
MODERN GENERAL RISK THEORY
BERTIL ALMER1)

RISK ELEMENTS — DEFINITIONS AND GENERAL PROPERTIES.

1. Introduction

Modern life is characterized by risks of different kind: some
threatening all persons and some restricted to the owners of
property, motor cars, etc., while still others are typical for some
individuals or for special occupations. The corresponding accidents,
losses or claims will occur suddenly and unexpectedly and may
involve considerable financial loss. It is quite evident that modern
life is a fit subject for risk theory, and that some results in the
pure mathematic theory might have applications in the study of
problems in real life.

In practice, however, we can identify risk theory with insurance
risk theory or with the application of the theory of probability on
insurance risk problems. This general definition has the advantage,
that it covers a wide field of different risks and risk problems as
specified in the insurance texts—and a great collection of risk
situations = claims occurred (with corresponding loss amounts)
is available in the claims acts. In fact, I believe that any actuary
or mathematician, starting his researches in risk theory or in risk
statistics, should begin his studies by a series of actual claims acts.

2. Definitions and some general -properties

Detail studies of the claims acts in any chosen branch will prove
that almost all claims are the result of well-defined risk situations
of short duration—and that the actual accident is usually caused
or generated by the combination of a primary cause and some
unlucky circumstances.

As an example, we might choose a road accident—started by a
small driving error, made worse by a bad patch of road, and made
critical by a meeting car, or a car on the cross-road, passing that

*) Because of the decease of Dr. Aimer the proofs of this paper are corrected
by Dr. Carl Philipson without accepting responsibility for the exact formul-
ation of the author's intents.
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very second or those fifty feet which represent all the difference
between collision or no-collision. This example illustrates that some
types of risk situations might occur very often without any
accident because the unlucky circumstances have not combined
into a critical risk situation—and also the great influence of the
time factor and of the "meeting traffic" in motor car insurance.

Another example might also be of some interest: the fire risk
in a one-family house. For our purpose, the heating arrangement
represents a very small risk; still we will divide that risk, say, into
half-day elements to avoid the introduction of continuous risk
elements. The residue is made up of lighted matches, cigarettes,
candles and eventually a fire-place in the sitting-room, and an
electric oven (or cokes oven) in the kitchen, all representing risk
situations of short duration (or divided into short sub-elements).
At the same time it is evident, that the "tariff risk", calculated by
some parameters describing house and furniture, is most insufficient
to characterize the complete risk, which depends more on the
family's manner of living (high-life?, non-smoker?, late hours?),
carelessness and similar factors.

This is a great problem in most insurance branches, because no
tariff parameters can express the exact individual risk, and all
control by the most advanced statistics can only prove that tariff
premiums are correct in the mean.

The problem is closely associated with another problem, which
is analyzed in this paper, that of "stochastic disorder". In short:
when authorities declare that "premiums should be exactly deter-
mined by statistics even for the greater part of the individual
risks" I have proved that this should be translated into "(as an
ideal) tariff premiums (diminished by standard additions) should
in the long run prove approximatively equal to risk premiums for
any combination of risk groups of sufficient magnitude."

Starting from the advanced analysis of claims acts—including
the much more frequent analogous risk situations without claims—
we will define our risk elements as follows.

Definitions:
Claim = effect of risk element (i), ruled by chance and including

some form of damage, and loss of a certain amount of money,
which can be insured (= X{).
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I38 MODERN GENERAL RISK THEORY

Risk element (i) is characterized by [pi | <\ii(x) | 8<(jy)],
where

probability of a claim occurring = pt (0 ^fti < < 1)
"claims curve" = probable risk amount distribution Yi(x) for
%{ ̂  x , w i t h <pi {%) dx

CO

probable risk amount, mean = J x <\>(x) dx — Xi
0

contribution to total claims amount = y distributed as 6j(y)
= Pi +« (y). mean = p
set or system of risk elements = {pt \ <\>i (x) | 6j(y)} i — 1, 2, 3,
. . .N
risk object = object insured—generally the insurance will
cover damage (from fire etc.) on object insured or damage caused
by the (object) insured on other objects (= third party).

In analysis, we should observe the following properties of risk
elements or sets of risk elements:

a. Claims acts seem to indicate that the total number of risk
elements in one (insurance) year is finite but very large = N.
This small simplification is accepted here, but of no great importance
because

all distribution functions are of limited variation (a variation
borne"e) and completely determined by the values in the enumer-
able rational points of the plane.
all Stieltjes integrals on (simple or) positive functions can be
uniformly approximated by finite sums.

b. Individual risk elements and individual claims are character-
ized by an almost unlimited number of parameters and other
markings, which may be used to form "statistical groups" in
different analyses—among others

a fixed point on the line of time—eventually followed by a short
period—representing the time when any particular risk element
(i) is active or the occurrence of any particular claim
insurance parameters: tariff, subtariff, geographical district,
occupation classes, profession, age, sex, bonus class, etc.; sums
insured, HP, maker, speed,
claims parameters (including insurance parameters and further):
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type of accident or claim, causes, other circumstances, weekday
and time; claims amount, "excess classes" (= classes according
to claims amount, say 0-1.000-10.000-100.000-), days of illness,
grade of disablement, etc.

c. Both risk objects and claims are sometimes divided into
subelements, defined by some parameters or markings, for instance

traffic: collisions, personal damage, disablement, amount x^z,
some particular causes, amount minus loss excess, catastrophes,
multiple claims,
accident: disablement claims, claims from chosen causes,
fire: catastrophe claims, "contagion" from neighbouring risks
(as a cause or a consequence),
but also in principle non-actualized claims, say
traffic: latent claim with big danger and strong reactions on the
driver's future driving, similar to the effect of a bad catastrophe,
sickness: acute claim = illness in bed versus latent claim =
risk for contagion.

d. Conversely, we can form combined risk elements, representing
the total risk for an insurance in a calendar year. This is quite good,
if the total claims frequency p% in the year does not exceed some
pro mille (life, fire) and if we have a good control of the risk for
more than one claim (Cf. ASTIN 1961).

e. Generally, detail studies of the individual risk elements in
a system are impossible to perform, and even the combined risk
elements above, which are identified with individual insurances,
will only lead to an apparent simplification. Our real problem is
to study the

risk a priori as the origin of claims, governed by chance,
risk a posteriori or claims occurred,

and the corresponding
probabilities, claims frequencies and claims amounts,
risk groups or statistical groups (tariff groups),

and to decide whether the risk system is large enough to give good
statistical figures or not.

