrr(u) which involves
and is homogeneous in the cp Pj = a,- must be zero. Thus u e Gb=>« = u(1) (obtained from
u be deleting the UjeUXi). Continuing, up to conjugation by JVnK the element w"' has
UjeUai, for some i',j. Finally, ueGb=>«=l.

To make the previous section more precise we include the following auxiliary results:
Let [ ] denote the group commutator, that is [x,y] = x"1y~1x3;,x,_y£G. Define

inductively [x!,..., xm] : = [[x1,...,xm_1],xIB],ni> 2, x,eG. Sometimes we denote
xy:=y~lxy, therefore xy = x\_x,y~\,x,yeG.

Here A need not be symmetrizable. Recall that U = Umin.

Lemma 5a. / / W3w = ril-ris is a reduced expression (where rtj = r ) then

0>(w) = K,r t l (a i 2) , . . . , r , , • • • r,-,_,(a,-,)}.

In particular l(w) = |O(w)|.
For we W, let Uw = Y\P^">M^P' tn*s expresses an element uniquely as a product.

Proof. See for example [1].

Lemma 5b. Let wltw2e W,Q>(wl)nQ>(w2) — <l). Then

https://doi.org/10.1017/S0013091500018320 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018320


188 STEPHEN SLEBARSKI

we W)
lPca)+,w4'c4)+=>(w(>pno(w1))c<D(wvv1) and w4'n<K(w1)n$(wiv2)=0). V

Let W{0) = {we W;<t(w)u — <t>(w) is a closed subsystem of roots in <J>} and N{0) =
}

Lemma 5c. Let we Wm, fi,/?'e<D( w), y eG>r
+
e\<t>(w). T/icn

[[/„, C/y] ^ 1/ n nt/n-»,Nsm-+w

Proof. Take w = ril---rim a reduced expression. First consider iS = ail. The +<*,, chain
of roots through y is C,̂  y = <I>n {y + safl;sef^}. Using the La(i decomposition of g we
see that C,-liV is finite and "unbroken". Let xil(c) = expceil,xy(c)=expcey (where
ey = A.d(n')eXi,,rih-*w', w'~i(y) = xi. for chosen vv'.a,-). We have

= xy(-c)expAd(x,,(-c1))(ccy)

( c2

= xy(-c)exp/ c{ey-ct[eucj + -j- [eh[_eheyj]

a finite series (f)

Next 3>(w) is a system of positive roots for a semisimple Lie subalgebra of g, with
Cartan subalgebra contained in h. Also mult a=l,VaeOre. It follows that

5 times

We conclude that Cit,yr\®+ £$+\<D(w). Hence n~1lxy(c),xil(ci)']neU.
Secondly, with any /?e<I>(w), use induction on /(w). Suppose /(w)=l, w = rir Therefore

P=a.h. We want to show [[/a.,,1/,,]^ t/nn.-.l/n,^1, which follows from (f). Suppose
l(w) = m>l. Again by the first part we need only consider /?#afl. Therefore
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/-,,(/?)£<!>(/•,•,w), rify)eQ>"\<&(rhw). Thus if we have the assertion for length = m —1, it
follows that

niWeUy]nrl = [ l / r i i W ) [ / r ( i ( v ) ]g l / nnhnUn~ln^1

which on conjugation by ntl gives the result.
From (f) with a,, replaced by /? and using the commutator formula [xy,z] =

[xz]y[yz], x, y, zeG, we see by a similar argument that

and

as required. V

Proposition 5d. C/ = C/W fc ( t / n n t / n " 1 ) , Af3ni-»-we W(0),Vwe Wm.

Proof. A u e l / can be expressed u = uou1---uk where MoeC/^ and Kij(ujeUWj,
<S>(w)n$(wj)=$ or 3^e<D(w), y ,eO?\*(w) with uJe[l / , J l /w] t '« ' ) .

