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1. Introduction. The problem of describing the subsemigroup generated by the
idempotents in various natural semigroups has received the attention of several semigroup
theorists ([1], [2], [3], [5], [7]). However, in those cases where the parent semigroup is in
fact the multiplicative semigroup of a natural ring, the known ring structure has not been
exploited. When this ring structure is taken into account, proofs can often be streamlined
and can lead to more general arguments (such as not requiring that the elements of the
semigroup be already transformations of some known structure).

In 1967, Erdos [3] showed that the linear transformations of a finite-dimensional
vector space over a division ring which are products of proper (=f 1) idempotents are
exactly the singular ones. Recently (in 1984), Reynolds and Sullivan [7] have obtained a
corresponding characterization for linear transformations of an arbitrary vector space (of
arbitrary dimension) over a division ring. (The author independently discovered this
result in 1971 and referred to it, without proof, in [6, Remark on p. 19].) From the
standpoint of Ring Theory, the parent semigroup involved here is the multiplicative
semigroup of a full linear ring. As a ring, it is well known that a full linear ring can be
characterized as a (von Neumann) regular, right self-injective ring which is prime and of
Type I. Regular rings are well endowed with idempotents, and it has long been known
that many of these rings are generated as rings by their idempotents (see [4, Theorem
13.16]), that is each element is a sum of products of idempotents. In this paper we
complete the characterization of elements of a general prime, regular, right self-injective
ring Q (of Type I, II, or III) which can be written as a product of idempotents. Both the
Erdos and the Reynolds and Sullivan results then follow as corollaries.

Our approach is very much ring-theoretic and does not require that the elements of
Q be mappings of some given structure. Instead we bring to bear standard results on
regular rings, and supplement these with important facts about the ring structure of Q
that were discovered during 1973-76. In particular we use Goodearl's characterization of
the ideals of Q, the Goodearl-Boyle infinite dimension function n defined on the lattice of
principal right ideals of Q, and the existence of a unique rank function on Q (discovered
by Goodearl and Handelman) when Q is directly finite.

In the directly infinite case (Types L, IL, III) our characterization of the elements of
Q which are expressible as products of idempotents (Theorem 6) closely resembles the
Reynolds and Sullivan infinite-dimensional full linear ring result (Type L,), but with the
Goodearl-Boyle infinite dimension function n taking over the role of vector space
dimension. In the directly finite case (Types If, IIf), surprisingly the answer is the same for
Type IIf as Erdos' finite-dimensional full linear ring result (Type If): an element of Q is a
product of proper (=f 1) idempotents if and only if it is not a unit. We show in fact that
this holds in any directly finite, simple, regular ring which satisfies the comparability
axiom (Theorem 3).
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2. Preliminaries. Rings considered in this paper are associative with an identity
element. The unqualified term ideal always refers to a two-sided ideal. For a subset X of a
ring R, we let r(X, R) = {r eR | A> = 0} denote the right annihilator of X in R. Similarly
l(X, R) denotes the left annihilator. Modules are generally unital right modules. A
module A (over a general ring) is subisomorphic to a module B, written A =£ B, if A is
isomorphic to a submodule of B. For a module A and cardinal a, the direct sum of a
copies of A is denoted as ocA.

A ring R is (von Neumann) regular if for each x eR there exists y eR such that
xyx=x. If y can be chosen to be a unit (i.e. invertible element) of R, then R is
unit-regular. The reader is referred to Goodearl [4] for properties of regular rings. With
few exceptions, our notation and terminology follow [4]. A ring R is right self-injective if
the module RR is injective, that is for any right R-modules A c B and i?-homomorphism
f:A^>R, there exists an extension g:B —»R of/. The reader should consult Goodearl [4,
Chapters 9 and 10] for the theory of regular, right self-injective rings and the associated
theory of types. Such a ring is uniquely a direct product of rings of Types
If, loo, Hf, Hoo, III. If in addition a regular, right self-injective ring R is prime (aRb = 0 =>
a = 0 or b = 0), or equivalently indecomposable, then R must be exactly one of the above
five types. In this case, for example, a Type If prime R is precisely a finite-dimensional full
linear ring EndD(V) for a finite-dimensional right vector space V over a division ring D,
and a Type I™ prime R is precisely an infinite-dimensional full linear ring. Representative
examples of the other three types can be found in Goodearl [4, Chapter 10].