In risk analysis and statistical studies the following system of
figures and symbols is utilized
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140 MODERN GENERAL RISK THEORY

Risk elements (i) a priori Risk groups a priori

Claims probability = pi Number of claims = n = Y>pi
(i = 1, 2, 3, . . . N)

Claims amount = x% Actual claims = X] (j = 1, 2,
. . . n)

Claims curve = <\ii{x) Claims curve ty(x) = 1ip{ tyi(x)ln
Mean value = m% Mean value = 'Zpimi/n = m = x

Risk groups a priori Risk groups a posteriori

Number of insurances = N(I), or sums insured = S(I), premiums

Number of claims = n Number of claims (occurred) = v
Claim frequency = / = n/N(I) Claim frequency = 9 = v/iV(7)
Individual claims = Xj Individual claims = E,j

n V

Sum total of claims = y = £ xj Sum total of claims = -q = S ^

Mean value of claims = m = x Mean value of claims = \ = YJ/V

Mean value of sum total = n.m = J yd(y)dy = y
0

Risk premium = r = y/N(I) Risk premium = p = r\/N(I)
Relative risk premium °/oo = y/S(/)'iooo
Loss percent = loo.y/P (calculated or tabulated)

The "claims curve" (p(̂ ) is defined by the distribution of ^ accord-
ing to magnitude, and is constructed simply by counting the number
of claims above a variable limit z.

3. Error formulas—the road from risk elements to homogeneous
binominal distributions and from homogeneous distributions to
poisson series.

In the general risk theory we should avoid the introduction of
restrictive hypotheses as much as possible. So far we have only
made use of:

a. Risk elements are conform (or similar) to risk situations, as
these are described in the claims acts of different insurance
branches.
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b. Risk elements are formed by a definite small probability pi
for the effect "claim".

c. In case a claim has occurred, there is further a definite proba-
bility—expressed by the "claims curve" tyi(x)—for the claims
amount.

d. All risk elements and all claims are actualised at definite points
on the line of time, and characterized by a series of parameters
or markings giving them a definite place in most statistic
classifications.

Returning to the claims acts in any specified branch we
should observe, that the sequence of claims represents a
mixture of:

different tariffs and risk classes,
risk situations where pi is comparatively large (say i %0) or
very small—or else where large claims are menacing or even
completely destructing valuable objects, and, as a contrast,
situations leading to small scratches and discolourings;

in short that the corresponding stochastic variables (v, \, YJ) will
move in a most irregular way, without any contact or conformity
to homogeneous systems or simple binominal distributions.

In order to get a full control of this complicated problem, we
should try to obtain

a. a simplified or homogenized risk system with the same [n \ <l>(x)]
and approximately the same properties.

b. exact error limits or at least some estimate—also an estimate
of the effective difference between the general system of risk
elements and the corresponding Poisson system with the same
values for

risk group = (a, (3, y, 8) or total
number of claims a priori = n
claims curve = ty{x)
total claims amount a priori = y

This problem is completely solved by the first error theorem
(Cf. New York 1957).
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Definition: For any general system of risk elements {pi \ tyi (x) |6j(y)}
and for any risk group {a, (3, y, 8 | n, fy(x), y}, where

n = Zfii (i = 1, 2, 3, . . . N) 0 ^ pi < 1

£(#) = 'Lpityi{x)ln x > 0 Y(x) = J $ (x)dx ^ 1
x

y = H pi mi

we form the sum of squares
N
S piz = nz.Q ^ n2/L (L = integer)

<-i

and define

Q = (exact) measure of inhomogenity (or asymmetry) for
(«. P. Y. »)

L = reduced number of risk elements or measure of inhomo-
genity (for all groups and amounts)

N = number of risk elements (finite).
Q(x) = S [fit ¥,(*)]« : [S Pi ¥«(*)]« ^ i/L

= measure of inhomogenity for amounts S± x.

Theorem 1: The generating function for a general system of inde-
pendent risk elements = general binominal system is expressed by

n (1 - + t.pi) = n
N

/ Pit \
(i-̂ «). n 1 + -~) =

= n

and

0 0 v L '

where the coefficient of tk is a symmetric function of the proba-
bilities and expresses the probability that the stochastic variable v
(number of claims a posteriori) will take the value k; compare

with Poisson: e~n. —
R\
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Theorem 2: Under the sole conditions

£ pi = n (i = 1, 2, 3, . . . N) 0 ̂  pt < 1
S />," = w2. <? ̂  n2/L (L = integer)

the symmetric elementary functions 5^ where \x ±^N,

Si = S/>i S2 = 'Zpipj S3 = Hpipjpic
i<j i<]<k

Sn = E ^ £ia ̂ >is . . .pi^ (h < h < h • • . < v)

take their maximum values Sli
max

M - i ) »' N(N—i)(N—2)n3
S.max = n . 52max = —i — ; 53max = —i il 1 .

1 . 2 iV2 1.2.3 -^3

1 (i—i/N) 1 (i—i/N) {J—2/N)
or Sim ax=w; S2

m a x = — :—-w2; S 3
m a x =-^ —7 —

2! 3!
C max — II T — —

at the same time for the system with maximum symmetry

Pi = njN (i = 1, 2, 3, . . . 2V)

and their minimum values

,mln
1

min —

1.2.3

L\

1 (1—i/L) 1 (1—i/L) (1—2/1)
o r 51mln=w; S2min = -^ J—L n% • S3min= _i L_Zi LJ.

2! 3!

C mln — II T — —
i/ !

at the same time for the system with maximum asymmetry, where

p i = n / L (i = 1 , 2 , 3 , . . . L ) ; p t = o ( i > L )
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The proof by the "three point test" is very simple: we "freeze" all
variables but three and reduce the problem to

x + y + z = A x2 + y* + z2 = B

xy + xz + yz = \VA* — B rj ( maximum
xyz = Z = \ m l n l m u m

with only one "degree of freedom"—the resulting condition
x = y<zorx = y > z is permutated—which leads to the state-
ment above.

Theorem 3: The series in symmetric functions, representing
maximum symmetry

ft!

and (in complete form)

will generally converge very quickly with N to the "exponential
distribution" ("Poisson")

and all terms or probabilities in any considerable distance from
the maximum term with JI = n will be exceedingly small.

