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Abstract. Lyapunov exponents for two-dimensional matrix cocycles are shown to
be stable under certain stochastic perturbations.

This paper concerns the effect of stochastic perturbations on Lyapunov exponents
in dimension two. Let X be a compact metric space and let/: X^> be a homeomorph-
ism preserving an ergodic Borel probability measure m. We consider a continuous
map A:X^GL(2, R) and let A,>A2 denote the Lyapunov exponents of A over/
Our main result is the stability of these exponents when A is perturbed randomly
and in a relatively unbiased way.

For definiteness, let us first consider the case where A is followed by a small
random rotation at each step. More precisely, fix some e > 0 and let
. . . w_!, ojo, &>],... be chosen independently with the uniform distribution on [-£, e].
Let Ra denote rotation by angle a. Then there are numbers A;>AJ such that for
a.e. x and a.e. choice of . . . «_,, co0, w1,..., the sequence of matrices

{R^ o ACT*)}"- - (*)

has Lyapunov exponents A? a A2- (This is just Oseledec's theorem [O].) We show
that Af -* \j (i = 1, 2) as e -» 0. We also show that if A] > A2 and e is sufficiently small,
then for a.e. x and . . . w_i, w0, w, , . . . , the Oseledec splittings associated with (*)
are very near the corresponding ones for {A(/"x)}"=_co for most values of n. Precise
statements of these and slightly more general results are given in § 1.

In general we assume that the induced action of the stochastic perturbations on
projective spaces have densities with uniform bounds. This is explained in § 1. The
fact that some conditions of this type are necessary to ensure stability will also be
discussed.

It should be mentioned that random walks on GL(H, U) have been studied by a
number of people (see e.g. [F], [FK] and [GR]). In particular, the question of
stability of exponents has been answered in the affirmative when the limit measure
possesses certain irreducibility properties. The reducible case was considered in [KS].

Finally, my primary motivation for studying random perturbations of matrix
cocycles is a desire to understand the effect of noise on smooth dynamical systems,
i.e. when X is a manifold, / is a diffeomorphism of X and A = Df. It would be
more satisfactory to obtain some results on how Lyapunov exponents are affected
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628 L.-S. Young

by perturbations of the map / itself, as opposed to just Df as we have done here.
Our methods in this paper alone seem inadequate for that purpose.

I wish to thank M. Denker, F. Ledrappier and C. Preston for helpful discussions.
This research was partially supported by NSF.

1. Definitions and statements of theorems
Throughout this paper we let X denote a compact metric space, m a Borel probability
measure on X and/:Xt> a homeomorphism of X onto itself preserving m. Unless
declared otherwise (as in theorem 3') we shall assume that m is ergodic. This causes
no loss of generality since all of our arguments apply to one ergodic component at
a time. Let A0:X-*GL(2,U) be continuous. For n>0, we write

AZ(x) = A0(f
n~1x)o...oAo(x)

and

Aon(x)=A0{rnxV ° • • • ° A0(r
lxy\

The Lyapunov exponents of Ao over/: (X, m)±* are denned to be

A^lim-logllASO
n-»oo n

and

these limits being constant a.e. Moreover, if A,>A2, then there is a measurable
splitting of the R2-bundle over X into EX®E2 with the property that for m-a.e. x
and every t?^0e E'(x),

lim-\\AZ(x)v\\ = \,.
n-»oo n

We first state our results for a special case which is easy to describe and which the
reader may wish to keep in mind. Afterwards we give the more general version
stating the hypotheses exactly as we use them. The proofs of these two versions are
practically identical.