Let je{l, . . . , fe} with UjeUw. and <D(w) n<&(wj) = 0. Then [7pg W^w'1 P=ae<FZ=>
P = wa=>Ufi = nUlln~i. Thus also using Lemmas 5a, 5c, we have U = UW(U nnUn'*).
Also UwnnUn~1 = {l}, and with ueUnnUn~l, ue(7a, ae<D(w) it follows that u" =
u\ •••uv

k = u1[ulv\-uk[ukv]e U r\nUn~l. Hence U nmUm'1 o U, VmeJV(0). V

Lemma 5e. Let Um = ()neNi0)U^nUn'1 and Um) = f]nsNU nnUn'1. Then U(0)<i
) = U' and any ueU{00) can be expressed u = ui-uk with each Uj of the form

1

m.x = [x l 5 . . . , x m ] , Xj.eUfj., Pj-e&Z or x " 1 and V;, UjeU

Proof. Let ueUm). First write u = u'u" with u"eU'. Now u' = vl"-vk- a product of
elements of U each lying in real root subgroups. Similarly u" can be so expressed. If
there are i,j with VjsU^, then using Proposition 5d, we can reexpress u = v'v" where
v"eU' and v' is the product of ^fe' — 1 elements of U lying in real root subgroups.
Otherwise, there is a sequence (il,i2>---Jm-) and an i such that {«'",«""}£l/ and the a,-
root subgroup contains an element occurring in u"1 (see the first part of the proof),
where NnKBW->w = rilrh---rim,. Now M"GC/(00) , also if fc'=l we must have vi = l.
Hence by induction on k', u e U'. And C/(0) the intersection of normal subgroups, is
therefore normal in U.

Although U is not locally nilpotent in type (2) or (3), the lower central series gives
that u = yt •Dfc. with each vr of the form x = [x l 5 . . . ,x m ] or x " 1 as in the statement of
the result. Next
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If 3j',j"e{l,...,m}, m^2 with Pre<S>{w), Pre<S>rZ\<P(w) for weWm, then Lemma 5c,
Proposition 5d and induction on m give n~1xneU. Thus for neNm, n~1xneG\U<>Vj,

Set / = {1,...,£'}, It = {jel; 3neJV(0,,ir1iyieG\l/}. Then y e / ^ / e / V , =>
and can be written in the required form. Finally using U n co0(U) = {1} we

see that the result follows.
Note that x e [/(oo, => £™= i Z#/ n <J>im # 0. V

If w = w1w2 G W where /(w) = /(w1) + /(w2), then (t>(wi)^<!>(w) and (f) (with a,, replaced
by /?e<D(w), ye$"\$(w)) give that weW{0) implies UnnUn'1^Unn'Un''1, NBnt->
w, JV3«'i-*w1.

Let weW, and M = w o u 1 - u t with uQeUw, and Upj^O as in the proof of Proposition
5d. From Lemma 5a we can further write uniquely uo = uol---uOm with
wOse C/r.j... rfj j(ais), m = l(w). Suppose that ueGb. Then as in the first part of the proof
we see that uo i = l. Next let uO2 = • " = "O,»-I

 = 1 a n d P u t w i = /"£l • • • r ia_,,s^/n. Now
w1O(wi"1w)£^>(w), Lemma 5b and (f) give that weW(0), JVnXsn ' i -nv , , u" eGb=>
MOS = 1. Thus MO = 1. And as this holds VweW(0), we have shown l / n G b £ [ / ( 0 ) . Note
that in general one has U = UW(UnnUn~l) for any weW. In fact for weW, use
induction on l(w). Suppose u"'eU. Then as MOGC7 we have (»! ...wfc)

n eU giving u O s = l .
Therefore u o = l and u" = u(n"CBi».6C7. Thus [ / n G l c [ / ( 0 0 ) .

Let ue U(00)nGb. From Lemma 5e we write u = u1u',ul = x = [x 1 ; . . . ,x m ] or ut=x~l.
And show « t = 1. This is by induction on m.