The convergence of the system with maximum asymmetry will
greatly depend on the reduced number of elements L.

Convergence will be retarded in particular if there exists a small
group of "very bad risks" i.e. with large values of pi. For instance pi
might represent millionth parts, with a very small group with
pi co 1/10 generating most of the number of claims n.

Theorem 4: The claims curve ty{x) for the maximum system and
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MODERN GENERAL RISK THEORY 145

the minimum system and also for the resulting Poisson system is
not changed, owing to definitions and the properties of

Q(x) ^ i/L.

(First) Error Theorem: All systems of independent risk elements

with the same characteristic values (a priori):

number of elements = N
number of claims = n

claims curve = <\>(x) — or n?¥(x) = number of claims ^ x

reduced number of elements = L = measure of inhomogenity,
will define a stochastic variable v (number a posteriori) with values
equal to coefficients of the generating function in t falling between:

homogenized system = system of maximum symmetry
and

reduced homogenized system = system of maximum asymmetry.

Note: This apparent anomaly—both series having the same sum
of coefficients—is made possible by the small supplementary factors

e N ''' and e n L ; compare e VL N) =

= e NL ' C\D e L and A^ resp. B^

adjusting the limits given to exact values.

Further, the difference between the system of maximum symme-
try and the corresponding infinite Poisson series will probably
always be negligeable in insurance problems. —

The lower limit is more important and if strong asymmetry is
to be feared, the eventual methods to determine L should always
be carefully analyzed. Numerical error expressions are easily
calculated from the generating function compared with note above,
simply by applying the Stirling formula and by concentrating to
the neighbourhood of y. = n where coefficients attain their maxi-
mum value.

Corollary: In the insurance theory asymmetry is generally the
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effect of a small set of very bad cases and when the group is growing
we might assume that new risks represent in average fairly good
risks.

In this case the adjustment
, a N-L ,ref

e~in LN co e L —>- 1 with increasing n,

proves that the original system of risk elements will rapidly
converge to the ordinary Poisson distribution when n (number of
claims, cv> number of insurances) increases.

Note: The corollary proves the importance of good estimates of
L (degree of inhomogenity).

Many methods have been tested in practice, but generally either
the statistic material is far too meagre, or else the conditions are
too restrictive. Some examples:

a. Analysis of accident insurance (about 1910). Claims frequency
9 varies from 50 to 300 °/oo with the mean 100 °/oo. For ten years
old insurances the claims frequency was calculated for first and
second five-year period. Criticised because the personal risk will
change in ten years.—The same method has been proposed for
motor car, where the result should be still better as many large
groups will have <p = 300 °/oo, 9 = 500 °/oo or even larger. Un-
fortunately bonus experience proves that the personal risk will
generally be reduced to one third or less in some few years,—and
then is subject to jacks or jerks, probably depending on children
growing up or changes in the manner of living.

b. General study of technical risk character, compared with
values of cp for different statistical groups; probably one of the best
methods, but very difficult to work through.

c. By analyzing the relative frequency of insurances with no,
one, two, three, four, etc., claims (accumulation curves). This
important method assumes that claims can be repeated without
change in the primary generating force or frequency and without
any vacant period, in short that claims can be described by the
"Poisson process". The same hypothesis is standard in many
statistical researches, often with excellent results, but sometimes
with considerable differences. Often these differences will take the
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form of a "stretched" curve, where the frequency of "many claims"
is increased compared with "no claims". Evidently, the same result
is obtained by an exponential binomial (the sum of two Poisson
terms) and practical experience proves that at least in the insurance
theory, an exponential trinomial will always be sufficient, and—
what is more important—easy to determine owing to the quick
change in curvature of the Poisson curve for changes in frequency.

Fig. 1

Definition: Accumulating curve i.e. curve expressing the relative
frequency of risk objects = insurances within a risk group
(a, p, Y» &) with number of claims v = 1, 2, 3, 4, 5, 6, 7, . . .
respectively.

In insurance risk statistics we should distinguish between
branches with

very small claim frequency 9 00 I- IO °/OO — fire, burglary
moderate claim frequency 9 <x) 100 °/oo — accident, third party
large claim frequency 9 c\3 50-500% (or more)—motor car,
"traffic".—

In the first case the number of insurances with multiple claims
should be negligeable, in the second case some large risk groups
supposed to be fairly homogeneous will furnish test material, and
in the last case we will find many risk groups proving, that it is
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I48 MODERN GENERAL RISK THEORY

next to impossible to define homogeneous groups by ordinary
tariff parameters.

Some typical figures for motor car were given in my New York
(1957) paper, for instance (mean claims frequency = Poisson =
139.2 °/oo)

r J. c *• i- -n • Calculated by 76,75% 100 °/oo +
Grou-b Statistics Poisson „. n, „, n,y 23% 250 °/oo + 0,25 % 2.000 °/oo

8740

I

2

3
4

claims
claim
claims
claims
claims

874
112

10,

2,

o,

°/oo

8
1

2

*) 869
122

8
0,

0

,5
4
,00

9,7
1,0

o,3
(or more)

*) Risk group (homogeneous ?) 00 20.000 insurances

Theorem 5: In insurance risk statistics no tariff parameters will
produce real homogeneous risk groups and for motor car the
proportion 75 % standard risks, 24 % poor risks, 1 % very bad
risks, seems to dominate (extra good risks, say, 9 = 50 °/oo are
impossible to discover by existing methods).—The accumulating
curve can always be reduced to an exponential trinomial, at the
same time utilized for smoothing out the curve.—The corresponding
measure of inhomogenity (L), however, will prove that for practical
purpose and not too small values of n we should always take the
homogeneous Poisson and reserve "the inhomogeneous Poisson
system" for very specialized researches.

4. Error theorems—stochastic error of (n \ y \ r) 00 (v | 7] | p)

Definition: Relative error in the form (1 ± 1/ (/w) or (1 ± v\ )/n)
and (1 i i/|/v) or (1 i w/j/v) is introduced for many reasons:

a. only these two forms are necessary to characterize any risk
group,

b. relative error can be used for both total claims amount and
risk premium,

c. in statistics relative error is utilized in the same sense as the
"standard error" x ±. G a s a special form of "confidence interval",
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d. even when the exact distribution of v, yj, p is unknown or
undefined the following theorem should be quite correct.