A module A is directly finite if A is not isomorphic to a proper direct summand of
itself. Otherwise A is directly infinite. A ring R is directly finite if xy = 1 implies yx = 1;
otherwise R is directly infinite. (The ring R being directly finite is equivalent to the module
RR being directly finite.) A regular ring R is said to satisfy the comparability axiom if, for
any x, y e R, either xR ^yR or yR ^xR.

A rank function on a regular ring R is a map N:R^> [0, 1] which satisfies:
(a) N(l) = l,
(b) N(xy)« N(x) and N(xy) =£ N(y) for all x,yeR,
(c) N(e +f) = N(e) + N(f) for all orthogonal idempotents e,feR,
(d) N(x) > 0 for all nonzero xeR.

Goodearl and Handelman (1975) established, for example, that every directly finite,
simple, regular ring which satisfies the comparability axiom has a (unique) rank function
[4, Corollary 16.15].

Let R be a prime, regular, right self-injective ring. The Goodearl-Boyle (1976)
infinite dimension function n, defined on the class of nonsingular injective right
i?-modules, is given by n(A) = 0 if A = 0, while if A =f 0 then

n(A) is the smallest infinite cardinal a- such that ocA ^A.

(See [4, Chapter 12], where n is the same as the function piM for M = {0}.) For example,
if R is a field and A is an infinite-dimensional vector space over R, then n(A) is the
successor of dim A. The function ju satisfies the two basic properties one expects of a

https://doi.org/10.1017/S0017089500006467 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006467


IDEMPOTENTS IN REGULAR RINGS 145

"dimension function", namely

fi(A 0 B) = fi(A)

See [4, Proposition 12.6]. li A and B are directly infinite, then conversely
implies A =s B [4, Corollary 12.11], and consequently fi actually determines the isomorph-
ism classes of the directly infinite, nonsingular, injective modules. We are mostly
interested in n{xR) for principal right ideals xR of R. In this setting it is convenient for
the statement of our main result to define the fi-codimension of xR to be

for any complement yR of xR (that is R =xR (ByR). Notice that n(xR) = K0 for any
nonzero directly finite xR, so fi(xR) gives no information in this case apart from saying
xR is nonzero and directly finite. (For this situation one can turn to the relative dimension
functions in [4, Chapter 11] or use a rank function on a suitable subring of R containing
x.)

In terms of (i, Goodearl's (1973) characterization of the ideals of a prime, regular,
right self-injective ring R is that they are precisely of the form

for infinite cardinals a [4, Proposition 12.19]. In particular the ideals are well-ordered
under inclusion. Notice that H(KQ) is the ideal consisting of all x e R for which the module
xR is directly finite, and if H(K0) # 0, then H(K0) is the unique minimum ideal of R. For a
full linear ring R (i.e. R of Type I), the ideal H(K0) consists of the linear transformations
of finite rank.

PROPOSITION 1. For elements a, b of a prime, regular, right self-injective ring R, if
then RaR = RbR-

Proof. This is immediate from the above description of the ideals of R.

We conclude our preliminaries with a simple but useful result on products of
idempotents.

PROPOSITION 2. Suppose e is an idempotent of a regular ring R such that eR^(l- e)R.
Then every element x e eRe is expressible as a product of idempotents of R.

Proof. Since eR =s (1 - e)R, there exist y e eR(l - e) and z e (1 - e)Re with yz = e.
Now

with all bracketed terms idempotent.

NOTE. (1) For an idempotent e and element b e eR(\ — e) or b e (1 — e)Re, the
element e + b is idempotent. We use this observation frequently.
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(2) Suppose ft is a regular ring and a e ft. If a = aba for 6 e ft, then aft = eft and
Ra = Rf, where e = ab and f = ba are idempotents and eR=fR. Also for any pair of
idempotents e,feR, we have eft s /ft (as right ft-modules) if and only if e=yz and
/ = zy for some y e eft/, 2 e fRe.