If m = 2, x = [x<(l(c1), x^2(c2)] and refer to (f). We can assume ^ 1 + ^ 2 6 ^ ) + - Note as
before that k^eP03, <K(x)Vx, F/f>#{O}=>^ = A + s1)S1 +s2)S2, sl5 s 2 eN\{0}. Consider
Cp2ip,n(l)r^ and recall W<D7 = 0>T. If the +/32 chain of roots through ^ contains at
least two real roots then 3we W,3seN\{0), w~1(CfilJl\{pi})^<i>+ and w " 1 ^ +s/32) =
a,e A. (Also w"1/?! e<l)+ if <t(rw,) is a system of positive roots). Otherwise CHj/(l n <!»+ =
{^x} which is false. Thus also using u'eU', we have ut = 1.

For the induction step, x = [ [x 1 ) . . . ,x m _ 1 ]x m ] = [ x 1 , . . . , x m _ 1 ] " 1 [x 1 , . . . ,x m _ 1 ]*" \
Firstly, suppose 3we W(0) with u2: = [x1,.. . ,xm_1]6C/M,. Now (see Lemma 5a)

u2 = yz, y,ze Uw, [yz, xm] = [ y x j ^ z x j = [yxm] [>'xmz] [zxm],

and therefore by a second induction on the "length" of an element in Uw, one sees that
Met/ ( Oo)^Gb=>[>xm] = l, [zxm] = l. Secondly, suppose u2:= [x 1 , . . . , x m _ 1 ]e t / ( 0 ) . Then
u = U21(u%mu')eGb=>u2 = 1. And argue similarly if u = x~i.

Hence if follows that f/(00) <"> Gb = {1}, which completes the proof of the proposition.

•

3. Characters of affine Kac-Moody groups

It is the aim of this section to give the subdomain in G on which a (pointwise)
character of Feo,(oe./nt+ n hj can be defined.

3.1. Let A be a type (2) affine Cartan matrix. Index the simple roots by {0,1,...,/}
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where Ao, of finite type (1), is obtained by deleting the 0 vertex in the Coxeter-Dynkin
diagram of A. Here {hQ,hl,...,hl,d}z§z where a,(d)=0, ie{l, . . . , /}, ao(d) = l and rank
hz = / + 2 (see (1.1), (2.1)). Let the components of the least positive imaginary root
de£S=o Moj be 5=(ao,a1)...,a,). That is aef^l'+1 is of least height and Uq is the kernel
of the quadratic form on Ul+i associated to A. In the dual AV=A' write <5V =
(OQ ,aj',...,a/v), (so in each case a% = 1 [4]); then the affine Kac-Moody Lie algebra
g = g(/4) has a 1-dim centre containing the canonical central element c = £ | = 0 a? ht.

In general a real root aeO" has coroot <xv eWAv by W. The reflection r^w-jW'1 if
wa, = a. For symmetrizable A, the W invariant form (,) on g (see (1.1)) is chosen such
that v(Av) = AD. And for A affine take £) = diag(aoa^~l,a1a1

v "1,...,a(a,v - 1 ) . Define
A0 = A\{a0}, hoZ = h2nQAo

v, Wo = (r,\i*0>£W, <t>0 = W0&0 and go = 9(^o)- Denote by
0eOo + the highest root; then ho = c — ao6

v, d = ao<xo + 6. Let T be the translation
subgroup of W generated by wrorgw~1, w e Wo. Then Y<i W and W= Wo oc T.

3.2. Lemma 2. (i) The "derivation element" d acts semisimply on Va with finite
dimensional eigenspaces.

(ii) The character (5eHom(T,C*) extends trivially to <5eHom(G,C*).