Theorem 6: In any series of stochastic experiments either simul-
taneous or following each other in time, the difference between
"true value" or "value a priori" and "results occurred" or "value
a posteriori" should be less than the relative error for at least 50 %,
and exceed double the relative error for at most 5 %, (Cf. all
ordinary distribution), of the total number of stochastic experi-
ments.

Second error Theorem (7): Standard formulas for relative error in
insurance statistics, when the system has converged to Poisson
{a = |/«)

v (M « . (1 i I/|/M) and n = unknown CVD v. (1 ± i/Y^)
7] 00 y . (1 ± v\]Jn) and y = unknown 00 v) . (1 ± w//v)

where

v = "Modified Coefficient of Variance" = |/i + V2 =

= Y J" x2 <\>(x)dx : J" x<]/(x)dx; and J° x<]i(x)dx = m = x;
Jo" t K * ) ^ = 1.

The first formula is found in many text books; the second is
a modern product of extensive statistical researches—in Sweden
(1954) and other countries—and proving that generally

v 00 6 for "traffic", third party, fire
v co 3 for most other branches
v co 1 for short intervals
v2co 2 for excess intervals in motor car 0-1.000-20.000-60.000

Sw.Cr.

My formulas with number of claims and not insurances, seem
to be a good simplification—also number of claims is printed in
most statistical tables.

Corollary: From these formulas and with our previous notations
we might derive:

Claims frequency = 9 = v/2V(/) C\D njN{I) . (1 ± i/|/W)
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Risk premium = p = r\IN(I) 00 r . (1 ± w/|/W) = y/N(I).(i ± w/

r = y/tf (i) = p . (1 ± «/

Reactions on tariff construction—and tariff work generally.—
When first published these formulas acted as a small bomb on

tariff work. Most tariffs are constructed in one of two ways:

a. Tariff centers round some principal tariff classes. For each
class premiums are decided, "according to" statistics with standard
additions for costs, risk development and catastrophe risk. Minor
tariffs should also use statistics and small subtariffs should be
formed by a system of additions or factors.

b. Professions, industries or similar subgroups are referred to
one standard scale, say, with premium differences of 20 %, and
placed on that scale according to risk statistics.

In both cases we need statistics with a relative error of about
± 10 % or less. However, this would correspond to a risk group
with 2.500 claims (or for some branches 600 claims)—and that's
the bomb.

In practice and for one year the total number of claims for the
cooperating group of tariff companies in Sweden might attain

in motor car and traffic insurance 150.000
accident or third party 50.000
fire and most other branches 10.000

At the same time there is a strong tendency for the greater part
of the claims to accumulate in a small number of tariff groups.
Evidently, the high-flying hopes of a tariff, where most (individual)
premiums are determined by statistics will never be realized—on
the other hand the effect of the error theorems will be that in
"practical risk theory" we will concentrate on methods to extract
the maximum effect from our risk statistics.

(In my New York paper (1957) and in some ASTIN papers I
have analyzed some methods, which might work in that direction)1).

Finally, we should observe that requisitions to the statistical
department of a company from tariff men are often impossible to

1) Excess claims analysis: Risk premiums calculated in excess classes
(0-1.000-20.000-60.000) Composite factor analysis. Method to express risk
premiums as product of, say, tariff factor, district factor and yearly factor.
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realize—except by pure guesswork—and experienced actuaries
should help their young colleagues by this declaration, not once
but many times.

5. Error theorems—the problem of prognosis.

The scientific risk theory is based on theory of probability and
all errors or distributions are given in the stochastic sense. For a
large risk class with some 100.000 insurances we might assume
that the number of claims occurred is exactly say 10.000.

Using the modern form of error formulas, expressed by a factor
with n or v instead of number of insurances (claims frequency
= <p and "no-claims frequency" = 1 — 9), we will find an error
interval

n co 10.000 . (1 ± i/j/10.000).

We have the somewhat astonishing result, that the unknown
number of claims a priori (probability? or sometimes defined by
an integral) is almost exactly known, as an error of ± 1 % being
negligeable in practical risk statistics. Even the corresponding
risk premium a priori is almost exact, say

V- = 50 • (1 ± 6/j/io.ooo) = 50 ± 3 = interval 47-53,

or well within our critical "10 % limit".

(I have been proud to declare to outsiders, that sometimes even
the risk premium (or frequency) a priori is accessible to modern
statistical methods).

The same fact, however, applied to some very stabilized system
of insurances (tariff)—or to general systems (or branch totals)
when introducing claims frequencies and risk premiums a priori—•
will also prove that differences in the statistical figures from year
to year are only partially due to pure "stochastic oscillations" and
even that "variations" in the primary risk or risk a priori will
generate the greater part of the differences. In motor car insurance
we have analyzed these variations and obtained some results,
e.g. the influence of the weather and the influence of "new insuran-
ces from the last two or three years". These being quite arbitrary
—even the strictest deterministic philosopher can only declare,
that they are determined by chance in another sphere, without
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any stochastic relations to insurances or risk theory—we have
full right to insist on the term "arbitrary functions".

Prognosis:
All prognosis in risk statistics and general statistics is based

on a series of statistics for previous years and the principle of
continuity. As a rule quotients are better stabilized than absolute
figures, and results are often much improved, if we find the right
type of quotient. Technically our best figures (for large tariffs)
should be expressed by primitive curves, drawn by hand as a sort
of mean curves. Trend should always be included as a hypothesis
—at least in the linear form.

Risk premium
or Mean risk premium

cf. Factor anal/sis

-Year

Fig. 2

In the construction of extrapolation curves we should observe
that the sequence of risk elements is not stabilized, as some sort
of population and that the "population" of insurances only repeats
risk objects but neither risk situations nor risk elements or claims.

More precisely, our studies of the probable oscillations of risk
figures according to chance have proved that these should be small
—much smaller than those often registered in practical statistics
—and consequently that effective variations of the primary risk
a priori is by far the most important factor in the analysis of risk
differences between consecutive years.
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Finally, we might observe, that increasing risk figures will always
go by leaps and jumps, something like: after two or three years
"unaltered", a large increase which soon ceases—very uncom-
fortable for the tariff actuary.
Third error theorem (8): In actual statistics and in real life the
sequence of risk elements (and the Poisson expression, where
[n | 4* (x)] is often smoothened out further to a continuous parameter
function in time) will always represent a complex of risk situations
with most varying characteristics and depending on arbitrary
functions ("aging" of risks and climatic factors being among the
most prominent), and prognosis is considerably more uncertain
than it should be, if chance was the principal cause of error.