Fix e > 0 and let [-e, e] z denote the bi-infinite product of the interval [-e, e]
with itself. Let <an = (a>)n be the n'th coordinate of q> e [-e, e]z and let cr: [-e, e]z *=
be the shift operator, i.e. (ow)n = (w)n+1. If ve is the normalized Lebesgue measure
on [—e, e] and v* is its product with itself, then (/xcr): Xx[ — e, e]zt= preserves
the product measure m x vf, which is ergodic since the second factor is Bernoulli.
Consider the matrix map

with Ra denoting rotation by angle a. We call its Lyapunov exponents
That is, for m-a.e. JC and v\-a.e. w, if v ¥" 0 6 U2 then

Um-\og\\(Ro>n°A0(f
nx))o---o(R oAoix^v^Xl Or X'2.

https://doi.org/10.1017/S0143385700003734 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003734


Random perturbations of matrix cocycles 629

THEOREM 1'. \e
i-*\i(i = 1,2) ase^O.

Now suppose A, > A2, so that for e sufficiently small, we have Â  > A2 as well. Let
R(x,<!,) = E\x, <O)@E2{X, q>) denote the Oseledec decomposition of the above cocycle
over (x, a>) € X x [-e, e]z. Note that if w = . . . 000 . . . , then £'(x, <a) is also written
E'(x). The cardinality of a set is denoted by #, and angle by 4.

THEOREM 2'. Let 8 > 0 be given. Then for all sufficiently small e > 0, we have for
(mx v*)-a.e. (x, w),

lim — l— • # {\k\ < n: ^(E>{fkx, <rkw), E'(fkx)) < 8, i = 1, 2}> 1 - S.
n̂ oo 2n +1

Next we change our perspective a little: keep e > 0 fixed and let / and Ao vary. One
scenario that might make sense is the following. Let M be a compact oriented
surface endowed with a Riemannian metric and let m be its normalized Riemannian
measure. Fo r / e DiffJn(M), the space of C1 diffeomorphisms of M preserving m,
we consider the Lyapunov exponents of Df composed with < e-rotations (i.e. Ao = Df
in the preceding discussion). Here no ergodicity is assumed, and we write

THEOREM 3'. For fixed e > 0, />-» Af (/) is continuous (i = 1,2).

This statement is to be contrasted with the case e = 0, where Mane's theorem [M]
says that away from Anosov components A,(/) = A2(/) = 0 for a residual subset of/

We now begin to state our theorems in greater generality. Let/:(X, m)s= be as
before. Let O be a compact metric space with a special point u> e ft, and let
A:XxO^GL(2,R) be a continuous map. Let A0(x) = A(x, c3). We think of ft as
a parameter space and A as a parametrized family of perturbations of xi-»A0(x).
The Lyapunov exponents of Ao are denoted by A!>A2. For each e>0, we let pe

be a Borel probability measure on ft and let AJ &A2 be the exponents of (x, w)i-»
A(x, a)0) over the dynamical system (/x cr): (X x ftz, m x v*) t>.

One could rephrase the definition of A1 as follows. Take an m-typical point xeX.
For n =0 ,1 ,2 , . . . , the map •i-»A(/"x, •) induces a sequence of probabilities on
GL(2,R). Call them {rn = rn(x, e)}. If B 0 ,B, ,B 2 , . . . are independent GL(2, Un-
valued random variables with distributions TO,T1,T2,. .. respectively, then with
probability one

lim — log ||Bn • • • B0\\=\l
n-.oo n

We wish to say that Af -* A, if vE -* 8^, the dirac measure at w, but will need some
extra hypotheses which we now describe. Think of our process as taking place on
XxP1, where P1 is the one-dimensional projective space. Let Pi denote the copy
of P1 over x e X, and let w denote the direction represented by the unit vector u e U2.
Now the rules of our game are that u e Pi may be sent to A(x, w)u e P}x, a> varying
over ft. We assume that for w-a.e. x and every u e P i , the image of the measure vc
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on P}x under the map • i-» A(x, -)uis absolutely continuous with respect to Lebesgue
(written« Leb.) with density pe(x, u).

Uniform density condition (UDC). 3K > 0 s.t. for every e > 0, the following is satisfied
for a.e. x and every u £ P1:

(1) supp pE(x, u) is contained in the e-neighbourhood of A0(x)u.
(2) pc(x,u)^K/e.

