A CHARACTERIZATION OF MACHINE MAPPINGS
SEYMOUR GINSBURG AND GENE F. ROSE

Introduction. A generalized sequential machine (abbreviated gsm) is a
6-tuple (K, =, A, 6, A, p1), where K, =, A are finite non-empty sets (of ‘“‘states,”
“inputs,” and ‘‘outputs’ respectively), § (the ‘“‘next state” function) is a
mapping of K X Z into K, A (the “output” function) is a mapping of K X =
into A* and p; (the ‘‘start’ state) is a distinguished element of K. (For sets
of words X and 7,

[ee)
XYV ={xy/xecX,ye ¥V} and X*=U X}
i=0
where X® = !¢}, € being the empty word. Thus, for an arbitrary set E of
symbols, E* is the free semi-group generated by /2.) The functions § and A
are extended to K X Z* by defining

6(p, 6) = ,D, 5(/)1 X1... xk) = 5[6<1)7 X1... xk—l)v xk]v >\(pv 5) = €,
and
/\(p) X1... xlg) = )\(/)7 Xi... xls—1>)\[5(pr X1... xk—-l)v xk]

for each p in K and each sequence xy, . . ., x; of elements of Z. A function f of
T* into A* is said to be a machine mapping, or realized by a gsm, if f(x) = \(p1, x)
for all x in =* for some gsm S. The machine mapping of a gsm S is also denoted
by S.
The purpose of this note is to show that a function f of Z* into A* is realized
by a gsm if and only if it satisfies each of the following conditions:
M £ = e
(i) f preserves initial subwords, i.e., if # is an initial subword of v, then f(u)
is an initial subword of f(v).
(iii) f has bounded output, i.e., there is a number M such that

[fwa)| = |f)] < M

for all » in £* and a¢ in 2 (if  is a word, then |u| denotes its length).

(iv) f~! preserves regular sets, i.e., for each regular set ¥ C A* f~1(V) =
{x/f(x) € V| is regular. (An automatorn is a 5-tuple A = (K, Z, 8, p1, F),
where K and = are finite non-empty sets, § is a mapping of K X Z into K, p;
is a distinguished element of K, and F is a (possibly empty) subset of K. § is
extended to K X Z* asin a gsm. A set U is regular if there exists an auto-
maton A such that U = {w € =* | §(p1, w) € F}.)
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Since conditions (i)—(iv) imply that f is realized by a gsm, these conditions
imply (5):
(v) f preserves regular sets.
There are three sections. A proof of the main result constitutes §1. Counter-
examples that show the independence of conditions (i)-(iv) even in the
presence of (v), are furnished in §2. Two corollaries are given in §3.

1. Proof. If f is realized by a gsm, then conditions (i), (ii), and (iii) are
obvious, while (iv) is proved in (5).
Suppose that f satisfies (i)-(iv). By (iii) there exists an integer M such that

@) [fwa)| = [fw)] < M

for each win Z*and ¢ in 2. Let

Ula, w) = {u/f(ua) = f(u)w}
for each w in \Uo™ A7 and each a in Z. We first show that
(2) U(a, w) is a regular set.,
To see this, let g,(X) = {u/ua € X} for each ¢ in £ and X C Z*. By

(5, Theorem 2.2) g,(X) is regular if X is regular. Let A, = (AM+1)*A! for
each 0 <t < M and

M
Vi, w) = U gl (Al Nf@a)

foreacha € X and

M

w € U Al

j=0
Since A, w is regular, f~'(A,w) is regular by (iv). (The family of regular sets
is the smallest family of sets containing the finite sets and closed under union,
product, and *. Furthermore, the regular sets are closed under subtraction and
intersection (3).) Thus g,[f~'(A,w)] is regular. Since A, is regular, f~1(A)) is
regular. Therefore V(a, w) is regular. Consider any word # € U(a, w). Since

M

U Al = A*,

1=0
there exists an integer ¢ such that f(u#) € A,, thus # € f~1(A,). Since

fua) = fw)w € Ajw,  ua € f71 (A, w)

and » € g [~ (A, w)]. Thus U(e, w) & V(a, w). Now consider any word
# € V(a, w). Then for some ¢, » is in both g,[f~*(A,w)] and f~1(A,). Thus
ua € f1(A,w), ie, f(ua) € A,w, and f(u) € A, Then for some integers

Jiand 1,

3) | flua)| = h(M + 1) +t + |w]
and

(4) | f)] =a(M + 1) + ¢
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By (ii) and (1), f(ua) = f(u)v for some word v, |»| < M. Hence
(5) [ fua)| = i(M + 1) + ¢ + Jo].