Corollary: In principle at least the error theorem is applicable
to most statistical research work—including sampling—with the
general effect, that ordinary error limits should be tested anew
(for eventual modifications).

The reason is, that in one particular field we have proved, that
the effect of the variations between years is more important than
the oscillations by chance—and that similar irregularities might
be quite common, once we really look for them.

Also there is a great difference between genuine populations,
made up by individuals with stabilized properties and with a small
proportion of enterings and exits, and nominal populations, for
example one year's claims, generated by a fluctuating risk system.

Note i : "Research work in medicine analysis of road accidents
by cases from a single hospital etc. might be valuable—but formal
error limits are not". "In sampling we must always be on guard
against the feeling, that the active probability is equalized, all
times we have found no good reason for differences".

Note 2: In some discussions this theorem has been described as
a small bomb—in actualizing problems from the next chapter.

RISK THEORY—RELATIONS TO THE THEORY OF PROBABILITY.

I . Introduction

Even the most primitive forms of insurance, for instance burial
associations in old Rome, general contributions in case of fire in
the Middle Ages, early forms of marine insurance by groups of
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individual merchants, and pension funds (based on actual mortality)
in our times are based on some general concepts, say:

a universal risk for damage and pecuniar loss,
an estimate of the mean risk for any large group,
extra loss (except the mean risk) for large groups is not very

probable.

Evidently, these concepts belong to the theory of probability
and when this theory was worked out in the early XlXth century,
the insurance theory got a mighty instrument both for exact
definitions and for risk analysis.

For a long period, however, actuarial problems were concen-
trated, say, to general risk structure in life insurance (in particular
the dependence on age and sex, on entrance year etc.), and to a
small volume of insurance risk statistics, both in life insurance and
in some branches of non-life insurance. In most cases the number
and classification of insurances were based either on lists of new
insurances, alterations and cancellings, or on a manual counting
of some form of insurance cards (sorted before on risk classes);
claims and eventual claims amounts were calculated directly from
claims cards or claims acts.

For these problems probability is very well described by a system
of urns containing a (large) number of white and black balls,
and defining:

Probability a priori = ft = n/N
Stochastic experiments = drawing of balls according to specified

rules.

Stochastic variable = v = number of successes (= white balls)
for an experiment. (A better model is obtained if the number of
balls drawn is determined by a first drawing from an urn with
numbered balls, and all succeeding drawings are made from a
new urn, where every ball carries a number = amount).

Similar models were often used in the analysis of insurance risk
problems and risk theory even in the late twenties (Analysis by
Wold on "rain insurance" to describe and calculate premiums for
different "periods under risk", by the Polya-Eggenberger urn
system).
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2. Modern Probability Theory
In the modern theory of functions of one (or more) real variables

the Lebesgue measure and Lebesgue integrals take a central place,
simply because they lead to a "closed" system and to the proof
of some theorems which could not be proved before.

In order to utilize the Lebesgue system most modern theories
will define probability as an abstract number p where o ^ p < i
—given a priori—and a stochastic (or random) variable \ by a
general distribution function F(x), increasing from o to i in the
interval —• oo to + oo (or by a frequency function f(x) = F'(x),
if this function exists). The old limit definition p = lim n/N, where
n = favourable cases and N = total cases = number of stochastic
experiments has almost disappeared as a formal definition of p.

On the other hand, there was no intention to sacrifice precision
and to introduce probabilities without contact with real problems
(Cf. Keynes' purely abstract theory), and the conditions p = njN
for populations and p = lim njN for a series of identical stochastic
experiments are still conserved, we might say as test conditions,
where differences will invalidate the previous probabilities a priori.

By these conditions it is possible to divide probability theory
into two principal classes:

a. Population and sampling theory characterized by p = n/N
or S pi = i or both.

In demographic statistics—and generally in descriptive statistics
—analysis is concentrated on a population of individuals, which
are classified according to many different parameters, separately
or in combination. All classifications will lead to definite frequencies

p = njN or pi = m/N 2wj = n and 2#>j = i

Generally the population is stabilized with a moderate number
of exits and enterings during one observation period (year). Also,
more important figures and frequencies are taken from official
registers or reports.

On the contrary, minor questions are often analyzed by sampling
and this stabilized population represents an ideal subject for
sampling, as all probabilities a priori and all distribution functions
exist in the form of definite frequencies. Evidently the hypothesis
or definition of probabilities as abstract numbers existing a priori
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is well founded. In many cases sampling can be defined by similar
stabilized populations, in other cases stabilization might be less
advanced, and should be taken as an hypothesis or idealization
of the actual statistic material (in such cases error formulas should
be taken with some care).

As a counter-example we might choose the insurance claims in
some branch during one year, these being generated by a fluctuating
and instable chain of risk situations, and varying from year to year.

b. Stochastic (or random) experiments, which can be repeated
indefinitely under exactly the same conditions, characterized by
p = lim njN (number of experiments decided by operator).

The principal idea in this system of random experiments—
defining (according to classic theory) or verifying (in modern
theory)—one (or more) numerical probabilities by the quotient of
n = number of successes and N = number of experiments, is
evidently, that the difference expressed by the error factor

(I ± fiq/N)

tends to zero, when N tends to infinity (which might be taken as
a full proof of the limit formula).

Applications in a wide range to games of chance, to technology
and to biology are without any immediate interest for our problems.
Some of these have the character of sampling to determine the
primary probability by the experimental frequency, others are
more concerned with results or differences.

Our principal object, however, was the study of how the modern
theory of probability could be applied to modern risk theory—
how to state our exact definition of probability—and generally
to form our theoretical and statistical model by means of the
probability theory.

And there comes the real surprise:

Theorem 9: Standard definitions in the theory of probability are
p = njN or p = lim njN

not applicable to risk theory according to the "third error theorem".
In other words claims represent an ever-changing series of risk

situations and claims characters and a priori probabilities or
characteristics n and ty{x) are "distributed" and vary from period
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to period and from year to year with a "trend"—all making any
time definition to join probabilities as abstract numbers a priori
with statistic results a posteriori more or less void or vacant.