T H E O R E M 1. Let A:XxQ,^GL(2,U) and {ve} satisfy ( U D C ) . Then Af^
Af (i = 1, 2) as e^O.

THEOREM 2. Under the same hypotheses as in theorem 1, the conclusion of theorem
2' holds.

We mention a couple of relatively natural examples to which these generalized
hypotheses apply. Take / : (X, m)±> and Ao: X -» GL(2, R) to be anything one desires.
Let ft = [ — 1,1]4 and let vc be normalized Lebesgue measure with support =
[-e, e ] 4 c [ - l , l ] 4 . Define A:X xil^GL{2,U) by

It is easy to verify (UDC). Instead of assuming that ve is normalized Lebesgue
measure on [—e, e]4, one could also choose an L°°-function <p:R4-»R with <p>0,
supp (p c [ -1 ,1] 4 and J <p dx = 1 (here x e R4 and dx = d(Leb.)) and let ve be defined
by

' - f -W1
JE e \e

*>„(£)= — <p[-x) dx.
JE £ \e I

We now discuss the necessity of some regularity assumptions on ve. First, keeping
f:(X, m)±3 fixed, the map A0>-*\l(A0) is known to be upper semi-continuous but
not always continuous. Mane has techniques for 'jumping' A, ([M]). (Our situation
is simpler since he perturbs / and so has spatial considerations that are irrelevant
here.) Thouvenot also has examples in which A ^ A J X ) but multiplication of Ao

by a suitably chosen constant matrix near the identity can bring A; arbitrarily close
to zero [T].

Once we have deterministic perturbations Ae of Ao with Ae -> Ao and
lim^o A](Ae) < \i(A0), we can approximate As by processes for which the functions
pe(-, •) are well defined and still have the larger exponent bounded away from
Ai(A0) as £->0. Thus in general some conditions must be imposed on pe{-, •) to
ensure stability. We do not know what the weakest natural assumptions are.

The organization of the rest of this paper is as follows. Most of the work is
contained in the proof of theorem 1, which is given in §§ 2 and 3. The proof of
theorem 2 occupies § 4 and theorem 3' is proved in § 5.
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2. Proof of theorem 1
For fixed e > 0 we define a Markov chain with state space XxP 1 as follows. Let
xeX, we Pi , and let £ be a Borel subset of XxP 1 . The transition probabilities
are given by

Pe{(x, u),E)= ve{w. A(x,u)ue E nP}x}.

Definition 2.1. A Borel probability measure /i on X x P 1 is called an invariant
measure for Ps( •, •) if /x satisfies:

(1) fiE=\ Pe{{x, u),E) d/jL.(x, u) for every Borel subset £<=Xxp' , and
(2) p/ji = m if p: X x P1 -» X is the projection map.

Invariant measures of this type always exist. Let fie be one such measure for the
process Pe( •, •) and let {(/Ox. x e X} be a canonical system of conditional probabil-
ity measures of fie on the P'-fibres over X. Since we assume that pc(x, u) exists for
a.e. x and every u, it follows that (/i.E)x« Leb. on Pi for a.e. x.

LEMMA 2.2. AJ = Jlog \A(x, <o)u\d{ij.c x ve).

Here u is understood to be one of the unit vectors in the equivalent class u.

Proof Consider the map F: X x P1 x ilN±> given by F(x, u,w) = (fx, A(x, co0)u, ow).
(With Fy denoting the set of natural numbers it is obvious what ftN means.) We
leave it to the reader to verify that F preserves /J.E x v*. Let <p : X x P1 x flN -> U be
defined by <p(x, u, w) = log \A(x, WO)M|. Then

"l F'(x, fi, «) = log |A(/"-'x, wB-,) ° • • • ° A(x, «0)u|
i = 0

and we have, for m-a.e. x and all except possibly one tie Pi ,

n i=o

as n-* oo. Since (/u,e)x« Leb. for a.e. x, the above convergence occurs for (/ue x j/~)-a.e.
(x, u, w). The Birkhoff ergodic theorem applied to <p then gives

= J
and hence the desired result. •

Now if fj. is a weak limit point of /J,E as e -»0, then /i is left invariant by the
transformation Fo: X x P'fe defined by F0(x, u) = (fx, A0(x)u).

