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DOUBLE COVERS AND METASTABLE IMMERSIONS 
OF SPHERES 

ROBERT WELLS 

N o t a t i o n . T h e real line will be R, Euclidean w-space will be Kn, the uni t ball 
in Kn will be En, the uni t sphere in Kn+1 will be Sn, and real projective w-space 
will be Pn. T h e canonical line bundle associated with the double cover Sn —> Pn 

will be 7]n. If 7 is a vector bundle, E(y) will be its associated cell bundle, S(y) 
its associated sphere bundle, P(y) its associated projective space bundle 
(P(y) = S ( 7 ) / ( _ i ) ) and T(y) = E(y)/S(y) its Thorn space. If <p : y -> y' 
is a vector bundle map (i.e. linear isomorphism on each fiber) then we have 
E((p), S(cp), P((f), T(<p) by pulling a Riemann metric on y' back to y. If 
/ : M —* TV is an immersion, we pu t a Riemann metric on TV and write 

» ( / ) = { £ 6 Tfix)N1£±df(x)rxM}, 

f • *>(/) —>r(iV) by / ' ( x , £) = £. If w is the outward normal of M along 
dM, then we say x —> df(x)u(x) is the outward normal of / . If i f is a sub-
manifold of N, then y(ilf : N) is the normal bundle of M in iV. Finally, 
KO~(Pr) = Z2<p(r). We will abbreviate c(r) = 2^^r). 

I n t r o d u c t i o n . Let i f be a compact smooth manifold of dimension m and 
/ : M —> N an immersion where iV is a smooth manifold of dimension n = 
m + k; we say t h a t / is metastable if k ^ (m + 3 ) / 2 ; we say t h a t / is generic 
if / is metastable , / has only self-transverse double points, / embeds dM and 
f~lf(dM) = dM. I f / : M —> TV is a generic immersion, let A ( / ) C TV be the 
set of double points o f / a n d D(f)= / _ 1 A ( / ). Then A ( / ) is a closed smooth 
submanifold of dimension d = m — k and 

D(f) + A(f) 
is a double cover. Clearly generic regular homotopies and cobordisms (suitably 
defined) o f / lead to cobordisms of D(f) —»A(/),so t ha t this double cover 
has a bearing on cobordism groups of immersions, especially since cobordism 
classes of metastable immersions and generic cobordism classes of immersions 
are in one-to-one correspondence by [3]. 

In [10], the author reduced to a homotopy problem the problem of comput­
ing the cobordism groups of immersions of closed manifolds in spheres' In [8] 
and [9], P . A. Schweitzer and F . Uchida (in the metastable case) succeed in 
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146 ROBERT WELLS 

comput ing the joint cobordism groups of immersions of closed manifolds in 
closed manifolds. T h a t is, their objects are immersions 

where M and N are closed, and / is cobordant to / ' if and only if there is an 
immersion F : X - • Y with dX = M + M', dY = N + N' and F\M = 
/ : M->N and F\M' = f' : M' -> Nf'. In F . Uchida 's t rea tment , and to a 
certain extent in P. A. Schweitzer 's, the double points of metastable generic 
immersions play a crucial role. In part icular , the following existence problem 
arises: 

(1) Given a double cover of closed manifolds Dd —» Ad and a vector bundle 
£ —> Dd of dimension k, when does there exist a generic immersion of closed 
manifolds / : M —> N such t h a t the double point cover of / is D —» A and 
v(D : M) = £? 

T h e answer t h a t Uchida gives is t h a t i t is always possible to find such / ; 
in actually constructing M, N and / , he makes crucial use of the fact t h a t the 
only condition on N is t h a t it be a closed manifold. In a t t empt ing to apply 
Uchida 's techniques to the s tudy of the cobordism groups of [10], we run into 
a more difficult problem: 

(2) Given Dd —» Ad as above and £ —-> D as above, when does there exist an 
immersion of closed m a n i f o l d s / : M —» Sn such t h a t the double point cover of 
fisD-> A andz>(£> : M) = f? 

I t is the requirement t h a t N = Sn t h a t makes this problem difficult, and, 
as we should expect, it does not always have a solution. A third version of the 
existence problem has been studied by J . G. Miller in [6]: 

(3) Given a double cover D —» A as above, when does there exist a generic 
immersion of closed manifolds / : M —» Sn such t h a t the double point cover 
i s Z > - > , 4 ? 

Of course we may weaken problem (2) to problem (2") in which we require 
M only to be compact , not necessarily closed. And between (2) and (2") we 
have the problem (2r) in which we require M to be almost closed; t h a t is, 
dM = Sm~l. Similarly, we obtain problems (3') and (3" ) . 

In the first pa r t of this paper, we reduce the solution of (2") to a KO-
theoretic computa t ion with the KO~ transfer. Using this solution, we solve 
(2') completely in the case t h a t A is a homotopy projective space of dimension 
^ 01 and D is connected: 

T H E O R E M 1. Let A be a homotopy projective space of dimension d ^ 10, let 
D —» A be its universal cover and £ —> D a k-plane bundle. Then the virtual bundle 
£ — dim £ G KO~(D) = KO~(Sd) is a certain multiple s of a generator of 
KO~(D); in the case that KO~(D) = 0 we make the convention that s = 0. Then 
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there is a generic immersion f : Mm —> Sn with M almost closed, D(f)—*A(f) = 
D —> A and v(D(f ) : M) = £if and only if: 

(1) k = c(d) — d — 1 + rc(d) where r = 0, 1, 2, . . . in the case that s is even, 
or 

(2) k = c(d)/2 — d — 1 + rc(d) where r = 0, 1, 2, . . . in the case that s is 
odd. 

In the case that A is a homotopy projective space of dimension d ^ 10 and £ is 
trivial, we recover Miller's solutions of problem 3 and extend them to a com­
plete solution, with M in fact a sphere: 

THEOREM 2. Let D —> A be as in Theorem 1. Then there is a generic immersion 
f : Sm-±Sn with £ > ( / ) - > A ( / ) = D -> A if and only if k = c(d) - d - 1 + 
rc(d) where r = 0, 1, 2, . . . . 

THEOREM 3. Let D —> A be as in Theorem 1 with the additional assumption 
that d = 0 mod 4. Suppose that £ —> D is a k-plane bundle such that J — dim 
^ 9^ 0 in KO~{D). Then there is no generic immersion f : Mm —» Sn with M a 
closed orientable manifold, D(f ) —» A ( / ) = D —> A awd v(D(f ) : M) = J. 

We may combine the proofs of Theorem 1 and Theorem 3 with the Barratt-
Mahowald Theorem to obtain a probably well-known corollary in homotopy 
theory. We proceed as follows: Let d = 0 mod 4 and d ^ 10, let J —» 5^ be a & 
dimensional representative of 5 times a generator of KO~(Sd) with & related to s 
and d as in Theorem 1. Then the proof of Theorem 1 provides us with a specific 
generic immersion/(s) : Mm —> Sn which embeds dMm = 5m _ 1 . It will follow 
from the proof of Theorem 1 and the Barratt-Mahowald Theorem that if 
[J — dim £] is not in the kernel of the J-homomorphism, then v(f(s))\Sm~1 is 
non-trivial. But from the Barratt-Mahowald Theorem again, ^(/(^)|5m~1) + 1 
is trivial. Thus we have explicitly constructed non-trivial elements of the 
kernel of irm-iBO(k) —> irm-iBO(k + 1) to obtain the following corollary: 

COROLLARY. For d = 0 mod 4 and d ^ 10, the maps 

T1^1(BO(k))-+irm-1(BO(k + 1)) 

all have non-trivial kernels, where m = d + k and k = c(d)/2 — d — 1 + rc(d) 
for r = 0,1,2, 

Though surely the corollary is known, presumably the explicit construction 
above is not. Of course, it would be nice to know the nature of the map 
Z —> Tm-i(BO(k)) given for instance by 5 —» v(f(2s))\Sm~1 in any of the cases 
k = c(d) - d - 1 + rc(d) with r = 0, 1, 2, 

In the second section we begin with the observation that if M is c-paralleliz-
able with c ^ d + 1 a n d / : M —»Sn is a generic immersion then v(A(f) : 5W) = 
£77 + & where 77 —> A ( / ) is the canonical line bundle associated with the double 
cover D(f ) —» A ( / ). In fact, if we fix a c-parallelization of ikT, each generic 
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immersion / : M —> Sn gives rise to a bundle m a p v(A(f) : Sn) —> krjœ + k 
where r]œ —> P œ is the canonical line bundle over infinite dimensional projective 
space. T h u s each generic immersion gives rise to a ^ ^ - m a n i f o l d in the sense of 
[10]. In the case t h a t M is actually ^-connected, a choice of orientat ion for M 
determines uniquely a £-parallelization of M. And in t h a t case we will obtain 
the following theorem: 

T H E O R E M 4. If M is c-connected with c ^ d + 1 and f : M —> Sn is a generic 
immersion, then any kr]œ-surgery of the krjœ-manifold v(A(f) : Sn) + r =^> 
krjœ + k + r may be realized by a generic regular homotopy. 

For the sake of clarity, we should define generic regular homotopy. A generic 
regular homotopy is a regular homotopy ft: M —> N such t ha t the immersion 
F : I X M —> I X N satisfies the following four condit ions: 

( 1 ) / , = Jo near dM for all /; 
(2) F~lF(I X dM) = I X dM; 
(3) F has only self-transverse double points ; 
(4) /o is generic. 

Then of course / i is generic and in our case the fc^-manifold 

v(A(F) : I X Sn) + r -> krj^ + k + r 

is a fei^-cobordism from v(A(f0) : Sn) + r - • kr]œ + k + r to v(A(fi) : S") + 
r —» ^ryœ + fe + r. Ideally, this theorem should follow easily from Haefliger's 
Theorem in [4]. However, all t h a t the au thor can extract from Haefliger's 
a rgument is the theorem t h a t (subject to the hypotheses of Theorem 4) if 
there is a sequence of &77œ-surgeries of v(A(f ) : Sn) + r —> krjœ + k + r leading 
to the empty ^^ -man i fo ld , then there is a generic regular homotopy from / 
to an embedding. This consequence is also a corollary of Theorem 4, bu t 
apparent ly not enough to prove Theorem 4. A theorem similar to Theorem 4 
bu t with weaker hypothesis and weaker conclusion has been proved by F. 
Connolly in [2]. Since neither Haefliger's nor Connolly 's version implies 
Theorem 4, we will give a proof of Theorem 4 in the second section; essentially, 
it will parallel the proof of the au thor ' s theorem in [11]. Once Theorem 4 is 
available, we obtain the following realizability theorem as an easy corollary. 