Proof, (i) If l = co—YjiCi&itP'0 we have d.Vk = (a>(d) — co)Vx. The parabolic subgroup
Pj, J = {1,...,/} of G is of finite type. Thus (see (1.4)) K(m)=££pj(A)smKA is finite
dimensional Vmel̂ J.

(ii) This is a corollary to (1.4) Proposition 1. •

Let Go be the almost simple, complex Lie group with root datum (hoz, AQ , Ao). Thus
hjz is the character group of To = Tn,Gof±Go a maximal (algebraic) torus, and
hoz/ZAo is the fundamental group. There is a homomorphic image of Go as a subgroup
of G. Now T=ZT0Tt where Z = {expac;ceC} is contained in the centre of G and
Ti={exp(a/a0)d;aeC}. Thus 8 is trivial on ZT0 and <5(t) = ca, t e7 \ . Denote rc =
TnK.

Lemma 3. K =

Proof. This is because K' = </C,;i=0,1,...,/>, K, = ^(SU(2)) and K, = \JkaKl ktTk~l

with ,T= TnK^U(l). Then ZK'sKer<5. Also Tcn Tj ={expv/^Tj:ad;aeIR} and
G = T! K G'. D

3.3. In general the set of functions {/:h*-»Z; s u p p / s U 7 = 1 Aj-
becomes a commutative associative algebra E, with unit, under convolution. Introduce
e*e£, Xeh* by eA(/i) = 5^. The formal character ^ of P"", coe./nt+nh* is given by
f-Y^eP- (dim VJe^eE, which can be expressed as the "Weyl-Kac" formula. The exact
sequence 0-> hz-^h'ApT->l where i(h) = h® 1 and exp(ft ® a) =/i (g) e2"1 -̂1", /iehz, aeC,
gives to A eh? the character of T, e'i(t)=e2"^rT'"i"'), t = exp(ft®a). Then, analytically, the
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region of absolute convergence of / " (an open, convex, W-invariant set in h) has been
found in [4].

Returning to A affine, define for a subgroup (or subset) H of G, H>1 = {heH;\d(h)\>
1} and similarly H<\H=1. Also H*l=H<l u F 1 .

Theorem 1. (i) r r = r > 1 = ( T h s ) 2 ,

(ii) Tb = ZTcuT>1.

Proof. Using the estimate multimA ̂  K(cu — X) (where K() is the Kostant partition
function) and mult a = 1, ae<Dre, mult y = /, y e <!>"" one sees that the region of absolute
convergence of •f is given by the interior of the "Tits cone", {/ieh;Re<5(/i)>0} where -f
defines a holomorphic function (see [4, p. 138]).

Let fc? = Xm=o mult<1)(X-m8)e'mi, and Wk the stabilizer of X in W. Notice that
Wxr\ T={l},XePm. Then the formal character splits into a sum over the orbits of Y on
max(co) as

k e max(co) X e max(co) \ r e T
AmodY

The powers of the translation element TV(9V ) = '•„„re are given by (see [4, p. 74])

Here aov(0v) = 0 the highest root of <Do + . We know wd = 8, VweW. Also S(d) =

Let teT with |^( t ) |^ l so t = exp/i, Red(h)<^0. Consider the translations wx^g^w'^X)
with weW0 chosen so that w~l (hmodCc + Cd + ̂ f^l\)oa) lies in the fundamental
chamber for (g0, hoz), and X = w(w) to see that xo(t) diverges.

The assertions follow. •

Proposition 6. (i) Blr = B> 1 z Bb,

(ii) B > 1 =(B h s ) 2 .

Proof- (i) It is evident (since unipotent elements are upper triangular) that b =
tueBuoteT" and B"= TUU = T>1U = B>1. The Levi subgroup La has, by Proposi-
tion 2, the Cartan decomposition La = KxTKa where Kx = L'a n KgL'x is maximally
compact, ae<Dre. Then by Lemma 3, we have LIx =KaT

>1Kx^Gb from Theorem 1. An
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element b = tul-umeB,teT>1, on taking "mth root" t = t1---tm can be written
b = tlu\--tmu'm with each tjUjeL^1, 0,-e*?, je{l,...,m}. Hence P ' c f i ' .