3. The directly finite case (Types If, IIf). We shall deduce the characterization of
elements which are products of idempotents in a directly finite, prime, regular, right
self-injective ring from the following natural extension of Erdos' result [3].

THEOREM 3. Let ft be a directly finite, simple, regular ring which satisfies the
comparability axiom. Let a eft, a f 1. Then a is a product of idempotents if and only if a is
not a unit.

Proof. By [4, Corollary 16.15], ft has a unique rank function N. We prove by
induction on n that for all positive integers n (and for all ft):

N(a) =s (n — \)ln =̂ >a is a product of idempotents.

This certainly holds for n = 1 because then a = 0. Assume the result for some n (and for
all ft), and suppose N(a)^n/(n +1). Clearly we can suppose a=f 0. Let r = N(a). Let
aft = eft for some e = e2 e ft. Note N(e) = N(a) = r. Let A = eRe, b = ae, c = a(l - e).
Let / and g be idempotents of A such that

bA=fA, Ab=Ag.

Since a directly finite, regular ring satisfying the comparability axiom is unit-regular [4,
Theorem 8.12], ft is unit-regular and hence so also is A [4, Corollary 4.7]. From gA sfA
we conclude by [4, Theorem 4.5] that (e — g)A = (e — f)A. Hence there exists d e (e —
f)A(e - g) such that b + d is a unit of A. Let u = b + d eA and let v eA be its inverse.
We have

= u[e + vc][g + (l-e)]

with the two square-bracketed terms being idempotents. It suffices therefore to show that
any u e A is a product of idempotents of ft.

If eft =s (1 - e)ft, then u is a product of idempotents by Proposition 2 and we are
finished. Since ft satisfies the comparability axiom, we may therefore assume that
(1 - e)ft ss eft. Write

where e1)e2 are orthogonal idempotents of A such that e2ft = ( l -e ) f t . Choose
w e e2ft(l - e), x e (1 - e)fte2 such that wx = e2. Let ax = uex e A. Observe that A is also
a directly finite, simple, regular ring which satisfies the comparability axiom [4, Corollary
8.3]. Let Nx be its unique rank function. Since e = e! + e2 with N(e2) = N(l - e) =
l-N(e) = l-r, we have N{el) = N{e)-N{e2) = r-{l-r) = 2r-\. Hence (see [4,
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Lemma 16.2])

= N(ei)/N(e) = (2r - l)/r.

Now r=Sn/(/i + l) implies (2r - l)/r s= (n - \)ln, whence Nl{al)^Nl(ex) =
(n - \)ln. Thus

We can now apply the induction hypothesis to flj as a member of the ring A = eRe and
obtain

«l=/l/2- • -/m

for some idempotents f e eRe. Then

is a product of idempotents. Since

u = [e + uw][ai + (1 - e)][e + x]

with the first and last square-bracketed terms idempotent, we have u as a product of
idempotents. Thus the induction works.

If a is not a unit of R, then N(a) < 1 and hence N(a) =£ (n - l)/n for some n. Then a
is a product of idempotents. Conversely, if a is a product of idempotents, then a is clearly
not a unit because a f 1.

COROLLARY 4. Lef Q be a directly finite, prime, regular, right self-injective ring. Let
a eQ, a =f 1. Then a is a product of idempotents if and only if a is not a unit.

Proof. Q satisfies the comparability axiom by [4, Corollary 9.16], and is simple by
[4, Corollary 9.26].

COROLLARY 5 (Erdos [3], Dawlings [1]). For a division ring D and positive integer n,
an element a e Mn(D) is a product of proper (^1) idempotents if and only if a is a singular
matrix.

Proof. Mn(D) is a directly finite, prime, regular, right self-injective ring (of Type If).

4. The general case. Our principal result is the following theorem.

THEOREM 6. Let Q be a prime, regular, right self-injective ring. Let aeQ, a^\.
Then a is a product of idempotents if and only if either

(i) n(r{a, Q)) = M-codim(flQ) = JI((1 - a)Q) > Ko

or
(ii) a has the form l+x,x e H(Ko), a not a unit of Q.