3. Stochastic disorder—a neglected attribute to the results of statistics
and stochastic experiments. Insurance and claim characteristics.

One of my first contacts with randomized systems—free for
speculative analysis—was the kinetic theory of gases, and the
numerical expression for entropy "constant plus the logarithm
of the probability of the actual state" is still an excellent example
of a measure for stochastic disorder, and for that tendency in
stochastic systems to sink into a bottom state of undefinedness.
Gas molecules will even give us one of the best definitions of sto-
chastic disorder: by placing or projecting our cards or figures or
results on well-defined gas molecules and waiting a few minutes
we will get a system with perfect disorder and all systems to follow
will represent new forms with comparatively high probability.

Elementary analysis of stochastic disorder is founded on:

Definition: Stochastic disorder = sequence of results from
(constant and) completely independent random experiments.

Test method (also supplementary definition): All properties of
the sequence should be identical in any arithmetical series with indices

i = kt + I (I = 1, 2, 3, . . . k ; t = o, 1, 2, . . .)

Note 1: Test by arithmetic series compensates eventual varia-
tions in risk (claims frequency) in the analyzed year, also when
analyses goes from tariff to tariff or from district to district (not
to be recommended; time is the best order).

Note 2: Standard test utilizes the successive arithmetic series
with the same difference = k; generally several test series with
different differences, say values from ko to k0 + j , = (k0 + jj2)
(j + 1) different test series with practically the same difference.

Theorem 10: Normal insurance praxis leads to a series of claims
(and claim, numbers) in perfect stochastic disorder, the sequence
being generated by risk elements with a small probability for claim
and a much larger for no-claim. Any change to no-claim should
have exchanged all individual claims from that point in all arith-
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metic series simultaneously. Generally policy numbers—limited
to last three figures—can also be considered to give insurances
in perfect disorder, rearranged by many years' cancellations.
Theorem 11: Different arithmetic series with objects in perfect
stochastic disorder will generate a perfect system of stochastic
experiments, with the sole restriction that the number of claims
is fixed and that "superexcess claims" (very large claims) are
restricted to "the selection of the year". (In principle interest is
here concentrated on risk theory).
Theorem 12: These series will follow ordinary stochastic rules and
if we make a correction for above small defects, they can be used
for an independent determination of the modified coefficient of
variance in the relative error (1 ^ i>/|/»); also for a preliminary
analysis of the distribution of v and consequently of the distribution
0(y) of total claims amount y.
Theorem 13: Test on abstract probabilities. The existence according
to the modern theory of probability of abstract probability numbers
a priori is tested by the demand that for any arithmetic series or
a complex of series and for any set of systematic grouping or
classifications determined a priori, differences between the sum of
abstract numbers a priori and corresponding claims result a pos-
teriori should follow our standard rule for relative errors, and
differences should be distributed conformly to 0(y).

Note 1: Further studies in stochastic disorder will prove both,
that we have found a convergence test with the same "power"
as the more conventional limes test and also some new statistic
methods of analysis of some importance. Consequently, I demand
the same right to speak of probabilities a priori as any competing
system.

Note 2: Collective risk theory has chosen another method to
solve the problem. Restriction to a "stationary stochastic process"
conserves the right to form limit expressions, and the convergence
to Poisson might be proved by the methods in this paper, but is
generally introduced either as a hypothesis (or "idealization"),
or else by forming the mean values for not to small periods (year ?)
of both abstract probabilities a priori and claims occurred a
posteriori.

https://doi.org/10.1017/S0515036100010710 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010710


MODERN GENERAL RISK THEORY 159

SPECIAL PROBLEMS:

Inhomogeneous risk groups:

In principle all risk classes (a, (3, y, 8) are inhomogeneous and for
motor car we have proved the proportion 75 % ordinary risks
(25 % very good?) 24 % poor risks and about 1 % very bad risks.

Every time different groups are blended, homogenity might
increase or diminish but the risk figures (mean values) are governed
by the measure of inhomogenity L (or first error theorem) and
generally homogenity will advance (L proportional to volume)
even if the above proportion is maintained. The latter, however,
is only of interest in the study of individual insurances.

Otherwise they are easily expressed by exponential polynomials
or in a more restrictive sense by "Polya-Eggenberger" or by the
negative binominal distribution.

Theorem 14: When joining similar risk groups, L will increase in
proportion to n, proving that the effects of inhomogenity—
expressed by exponential polynomials in n or by the negative
binominal—will disappear long before that point (n 00 100) where
risk figures can be utilized. And if not, well, then it is time to return
to the primary binominal elements.

Conditional primary probabilities—"ramified" risk lines. (New
York 1957)

By supernatural sight, we should have the power to follow the
risk line £ from the beginning to the end of the year, and to study
risk elements (i) and claims occurred (2y). So far all (N) risk elements
on the line £ are independent.

Further, however, we might find (ramification) points on the
risk line, where the risk in the future was subject to random
decision with at least two alternatives. Assuming there are always
only two alternatives we have:

unaltered risk line £ with the probability 1 — P];
a new risk line £; (with some new and some old risk elements)

with the probability Pj, drawn from the ramification point to the
end of the year.

We will now extend our risk system with a series of new risk
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lines gi £2 £3 . . . in finite number, all starting from £0 and with
the respective probabilities Pi P2 P3 . . .

However, the system is still incomplete as there might be new
ramification points on these new lines. By systematic extension
we finally arrive at a complete system, still in a finite form.

Start

G—
Branch form =- tree

• = Riskelement o = Ramification

Fig- 3

A simple counting will always give us the combined probability
to arrive at some chosen part X of the branch system. This ramified
branch form or tree represents the first expression of a complete
system of conditional lines of risk elements.

Preselection form

—» * —

Fig- 4

The second system or preselection is obtained if we "take a
sharp knife and cut through all risk lines lengthwise from a rami-
fication point backwards to the starting point of the year, leaving
the same risk elements on both lines and conserving the probability
of the ramification point". Continuing in this way we get a bundle
of parallel risk lines, each with a final series of risk elements, which
are independent simply because all random decisions are moved
to one starting point and expressed by the relative probability to
choose any specified risk line.

So far we have only admitted two-way choice, but we have
only to interpolate several ramification points between two risk
elements to get room for a many-way choice. In this way we have
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proved the following important theorem for finite systems (As to
different types of conditional probabilities, affecting future risk
elements, vide New York 1957 and other papers).