T H E O R E M 5. Let A be a closed manifold of dimension d and suppose k ^ d + 3. 
Let 

AVMBO 

be the classifying map for the stable normal bundle of A and let krj' : Pœ —» BO 
be the composition 

PmJ!!!2>BO(k)-+BO. 
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If there exists a homotopy commutative diagram 

A: 

v(Ay^LBO 
w 

then there is a generic immersion Sm —> Sn with D(f ) —> A ( / ) = D —» A where 
D —» A is the pullback under A —>Pœ of the universal cover of Pœ (and, as always 
m = d + k and n = m + &)• 

In [6], J. G. Miller refers to a readability theorem in an unpublished paper 
of the author; Theorem 5 is that realizability theorem, and an easy proof will 
appear in section 2 below. With this theorem available, we may read in the 
results of [13] to obtain many more examples of double covers realized as the 
double point covers of generic immersions of spheres. The objects studied in 
[13] are free involutions — a free involution is a smooth map p : M(p) —> M(p) 
such that p2 = id and p(x) j£ x for all x; Q(p) is the quotient of M(p) by 
x ~ x and x ^ px. If M(p) is oriented and p preserves the orientation, we say 
it is an oriented free involution; in this case, Q(p) inherits an orientation. Then 
our largest class of examples is contained in the following theorem, which 
follows immediately from [13, Theorem 6] and Theorem 5 above: 

THEOREM 6. If p is any oriented free involution with M(p) homotopy equivalent 
to Sl X Sl and I = 4, 6 mod 8, then there is a generic immersion 

cm, J ç<n 

with D(f)-**U)= M(P) — <2(P). 

In Theorem 6 of course d = 21. It is possible to say more about the codi-
mension k; in [13] the concept of type of p is introduced for M(p) homotopy 
equivalent to Sl X Sl. It is defined as follows: By obstruction theory, there is 
a map Pi—>Q(p) such that 

* i ( P « ) ^ i r , ( e ( p ) ) . 

Under this map, the reduced normal bundle of Q(p) pulls back to a certain 
multiple of the reduced canonical line bundle over P z . As shown in [13], this 
multiple is well-defined modulo c(l) and thus its class K(p) G Zc(z) is well-
defined. The type of p is K(p). Then we may add to Theorem 6: 

Addendum. For p as in Theorem 6 and / : Sm —> Sn a generic immersion 
realizing M{p) —•> Q(p) we have that the codimension k may be any integer 
^ 2/ + 3 such that k -> K under Z -> Zc(z). 
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Actually, Theorem 6 is a consequence of a more delicate theorem. Let the set 
of oriented free involutions p with M(p) homotopy equivalent to Sl X Sl and 
type K be factored by the relation p ~ p' if and only if Q(p) is or ientat ion-
preserving dirfeomorphic to Q(p'). Denote the factor set by 12i(K). I t follows 
from [13] t h a t for / even there is an abelian group s t ructure on IÏI(K) and tha t 
there is a homomorphism a : I^i{K) —* Z 2 defined by a(p) = 0 if the normal 
bundle of Q(p) is s tably a multiple of the canonical line bundle associated with 
M(p) —» Q(p), and a(p) = 1 otherwise. T h u s we have the more delicate 
theorem, 

T H E O R E M 6'. Let I be even. Then for any representative p of the kernel of 
a : l2i(K) —-> Z 2 there is a generic immersion 

with D(f)-+A(f) = M(p) —> Q(p). Moreover, the codimension k may be any 
integer ^ 2/ + 3 such that k -^» K under Z —> ZC(Z). 

Then Theorem 6 is an immediate corollary of the fact t h a t a = 0 if / = 4, 
6 mod 8, which is proved in [13]. As it happens, there are more cases in which 
a = 0: If / = 0 mod 8, then a = 0 if K = 2, 6 mod 8, and if / = 2 mod 8, 
then a = 0 if K = 2, 6 mod 8. Recently, in [7], H. Schneider has extended the 
results of [13] to all free involutions, orientat ion preserving or not , with M(p) 
homotopy equivalent to Sl X Sl or Sl X Sl+l and / even or no t ; we may hope 
for more examples of double point covers from his results. 

In the third section we examine what happens to elements not in the kernel 
of a. In [12], it is shown t h a t a : Iwr(2

4r — 8r) —* Z 2 is an epimorphism, so 
such examples occur when / = 0 mod 8, and it is to this case t h a t we confine 
our a t ten t ion . By carrying out the i£0- theoret ic computa t ion prescribed in 
the first section, we arrive a t the following theorem. 

T H E O R E M 7. Suppose that p represents an element of L2i(K) with 1=0 mod 8. 
Then there exists a generic immersion f : M —» Sn with D(f ) —> A ( f ) = 
M(p)->Q(p). 

Unfortunately, we cannot determine whether M may be assumed to be 
closed or almost closed. Also, we are not able to determine the codimension k 
completely. 

In the fourth section, we apply some of the theory above to the s tudy of 
free involutions. T h a t is, we seek functions defined on the p's which take on 
the same value on p and p' whenever Q(p) has the homotopy type of Q(p'). 
T h e first such homotopy invar iant is the type, and we have seen in [12] and 
[13] t h a t it divides the equivalence classes of the p's, we are considering into 
the disjoint union of the I2i(K), where K runs over the even elements of 
Zc(j). T h e next possible homotopy invar iant is a. Since we have not done so 
in an earlier paper , for the sake of completeness we prove the following theorem 
in the fourth section: 
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T H E O R E M 8. Suppose that I = 0 mod 8 and that p represents an element of 
Iii{K) not in the kernel of a. Then Q(p) does not have the same homotopy type as 
Q(p) for p representing an element of the kernel of a : I2l(K

f) —* Z2 . 

T h e proof of this theorem actually depends on the work in [13] ra ther than 
the theory in the present paper. However, using the theory in :he present paper 
we are able to compute a lower bound for the Conner-Floyd coindex (see [1]) 
of Q(p) for p representing a certain member of 7i2(4): 

Example. There is a free orientation preserving involution p : S6 X S6 —> 
5 6 X S& such t ha t the Conner-Floyd coindex of Q(p) is ^ 9. 

As mentioned earlier, 7i2(4) is a group; the identi ty is represented by the 
covering transformation of the universal cover of S(y), where y —> P 6 is a 
certain 7-plane bundle. Thus , if p0 represents the identity, the coindex of 
<2(p0) = 6 and <2(po) does not have the homotopy type of Q(p) since the 
coindex is obviously a homotopy invariant . In this case a would not have 
served to distinguish p0 and p in any way since a is trivial on In (4). 

Finally, in the fifth section we note t ha t the machinery of section 2 is pre­
cisely wha t is needed to generalize the Kervaire quadrat ic map, and therefore 
we do so in the following si tuation: TV is a ^-connected, s tably parallelizable 
manifold. In the case 3m + 3 ^ 2n and c > 2m — n, we have by Haefliger's 
Theorem tha t each element x of irm(N) is represented by a unique isotopy 
class of embeddings x : Sm —> N. If x, y £ 7rm(iV), we may define as in [11] the 
mutual intersection a(x(Sm), y(Sm)) £ 7r2m_/ = ird

s using the conventions 
d _f_ k = m and m + k = n as above. We may regard the intersection invar iant 
as an element of icd+k

8(Sk). And letting Sk C PJPk-i be Pk/Pk_u we obtain 
a map Td+k

s(Sk) -> Td+k
s(PJPk-i). Denote the image of a(x(Sm), y(Sm)) in 

Td+ks(Pco/Pk+i) by x - y. Then x • y is clearly well-defined and bilinear in x and 
y. W e define the generalized Kervaire quadrat ic map in two steps. Firs t we 
define qf : 7rm(iV) - » irTO(0/0(fe)) by letting qf (x) = x*v(ic(Sm) : N). Then 
q'(x) G irmBO(k) and qf (x) - ^ 0 under <irmBO(k) ->wmBO. We assume k ^ 13 
(and so m ^ 23) so t h a t the Barret t -Mahowald Theorem applies and we may 
regard 7rm(0/0(&)), as the kernel of irmBO(k) —» irmBO. T h u s we obtain 
q'(x) € Tm0/0(k)), and it is clearly well defined. Second, we let I m m (5 m , Sn) 
be the space of immersion Sm —• Sn modulo the relation of regular homotopy. 
Under connected sum, it becomes a group, and we have the Smale isomorphism 
Imm (Sm, Sn) —» 7rm(0/0(&)). On the other hand, we may obtain a map 

I m m ( S ^ ) ^ w * ( P / P * _ i ) 

by letting P/Pk-i = T(krjœ) and for each 0 G I m m ( 5 m , 5W) choosing a generic 
representat ive / : Sm —* 5W. As in section two, we obtain a ^^ -man i fo ld 
v(A(f ) : 5W) + r —> ^r;œ + ^ + r and thus, by the Thom-Pontr jagin construc­
tion, we obtain an element <p(l3) Ç irm

sP/Pk-i. Using the fact t ha t metastable 
immersions and regular homotopies of closed manifolds may be approximated 
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by generic ones [3], and Theorem 4, we see that <p is a well defined isomorphism 
ip : Imm(Sm, Sn) —» irn

s(P/Pk^i). Then composing the inverse Smale isomorph­
ism with <p we obtain an isomorphism 

There is such an isomorphism, the James isomorphism, induced by a geometric 
map P/Pk-i —» O/O (k). The author does not know whether the isomorphism 
above is the James isomorphism. At any rate, we define q = \// o q' and we 
obtain the following theorem. 

Let N be an w-manifold; let m be such that n — m ^ 13 and 2n ^ 2m + 3. 
Suppose N is (2m — w + 1)-connected. Set k = n — m and let 

wm(N) X irm
s{P/Pk^) and Tm(N) ® irm{N) -^ irm\P/Pk^) 

be the maps defined above. 

THEOREM 9. q(x + y) = q(x) + q(y) — x- y. 

COROLLARY 1. The composition 

7rm(N)^Trm
S(P/Pk) 

is a homomorphism. 

This corollary follows from the fact that x • y comes from Tm
sSk in the 

cofibration Sk -> P/Pk-i -> P/Pk. 

COROLLARY 2. The composition 

7TmNU 7Tm(0/0(*)) -> ^ ( 0 / 0 ( * + 1)) 

is a homomorphism. 

This corollary follows from the commutative diagram 

*»(0/0(*)) ^ *„' (P/A-!) 

Xm(0/0(£ + 1)) t Tm
3(P/Pk) . 