REMARK. Condition (ii) is equivalent to

0 < n(r(a, Q)) = ji-codim(a<2) = iu((l - a)Q) = K0)

but this latter condition is not particularly illuminating because of the definition of ju(.<4)
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when A is directly finite. However it does enable us to replace the two conditions by the
single condition

0 < n(r(a, Q)) = ;U-codim(a{2) = (i{{\ - a)Q).

In preparation for the proof of Theorem 6 we begin with some lemmas. Throughout
this section Q denotes a prime, regular, right self-injective ring. Let M be the (unique)
maximal ideal of Q, and for x e Q let x = x + M e QIM. Note by [4, Corollary 2.23] that
when Q is directly infinite, x =f 0 if and only if xQ = Q.

LEMMA 7. Let e and f be idempotents of Q. If (1 -f)Q<^eQ, then there exists an
idempotent g of Q with eQf c gQg and 1 - g =f 0.

Proof. Write (1 -f)Q = ((1 -f)Q n eQ) ®fxQ and

(1 - e)Q = ((1 - e)Q n [(1 -f)Q + eQ]) 0 hQ

for some f, h eQ. Then

Q = eQ + (l-e)Q
= eQ®hQ®flQ.

Let g =g2e Q be such that gQ =eQ ®hQ and (l-g)Q =f\Q. We then have eQ cgQ
and (l-g)Qc(\-f)Q, whence eQf sgQg. If l - g = 0 then/,g^0_and ( l - / ) Q =
(1 —f)Q n e<2, which implies (1 —f)Q s e<2> a contradiction. Hence 1 - g ^ 0.

LEMMA 8. Let J be a {two-sided) ideal of Q. For any x eJ, there exists an idempotent
geJ with xe gQg.

Proof. Let e and / be idempotents of Q such that xQ = eQ and Qx = Qf. Let
g = g2 e Q be constructed exactly as in the previous lemma, so that gQ = eQ © hQ. Then
hQ n (1 -f)Q = 0 implies hQ ^fQ c.J, which in turn implies heJ because Q is regular
(see Lemma 10(i)). Now gQ = eQ + hQ c J, giving geJ. Also JC e eQf c g(2g.

LEMMA 9. Lef a e Q. Let K = r(a, Q) and let C be a complement right ideal of aQ
(relative to Q). Suppose

QK = Q and QC = Q. (*)

If Q is directly infinite, then a is a product of idempotents.

Proof. Assume Q is directly infinite. Let e and / be idempotents of Q such that
aQ = eQ and Qa = Qf. Then our assumption (*) amounts to 1 -ff 0 and 1 - e f 0. Let
b = ae and c = a(\ - e). We consider two cases.

Case 1. Suppose Qe = Qb 8 Qh for some h with h = 0. Then Qe = Qb = Qae = Qfe
implies r(f, eQ) = 0 and hence (1 -f)QjeQ (because 1 -f± 0). By Lemma 7, we have
aeeQf c ggg for some g=g2eQ with 1 - g =f 0. Since Q is directly infinite and
1 - g =£ 0, we have (1 - g)g = 2 and hence gQ =s (1 - g)Q. Proposition 2 now implies a is
a product of idempotents because a e gQg.

Case 2. Suppose Qe = Qb © Qh with £ =f 0. We can assume e = g + h, where g and h
are orthogonal idempotents in eQe and £)6 = Qg. Since Q is directly infinite and it f 0,
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we have hQ = Q and hence Q = uQ for some u e Qh. We can consequently find v e eQh
and w e hQ such that e = vw. Now

a = b + c = (b + v)[e + wc][g + (1 - e)].

The square-bracketed terms are idempotents, while b + v e eQe is a product of
idempotents by Proposition 2, since 1 - e =f 0 implies e<2 =e (1 - e)(X

LEMMA 10. Let ft be any regular ring and let J be an ideal of ft. Let a e R.
(i) For xeR, if xR =£/ then xeJ.

(ii) / / r(a, R) <= J, then r(a + /, RIJ) = 0.
(iii) / / / contains a complement of aR {relative to R), then l(a +J, R/J) = 0.
(iv) If a is a product of idempotents and r(a, ft) £./, then 1 — a eJ.
(v) / / a is a product of idempotents and J contains a complement of aR, then

1-aeJ.