(ii) Follows from (i) and Theorem 1 as

Also(Bhs)2sBtr. •

Lemma 4. (Gcl)-1 = Gel.

Proof. We know that T/^nT^G'^cG01. Also given any geG, using (1.4) and
Proposition 6(i), 3 t eT /T c n Tf1 with R(tg-1) bounded.

Let (*„) be a convergent sequence in V° with R(g)xn->0. Then R(l)xn =
R(fg~1)R(g)xn-+0. But R(t~l) is closeable, thusjc^O.

Hence we have shown that if geGci then R(g) is injective on domR(g), which gives
the lemma. •

Corollary. Gcl = G.

Proof. We know that GclGb^Gcl and Gb^Gc\
Let geG. So as above 3teT>l with tg~leGh. Therefore grleGcl giving g=

(grl)teGcl. Q

Proposition 7. (i) B<y = T<lU<=G\Gb,
(ii) T = 1( l / \{l})£G\Gb.

Proof. One has T = 1 = ZTcT
s
0
)"n. Taking into account (2.3) Proposition 5 and

Theorem 1 (ii) in (3.3), we want to show that toueG\Gb with toeTo
ym, to^l, ueV\{l}.

The formula in (3.3) for the power of an element in T and the character formula xa

give that for Aemax(<a), taking a conjugate fi = wT™iev)w~1(X), we\V0, tQ=exph and
w~l(h) in the fundamental chamber of (go,hoz), we have

where z has weight fi, \\z\\ = 1. •

Theorems (0) Gb = KBb,Bb = B>1 u (B = 1 n Tb),
(1) GbnG"2G> 1=(Gt o)2 = Ghs,
(2) Gcpl = Ghs.

Proof. (0) We have G = KB, KGb = Gb, B>l^Bb, B < 1 n B b = 0 . Also B=1nBb =
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(1) Follows from (3.2) Lemma 3 and (3.3) Proposition 6.

(2) From (1) and (3.3) Theorem 1, Gcpl = KBcpl = KB>1 = G>1 = Ghs. •

3.4. Conjugation invariance. Let G be of type (1), (2) or (3). Take G(0) the union of
the Borel subgroups of G; that is the set of elements of G which are conjugate under G
(=> under K) into the standard Borel subgroup B.

Proposition 8. Let xe(G"5)2 n G(0), andgeG with gxg ~ * e(G1")2, then

tracem R(gxg ~1) = tracem R(x), V« e ./nt + n bJ.

Proof. By definition 3k1eK with kiixk1=beB. Also 3/ce/C, ^ e B with gkl=kbY

giving gxg"1 = /&!&>!"• ^ " ^ Then from (2.2), Vco6«/nt+ nh j ,

tracem Rfexg "x) = trace,, R{bx bb^l) = traceM R(b) = trace^ R(x). Q

Lemma 5.

tracemRter ' ) = trace,,,R(g), VgeG, toe T, Vcoe J^nt + n h?.

Proof. In fact writing t = t 1 t 2 , t i6TnK,! 2 er ! 1 " n (the polar decomposition), a
matrix element

(R(tgt~ l)z, z> = e ^ r 1)<R(g)z, R(tf1 t2)z>

where z is of weight A. D

Now let G be of type (2).

Theorem 3.

trace,, R(gxg ~1) = trace., R(x), VxeG>1,VgeG

Proof. With g = kb, keK, beB, b = u modT", x = x1x2,x1,x2eG>1 we have from
(2.2), Lemma 5 and Theorem 2 that

trace^ R(gxg ~l) = trace,,, R{uxu ~1) = tracem R((ux t) (x2 u ~x))

= traceo,R(x2x1) = traceo,R(x). D
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