1.1.1. We begin by denning the special case that we shall need of the transfer 
in KO theory, and developing some if its properties. Let 

be a double cover with p : X —» X the non-trivial covering transformation. 
Let £ —» X be a vector bundle over X. Then we may define a vector bundle 
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map p : 1*£ 0 p*£ —» 1*$ © p*£ of order two, covering p by p((x, Ax), 
(x, J5par)) = ((px, J3pa;), (px, .4 J ) where x 6 X ^ is in the fiber of J over x and 
Bpx is in the fiber of £ over px. Then the quotient 1*£ 0 p*£lp of 1*£ 0 p*£ by 
the equivalence relation A ~ A and A ~ pA is a vector bundle /(£) —•» X, 
which we shall call the geometric transfer of £. The most natural example of a 
geometric transfer arises in the case of a generic immersion/ : M —» iV. In this 
case it is easy to see that if £ is either v(f)\D(f) or v(D(f) : M), then 
/({) = y(A(/ ) : N). Conversely, let X -» X = Z> -> A be a double cover of 
closed smooth manifolds. Then the linear monomorphism 

given by Ax —» [(x, ^4.T)(x, 0px)] (where [ ] denotes equivalence class mod p) 
is an immersion with only self transverse double points and double point cover 
D —> A —this is Haefliger's construction in [4], and F. Uchida solves problem 1 
simply by observing that the immersion P(f + 1) : P(£ + 1) —*P(t(£) + 1) 
has the desired properties. By taking associated cell bundles instead, we obtain 
the immersion 

E ( * ) ^ A £(*({)) 
with double point cover D —» A and v(D : £ ( £ ) ) = £. Thus, if dim J ^ dim 
D + 3, we see that problem 2" has an affirmative solution if and only if 
v(A : Sn) = t(£). What we must find ways of determining then, is whether this 
equality holds or not. For this purpose then we develop some elementary 
properties of the geometric transfer; let = denote bundle equivalence. 

PROPOSITION 1. Let X —> X be a double cover, let y be the associated canonical 
line bondle and t the associated geometric transfer map. Then 

(0*(£ ©r) «*(*) e*(r), 
(ii) t(k) « ky ©&, 

(iii) *(p*£) - *(£), 
(iv) *(**(£)) « € ® Cv 0 1 ) , 
(v) **/(£) - ? ©P*£, 

(vi) m ®/(f) - / ({®r) 0 / ( f ® P*f), 
(vii)/(f) (x )^ - m, 

(viii) Suppose there is a vector bundle map p' : £ —> £ of order two, covering p. 
Let £/p be the obvious quotient vector bundle over X. Then /(£) ~ £/p' 0 77 (x) 

Proof. All the proofs are straightforward exercises, which we leave to the 
reader, except for (vii). To prove (vii), set t = t+ and p = p+. Define p : 1*£ 0 
p*£ _>!*£ 0 p * j by p_(^l) = -p+(A). Define /_(£) to be the quotient of 
1*£ © P*£ by the equivalence relation defined by p_. Clearly /_(£) ~ 77 (x) /+(£). 
However, the map 1*£ © p*£ —> 1*£ © p*£ defined by 

((x, Ax), (x, 5px)) —> ((x, —4*), (x, J3piC)) 
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is an equivariant equivalence 

(1*{ + P * £ , ? + ) - > ( 1 * { 9 P * { , P - ) . 

Consequently /+(£) ~ /_(£) and thus (vii) holds. 

Next, we define the algebraic transfer operation t : KO~(X) —> KO~(X) by 
/[£ - dim £] = [/(£) - (dim £) (77 + 1)]. Here [ ] denotes the element of K0~ 
determined by the enclosed virtual bundle. Then we obtain Proposition 2 
quite easily from Proposition 1. 

PROPOSITION 2. Let X —> X be a double cover, let rj £ KO(X) the associated 
canonical line bundle and t : KO~(X) —> KO~(X) the associated algebraic 
transfer. Then (i)-(vii) of Proposition 1 hold with £, f Ç i£0~(X). / / £ zs a 
vector bundle over X and p : £ —> £ as iw (viii) 0/ Proposition 1, //zew 
/[{ - dim J] - [£/p' - dim £/p'] + 77 • [£/p' - dim f/p']. 

Remark. We write + for the operation in K0~ induced by Whitney sum 
0 and • for the operation induced by (x). Notice that 

KO(X) ®KO~(X)-^KO~(X) 

so that the formulas involving 77 make sense. 

In view of the fact that the geometric transfer does not preserve stable 
fiber homotopy triviality, it is interesting but trivial that the algebraic transfer 
does. 

PROPOSITION 3. Suppose a £ KO~(X) is stably fiber homotopically trivial. 
Then so is t (a) £ KO~(X). 

Proof. For k large enough, there is a &-plane bundle £ such that [£ — k] = a 
and a fiber homotopy equivalence 

£ J^ X XRk 

x~Lx 
(that is, the diagram commutes, and F maps each fiber of £ properly with 
degree one onto the corresponding fiber of X X Rfc). By means of F we obtain 

l*f 0 p*£ L®J^ i*k + P*k 

equivariant with respect to p(£) on the left and p(k) on the right. Thus we 
obtain /(£) —* krj + fe, which is a fiber homotopy equivalence. But then 

tH -k] = [*(£) - (kr, + k)] 

is stably fiber homotopically trivial. 
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For computations, the behavior of t with respect to the Atiyah-Hirzebruch 
spectral sequence is useful to know. Let A be an abelian group, and let A + A 
be the bundle of coefficients over X which on p acts by interchanging factors. 
Let A stand also for the trivial bundle of coefficients over X with fiber A. 
Then the fiberwise map A + A —> A given by sum induces a map 
t : Hk(X : A + ^4) —» Hk(X : A), which, by means of the spectral sequence 
of X -> X may be regarded as a map t : Hk(X : A) -> Hk(X : A). Then in 
the KO spectral sequence (with A = 0, Z, Z2) we obtain / : E2

PQ(X) -> £2
P<Z(X). 

We have 

PROPOSITION 4. 77ze algebraic transfer is represented on the main diagonal of E2 

by t. 

Proof. First we define the relative transfer 

t:KO~(X, Â)-+K0~(X,A) 

where Â = w~1(A). For this definition we use the definition of KO~(B, C) as 
equivalence classes of triples (£i, £2, v) where %t are bundles over B and 
<p : £i|C—»£2|C is a bundle equivalence. If (£i, £2, <p) is such a triple over 
X, Â then (/(fi), J(£2), (̂<£>)) will be such a triple over X, A, where t(<p) is 
defined in the obvious way. Then 

*[£i,£2,d = [*tti),*(£2), *(*>)] 

defines / : KO~(X, À) ->KO~(X,A). Now let 

X = Xn D J P - 1 D . . . D 1 ° D X-1 = 0 

be a skeleton filtration of X and set X1 = 7r-1(X l). Then it is easy to see that 
the following diagram commutes: 

KO-ÇX^X'1) —> KOrQCXT1) 

i lk Ilk 

where the vertical isomorphisms are the ones occurring in the construction of 
the Atiyah-Hirzebruch spectral sequence and /# is the representative of t on 
the chain level (defined by Â + A —>A). Then the proposition follows. 

Remark. We have defined the transfer as a map t : KO~(X) —>KO~(X), not 
as a map / : KO~*(p) —> KO~*(X). It may or may not be possible to define 
/ : KO~*(X) -> KO~*(X), so the proposition says nothing about t : E2

pq(X) -> 
E2

PQ(X) off the main diagonal. 
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1.2. Propositions 2 and 4 give us a weak, but sometimes adequate, mechan­
ism for computing the algebraic transfer. For the cases that will arise in this 
paper it is adequate. In general, the following proposition reduces the solution 
of problem 2" to a computation of the algebraic transfer. Recall that in 
problem 2" we are given a double cover of closed manifolds D —» A of dimen­
sion d and a vector bundle £ —> D of dimension k, with & ̂  J + 3. We set 
m = d + k and m = n + k. 

PROPOSITION 5. There is a generic immersion f : M —> Sn with double point 
cover D(f) -» A ( / ) = D-* A and v{D(f ) : M) = £ if and only if /[£ - &] = 
KA) - *fo - 1]. 

Proof. If there is such an immersion, we know that the geometric transfer 
/(£) is v(A : Sn). Thus /[£ - fe] = [*(£) - krj - k] = [y(A : 5W) - 2fe] + [ife - ^ ] . 
Conversely, if /[£ - ife] = y (A) - ifefo - 1], then [/(g) - jfeiy - k] = v(A) -
k[rj — 1] so t(£) is stably equivalent to v(A : Sn). But since both are stable 
bundles, they are equivalent and we may assume that £(£(£)) is a tubular 
neighborhood of A in Sn. Let #:£—>£(£) be Haefliger's immersion. Let / be 
the composition 

J | f = £ ( { ) - ^ £ ( / ( { ) ) C 5 " 

Then / is a generic immersion with D(f ) —> A(f) = D —> A and 

, P ( / ) : M ) = £. 

1.3. Now we specialize to the case that A is homotopy equivalent to Pd and 
D is its universal cover. Then D is homotopy equivalent to Sd. Then KO~(D) 
is cyclic and we pick a generator a; a = 0 in case KO~(Sd) = 0. Then the 
vector bundle g —> -D is a stable bundle and [£ — &]= sa for some 5 — we make 
the convention that s = 0 if a = 0 and s = 0 or 1 if 2a = 0. Having made 
these remarks, we may prove Theorem 1. 

1.4 Proof of Theorem 1. 

LEMMA 1. If a ^ 0 then t(a) = 2^~1 (77 — 1). 

Proof. The maps 

H\D) -^Hd(A) <mdH\D:Z2) -^Hd(A:Z2) 

are epimorphisms. Now the lemma follows immediately from Proposition 4. 

LEMMA 2. Let d ^ 10. Then there is a generic immersion f : £(£) —> 5n i/" and 
ew/j if: 

(i) 5 is even and k = c(d) — d — 1 + rc(d) where r = 0, 1, 2, . . . or 
(ii) 5 is odd and k = c(d)/2 — d — 1 -\- rd(d) where r = 0, 1, 2, . . . . 
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Proof. Suppose such an immersion exists. Then by Proposition 5 and Lemma 
1 we have 

s(c(d)/2)(„ - 1) = (c(d) -d-l-k)(n-l) 

so, if 5 is even d + k + 1 = 0 mod c(d) and if s is odd, c(d)/2 + d + k + 1 = 
0 mod c(d). Since the left hand side in each case is positive, we must have it 
equal to (r + \)c(d) for some r ^ 0. Then one of the lemma follows. For the 
converse implication, notice t ha t k ^ d + 3 in case (i) and (ii). Whether 
(i) of (ii) holds, it follows tha t t[£ - k] = v(A) - k\y\ - 1]. Then the proof 
of the second half of Proposition 5 gives us our immers ion / :£ (£)—> Sn. Now 
Lemma 2 is proved. 