Proof, (i) Suppose there is an isomorphism r)\yR^>xR for some yeJ. Since R is
regular, rj is given by left multiplication by an element of ft, and so xR = rjyR c RyR c. J.
Thus xeJ.

(ii) Assume r(a, R) c / . Let b e R and suppose ab eJ. Write bR = (r(a, R) D bR) ©
cR for some c e R. By (i), cR = acR c abR c / implies c eJ. Hence, since r(a, R) c / , we
have b e J.

(iii) Assume J contains a complement cR of aR. Let 6 e ft and suppose fea e /. Write
aft = (aft n /•(/>, ft)) © xR for some ;t 6 ft. Since jcft = bxR c baR c / , we have x e J by
(i). Also ft = (aft n r(b, ft)) + xft + eft and so bR = 6(*ft + eft), whence by the projec-
tivity of bR we obtain bR^xR + eft c /. Another application of (i) now gives b e J.

(iv) Suppose a = exei. . . en for some idempotents e, e ft. Assume r(a, ft) c / . For
each y e ft, let y =y +J e R/J. Now a = e ^ • • • en and therefore, since r(a, ft) = 0 by
(ii), we must have each e, = 1. Hence a = I and 1 - a e J.

(v) This follows from an entirely similar argument using (iii).

We are now ready to prove the theorem.

Proof of Theorem 6. Suppose a is a product of idempotents. Notice that always
r(a, Q) c (1 - a)Q and so fi(r(a, 0)*S/*((1 - a)Q). Also if we write (l-a)Q =
((1 - a)Q D aQ) © bQ for some b eQ, then bQ is a complement of aQ contained in
(1 - a)Q, whence /*-codim(a<2) *£ A*((l - a)Q).

Since r{a, Q) is contained in the ideal J = {y e Q \ [i(yQ)^n(r(a, Q))}, we have
1 - a e / by Lemma 10(iv). Hence jit((l -a)Q) =sn(r(a, Q)), giving fi(r(a, Q)) =
n{{\ - a)Q). (Note that essentially the argument shows Q{\ - a)Q = Qr(a, Q) by Lemma
10(iv) and then uses the converse of Proposition 1.) Similarly the complement bQ lies in
the ideal / = {y e Q \ n(yQ) =s n(bQ)} and so by Lemma 10(v) we have 1 - a e I. Hence
ju((l - a)Q) =£ ju-codim(aj2), giving ju((l - a)Q) = ju-codim(a(2).

If ju(l - a)Q) > No, we now have (i). Suppose ju((l - a)Q)« No. Then a - 1 e #(N0)
and a = 1 + (a - 1) has the form (ii), since the only unit which is a product of idempotents
i s l .

For the converse, firstly assume (i). Let a = ju((l - a)Q) and let J = H(a). Let
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x = a-l. Since xeJ, by Lemma 8 we can find g=g2eJ such that xegQg. Let
y = g + x e gQg. Note that a = n(xQ)=£ n{gQ) =£ a, whence fi(gQ) = a.

We claim: y satisfies the condition (*) of Lemma 9 relative to the ring gQg.

T o verify t h i s , le t A = gQg, K = r ( a , Q ) , a n d K ^ r i y , A ) . S ince a = l + x =
(1 - g) + y, with y e gQ, we have K = r(y, Q) n gg. Hence tf j = r(y, gQg) = KHQg =
Kg. By assumption n(K) = a, hence n(K) = n(gQ). Thus QK = QgQ by Proposition 1.
Now

(because gK = K)
= g(QgQ)g (from above)

Hence AKi = A. Write g = e +/ , where e and/are orthogonal idempotents of A such that
yA = eA. Then aQ = (l-g)Q @yQ = (l-g)Q © eQ and gQ = eQ ®fQ, and therefore
fQ is a complement of aQ. By assumption (i(JQ) = |U-codim(a(2) = a, giving fi(fQ) =
n(gQ). Hence QfQ = QgQ by Proposition 1. Now

AfA = (gQg)f{gQg)=g(QfQ)g=g(QgQ)g

= gQg
= A.