COROLLARY 2.3. If /i.e-» fi as e-*0,

j
If A, = A2, then theorem 1 is automatically true. One can conclude that from general
principles, namely the upper semi-continuity of exponents, or alternatively one
could see that from corollary 2.3 with /i being any limit point of fie, e -> 0. So from
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632 L.-S. Young

now on we may assume that Ai>A2. Let El®E2 denote the splitting of XxU2

associated with Ao.
The set of Borel probability measures on XxP1 that are F0-invariant and that

project onto m has exactly two ergodic components, which we denote by fil and
fi2. They have the property that if {/j.'x,xeX} are their respective conditional
measures on P'-fibres, i = 1,2, then for m-a.e. x, /x'x = dE'(x) (a benign abuse of
notation). We then see from corollary 2.3 that showing AJ-»A, is equivalent to
showing fiE-* (i1. Once this is proved we have A f -* A2 immediately since the additivity
of the log | det (•) | function guarantees that A J + A 2 -» A, + A 2.

The idea of working with invariant measures on X x P1 to obtain information on
Lyapunov exponents probably goes back to [F]. We remark also that much of the
preceding discussion, including the statement of lemma 2.2, works quite generally
for perturbations of GL(n, R) cocycles. We restrict ourselves to the n = 2 case in
this paper because of the estimates in showing fie-> (i1.

Let us indicate briefly how our argument for /xe -* fi* goes in the 2x2 case. The
estimates are carried out in the next section. First we choose and fix a measurable
set Jf<= X xP 1 with the property that for a.e. x, Jf\Px contains an open neighbour-
hood of SB\x). Our objective is to show that /ACN^>0 as e-»0.

To do that, consider the operator i? on M(X x P1), the space of Borel probability
measures on X x P 1 , defined by

J#.(•)£ = J Pe((x,u),E)d(-).

As before, let us denote the conditional measure of fieM(XxPx) on P} by fxy.
We will prove

PROPOSITION 2.4 (MAIN PROPOSITION). There is a function a(e) tending to 0 as
e -» 0 such that for any fieM(Xx P1) with p/x = m, we have, for m-a.e. x

l im- Y(.S^/*)/*•*"< «(*)•
n-°° n fc=o

By taking /JLE = fj, in the above inequality, for instance, one sees immediately that
HsJf< a(e), which finishes the proof of theorem 1.

3. Proof of theorem 1 (continued)
Dividing by |det Ao\, we may and will assume throughout this section that Aj = A > 0
and A2 = -A.

(A) Change of coordinates. We fix e ,>0 with e2A"5£'> 1.

L E M M A 3 . 1 . There exist measurable functions a, b, C,T:X -»R such that

(1) 0< |a |<l , b2+c2>l; and
(2) if ipx:U

2^U2 is given by

a(x)

0
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then

where

This is nothing more than a slight modification of the standard Lyapunov metric
used in the theory of non-uniformly hyperbolic systems [P]. We proceed to define
the functions anyway.

Proof of lemma 3.1. Let {eu e2} denote the usual basis of U2. We shall define for
a.e. x a linear transformation \fix: IR

2 -> U2 with i/»3ce1e £ ' (x ) and ipxe2eE2(x). The
role of RT(X) in the statement of the lemma is simply to rotate e, to the direction of
E\x).