T o prove Theorem 1, suppose we have a generic immers ion / : M —» Sn with 
D(f)-+ A ( / ) = D -> A and £ = v(D : M), and <9M = 5 m " 1 . By restricting 
to a tubular neighborhood of D in M, we obtain a generic immersion E{£) —» 5W 

and from Lemma 2 conclude tha t case (i) or case (ii) holds. Conversely, 
suppose t h a t case (i) or case (ii) holds. Then Lemma 2 gives us a generic 
immers ion / :!£(£)—» Sn. Since k-\-d<n = d + 2k, and since 2k + 1 < n = 
d + 2k, we may extend the embedding given by a fiber of 5(£) —> D, 
Sk~1 C S(£) —> 5W, to an embedding Ek C Sn which meets the image of / 
exactly o n / ( ^ - 1 ) , with outward normal there equal to the inward normal of/. 
Now, v(i(E

k) : Sn) = i(Ek) X Rk+d. Let ^ be the framing of v(sk~l : 5 ( f ) ) 
which extends to a framing of v(Ek : E(£)) where Ek is a fiber of E(£) —+D. 
Using v(i(Ek) : Sn) = Ek X Rd+k, the f r a m i n g ^ determines an element of 
Trk-![(SO(d + k))/(SO(k))] = 0. T h u s the f r a m i n g ^ extends to a framing of 
a d-subbundle of v(;i(Ek) : 5W). I t follows tha t if M is the smooth manifold 
obtained from E(£) by at taching a handle along 5 fc -15(£) by means of &~, then 
the immersion / extends to a generic immersion g : M —•> Sn. To see t ha t 
dM = 5 W _ 1 , notice t ha t dM is the manifold obtained for 5( f ) by surgering 
(5 fc_1, &~ ). Bu t t ha t surgery may be obtained by drilling out a thickened 
fiber of £ ( £ ) —» £>. T h u s d M is the boundary of a contractible manifold; since 
dim dM ^ 5 and Tn(dM) = 0, it follows tha t dM = 5™"1 by Smale's Theorem. 
Now Theorem 1 is proved. 

1.5. Proof of Theorem 2. Suppose a generic immersion / : Sm —> Sn exists 
with Z > ( / ) -> A ( / ) = Z>-> A. Since D C ^ i s a stable embedding of a 
homotopy sphere in Sm, we have v(D : Sm) is trivial, and we are in case i ) . 
Conversely suppose k = c(d) — d — 1 + rc(d) with r = 0, 1, 2, . . . . Then 
& ^ d + 3 and Lemma 2 applies to produce a generic immersion / : D X Ek —> 
Sn with double point cover D -> A. Now, D X Ek = Sd X Ek C Sm. T h e 
complement is £ d + 1 X 5* - 1 . Since m-\-d<n = m-\-k, the i m m e r s i o n / may 
be extended to a map g : Sm - » 5ra such tha t g : £<*+1 X Sk~l -^ Sn - T where 
r is a suitable tubular neighborhood of A in Sn, and such t h a t g is a collared 
embedding near Sd X 5* - 1 . We may then homotope g modulo a neighborhood 
of D X Ek to preserve those two properties and so t ha t g becomes a generic 
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map in the sense of Haefliger [3]. Then the singularities of g are in Ed+l X Sk~l. 
Since Trt{Ed+l X Sk~l) = 0 for i < k - 1 and Tt(S

n - A) = 0 for i < n - d - 1, 
Haefliger's construction in [3] gives a homotopy modulo a neighborhood of 
D X Ek from g to a map h which extends/ to an embedding Ed+l X Sk~l —> 
5" — J1. Then /? is a generic immersion Sm —» 5W with double point cover D —> A, 
and Theorem 2 is proved. 

In section two, we will obtain a refinement of Theorem 2 as a corollary to 
Theorem 4. 

1.6. Proof of Theorem 3. Assume that we do have a generic immersion 
/ : M —» 5W with i f closed and orientable, D(f ) -^ A(f ) the universal cover 
of a homotopy P d with J = 0 mod 4 and [v(D(f ) : M) — k] ?* 0. From 
Lemma 2 we see that k must be odd. 

Let X : M-*E(v{f)) be section transverse regular to the zero section. 
Let Z = X _ 1 (0) ; then Z is a closed orientable d-manifold and we may assume 
t h a t Z r\D(f) = 0. 

LEMMA 3. WÏ/& suitable orientations Z and D(f ) represent the same homology 
class in Ha(M). 

Proof. Let F : E(v(f )) —•» Sn be an immersion extending/. Then F o X and 
/ are two generic immersions of M, and they intersect in / (Z) f(Df(f )), where 
D'(f) M is isotopic to D(f). Then FoX(M) may be ambient isotoped in 
5" until it is disjoint from/(ikf). We may assume that the isotopy $t satisfies 

(1) &t(FoX(M)) H A ( / ) = 0 for te [0,1], 
(2) $ , ( A ( F o I ) ) r\f(M) = 0 for* £ [0, 1], 
(3) <ï>: ( F o I ( M ) - A ( f o l ) ) X I ^ S ^ X 7, 

is transverse regular along (f(M) — A ( / ) ) X / . Then $ generates an 
oriented cobordism in M X I from Df(f ) Z to the empty set, proving the 
lemma. 

To prove the theorem, recall that d = 0 mod 4 so that k is odd. Let 
X G #*(M) be the Euler class of v(f). Then x H [ilf] = [Z]. And [Z] = 
± [ ^ ( / )] by the lemma, with D(f ) a homotopy ^-sphere. We are assuming 
that v(D(f) : Af) = £ is stably non-trivial. Let £ be the (d/4)th Pontrjagin 
class of £; then p[D(f)] is a non-zero integer. But £ is equivalent to 
P*(v(f)\D(f)) so that p'[£>(/)] is a non-zero integer for p' = (d/4)th 
Pontrijagin class of v(f )\D(f ). Finally, let p" = (d/4)th Pontrjagin class of 
K / ) . Then 

/>'[£(/)] = />" n [£(/)] = ±/>" n [Z] = ±/>" n (x n [MD = 

Consequently (£" H x ) n [Af] is a non-zero integer. But k is odd so 2x = 0, 
so 2(£" U x ) = 0 and consequently (p" U x ) H [M] = 0. This contradic­
tion completes the proof of the theorem. 
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1.7. T o obtain the corollary of Theorem 3, we consider the special case where 
£ —> Sd is a ^-dimensional representative of 5 times the generator of KO~(Sd) 
and d = 0 mod 4, and £ is such tha t [£ — dim £] is not in the kernel of the 
J-homomorphism. Once we have chosen the generator, this condition deter­
mines £ up to equivalence since k ^ d + 3. We are assuming tha t d ^ 10 and 
tha t k is one of the numbers c(d) — d — 1 + rc(d), r = 0, 1, 2, . . . , if s is 
even, or one of the numbers c(d)/2 — d — 1 + rc(d), r = 0, 1, 2, . . . , if 5 is 
odd. Then Theorem 1 supplies us with a generic immersion / : M —» Sn such 
t h a t d M = Sm~\ D(f)-*A(f) = Sd-^ Pd and v(Sd : M) = £. Suppose t h a t 
i>(/ ) | 5 m ~ 1 is trivial. Then we have an immersion-with-transverse field defined 
by Sm~1 = dM —> 5W and the transverse field equal to the outward normal of/. 
By Hirsch's Theorem, this immersion with transverse field is regularly homo-
topic to an immersion 

sm-l ^ sn-l 

with transverse field the restriction of the outward normal of S+
n along 5W _ 1 . 

We will have v(g) = Ï ; ( / ) | 5 W " ~ 1 ; since we are supposing ^ ( / ) | 5 W _ 1 is trivial, 
it follows from the Barra t t -Mahowald Theorem by an argument of R. Lashof 
t h a t we may take g to be a representative of the unique class of embeddings 
£m-i ç- 5^-1. Tm_1(p/0(k)) represents the regular homotopy classes of im­
mersions of 5 m _ 1 in 5W _ 1 by Smale's Theorem. I t is straightforward to check 
t h a t the map irm^(0/0(k))-> w^^BOÇk)) induced by 0/0(k)-+BO(k) 
assigns to each such immersion its normal bundle. Consequently the s ta tement 
t h a t normal bundles distinguish immersions is equivalent to the s ta tement t ha t 
irm-i{0/0{k)) —> wm-i(BO(k)) is a monomorphism. Bu t in the dimension 
range above the Barra t t -Mahowald Theorem states tha t irm-i(0/0(k)) —> 
7Tm-i(BO(k)) is a monomorphism. In particular then, since Haefliger's Embed­
ding Theorem implies t ha t in this dimension range there is only one isotopy 
class of embeddings s™-1 C sn~x, it follows t ha t an immersion s w _ 1 —> sw_1 is 
regularly homotopic to an embedding if its normal bundle is trivial. 

T h e diagram, 

_1\0(ife)/ 
->irm^BO(k) 

I m m ^ . r 1 ) ' 

commutes , where vertical isomorphism is the Smale isomorphism and v the m a p 
f—*v(f). T h u s there is a unique regular homotopy class of immersions 
5»»-i —•> 5^-1 w i t h trivial normal bundle, and it mus t be the class containing the 
embeddings 5 W _ 1 C S71-1 ( that there is a unique isotopy class of embeddings 
follows immediately from Haefliger's Theorem [3]). Bu t the embedding 
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Sm~l C Sn~l with transverse field the outward normal of S+
n restricted to 

5 m _ 1 may be capped by Em C S-n with inward normal equal to the outward 
normal of S+

n restricted to 5™_1. Consequently, since the codimension is 
greater than zero and we have a covering isotopy theorem for immersions, it 
follows that the embedding Sm~1 = dM C Sn may be capped with an im­
mersion 

Emhsn 

with inward normal equal to the outward normal of/. We may assume that h 
is generic, that h misses A ( / ) = Pd C Sn and that h meets f(M) — A ( / ) 
transversally. Then we define a generic immersion F : M W Em —» Sn of the 
closed manifold M P Em by F = f P h. We will have that D(F) is the disjoint 
union D(f) V D(h) U h~lf(M) \Jj~lh(Em) with p : D(f)->D(f) and 
p : D(h)-^> D(h) and p interchanging h~lf(M) and f~1h(Em). Moreover 
£>(/*) \Jh~lj{M) C Emso u(F)\D(h) \Jh~lf(M) is trivial. Thusu(f~lh(Em) : M) 
is trivial. For brevity we write L = /~ l h{E m ) . By the methods of [11], we 
may assume that L is connected. By general position, we may assume L C £(£) 
so that the composition L (Z E(£) —> Sd gives us a map j : L —» Sd such that 
J*(v(f )\Sd) is stably P ( L ) . On the other hand, the argument proving Theorem 
3 shows that if p is the (d/4)th Pontrjagin class of v(F), then M^K^)] = 0. 
Since v(F)\DQi) \J h~lf(M) is trivial, we must have p[L] + p[Sd] = 0. Let 
j8 G KO~(Sd) be [>(/ ) - ife]. Then we have J*p = [(v(F)\L) - k]; and letting 
p' be the 0 /4 ) th Pontrjagin class of /5, 

/ *^ [L] + p'[Sd] = 0 

that is, p'[J*L\ + ^'(5d] = 0. But then / is a map of degree minus one and f$ 
must be in the kernel of the J-homomorphism. But then so must — ft = [£ — k] 
be, contrary to hypothesis. This contradiction shows that our initial assump­
tion that v(f )\Sm~1 is trivial must be false. Finally then, v{f )\Sm~l is a non-
trivial element of ker wm-i(BO(k) —> irm-i(BO(k + 1)), and the construction 
proves the corollary. 