Since jA is a complement of yA in A, this completes the verification of (*).
Observe that gQg is a prime, regular, right self-injective ring because Q is such a

ring. Also gQ is directly infinite since fi(gQ) = a > Ko. Thus gQg is a directly infinite ring.
By Lemma 9, we have y = gxg2 • • • gn for some idempotents g, e gQg. Hence

is a product of idempotents.
For the second part of the converse, assume (ii). Let x = a - 1 and proceed exactly as

above to produce g = g2e tf(X0) such that x e gQg. Let y = g + x e gQg. Since gQ is
directly finite, gQg is a directly finite, prime, regular, right self-injective ring. Also y is a
non-unit of gQg because a = (1 - g) + y is a non-unit of (X By Corollary 4, _y = g[g2. . . gn

for some idempotents g, egQg and the proof can now be completed exactly as above.

When Q is directly finite (Type If or IIf), Q -H(K0). The conditions in Theorem 6
then reduce to (ii), which is just the condition in Corollary 4. At the other extreme, when
Q is Type III, #(N0) = 0 and the conditions reduce to (i). If in addition Q is simple, then
this simply says that a is neither left nor right invertible. Combining this with Corollary 4
we obtain the following further extension of Erdos' result [3] to arbitrary simple, right
self-injective rings (whether directly finite or not).
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COROLLARY 11. Let Q be any simple, right self-injective ring and let a eQ, a =f 1.
Then a is a product of idempotents if and only if a is neither left nor right invertible.

In the Type I case, Theorem 6 provides the following corollary,

COROLLARY 12 (Reynolds and Sullivan [7]). Let V be an arbitrary (right) vector space
over a division ring D, and let L(V) be the multiplicative semigroup of all linear
transformations from V into itself. Then an element a e L(V) can be written as a product of
proper (=f 1) idempotents if and only if either

(1) n(a) = d(a) = s(a)^K0

or
(2) 0<n(a) = d(a)^s(a)<Ko,

where

n(a) = dim Ker(a) (nullity of a),

d(a) = codim Im(a) (defect of a),

s(a) = codim{w e V \ a(u) = u) (shift of a).
Proof. Let Q be the full linear ring EndD(V). As is well-known, Q is a prime,

regular, right self-injective ring (of Type I). See [4, Theorem 9.12]. We show that
conditions (1) and (2) are respectively equivalent to conditions (i) and (ii) of Theorem 6.

Firstly observe that for x, y eQ, we have xQ =yQ (as right Q-modules) if and only'if
xV =yV (as vector spaces). Consequently, for x e Q and a cardinal a,

a(xQ)« xQ iff a(xV) =£ xV.
Hence

(where a+ is the successor cardinal of a).
Let aeQ. Write a = aba for some beQ, and let e = ab, f = ba. Then n(a) =

dim(l -f)V, d(a) = dim(l - e)V, and s(a) = dim(l - a)V. Hence

-f)Q) = ̂ ((1 - e)Q) = M((l - a)Q) > No

(a, Q)) = n-codim(aQ) = n((l - a)Q) > Ko.

Thus (1) and (i) are equivalent. Also

»dim( l - a)V < No and a is not a unit

(since n(a) = d(a) always holds when dim(l - a)V < Xo)

O a = l+; t , x e socle Q, a not a unit.

Now for a full linear ring, //(Ko) = socle Q, and so (2) is equivalent to (ii).
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We conclude by asking if characterizations similar to Theorems 3 and 6 hold in other
regular rings, for example regular right self-injective rings in general (perhaps using
general comparability [4, Theorem 9.14] in place of comparability, the more general
infinite dimension functions fiM in [4, Chapter 12] in place of ft, and the relative
dimension functions dM(-:R) in [4, Chapter 11] in place of a rank function) or
N0-continuous regular rings (using [4, Theorems 14.33, 18.27]). In this vein, one obvious
extension of Corollary 5 clearly does hold, viz:

An element a of an Artinian regular ring R is a product of idempotents if and only if
for each maximal ideal M of R, either 1 — a e M or a + M is not a unit of RIM.
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