Uniformisation theorem (15): In a finite system of risk elements (i)

£0: {pi I +<(*) I 6«(y)} * = 1, 2, 3, . . .N
the risk from a specified point in time (T) might depend on a
precise random choice

Rf (P;W . fyW I P,<2> . %<2> I P/3> . %<3> I (I—iy«—P,W—P;<3>) . £0)

representing the tree-form of the risk system. This system can
always be transformed to a preselection at the starting point
To ( ^ T ^ Ti) between the same total number of alternatives

{Pfc|£*} A = i ,a , 3 , . . . if 2P f c = i
followed each by one single risk line made up of independent risk
elements.

All finite risk systems with locally well-defined ramifications
can be transformed into both tree-form and preselection form.
In particular all risk systems made up by risk elements (insurances),
with well-defined rules for more than one claim can be reduced to
this form.

(In order to apply this theory to Poisson we must make an easy
extension to enumerable systems).

In this problem both exponential polynomials in n and the
two-constant negative binominal distribution may be used for
increased applicability as the convergence to simplified forms is
not evident.

THE TRANSFORMATION PROBLEM

Risk statistics will furnish a series of figures for large and mod-
erate statistical risk groups such as n, f, m,r — v, 9, £, p and also ty(x)
(relative frequency of claims with different magnitude).

ty(x) represents no "distribution" in the ordinary sense of the
word and different parts of this "claims curve" are absolutely
independent and permit no conclusion from one part of the curve
to another; also with increasing material the curve will only
slowly change its form and does not converge to the normal distri-
bution (it is "additive" and not "multiplicative").
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The important real distributions of the stochastic variables
(v, T]) CVD (n, y) can never be determined by real statistics owing
to the third error theorem. In most cases the hypothesis that v (n)
is distributed by the simple Poisson should be very good, but
7) (y) is more difficult.

Many authors will try expressions derived from the normal
distribution or the Edgeworth series, and apply higher moments
(3, 4, 5), which is not very good, as the mean value is not stabilized,
and these higher moments are very sensitive to a small part of
ty(x), so that the expressions are determined from a few very large
claims, also most formulas are constructed as asymptotic formulas.

Consequently we have here a neat transformation problem

[n, m, <\>(x)] —>• 0 (n | M = n.m | y)

which in principle should be quite simple (by calculating some
asterisk powers), but in practice represents an intricate calculation
problem.

In my researches I have always concentrated on exponential
polynomials from two reasons:

ia. The claims curve is logarithmically convex = convex against
the system of exponential curves

b. The convexity is weak and an exponential monomial (and
still better binomial) will give a very good approximation for quite
large intervals (Note: quite good also for Bessel functions) and
furnish a very good smoothing out.
- c. An exponential binomial as approximation for both functions
leads to quick and simple numerical integration of asterisk products
for many types of functions.

d. An exponential trinomial (or tetranomial) will express the
whole claims curve from + 00 to o with an effective maximum
error of, say, 2 or 3 %, and the corresponding claims amounts
by a "may be correct (exact)" series of values.

2. Poisson + exponential monomials

a. XT' e-ax

represent the characteristics (according to the theory of differential
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equations) or elementary standard solutions both to the problem
of asterisk powers, and the transformation problem.

I will now simply apply to [i] giving some actual examples of
asterisk multiplication and Laplace transforms

«(/(*)) = J e~sx A*)**
0

Theorem 16: Assuming that the stochastic variable (number of
claims) v is Poisson distributed with the a priori value (or mean
value) n, the probability for exactly k claims is expressed by

nk v—, nk

e~n. — where ) e'n. — = e~n (e»—i) = i — e~n,

kl Z-J kl

where e'n (no claims) is negligeable and

/ nk\ \~\ _ n* 1

k e~n. —\=n ) e n — = n . e n . en . = n mean value
\ k\j Z - J (k—1)!

Assuming further that the claims curve <\>(%) is expressed by the
exponential monomial e'x the asterisk powers or claims curves
in case there are exactly k claims is expressed by

#2 x3 x^—*
k = i:e-x, k = 2:xe~x, k = 3: — e'x, k = dt:~ e~x, k:jr^^e-x

Consequently, the claims distribution for k claims and for all
separate values of k taken with their respective probabilities is

n

k claims: e n . -77 . e x
xk-i

k\ (A—1)!

All values ) e,~n~x — .Tl = Hlnx)
J—I kl (k—1)!

Note i : H(nx) co e+ 'nx for nx -> oo and —n—x-\-2 ynx =
= — (J/W—j/#)2 = convergence

Note 2: Hyperbolic Bessel function l i (2^) = J/jx \ — —

7i (2I/J1) » _̂
Private form £1 (*) = — - i^-;H{nx) = -7= . e"""* /1 (2l/£)

J/(i. ]/•»» r
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Finally we have proved that the elementary transformation problem

is resolved by above hyperbolic Bessel function I\ {2^nx) and that
more precisely

G (n I <\>(x) = e~x | y) = n . e'n-y . ^

(claims curve, relative frequency of YJ around the mean value)

Corollary: In an exponential polynomial—say tetranomial—•
we will often put

ntx.2 na.3 nou a i 4-a2 -f- <X3 + a 4 = I

= I/Pi =I/Pi =l/Ps =
<{)(*) = ai pi e"3ia:+a2Pa

leading to four similar Bessel functions

na$e~*'-B* . Bi {na$y) =

Theorem 17: (my "first solution", Colloquium Leppilampi 1956,
New York 1957): Systematic researches (in traffic, motor car and
other branches) have proved that an exponential trinomial or
tetranomial will always be sufficient to express

Y(#) = distribution of number of claims ^ x <\i{x) = —V (x)

J x <\>(x)dx = distribution of claims amounts slightly smoothened
*
out and with a maximum relative error of some percent.

Consequently, the transformation problem is resolved with a
small relative error by three asterisk multiplications.

, "I
. / 1 ( 2 1 / n w P i y ) * . . . *

. , ]
^ v r " J
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Actual integrations are simplified by using a special integrating
method, similar to the methods by Simpson and Gauss but based
on exponentials. Making a small table for, say, n = ioo, 200, 500,
1,000, 2,000, 5,000, 10,000, 100,000 conserving some values of y
from the integration process, we obtain a complete solution of the
transformation problem and not only an asymptotic solution
slowly converging (Cf. next theorem).