2. 2.1. As above, we continue to assume k ^ d + 3 and we continue the 
convention m = d + k and n = m + k. Now we add the assumption that M 
is £-parallelizable with 1 + d ^ c. We may assume k ^ c + 2. Let Jlfc be a 
regular neighborhood of a ^-skeleton of AT. Then a c-parallelization of i f 
amounts to a choice of a framing isotopy class of framings of the stable normal 
bundle of M restricted to Mc. Let / : M —> Sn be a generic immersion. Since 
we are assuming that k ^ c + 2, a c-parallelization of M amounts to a choice 
of a framing isotopy class of framings of v(f )\MC. Since we are assuming that 
c è d + 1 we may assume that Z>(/ ) Afc; in fact this embedding is uniquely 
determined up to isotopy. Choose a c-parallelization Ĵ ~ of M and let 
^ ' : v(f)\Mc-*Rh be a representative of #~. Then #~ ' determines an 
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equivariant bundle map 

i*(K/)IW)) 0P*(K/)IW))->sœxA*xie* 
by ((*, Ax): (*, Bpx)) -> (à(x),F'(Ax),F'(Bpx)) where œ:A(f)->Pœ is 
the classifying map of the double cover D(f ) —» A ( / ) and 

a covering of co. The Z2 action on the left is defined by p and the Z2 action on 
the right by (y, u, v) —» (—3/, z;, w). Thus we obtain a bundle map 
t(v(f )\D(f )) —> £77 œ + &. Another representative of Ĵ ~ (involving another 
choice of Mc and F0) determines a bundle map t(v(f)\D(f)) -^ krj^ + k 
bundle isotopic to the first. Thus we have determined by F a bundle isotopy 
class of bundle maps t(v(f )\D(f ))-^ krjœ + k. But then the canonical 
equivalence 

/ ( " ( / ) | X > ( / ) ) ^ " ( A ( / ) : 5 " ) 

transforms this class to a bundle isotopy class of bundle maps v(A(f) : Sn) —-> 
&77oo + &• But this class is precisely a &77œ-manifold in the sense of [10]; we will 
denote it by <5(/, F ), and we will denote by a(f,F ) the element of 7rm

s(T(krjœ)) 
it determines via the Thom-Pontrjagin construction. Notice that a(f,F ) = 
a (g,^ ) if/ and g are generically regularly homotopic ; in the case that dM = 0, 
we have a(f,jF ) = a(g,F ) if / and g are regularly homotopic. 

2.2. Now we assume that M is c-connected and oriented. For Mc we may 
allow only copies of Em and thus we see that there is only one c-parallelization 
compatible with the orientation. From now on we use only this c-paralleliza-
tion. Consequently, we may omit further mention of F and write 5(f ) and 

2.3. Proof of Theorem 4. Before embarking on the proof, we assume that 
/ : M —> Rn C S*1. We give Rn the usual Riemann metric and pull it back to M 
so that all the manifolds that will appear in the proof have Riemann metrics. 
Our main use of this fact will be to define parallelization by means of ortho-
normal vector fields. For instance, we have ei, . . . , ek : Mc = Em —>v(f )\MC 

orthonormal sections and F ' : v(f )\MC —» Rfc may be defined by 
F'i^s&^x)) = Oi, . . . , sk). Recall the m a p / 7 : v(f) -+r(Sn). After some 
tedious iso toping and straightening we may assume that df (x) (v (D(f) : M)x) = 
f'(v(f)px). We obtain an orthonormal framing of v{D{f) : M) by defining 
df{x)ejr(x) = / ' (ej(px)). The fields (#/, . . . , ek) define an orthonormal 
framing of v(D(f) : M). 

We suppose that we are given a ^^-surgery of à(f). We may regard it as 
being given by a collared embedding X C Sn X I satisfying several conditions: 
We set dtX = dX Pi Sn X i; then we assume that d0X = A ( / ). We assume 
that there is an embedding 1 : Sp C A ( / ) that extends to an embedding 
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i : Ep+l C X such t ha t X collapses to A ( / ) \J Ev+l. Moreover we assume 
t h a t there is a bundle map v(X : Sn X I) —> krjœ + & extending a representa­
tive of 5 ( / ) ; having made this assumption, we see t h a t d(f ) has a representa­
tive with base map carrying L(SP) to a point in Pœ and t ha t we may assume tha t 
the base m a p of v(X : Sn X I) —> ferçœ + & carries i ' (E p + 1 ) to a point in P œ . 
Then the map v(X : Sn X J ) | i ' ( £ p + 1 ) -> ̂ œ + k is a framing 5 ^ of a sub-
bundle v{i'(Ep+1) :Sn X I) which restricts to J / ( A ( / ) : Sn) over t (5 p ) . Then L 
and 5 ^ determine the surgery v(X : 5W X I) —> &??œ + &• In addit ion we have 
a framing gi, . . . , ga-P of v(i(Sp) : A ( / ) ) which extends to a framing of 
, ( t , ( £ p + 1 ) : X ) . 

Since 

is trivial, there are two lifts I : Sp —> D(f ) and p o I of i. T h e framing S^ o i 
may be taken to be 

x —»/ ' o ^ i o I(x) , . . . , f o eko I (x) , f ' o eio p o l(x), . . . J ' o ^ o p o ï (x ) . 

T h e framing gi, . . . , gd_p defines framings gi°, . . . , gd_p° of i^(I(5p) : Z>(/ )) and 
(gi1, • • • , ga-v

l) of K P O l(Sp) :D(f)) such t h a t dp(g,o) = gfiu 

From now on we will set I = t0 = ii. Then t0 and ti extend to disjoint embed-
dings i/ : J E P + 1 —> M with outward normals ei\Lj(Sp). Since p — 1 < 
d + & — £ — 1 — (d — p) we have 7rp_i(Fd_p,d+fc-p_i) = 0 and framings 
e2 , • . • Ï e*/|*iCSp) extends to framings (e2°, . . . , efc°) and (e2, . . . , O of 
subbundlesof ?(*<>'(J^1) : Af) and j / ( t / ( £ p + 1 ) : M) respectively. T h e framings 
(giJ> • • • > g*-V) extend to framings (Gij, . . . , Gd-V

j) of complementary sub-
bundles of v(i/(E?+1) : M). T h u s (e2 ' , . . . , e*', GJ, . . . , G d V ) is an or tho-
normal framing of V(L/(EP+1) : M) for j = 0, 1. 

Now we define three bundles over the topological p + 1 sphere S = 
f(i,'(Ep+1)) U / ( 6 / ( £ p + 1 ) ) . W e write S , = f(iJ(E?+1)). Then the three 
bundles are: 

£: £ |S 0 = span ( / ' o e2 o i0 ', . . . , / ' o ^ o i0 ') 

€ |Si = span (d/(e2° o n ' ) , . . . , d / f e ° o t / ) ) 

f : r | S o = dfW(EP+*) : M ) 

f | S i = d/(span ( G / , . . . , G*- / ) ) © span ( / ' o e2 o n', . . . , / ' o e* o n ' ) 

a: or|S0 = T ( S 0 ) © s p a n ( / ' o ^ o i0 ') 

cr|Si = T ( S 0 © s p a n ( / ' o ^ o t / ) . 

W e obtain a framing of £ ou t of (e2, . . . , £ * ) > so g is trivial. Moreover, 
£ © ? © * = r ( 5 w ) | 2 is trivial. Since Ç = k + d — p — l>p + l, we will 
have t h a t f is trivial if and only if <r is trivial. 

I t is easy to see t h a t there is a smooth (p + 2)-cell &p+2 C Sn with a 
corner along S 0 H Si and d ^ + 2 = S 0 U Si . We may assume t h a t &p+2 

has outward normal / ' o e\ o t0' along S 0 and / ' o e i O i / along S x ; later we 
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will need tha t we may assume tha t &p+2 C\f(M) = 2 . Immediately we see 
tha t a = r ( ^ p + 2 ) | 2 so tha t a is trivial and consequently f is trivial. 

Since f is trivial, it may be extended to a subbundle f' of v(3ïv+2 : Sn). T h e 
framing (e2°, . . . , ek°, d 0 , . . . , Gd-P°) may be extended to a framing of all f'. 
Then t ha t framing and the exponential map may be used to produce an 
embedding (of codimension zero) 

{9W X 22*+*-*-i X R*-\ 9V+2 X #*+*-*-! x 0 ) - > (Sw, exp f ) . 

Then the isotopy of [11, Section 5] carries over via this embedding to define a 
regular homotopy ft of / . This regular homotopy realizes the given surgery. 

2.4. Proof of Theorem 5. Now we apply Theorem 4 to the case of M = 5 W . 
In the metastable range, Haefliger's general position theorems [3] show t h a t 
the set I mm (Sm, Sn) of immersions modulo regular homotopy may be regarded 
as the set of generic immersions modulo generic regular homotopy. Regarding 
I mm (Sm, Sn) as defined in this la t ter way, a gives us a well defined m a p 

a : I m m (Sm, Sn) -> icm
8T(kr,œ). 

Connected sum of immersions turns I mm (Sm, Sn) into a group (via the Smale 
isomorphism) and it is clear t ha t a is a homomorphism with respect to this 
group s t ructure . I t follows immediately from Theorem 4 (or from Haefliger's 
Theorem in [4]) t ha t the kernel of a is 0. The Smale isomorphism tells us 
t ha t Imm (5 m , Sn) ~ irm(0/0(k)) and the James isomorphism tells us t h a t 
7rm(0/0(k)) = TT^Tikrj^). Bu t both are finite groups. Consequently, a is an 
epimorphism as well, and so an isomorphism. 

Now let v(A : Sn) —> kr)œ + k be an arbi t rary krj^ manifold of dimension d. 
By the Thom-Pontr jagin construction, it determines an e lementa l G Trm

sT(kr]œ). 
But we have jus t seen tha t there is a generic immersion fo : Sm—> Sn such t h a t 
a ( / o ) = OL\. From the definition of a, it follows t ha t the ^ ^ - m a n i f o l d 
5(/o) : v(A(f0) : Sn) - » kr}m + k and v(A : Sn) -> kr)œ + k are jfei^-cobordant. 
Consequently there is a finite sequence of ^^ - su rge r i e s leading from ô(f0) to 
v(A : Sn) —* kï]œ + k. Theorem 4 implies t ha t there is a corresponding sequence 
of generic regular homotopies realizing these ^^-surger ies . Then these generic 
regular homotopies may be pu t together to produce a generic regular homo­
topy/^ s tar t ing wi th / 0 and ending wi th / i such tha t ô ( / i ) = v(A:Sn) —» kr)œ + k. 

T h u s we have proved the following proposition, which is stronger than 
Theorem 5, and from which Theorem 5 follows as an immediate corollary: 

PROPOSITION 6. As always, let k ^ d + 3, m = d + k, n = m + k. Suppose 

v(A : S71) —» krj^ + k is a closed krj^-manifold of dimension d. Then there is a 
generic immersion f : Sm —»Sn such that ô(f ) = v(A : Sn) —> krj^ + k. 