Since |v], |w| < M, it follows from (3) and (5) that |w| = |v|. Therefore w = v,
so that f(xe) = f(u)w. Thus u € U(a, w). Then U(a, w) = V(a, w) and (2)
holds.

Consider the finite set of all homomorphisms 7 of Z* into A* such that

M .
(@) € U A’
0
for each a in 2. For each such 7, let
U(r) = {u € =*| f(ua) = f(u)r(a) foralla € Z}.

Since
U(r) = aﬂz Ul(a, 7(a)),

U(r) is regular by (2). The sets U(r) are also pairwise disjoint and have Z*
as union. For each 7, let 4, be an automaton (K, Z, 8., p, F;) such that
U(r) = {u|6,(p.,u) € F,}. Let 74, ..., 7, be the distinct mappings r. Con-
sider the structure 4 = (K, =, 64, pa, Hy, ..., H,), where

pa= pry...sPs), K=K, X...XK,,
34((pr ... P0),0) = Bn(pra), ..., 0.,(pr a))
for each (p1,...,p,) € Kand a € Z;and for each 7,
Hy=K., —F,; or H;;=F,

accordingasj # torj = f,and H; = Hjy X ... X H;. Then {H,;/1 < i < 7}
is a family of disjoint subsets of K (3, p. 109) and a word «x is in U(r;) if and
only if 6,4(p4, x) € H;. Finally, let S be the gsm (K, Z, A, 64, \, p4), where
for each p € Kand a € Z, A(p, a) = 7,(a) if H; contains p and A(p, a) = ¢ if

PEK—kIJHi.

To complete the proof, it suffices to show that A(p4, x) = f(x) for all words
x. Now A(p4, €) = f(e) = e. Suppose A(p4, x) = f(x) for all words x, |x| < s.
For a € Z, consider A(p4, xa). Then

ANpa, xa) = N(pa, X)N[b.4(pa, %), a] = fX)N[64 (P4, x), a].

Now x € U(r;) for some 7. Then 64(p4, x) € H;. By the definition of A,
7:(@) = No4(pa, x), a]. Since x € U(ry),

f(xa) = f(x)r:i(a) = f(X)No4 (P4 x),a] = Npa, xa),

completing the proof.
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Remark. The proof shows that condition (iv) may be weakened to require
only that f~'(Y) be regular for all sets V' = (AM+1)A'w, where 0 < ¢t < M and

M N
w € U A

=0

2. Counter-examples. We now show that none of the conditions (i)-(iv)
can be relaxed, even in the presence of (v). Although we do not proveit, both
f and f! preserve context-free languages for each of the functions f presented.

Example 1. Let £ = A = {a, b}. For each word w € Z* let f(w) = aw.
Then f clearly satisfies (ii)—(v) but not (i).

Example 2. Let £ = A = {a,b}. Let f(a) = b, f(b) =@, and f(x) = x
otherwise. Obviously f satisfies (i), (iii)—(v), but not (ii).

Example 3. Let £ = {a, b} and A = {a}. Let f(a?) = a' and f(a'bu) = a?!
for 2 > 0 and » € Z* Obviously f satisfies (i) and (ii), but not (iii). Consider
(iv). Let S be the gsm({py, ps}, {a}, {a}, 8s, s, p1) where

ds(p1, @) = po, 8s(p a) = P, \s(p1, @) = ¢ and As(p2, @) = a.
For each Y C a*,

JUY) = YU [S(Y N (a?)*)]p=*.

Thus f~! preserves regular sets. Consider (v). Let 7" be the gsm

({qh q‘l}r 27 A; 6T) )\Ty ql)y
where
é2(q1, @) = qu, 8r = ¢sotherwise,
Nr(q1, @) = a?, and Ay = e otherwise.
For each X C Z*,
fX) = (X Ma*) U T(X Na*bz*).
Thus f preserves regular sets.

Example 4. Let £ = A = |a, b}. Let f(a'bvw) = a?*0!*! if || = ¢ > 0 and
f(x) = a!®! otherwise. Clearly f is a length-preserving function which satisfies
(i), (1), and (iii). To see that f does not satisfy (iv), in view of the main
theorem it suffices to show that f is not realized by a gsm.