For i = l ,2 pick a measurable function x^vt{x) such that vt(x)e E'(x) and
\vt(x)\ = l. Recall that for « > 0 , AZ(x) = A0(f

n~lx)° • • • ° A0(x) and Ao"(x) =
A0(f~"x)~1 o. • • o A0(f~

1x)~1. For convenience we write AQ = Id. Let

Since the n = 0 term is equal to 1, we have \a{x)\ = \tyxex\ < 1. A simple computation
gives

To define <pxe2, we first let

As before, we have \{4>JX ° A0(x) ° i^x)e2| s e'A+^El. To obtain \tpxe2\ s= 1 however, we
consider the function /: X -* U+ defined by

n\ -

It is straightforward to verify that / so defined is a finite valued measurable function
with the following properties:

(1) Mf^ for,,x

(2) | l /U|>/(x)-1(l-e<-E. ) / 4) a.e.x

We then set

and check that | i/>x e2\ s 1 and

K^ 1 o A0(x)

(B) New coordinates on projective spaces. Recall that for each x e X we are concerned
with matrices A(x, w), coeil, which we view as perturbations of the matrix A0(x).
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First we decided to work in projective spaces. That is, we look at the induced action
of A(x, <o) from Pi to P}x and view them as perturbations of the map Q-* A0(x)u.
Since we will be dealing with projectivized maps, let us fix the following notation:
-if L: R2 -» U2 is a linear transformation, then £: P1 -» P1 is defined to be Lu = Lu.

Next we make a change of coordinates on Pi for m-a.e. x. This is done via the
maps {t/»x} defined in lemma 3.1 and will be referred to as ip-coordinates in the
future. Let

B(x,a>) = ^7x
1°A(x,w)^x and B0(x) = 4>J* ° A0(x) ° 4>x.

Then B(x, <o) = i/^1 ° A(x, w) ° <J/X is the representation of A(x, w) in t//-coordinates
and from now on we will be working with {B(x, w), coeil} as perturbations of
B0(x):Px^P}x.

Let us write P ' sS ' /{« , 0+n} = [0, n]/{0, TT). Then for a.e. x, B0{x) has exactly
two fixed points, namely 0 and n/2. Moreover, |(So(x))'(0)|< e"2A+2e' and
\(B0(X))'(TT/2)\ > e2A~2e>. The price we pay for having these nice uniform properties
for Bo is the loss of uniformness in the perturbations.

We need some control on the derivative of i/»x.

LEMMA 3.2. 350> 0 s.t. for m-a.e. x, i/0, e Pi satisfies |0, - (TT/2)| < So, i = 1, 2, then

Proof. Since this estimate is uniform in x, we fix an arbitrary point and omit all
mention of it. Recall that

(a b\

where 0< \a\ < 1 and b2+ c2> 1. A small computation gives

-, , . c sin 6
«K<?) = r + tan"1

a cos 0 + D sin
and

ac
a2 cos2 0 + lab sin 0 cos 0 + (b2 + c2) sin2 0

Let 7",(0), T2(0) and T3(0) be the three terms in the denominator of $'(0). We
claim that T1(0)/T3(0) and T2(6)/T3(6)-*0 as 0^v/2. The first comparison is
obvious, as is the second if we argue the cases \b\ > 1 and \b\ < 1 separately.

Now for 0,, 02 near TT/2, T3(01)/T3(02) = 1. Hence ^'(6>,)/«A'(^) = 1- •

Choose 5j<50 such that for a.e. x, B0(x)6e ((TT/2)-80, {TT/2) + 80) and
|(Bo(x))'(0)|se2A^E. for every 0e((77-/2)-5,, (77/2)+ 5,). We define TV to be a
subset of X x P 1 with the property that ^ ' ( j V n P i ) = ((TT/2)-S1, (ir/2) + di) for
a.e. x. The remainder of § 3 is devoted to showing fieJ

lf^ 0 as e -» 0.