3 . 3.1. As we have seen in the preceding section a closed ^-manifold occurs 
as the double point set of some generic immersion if and only if the classifying 
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map of the stable normal bundle 

A^BO 

factors through the map Pœ^BO(k)^BO, where Pœ^>BO(k) classifies 
k-q^. In this paper we are concentrating our attention on the simplest examples 
of A available, namely homotopy Pd 's and quotients of homotopy Sl X Sl's 
by free oriented involutions. In the first of these cases it is well-known that the 
factorization above exists for any k = rc(d) — d — 1, r = 1, 2, . . . ; hence 
the realization theorem for homotopy projective spaces. In the other of these 
cases, we have seen for example that if / = 4, 6 mod 8 then such a factoriza­
tion exists. However, in [12] the author constructs free oriented involutions 
p of homotopy Sl X Svs with 1 = 0 mod 8 such that v(Q(p)) — k(-q — 1) is 
not even stably fiber homotopically trivial for any k. Thus certainly M(p) —» 
Q(p) does not appear as the double point cover of any generic immersion 
Sm —> Sn. Even more, no manifold Q' homotopy equivalent to Q(p) can appear 
as the double point manifold of any generic immersion Sm —* Sn. At first glance, 
one may suspect that even problem 2" cannot be solved affirmatively for 
these double covers, but as it happens, the i£0-theoretic computation pre­
scribed by Proposition 5 answers problem 2" affirmatively for these involu­
tions. In fact, that computation answers problem 2" affirmatively for any free 
oriented involution p with M(p) homotopy equivalent to Sl X Sl and / = 0 
mod 8, hence Theorem 7. Now we proceed to carry out that computation to 
prove Theorem 7 —what we will not be able to answer are problems 2 and 2' 
for these double covers. 

3.2. Proof of Theorem 7. Let p be a free oriented involution with M(p) 
homotopy equivalent to Sl X Sl with / = 0 mod 8. Then k(p) = 0, 2, 4, 6 mod 
8. In the two cases k = 2, 6 mod 8 we have seen by [13] that a : l2i(k) —> Z2 

is trivial so that if k(p) = 2, 6 mod 8, then v{Q(p)) factors through the map 

Paa*HBO(k\-*BO 

for any fe—»fe(p) under Z-^ZC(D. If, in addition, k = 21 + 3, then the 
realization theorems of Section 2 supply us with generic immersions 

such that D(f ) —» A ( / ) = M(p) —> Q(p). Thus in this case the generic im­
mersions of Theorem 7 exist, and are actually generic immersions of spheres. 

Now we may assume that k(p) = 0 mod 4. In this case, we will compute 
/ : KO~(M(p)) —• KO~{Q{p)) in order to prove Theorem 7 via Proposition 5. 
To compute t, we will construct homotopy r-skeletons of Q(p) for r = I + 2; 
a homotopy r-skeleton of a space X is a CW complex K of dimension S r such 
that there exists a map g : K —> X with the property that irt(M, K) = 0 for 
i ^ r, where M is the mapping cylinder of g. 
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In [13] it is shown tha t 

Q(p)^E(y)\JE(y) 

where y —» Pi is a certain /-plane bundle and \f/ : S(y) —> S(y) a diffeomorph-
ism. The zero section of E(y) gives us an embedding Pi C Q(p) which lifts to 
Sl C M(p) representing an indivisible element of Ht(M(p)) = Z + Z. In [12] 
is constructed an embedding S1 C Q(p) t h a t meets P z transversally a t exactly 
one point. T h u s we obtain a map Pt V Sl —> Q(p) a n d using [12] it is easy to 
see t ha t this map makes P z V S1 a homotopy /-skeleton of Ç(p). Now let 
j (j 7TZ(PJ V Sl) be represented by the inclusion S1 C Pi V Sl into the second 
term. Let p G TTI(P i V 5 0 be the non-zero element. Then it is straightforward 
to see t ha t 

Qi+i = Pt V S1 U £>*+1 

is a homotopy (/ + 1)-skeleton for Q(p). Let p denote also a generator of 
TTICPI V 5*0 — this abuse of language, letting p stand for three different objects 
so far, is consistent. Then it is easy to see t ha t we may write 

Qi+1 = P Z U ((Pi V Sl) U Dl+1). 
Pi j+pj 

B u t (P i V Sl) \Jj+pjD
l+l is S(rn + /) = S ((I + 1)7/!) = a in the notat ion of 

[12]. T h e embedding P i C o-is given by any cross section of 5 ( ( / + 1)771) —» P i . 
T h u s <2z+i == Pi ^J P] a. Let Çz+i —> Çz+i be the universal cover of Qi+i; let 
5 1 X Sl —> cr be the double cover induced by S 1 —->Pi. Then we have t h a t 

Gz+i = 5 Z U ( 5 1 X S ' ) , 

which has the homotopy type of Sl V Sl V 5 i + 1 . 
T h u s i^O^(Çz+i) is clear, though we will need to choose specific generators 

below. I t is no t hard to calculate KO~(Ql+1) = KO~{Pi) © Z 2 where the 
addit ional Z 2 is generated by an element p! of filtration exactly / + 1. At this 
point, it is convenient to recall from [12] t ha t KO~(Q(p)) = KO~(Pt) © Z © Z 2 

where the Z 2 is generated by an element p of filtration exactly / + 1 and the Z 
by an element of filtration 21. Moreover, under Qi+i —-> Q(p) we have 
KO~(Q(p)) -*KO~(QM) defined by 

KO~(Pi) l-^KO~(Pi), p-*p' andZ~> 0. 

These properties are easy to check by means of the Atiyah-Hirzebruch spectral 
sequence, and the fact from [12] t ha t KO~(a) = Z 2 + Z 2 with one generator 
the reduced canonical line bundle associated with the double cover S 1 X ^ ^ - x r , 
and the other generator p/a. Finally, in the same way, the Z 2 C KO~(Qt+i) 
generated by p!', consisting of all elements of filtration exactly / + 1, maps 
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isomorphically onto Z2 C KO~(a) generated by fi/a, consisting of all elements 
of filtration exactly / + 1. 

Now we choose specific generators of KO~(Qi+\) and we compute 

t:KO~(Ql+1)-^KO~(Ql+1). 

First, since a = S ((I + l)?n)> we have that a is the quotient of S1 X Sl by 
- 1 X - 1 . Let 

sl xs1^ sl 

be the projection —it is equivariant with respect to the antipodal action on Sl. 
Thus we obtain the map of double covers 

S'x Sl-
h 

P\ 

Since t{genl) = (c(l)/2)(r)i — 1), where genz is a generator of KO~(Sl) and 
since c(l)/2 is even, and since the reduced canonical line bundle over a has 
order two, we see that /(/i*genz) = 0. 

The m a p / i extends to a map gx : Qi+i~>Sl, not necessarily equivariant, 
though we may assume that gi restricted to the Sl in Qi+1 = Sl VJ^ (Sl X Sl) 
is trivial. Let a G K0~(Qi+i) be gi*(genz). Then the map of covers 

S1 XSl 
Qi 

a 1 Vi+1 

t(a) = 0 or t(a) = (c(l)/2)(rj — 1). To see this fact suppose that t(a) = 
r{y) — 1) + su' with 5 = 0 or 1. Then since t(a) —* 0 and y! and 77 — 1 are 
carried to generators of distinct Z2 summands in KO~(a), we must have s = 0 
and r is even. Thus t(a) = r(r) — 1). But by Proposition 2 (vii), we have 
7jt(a) = t(a) so 77(r(77 — 1)) = r(rj — 1). But y(r(rj — 1)) = — r(r) — 1). Thus 
r = 0 or c(l)/2. 

For our second generator, observe that a is also 5(7/1 + /) . It is a section of 
this bundle that gives the Pi in a-. On the double cover level, we see that the 
retraction S1 X Sl —-> Sl is equivariant, so we obtain a map g2 : Q1+1—> Sl 

d 
equivariant with respect to the antipodal action on S\ extending Sl—>Sl. 
Let/3 = gx*(geni). Then t(p) = (c(/)/2)(„ - 1). 

Finally, we have the confibration 

5 ' -
S1 X Sl 

Sl X * 
-.1+1 
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There is a factorization 

ï / h 
S1 X S' 
S1 X * 

which defines a splitting of the stable homotopy exact sequence long exact 
sequence into split short exact sequences: 

0 - *l+is(Sl) <=± ^ + / ( - | T ^ - ) - * irl+1\S
l+1) - 0 . 

We let 7 be the pullback of a generator of i£0~(S*+ 1) under a degree one m a p 
<2z+i —> S ' + 1 (there is only one such map up to homotopy) . Now, the kernel of 
A* is infinite cyclic. Choose a generator t : 5*+ 1 —» S 1 X 5Z /5X X *. We call 
<, also the composition 

Then i*y = gen î + i , the generator of KO~(Sl+1). Now the Atiyah-Hirzebruch 
spectral sequence and Proposition 4 imply t h a t t(y) = \x . In fact, 
* : Hl+l(Ql+1 : Z2) -> Hl+1(Ql+1 : Z2) is an epimorphism and t : KO~(X) - • 
X O ^ ( X ) does not lower filtration. 

So far Qi+\ is a common homotopy (/ + 1)-skeleton for all Q(p), where p 
is a free oriented involution with M(p) ~ Sl X Sl and 1 = 0 mod 8. However, 
there is no common (/ + 2)-skeleton, and in constructing an (/ + 2)-skeleton 
Ql+2 for a given p we will have to make use of our assumption t h a t k(p) = 0 
mod 4. Recall t h a t H*(Q(p) : Z2) = Z2[x]/(xl+1) ® A(y), where Z2[x]/(xl+1) 
is the polynomial algebra on x over Z2 , t runcated a t xl+1 and A(3/) is the 
exterior algebra on y over Z 2 ; moreover, deg x = 1 and deg y = I. Since 
fe(p) = 0 mod 4, it follows tha t the first two Stiefel Whi tney classes of Q(p) 
are zero. Then by means of Wu ' s formula it follows t ha t Sq2y = yx2. (In the 
case t ha t k(p) = 2 mod 4, it follows tha t Sq2u = 0.) We will construct Qi+2 = 
Ql+i \J Dl+2

y where the a t taching map is in 7r î + i (Ç i + i ) , so our next task is to 
examine TTÎ+I(QI+1). 

We have obtained generators a, fi, y of KO~(Qi+i) and we have obtained a 
homotopy class of maps 1 : Sl+1 —> Qi+i such tha t L*J = gen z + i . Clearly 
TI+I(QI+I) = Z + Z 2 + Z 2 ; and we have the following lemma. 

L E M M A 4. TI(Q1+I) acts on TTI+I(Q1+\) by sign reversal. 