Suppose that there exists a gsm S = (K, Z, A, §, A, p1) such that f(x) = S(x)
for all x in Z*. Let py, ..., p, be the distinct elements of K. Then there exist
integerstand 7, 1 <1 <174 j <t 1,such that §(p1, a?) = §(p1, a*?). Now

a2 = f(@H1pH?) = N(py, atTIb?)
= Mpy, a8 (py, @), a1 Th )]

= ai+j>\[5(P1, ai+i)’ at+1fi~]'bt+2]
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so that
(b, 049, atrimspos) = st
Then

NP1, @72 = N(p1, a))N[6(p1, @), a1 =Ip 2]
= a\[8(py, a™H)), a i) = glg2iti—imi = g2t+3—d # f(atr1—7p+?),
a contradiction.

Consider (v). Let g be the function of A* into A* defined by g(a?) = e’ and
g(aidw) = a1+, ¢ > 0. Then g is realized by the gsm

U = ({711 72}, {(Z, b}) {av b}r 61“ )\uy 7'1)1

where 6,(r1, @) = r1, 87 = 72 otherwise, \,(p1,a) = a, and N\, = b otherwise.
Now f(x) = fg(x) forallxin =*. Forif x = af, then f(a?) = fg(a?). If x = a’bw,
with |w| < i, then

fx) = a¥l = fla'dd") = fg(x).

If x = a'dbw, with |w| > 7, then
Jx) = a2t = fatbint) = fo(s).

To see that f preserves regular sets, let R be an arbitrary regular set. Since g
is realized by a gsm, g preserves regular sets. Thus g(R) C a*b* is regular.
Now {ea%’/j < i+ 1} and {e®?/j > 1 4+ 1} are context-free languages. (A
grammar is a 4-tuple (V, Z, P, o), where V' is a finite set, Z is a subset of T,
o is an element of V' — Z, and P is a finite set of productions § — w with
£C V— 2and w € V* For x, y € V* write x = y if either x = y or there
exists an integer k& and words

X=X ..o X =Y, Uty oo oy Up—1, V15 o o o 3 U1y Y1y« o oy V=1, 81y« « « y Bp—1

such that x; = u;y,v;, X441 = #;2;v5,and y;, — z;isin Pfor1 <7<k — 1.
A subset L of Z* is said to be a context-free language if there exists a grammar
(V, 2, P,o) such that L = {w € 2*/¢ X w}.) Since the intersection of a
context-free language and a regular set is a context-free language (1),

Ri=gR)N{a®/j<i+1} and R, =gR) N {e/j > 1+ 1}

are context-free languages. Let 7 be the homomorphism of Z* into ¢* defined
by 7(a) = 7(b) = a. As a homomorphism, 7 preserves regular sets and context-
free languages (1). Thus f(R,) = 7(R;) C a* is a context-free language. By (4,
Theorem 4. Corollary 2), each context-free language in a* is regular. Thus f(R;)
is regular. Since g(R) = R;\U R, and

JR) = fg(R) = f(Ri U Ry) = f(R1) U f(R2),
it suffices to show that f(R,) is regular. To do this, we need

LEMMA. For each regular set B, there exist regular sets Uy, ..., U,, Vi,..., V,
with the following properties:
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1 Vs U V= B.
(2) For all words u, v such that uv € B, there exists an integer k such that
u € Ugand V € V.
Proof. Let A = (K, Z, 5, p1, F) be an automaton such that
B = {w]|é(w, p1) € F}.
Let py, ..., p, be the elements of K. For each ¢ let
U; = {u € Z*|5(p1, u) = pi}
and Vi=1{u€ Z*|6(py,u) € F}.
Obviously Uy, ..., U, Vi, ..., V, satisfy the conclusion of the lemma.

Now consider f(R2). Since g(R) is regular, by the lemma there exist regular
sets Uy, ..., Us Vi,..., V,such that

@ U U V= g®

and (b) for all u, v such that uv € g(R), there exists an integer ¢ such that
u € U;and v € V,. For each k let

U'b = Uy M {ab*+2/i > 0}.
Clearly

R2 = U U’k ka
k=1

Since Uy is regular, U’xb is a context-free language (1); thus U’; is a context-
free language (5). For each £k, 1 <k < 7, f(U" b V) = 7(U')u(bVy), where p
is the homomorphism defined by u(a) = u(d) = b. Then +(U’;) Ca* is a
context-free language and thus regular (4). Since u(bV}) is regular, f(U’.bV3),
hence f(Ry) = U, f(U'xbVy) is regular.