(C) Transformation of densities. Let e > 0 be fixed throughout this subsection. We
assume that it is sufficiently small (see case 1). Let \i be any Borel probability
measure on X x P1 that projects onto m and whose conditional measures on P1-fibres
are « Leb. We consider a generic point x e X (to which all of our previous 'a.e.'
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statements apply). Let r)0 denote the density of fix on Pi in ̂ -coordinates, and let
77, denote the density of (i?,,/j,)/x on P}x, also in if/-coordinates. Let 17,=
max{T?,(0): | 0 - ( T T / 2 ) | < 5 1 } , r = 0,1. Let 82 be chosen so that 5 , < 5 2 s 5 0 and
e2A"3£>5] > 82. We distinguish between the following two cases:

Case 1. For t = (n/2)±81ePx, i/*^'(supppe(x, ijixt)) is disjoint from the 5,-neigh-
bourhood of TT/2 in P}x.

Claim. v^Vo-e~2A+5e'.
We assume that e is sufficiently small that for m-a.e. x and ^e-a.e. weft,
\(A0(x)° A(x, w)~')'|< e6'. This is legitimate since by hypothesis the support of
pe{x, u) is contained in the e-neighbourhood of A0(x)u, and this forces A(x, u>) to
be very near A0(x) for vE-a.e. weil. (We are using implicitly the fact that
{A0(x), x e X} is a compact subset of GL(2, R).)

To prove the claim we note that 170 and •q1 are related by

77,(0) = j r,0(B(x, wy'd) • \(B(x, w)- ') 'e | di/.(«).

Since

a))"1

we have for 0e ((7r/2)-8,, (

\(S(x, <o)-lye\ s KBoW1)'^! • \(A0(x)

where 0, =^/x'» A0(x) ° A(x, w)"1 ° iA/x(0). That is, if tePl
x is such that B0(x)t = 01;

then B(x, co)t= 0. It then follows from the hypothesis of case 1 that te
((TT/2) - S,, (TT/2) + 5,), so that |(Bo(x)~1)'01| < e"2A+3E'. The second and third terms
are each <e*\ This proves the claim.

Case 2. Not case 1.

Claim. Tj|2<X/(62-51)-ee'.

We suppose for definiteness that B0(x){(n/2) + 8l)> (TT/2) + 82 and that
ij/Jx suppp£(x, I/>X((7J-/2) + 8,)) intersects the ^^neighbourhood of TT/2 in P}x. It
then follows from our hypotheses on pe (•, •) and the mean value theorem that there
exists 0oe((7r/2) + 51, (TT/2) + 5 2 ) C P } X such that Wfxd0\<e/{82-8i). By lemma
3.1, we have \iP'fxd\<eee</(82-81) for all 6e((ir/2)-80,(ir/2) + 80). Now for

'fx,06P1

Thus for 0£((7r/2)-51,(77/2) + 51),

(D) Counting. Let /1 be a measure on X x P 1 that projects onto m. For xeX, let
r]e

k(x) denote the density of {!£k
eix)f*x on P}^x in (/(-coordinates, and let T5£(;C) =

max{i7^(x)0: | 0 - ( T T / 2 ) | < 5J. Note that independent of the measure class of /x, rjl
is well denned a.e. for /c>l. Also, (^f*/u,)/

k
x>

r<251
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Now let AE={xeX: case 1 applies}. Let C = e~2A+5E> < 1 and D = K ee'/(S2- 8,).
It is important that these constants are independent of e. In the last subsection we
showed that for e sufficiently small, rjk+1(x)< Crje

k(x) iffkxeAe, while r}c
k+i(x)<D

rf fkx£Ae. If mAE = l, then clearly (1/n) LfcIo(-^M)/^-»O as n-»°o. Suppose
then wiAE<l. Let Ne = (1 -mAj" 1 . Since for a.e. x, (1/n) LfcIo*A,(•/**)-» rnAe as

o, ( l /n) Y.Vo {2k,n)£Jf is no bigger than

+ 1 t^J . D

N. *t0 ~ " N . ( l - C )

for large «. With mAe -» 1 as e -» 0, this completes the proof of proposition 2.4.

n
4. Proof of theorem 2
We assume throughout this section that A, > A2. By theorem 1, we have AE > A2 for
all sufficiently small e > 0. Let one such small e be fixed. Consider the map
F:XxPlxflz*=> defined by

F(x, u, <o) = (fx, A(x, &)„)«, crw).