Proof. Firs t observe t ha t irl+1(Pl V Sl) = Z2 + Z2 + Z 2 . If Ô : Sl+1 -> Sl 

is the Hopf map, then one generator of Z 2 + Z 2 is j o ô and the other p( j o 5). 

https://doi.org/10.4153/CJM-1974-016-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-016-1


168 ROBERT WELLS 

But since j + py ~ 0 in Q(p), we have t ha t the exact sequence 

ir^iPtV Sl)->irl+1(Q(p))^0 

is the exact sequence Z 2 + Z 2 + Z 2 —> Z 2 + Z 2 —» 0 with kernel the diagonal 
elements in Z 2 + Z 2 . T h u s iri(Q(p)) acts on 7rz+i(<2(p)) = Z 2 + Z 2 by the 
ident i ty ; since the elements have order two, we may jus t as well say " b y sign 
reversal" . 

Now we find the action of p# on iJ z + i ((2z+i) , where p now denotes the non-
trivial covering transformation of Q1+1—*Qi+i* T o this end we inspect the 
exact sequence 

o->i?H-i(C?H-i) >zTz > z + z^~z^ z + z-+o 
to conclude t h a t p* : Hi+i(Qi+1) —> Ht+i(Qi+1) is sign reversal. 

Finally we look a t the short exact sequence 

0 —> 7Tz+2((2(p), Ql+l) —> TTi+l (Q l+l) —* T^l+l (G(P))-O. 

B u t 

^ H - 2 ( G ( P ) , G H - I ) = TTI+2(M(P),Q1+1) ^Hl+1(Ql+1) 

with each isomorphism equivar iant , so we have a short exact sequence 
0 —> Z —> 7TZ+i((2z+i) —» Z 2 + Z 2 —> 0 from which the lemma follows. 

Now we choose specific generators of irl+1(Qi+i). Clearly 1 generates an 
infinite cyclic summand 

for j > 1 so L s tands both for Sl+l —» Q1+1 and .S ' + 1 —> Qz+i —• (?z+i), and we 
take 6 to be the first generator. For the second generator ôi, we let Si1 (Z & 
be a fiber of c —» Pi and we let ôi be the composition of the Hopf map Sl+1 —» 
•SV and the inclusion .Si* C (?z+iî then ôi generates a summand of order two. 
For the third generator 52, we take the composition of the Hopf m a p Sl+1 —> Sl 

followed by Sl —-> P1 and followed finally by Pt C Qi+û then 52 generates a 
summand of order two, and t, ôi, 52 generate 7rz+1(<2z+i). Finally, we write 
1, ôi, ô2 for the corresponding generators of wi+i(Qi+i). Then we have the 
following lemma. 

L E M M A 5. c*y = geni+u ôi*a = gerij+i, <52*0 = gen z + i . Also, L*a = c*p = 

Ôi*7 = Ô!*/3 = 02*7 = <52*a = 0. 

Proof. We have already see the first equat ion. T h e next two follow from the 
fact t h a t if 5 : Sl+l —> Sl is the Hopf map and / = 0 mod 8, then 5*genz = 
gen , + i . 
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For L*a = 0 we observe tha t the composition 

çi+i * S X S h „i 

is trivial. 
For i*/3 = 0 we observe t ha t the composition 

sl+1 -^s1 x slu sl->sl 

s1 

carries Sl+1 into a cone of S1 in S1. Consequently t ha t composition is homo-
topically trivial. 

For ôi*7 = 0, recall t ha t we have the cofibration 

the corresponding splitting map a t the other end. Then yKS1 X S^S1 X *) is 
jus t the pullback of gen z + 1 by (S1 X S^S1 X *) -> Sl+l so ôfy = 
81*(y\(S1 XS'/S1 X * ) ) = 0. 

For 8i*/3 = 0, observe tha t /3 is the pullback of genz under the equivar iant 
retract ion S1 X Sl ^Js1 Sl —> Sl, and tha t under this retraction 8i(Sl) is 
carried to a point. 

For ô2*7 = 0» we may regard gi : (S1 X S ' / S 1 X *) —>SZ+1 as a m a p 
gi : Sl X S* U CS1 —» 5*+1 , where C51 is a cone of 5 1 in Sl. There is only one 
way (up to homotopy) to extend this map to a map 5 1 X Sl U s 1 Sl —> Sl+1, 
and this m a p carries 82 to the trivial map . 

Finally, for 82*a = 0 recall t h a t the m a p / i : S 1 X Sl —>5Z was extended to 
gi 

S 1 X 5* Ws 1 S z —» S* so t h a t g± o 82 is trivial, and the lemma is proved. 

Next , we consider the exact sequence 

7TZ+2(<2(P), <2*+l) -> 7TZ+1((2,+ l) -> 7T,+ 1((3(p)) - * 0. 

By passing to covering spaces and applying the Hurewicz isomorphism 

T1+1(M(P), Ql+1) HH1+1(M(P),~Q1+1) 

and the Hurewicz epimorphism 7rz+i(Çz+i) —> Hi+1(Ql+1), we see t h a t there is 
a commuta t ive diagram 

7T*+2(<2(P), Ql+l) "> 7TZ+l(<2?+l) - > 7Tl+1(Q(P)) -* 0 

with the top row exact and the second vertical an epimorphism. I t follows t h a t 
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the kernel of TTI+I(QI+I) —» TTI+I(Q(P)) is generated by X, where X is one of the 
four maps t, t + 5i, t + Ô2 or t + ôi + 52. Then a homotopy (/ + 2)-skeleton 
for Q(p) is Çz+i U x Dl+2 = K(\). In order to decide which X actual ly appears , 
we need the following lemma. 

L E M M A 6. The composition 

Sl+1±Ql+1- Q1+i/P< 

is homotopically trivial. 

Proof. We observe t h a t the composition of the lemma may be factored t h u s 
Sl+1 —> (J/Pi —> QH-I/PI so t h a t it suffices to show t h a t the m a p Sl+1 -> a/Pl is 
trivial. We observe t ha t t ha t map appears in the following homotopy com­
muta t ive d iagram: 

S'il 

and t h a t the composition 

Qi+i S X S h „i 

is homotopically trivial. T h u s the composition Sl+1 —> <r/Pi —-> P z / P z _ 2 is 
homotopically trivial. Consequently, it suffices to show t h a t iri+i(a/Pi) —> 
TTI+I(P 1/P1-2) is a monomorphism. 

Notice t h a t <r/P\ is 5 ' U 2 Z } * + 1 with the generat ing sphere obtained from 
the composition Sl -> S 1 X Sl -> (S1 X S ' / S 1 X *) - » 0-/P1 in the diagram 
above. On the other hand, the composition Sl —> P 1 —> P i/P 1-2 mus t be non-
trivial because it defines the cofibration Sl —> P */P z_2 —> P1+1/P1-2 in which 

Sg2 : Hl-i(Pl+1/Pl„2 : Z2)^Hl^(Pl+1/P^2 : Z2) 

is nontrivial . From the Adams spectral sequence we see t h a t 7r z (P ? /P z _ 2 ) = Z 2 

so t h a t the m a p a/Pi —» PJP1-1 carries Ti(a/Pi) => 7r z (P z /P z _ 2 ) = Z 2 iso-
morphically. 
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Let S1 —> P1/P1-2 be the above map, t ha t is, the generator of TTI(Pt/P*_2), 
and let 5 Z + 1 —> Sl be the Hopf map. Then from the Adams spectral sequence 
we see t ha t the composition 5 l + 1 —> Sl —> P JP1-2 is non-zero in Tt+i(P i/P 1-2) = 
Z4 . On the other hand, the cofibration 

Sl^Sl~^a/P1 

shows t ha t the generator of TTI+I(<J/PI) = Z 2 is the composition Sl+l -+ Sl —> 
a/Pi. T h u s ITI+I(<T/PI) —> iti+i(P 1/P1-2) is a monomorphism, and the lemma is 
proved. 

Now we may prove the following proposition, from which Theorem 7 will 

follow immediately. 

PROPOSITION 7. Let p be a free involution with M(p) ~ Sl X Sl and 1 = 0 mod 
8 and k(p) = 0 mod 4. Then either /x or /x + 2<p~1(rj — 1) is in the image of 

t:KO~(M(p))->KO~(Q(p)). 

Proof. Let K(\) be a homotopy (/ + 2) skeleton for Q(p) and let K(\) - » 
i£(A) be its double cover. We have the mapping of double covers 

Ql+1 • Z(X) 

Ç i + 1 >K(\). 

Since Z 2 acts on TTI+I(QI+1) by sign reversal, it follows t ha t K(\) has the 
homotopy type of (Q1+1 \J\ Dl+2) V Sl+2 where X is now regarded as a m a p 
S'+l -> Ql+1. 

Since k(p) = 0 mod 4, the first two Stiefel Whi tney classes of Q{p) must be 
zero, and by W u ' s formula we must have Saly = xy and Sq2y = x2y. Bu t Sq2 

is the differential d2 : E2
l'~l~1 —> E2

l+2'~l~2 in the Atiyah-Hirzebruch spectral 
sequence for Q(p). Since Hj(Q(p) : Z2) —>Hj(K(\) : Z2) is an isomorphism 
for j = I + 2, the same thing happens for i £ ( \ ) and it follows t ha t we have a 
commuta t ive diagram 

0 -> Z - » KO~(M(p)) -> KO~(K(\)) 

Ilk 1* 1* 
0 - ^ Z -+ KO~(Q(p)) -> KO~(K(\)) - » 0 

with exact rows. T h e Z in each row consists of the elements of filtration 2/. 

T h a t I: X ^ Z follows from the following facts: (a) 7r*Z —> Z is multiplication 
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by 2; (b) t does not decrease filtration; (c) the diagram 

M(p)-^M(P) 

homotopy commutes for M(p) —>S2i a degree one map; and (d) w*t = id + p*. 

Now we use again the fact that Sq2 : Hl(Q(p) : Z2) ^Hl+2(Q(p) : Z2). 
It will follow from the lemma below that X = i + h\ or X = i + <5i + <52. 
But in either of these cases the element y + a Ç i£0~(<2z+i) extends to an 
element a! Ç KO~(K(\)). Let z/ G i£0~(i£(X)) be the non-zero element of 
filtration / + 2. Since 

d2 : E^-^iKM) -^El+2>l-l-2(K(\)) 

is epimorphic in the Atiyah-Hirzebruch spectral sequence, and since t does not 
decrease filtration, wre must have t(vf) = 0. On the other hand, the sequence 
KO~(M(p)) -^KO~(K(\)) - ^ Z 2 - + 0 is exact with / being carried to the 
generator of t2. Thus, either a or a + v' extends to a" £ KO~(M(p)). On the 
other hand, t(a!) = t(a' + / ) -» p' or y! + 2^"1(^ - 1) under KO~{K{\)) -» 
i£0~(<2z+1) so that *(<*")->M' or M' + « ^ f o - 1) under i£0~(<2(p)) -> 
i£0~(Cz+i)- Since we may modify a" by an element of Z KO~(M(p)) and still 
obtain an extension of a or a + ?' as the case may be, we see finally that there 
is a '" G K0~(M(p)) such that t(a"') = p or p + 2*-10? - 1 ) . Now the proposi­
tion is proved modulo the following lemma. 