Up to this point analysis has been made without detail reference
to exponential polynomials.—Now it is necessary to combine
different elements. A good example from practical analysis is given
by motor car and traffic 1950, but quite similar to modern figures
(values in the unit 1,000 Sw.Cr. 00 m = mean value of individual
claims)

T(x) = 0,75 . e~ix + 0,18 . e~x + 0.05 . e~°-3x + 0.02 . e ~°-Ohx

<K*) = - T ' ( * )
Assuming n = 10.000 the mean value of y = M = 10.000.000 =
10.000 units m (Excess mean values approximately 0 . . i.ooo:a2
300, 1.000 . . . 20.000 : ^2 2.500, 20.000 : £̂> 40.000).

Second solution: Integrating by asymptotic formulas and by
the properties of one "normal distribution" serving as reference.

(Only some head points of the proof are given)

1. 8(» I *¥(x) = a.ie-^x + ^e~^x + atae'** + <ue~^x \ y)
2. Elementary solution 0 (n | ${x) = $e~&x \ y) —

Li k\(k+i)\ ]/n$y v v v '
k — 0

3. Asymptotic formula (according to Hankel)

'3?5 ,1 — +
j (A

4. The following important lemma is proved:
Assume n\m\ + n-m?, = n.m (n=ni-\-nz) and/i(#) * f%(x) = F(x)
Then fi(z) * f%(z) = F(z) is valid with centralized variables
We now introduce the centralized variable
y z= n.m + z', P = i\m\ (3y = n + $z;
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5. Elementary solution 6(w | $e~&x | y)

/(3Z P222 \2

6. First form of exponential e'n \$ji ~ J^ + •••) proves that
it is dominated by g-W4» a n d converges although in
another form g + W 8 » ' is made free

7. Second form of exponential g-W4» . e+&3z3l*n*- +... p r o v e s

that it can be divided into a strict normal term e~&viin

and the series (factor):

We have now the full material to prove the following theorem
although there is still some lengthy detail work.

Theorem 18: Applying the Hankel asymptotic formulas to the
elementary solution of the transformation problem by a Bessel
function 7i(2j/W[3y) this is transformed to the product of a "normal
distribution" e~^Zilin and a set of short series with no, one or
two terms to obtain the order ($z/n)2 or (3z/w2 . However, all
groups of the order 1/w2 have the maximum error O(i/w3) and for
groups with at least 100 claims this signifies 1/1.000.000 = "nu-
merically exact" in further work.

So far I have not mentioned the last point in the proof: integrals
are taken from o . . . + 00 in y and —n.m . . . + 00 in z. In this
point, (—nm) however, the exponential is extremely small, say,
10 ~100 for some actual forms and should be taken to —̂ 00 without
changing anything. By this simple device all integrals

+«

J e~ix\ x"-dx can be calculated from the Laplace transforms
— 00

J e~xs ty(x)dx.
0

We will now finish by the following two theorems on exact
solutions of the transformation problem.
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Theorem 19: Assuming that number of claims n ^ 10,000 and
<p(x) in the form of an exponential tetranomial are given exactly, we
can form a numerically exact expression for the distribution function

6(« I ty(x) = a ip i e "^ + <x2^2e-^x + asPse"^ + a^e"0 1* | y)

as the product of an exponential e~ayi with a short asymptotic
series—valid from that point upwards so long as ty(x) is not changed.

Theorem 20: Under the same conditions we can form another
expression as a short series in

Ii, I2 Is Ii

All coefficients in both series can be calculated directly from n
and the coefficients of the exponential tetranomial.

Detail analysis will probably prove that the "normal formula"
is only valid from n = 10.000, but the Bessel series from, say,
n = 1000.

Summary of the transformation problem.

The transformation problem dealt with in the last part of this con-
text is an intricate problem: statistics will give us frequencies and risk
premiums and the "claims curve=ty (x)" (relative frequency of individ-
ual claims x of different magnitude); the still more important question
of the distribution %(n \ <\i(x) | y) of total claims amount y cannot
be solved by statistics, simply because risk will vary between
risk classes and between years. The important problem is to
calculate 0(w | <\i(x) | y) from n = number of claims and <\i(x).

After some discussions with Swedish colleagues I will give some
further remarks on the integration method.

The new method to determine Q(n \<\>(x) | y) is based on the
following technical system:

1. By risk statistics we have determined ty (x) = relative frequency
of claim amounts and n = a priori value of number of claims.
We want to apply the method from n = 10.000 (or n = i.ooo),
where n should follow Poisson "exactly".

2. From ty(x) we calculate an exponential polynomial, repre-
senting <\i(x) almost exactly, or an upper and a lower limit curve
<\i-\- and tp—. To have full control of later figures, it is important
that the maximum relative error should be small.
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Note. Some authors prefer modified Poisson systems. In most
cases the general method can still be applied-—mutatis mutandis—
so long as the material includes exact statistical values of ty(x) etc.

3. Poisson + <\t(x) (= exponential monomial) leads to a simple
elementary solution

00

v ^ (•%3'V)
0(w I <\)(x) \ y ) = n . e~n~&n )

e - » - » Ix (2/wpy)

4. Now it is time to introduce the Hankel asymptotic formulas
0,375 0,11719 0,10253 0,14420

Instead of normalizing we will now put
y = n . m + z p = i/m py = n + P̂  :

and conserve the mean value = n . m (of total claims amount
= y or

By this method the elementary solution is divided into three
components

a. An auxiliary function = exact normal distribution, in z
b. Supplementary terms to the auxiliary function
c. Asymptotic terms representing the difference between asymp-

totic formula and exact Bessel function.

The auxiliary exponential factor has the form

(M —5!?!+ V - — +—
e~ \3n 8n* / oc e~ 4» e 8»*

Combining all facts it is easy to prove

a. All integrals can be taken from — 00 to + 00 instead of — n
to + 00

b. Assuming as before that total n > 1.000 (and for all partial
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groups n > ioo) all adjustment series can be limited to two
terms and an error term in O(z3/n3) and combined to one adjust-
ment of the form

i + az/n + bz*/n2 + O(z*/n3)

c. The asterisk product of two exponential monomials is effectively
reduced to a problem of the form

e-'a/2 (i + ait + bit*) * e-**1* (i + a2t +

Finally the complete problem with an exponential trinomial
or tetranomial is solved by successive asterisk multiplication.
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