3. Corollaries. If f is a length-preserving function, then we obtain the
following result, first proved (unpublished) by J. Rhodes and E. Shamir:

COROLLARY 1. Let f be a length and initial subword preserving function of T*
into A* such that f~! preserves regular sets. Then f is realized by a complete
sequential machine, i.e. by a gsm in which N\ maps K X Z into A.

Remarks. (1) Other characterizations of functions that are realized by
complete sequential machines are known; cf. (2; 7).

(2) We know of no way to use Corollary 1 to prove the main result.

The question arises as to what conditions on a partial function f allow f
to be extended to a function that is realized by a gsm. One set of conditions
is now given. (A set of conditions for f to be extended to a complete sequential
machine is given in (6).)
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CoOROLLARY 2. Let X C Z* and f be a mapping from X into A* satisfying the

following conditions:
1) If e € X, then f(e) = e

(i) If u < v, u and v in X, then f(u) < f(v). (The relation < on Z* is the
partial order defined by # < v if and only if « is an initial subword of ».)

(iii) There exists an tnteger M with the property that if uw and v are in X,
u<v,andu <x <ovformnox € X, then [f(v)| — |[f(u)|] < M.

(iv) f7! preserves regular sets.
Then f can be extended to a function g over Z* that is realized by a gsm.

Proof. Let g be defined as follows. For x € X let g(x) = f(x). If # > x for
no element x € X, let g(#) = e. If x € X and 4 > x, with no element y € X
such that x <y < u, let g(#) = g(x). Clearly g is an extension of f over Z*
which satisfies conditions (i), (ii), and (iii) of the Introduction. To see that g
is realized by a gsm, it suffices to show that g=! preserves regular sets.

Let Z C A* be a regular set. By hypothesis, f1(Z) and X = f~1(A*) are
regular. Then H, = f~1(Z), Hy = X — f~1(Z), and H; = =* — X are disjoint
regular sets whose union is £*. Thus there exists a structure

(Ky Ey 6y Ply Fly F2y F3)»
the F; being disjoint with union K, such that
H,={wé€ =*|5(pr,w) € F}}  fori=1,23(@3)

For each p € K let p’ and p’’ be abstract symbols. For each a € Z let a’
and a”’ be abstract symbols. Let ' = {a’|a € =}, 21 = {a’,a" |a € I},
and let sy be a symbol not in {p’, p”’ | p € K}. Let 7 be the homomorphism of
Z:* into Z* defined by 7(a¢’) = 7(e¢”’) = a for each @’ and @’ in Z;. We shall
construct a gsm S = (Kg, Z, Zy, 8g, Ag, So), where

Ks = {30} ) {P,r P” l P € K}r
such that for D = 7[S(Z¥*) N Z,*2'] either

™ DU e} = g1 (2)
or
** D =¢g'(2),

thereby proving that g=1(Z) is regular.

(@ e€ Z. Let @ be in 2. If §(p1, a) € Fo, let 55(s0, @) = 6(p1,a)” and
As(so, @) = a@”’. Otherwise let 68g(so, @) = 6(p1,a) and Ng(sp,a) = a'. If
8(p,a) € F, let 85(p’, a) = 6(p, @)’ and Ag(p’, a) = a’’. Otherwise let

Bs(pl) 11) = 5(?, a),

and Mg(p',a) = a’. If 6(p, a) € Fy, let §5(p", a) = 8(p, a)’ and A\s(p”, a) = a'.
Otherwise let 85(p”’, a) = §(p, @)" and rs(p", a) = a”.
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Now e ¢ D\U{e} and e € g71(Z). f u > x, u # ¢, forno x € X, then u € D
and, since g(u) = ¢, # € g7'(Z). If u # ¢ is in f~1(Z), then u € g71(Z) U D.
If x € f71(Z) and u > x, with no y € X such that x < y < #, then

w € g(Z) N\ D.

If we X —f12), then u is in ¥ — [D\U {¢}] and in Z* — g~ 1(2). If
x € X —fY(Z) and # > x, with no ¥y € X such that x < y < u, then u is
in Z* — g71(Z) and Z* — [D U {¢}]. Thus (*) holds.

B) ed Z. Leta € Z. If 6(p1,a) € Fy, let 85(so, @) = 6(p1,a)’ and

As(so, @) = a'.

Otherwise let 85(so, @) = 6(p1, @) and As(so, @) = @’’. Let 65(p', @), d5(p”, a),
As(p’, a), and Ag(p", @) be defined as in (@). By an argument as in (a), we may
show that (**) holds.
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