LEMMA 7. Sq2 : H\K{\) : Z2) ^Hl+2(K(\) : Z2) is zero for X = i and 
A = i + £2; a w ^ ^ ^5 a non-zero epimorphism for X = i + <5i <2?zd X = t + di + <52. 

Proof. Since <2z+i is a homotopy (/ + 1)-skeleton of Q(p) for any p as above, 
and since Hl+l(Ql+1 : Z2) = Z2, we have Hl^(Q(p) : Z2) § i f z+1(<2z+i : Z2). 
Thus the generator of Hl+1(Qi+1 : Z2) is the product of lower dimensional 
classes and the map X : Sl+l —> Qz+i is zero in reduced cohomology. Then 
Sq2 : Hl(K(\) : Z2) —» Hl+2(K(\) : Z2) is zero or a non-zero epimorphism if 
and only if Sq2 : H\K(\)/Pl : Z2) -> Hl+2{K(\)/Pl : Z2) is zero or non-zero. 

Let X' be the composition 

Sl+1^Ql+l->Ql+1/Pl = a/Pl. 

Then we have the cofibration 

Sl+1K(T/Pl-^K{\)/Pl. 

By Lemma 6, we have i trivial. Clearly b2 is trivial, so we have only two cases: 

K(i)/Pl = K(L + b2)/Pl = tr/Pi V Sl+2 
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and 

K(L + h)/Pl = K(L + ôi + Ô2)/Pl = <J/P, U Dl+2 

el' 

and the lemma follows immediately, and thus the proposition as well. 

Now we may prove Theorem 7. We have already dealt with the case 
k(p) = 2 mod 4, so we assume k(p) = 0 mod 4. Thus Proposition 7 applies 
and there is an e l e m e n t ^ G KO~(M(p)) such t h a t / (£0) =Morju + 2^~1(î7 — ! ) • 

If v(Q(p)) = k(p)(r] — 1), we are done, as in the case k(p) =2 mod 4. T h e 
subgroup Z KO~(Q(p)) of filtration 2/ elements cannot make any contribution 
to v(Q(p)) since the index of Q(p) is zero. Thus , if v(Q(p)) ^ k(p)(rj — 1), 
then v(Q(p)) = k(p)(rj — 1) + /x. In the case t ha t /(£0) = M we have t h a t 

'(£<>) = K 0 ( P ) ) - * ( P ) 0 ? - i ) 

and in the case t ha t 2(£0) = M + (c(l)/2)(rj — 1), we have t ha t 

'tto) = v(Q(P)) - (*(p) + c ( 0 / 2 ) ( u - 1). 

I t follows then from Proposition 5 tha t there exist generic immersions M2l+Ic —> 

S2i+2* f o r k ^ 2/ + 3 if and only if k->k(p) in the first case and k -> fe(p) + 
2^_ 1 in the second case. In either case, the theorem is proved. 

4. 4.1 Proof of Theorem 8. We have t ha t / = 0 mod 8 and t ha t g represents 
an element of I<n(K) not in the kernel of a. Then K = k(p) = 0 mod 4. I t 
follows from [12] t h a t KO~(Q(p)) = K0~(Pl) © (Z + Z 2 ) , a direct sum with 
respect to Adams operations. Since p. the generator of Z 2 is not stably fiber 
homotopically trivial, it follows from Quillen's Theorem t h a t J\KO~{Pi) 0 Z 2 

is a monomorphism. Moreover, as pointed out in the proof of Theorem 7, we 
have v(Q(p)) = k(p)(rj — 1) + /x. Suppose t h a t Q(p) —> Q ( P ' ) is a homotopy 
equivalence. Then it follows tha t J(k(p) — k(p'))(rj — 1) + /x) = 0 , which is 
a contradiction, and the theorem is proved. 

4.2. We will obtain the example by means of the following proposition: 

PROPOSITION 8. Let 

be a generic immersion. Let c : A ( / ) —» Pr be transverse to Pr-\ and such that 
c 

the composition A ( / ) —» Pr —> P œ classifies D(f ) —> A ( / ). TT^w //zere is a 
generic immersion g : M —> 5W+1, regularly homotopic modulo a neighborhood of 

f 
dM to M^Sn C S"+1, w % A(g) = C - H ^ r - i ) and with 

classifying D(g) -> A (g ). 
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Proof. We may replace Sn with Rn and Sn -> Sn+1 with Rn -> Rn+l so that 
Kn = {(xi, . . . , x1+i)\x1+i = 0}. We have the maps of double covers 

DU) >Sr csr 

Mf) >Pr Pr-1 C P , 

Let h : Sr —* R be projection on the (r + l)st coordinate. This map is equi-
variant with respect to the antipodal action on Sr and sign reversal on Sr\ we 
may assume S7"-1 = /^_1(0). The equivariant smooth function 

D(f)->Sr-^R 
may be extended to a smooth function H : M —> R, zero near d.M. Let the 
immersion g be given by g(x) = ( /(#) , H(x)). Then clearly g satisfies the 
conclusion of the proposition, which is now proved. 

COROLLARY. Let f : Sm —» Sw fre a generic immersion and suppose that there is 
a map c : A(f ) —> PT such that 

classifies D{f) 

A(f)±PT^Pa 

A ( / ). Then the immersion 

is regularly homotopic to the embedding. 

Now we recall the definition of the Conner-Floyd coindex: If 

x^x 
Pr is a double cover, the coindex of ir is the smallest r for which there is X 

such that X —» PT —> P œ classifies ir. 
To obtain the example, we recall that by composing the James and Smale 

isomorphisms we obtain a commutative diagram: 

Imm(Sm, Sn) > Imm(5m , Sn+1) 

ill* 
^ ' ( P / P t - i ) -

Ik 
^ • ( i ' / p * ) 

Inspection of Mahowald's Tables reveals that there is an element x £ ir^P/Ps 
(represented by hi • ul in his notation) which is carried by TTIQS(P/P^) —> 
TTUS(P/PI2) to a non-zero element. But there is a commutative diagram by 
James periodicity: 

7T 1 6 *(P/P 5 ) > 7T 1 6 *(P/P 1 2 ) 

7Ti44S(P/Pl3l) 
• Ik 

-> ir 1 4 4*(P/Pl40) . 
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T h u s we obtain a generic immersion / : S144 —• 5 2 7 6 such tha t the immersion 

0,144 / ç.276 ^ - ^285 

is not regularly homotopic to an embedding. Consequently, the corollary to 
Proposition 8 implies t ha t the Conner-Floyd coindex of D(f ) —> A ( / ) mus t 
be ^ 9. 

Finally Theorem 4 and the corollary to Theorem 2 of [13] imply t ha t we 
may assume tha t D(f) is 5 connected and HQ(D(f)) = Z + Z. Since 
v(A(f )) = 4(77 - 1), it follows t ha t v(D(f )) = 0 so tha t 

D(f) = (S* XE* U £ 6 X SQ) U E12 

where \p : Su —> Su is a diffeomorphism. Since TUS = 0 and bPu = 0, it 
follows t h a t $ is concordant to the identi ty and then t h a t D(f) is diffeo-
morphic to 5 6 X S&. Then the non trivial covering transformation of D(f ) —» 
A ( / ) defines a free oriented involution p of S6 X -S6 such t h a t the coindex of 
SG X S6 —> (?(p) is ^ 9. T h a t is the example we sought. 

4.3. We conclude this section with a remark on the periodicity 

-1+7-2*' ; 

where <£> = < (̂m + 1 — &). We let m = 2/ + k with both / and k even, and we 
take k ^ 2/ + 3. Let 7 —» P j be the (/ + l ) -p lane bundle stably equivalent to 
(2*<o - / - 1 - k)rn. Then there is a bundle map v(E(y) : S+

n+1) -> krj^ + k. 
Twist ing the restriction v(S(y) : Sn) —> krjœ + & by means of KO~~1(S(y)) in 
the usual way, we obtain a j -homomorphismj : KO~~l {S(y)) —> 7r2 i+^Tiky)^) = 
Trm

s(P/Pk-i). Let A2i(k) be the cokernel of this map. According to [13], the 
group A2i(k) is isomorphic to the kernel of 

Ï2i(r)) —» Z 2 

where K is the image of k under Z —>Z2^(n. Consequently we obtain a faster 

periodicity of A2t(k) than implied by James periodicity: 

A2l(k)^ A2l(k + c(l)) 
instead of 

A2l(k)^ A2l(k + c(2l + 1) ) . 

5 . o . l . Let I m m ( 5 m , N) be the immersions Sm —> N modulo regular homotopy. 
Under connected sum this set becomes a group and the definition of qf may be 
extended to qf : I m m ( 5 m , N) —> irm(0/0(k)). Notice t ha t qf is a homomorphism. 
If / : Sm —> N is a generic immersion, then we obtain as in Section 2 a uniquely 
defined class of bundle maps v(A(f ) : N) —» £77 œ + &. However, we may take 
a c-skeleton of iV to be En C ^ , and then A ( / ) C N defines a unique isotopy 
class of embeddings and consequently we have a unique class of bundle maps 
i>(A(/ ) : En) —» ^ œ + &. T h a t is, we have a £77^ manifold <5(/) as in Section 2, 
and consequently an element a(f ) £ irm

s(P/Pk-i). 
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Using again the fact that N is c-connected, so that En N is a ^-skeleton for N, 
we see that the proof of Theorem 4 carries over, replacing M by Sm and Sn by N 
to give us the following proposition. 

PROPOSITION 9. Any kr]œ-surgery of 8(f ) may be realized by a generic regular 
homotopy. 

5.2. Proof of Theorem 9. Let x : Sm —^ N and y : Sm —» iV be embeddings 
representing x, 3/ 6 7rm(7V) respectively. We may assume that they are mutually 
transverse. Let + denote connected sum. Then a(x -\- y) = x o y and 
q>(x + y) =q'(x)+q'(y). 

By Theorem 4, we may choose a generic immersion f : Sm —* En CZ N with 
a(f ) = —x - y. We may assume that En is a small regular neighborhood of a 
point not in x + ;y(<Sw) so x + 3/ and / are disjoint immersion into En C <SW, 
notice that it follows from the definition of \p that \[/q'(/ ) = a(f ) = —x • 3/. 

Now, since x -{- y a n d / are disjoint we have a{x -\- y -\- f ) = 0 . Thus there 
is, by Proposition 9, an embedding z : Sm —» iV regularly homotopic to x + 3/ + 
/ . Since / : 5W —>En, the embedding z represents x + y. Thus g (2 + y = 
\K<Z )̂) =^(g ,(x+ ? + / ) ) =^(g,(*) + g , W + g ' ( / ) ) =g(x) + g(y) -
x • 3/, and the theorem is proved. 
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