For i = l,2, let /x j be the Borel probability measure on X x P1 x flz with the following
properties:

(1) itpl:Xx.Pl x f l z -»Xxf i z is the projection map, then/), fi'E = mxvz,i = 1,2;
(2) if { ( / i i )^ ) , (x, a i ) e X x n z } is a canonical system of conditional measures

of ix'e on P'-fibres, then (/x'e)(xai) = 8E'ix^) for a.e. (x, to).

LEMMA 4.1. If p2: X x P1 x Oz -» X x P1 is the projection map, then p2ix\ = [xc.

Proof. Since ixe has absolutely continuous conditional measures on P'-fibres, it is
easy to see (using coordinates induced from the so-called Lyapunov metrics, for
instance) that F"(ixe x vz)^ ix\ as n->oo. One then verifies that p2(F"(fie x vz)) = /xe

for all n >0, which essentially follows from the definition of fie. •

Proof of theorem 2. For small 8>0, let

^ 6 = {(x,u):xeX, \u-El(x)\<8}.

Since p2fx\ = /i£-»/A1 (see § 2 forthe definition of/t1), it follows that M'(^V« xftz)-» 1
as e-»0. That Ex{x, a>)-> E\x) in the manner described in the statement of theorem
2 is a consequence of the ergodic theorem applied to the transformation F: (X x P1 x
QZ, Me)O and the function x*s-

The same argument is valid for showing E2(x, o>) -» E2(x), provided we can argue
that p2ix\^>ix2. As in § 2, let <p:XxP1 xOz-*R be defined by

<p(x, M, ft)) = log |;4(.X, ft)o)w|.

Then for i = 1, 2 and e > 0, A' = J (p d/i'e. We have already shown that A2 -* A2. Hence
" + ix2. n

5. Proof of theorem 3'
Let e > 0 be fixed. Referring the reader to § 1 for the definition of this random
rotation process, we first observe that if fe Diff^(M) has the property that
k\(f\ x, (o)> \2{f; x, w), for ae. (x, w), then the invariant measure of this process
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is unique. To see this let /x' / be as defined at the beginning of § 4. Then /j,e f = p2 n- \j
by lemma 4.1.

Next we observe that if <P/(x, u) = log \(Df)xu\ and \icJ is any invariant measure,
then A i ( / ) = \ <pfdfiej. This follows from lemma 2.2 and is true regardless of whether
the exponents are distinct or not.

Now suppose /„ -*f0 as n -» oo. For each n, let /xe fn be an invariant measure for
the rotation process associated with /„. Then any accumulation point of /A£>/n as
n-> oo is an invariant measure for the process denned using f0. Assume first that
the exponents of/0 are distinct a.e. Then the uniqueness of /xE/o forces ixEjn^>Mc,/0-
Since <pfn -»<p/o uniformly, we can conclude that

/ n ) = I tPfndfie,fn^ I

If Z = {x: A,(/o; x, o>) = Xl(f0; x, m)} has positive measure, then the above argument
works even if /LAE,/O restricted to the unit tangent bundle over Z is not unique. This
completes the proof. •

The not so surprising message contained in theorem 3' is that infinitesimal noise
tends to render dynamical invariants more continuous than they really are. In fact
we have the following picture: Let 2 = Di f f^M) and let A!: 3) x [0, oo) -> R be given
by kl(f,e) = X'l(J). Then

(1) Aj 12 x (0, oo) is continuous (same proof as above);
(2) for each/e®, \1(f,e)-*Xi(f,0) as e^O (theorem 1);
(3) A,|2)x{0} is continuous on Anosov components and generically zero away

from them (Mane's theorem [M]).
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