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CPI-EXTENSIONS. OVERRINGS OF INTEGRAL DOMAINS 
WITH SPECIAL PRIME SPECTRUMS 

MONTE B. BOISEN, JR. AND P H I L I P B. SHELDON 

1. I n t r o d u c t i o n . Throughou t this paper the term ring will denote a com­
muta t ive ring with uni ty and the term integral domain will denote a ring having 
no nonzero divisors of zero. T h e set of all prime ideals of a ring R can be viewed 
as a topological space, called the prime spectrum of R, and abbreviated Spec (R), 
where the topology used is the Zariski topology [1, Definition 4, § 4.3, p. 99]. 
The set of all prime ideals of R can also be viewed simply as a p o s e t - t ha t is, 
a part ial ly ordered s e t - with respect to set inclusion. W e will use the phrase 
the pospec of R, or jus t Pospec (/v), to refer to this part ial ly ordered set. 

Various questions involving the existence of a ring R whose pospec is order-
isomorphic to a given partial ly ordered set S have been investigated recently. 
Kaplansky [8, Theorems 9 and 11, p. 6] gave two necessary conditions on S, 
and raised the question of their sufficiency. Lewis [11, p. 433] gives an example 
due to Hochster t ha t shows tha t the conditions s ta ted by Kaplansky are not 
sufficient. Some sufficient conditions have been established by Lewis. In par­
ticular, he shows t ha t each finite part ial ly ordered set S is order-isomorphic 
to the pospec of some ring R, and in case 6" has a unique minimal element, R 
may be taken to be an integral domain [11, Theorems 2.9 and 2.10, pp. 427-428]. 
Lewis also shows t ha t when S is a tree satisfying Kaplansky ' s two conditions 
and has a finite number of minimal elements, then S is order-isomorphic to the 
pospec of some ring R and, again, if S has a unique minimal element, R can be 
taken to be an integral domain [11, Theorem 3.1 and Corollary 3.5, pp. 429 and 
433]. Hochster [7, Proposition 8, p. 54] shows t ha t given a poset which is the 
pospec of some ring, the poset with the reverse ordering is also the pospec of 
some ring. 

In this paper, we obtain addit ional existence results along these lines but of 
a slightly different character. In part icular, given the pospec of a domain D, 
we show the existence of an overring of D whose pospec is an easily describable 
portion of the pospec of D. To be more precise, a method is presented in Section 
2 such tha t for each prime ideal P of D, an overring (called the CPI-extension 
of D with respect to P) can be constructed whose pospec is order-isomorphic 
under the contraction map to the set of all prime ideals of D comparable to P 
(Corollary 2.8). This order-isomorphism is, in fact, a homeomorphism from 
the prime spectrum of this overring to the set of all prime ideals of D com­
parable to P, considered as a subspace of Spec(D) (Theorem 2.6). 
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CPI-EXTENSIONS 723 

In Section 3, we show tha t the CPI-extension construction can also be 
carried out with respect to a nonprime ideal, bu t the prime ideal s t ructure of 
the resulting overring is not as closely related to the prime ideal s t ructure of D 
as in the prime case. In particular, the contraction map is neither always a 
homeomorphism from the prime spectrum of the overring nor always an order-
isomorphism from the pospec (Example 3.14). However, the pospec of the 
overring can be viewred in two pieces, each of which is order-isomorphic under 
contraction to a portion of the pospec of D. Fur thermore, contraction defined 
on the entire pospec of the overring is one-to-one (Theorem 3.6). 

Many natural questions arising from the s tudy of the CPI-extension are 
considered. For example, we investigate the questions of when the CPI-exten­
sion is an integrally closed domain, a Priifer domain, a Noetherian domain, etc. 
Also, conditions under which the CPI-extension is a proper extension are 
studied, and the relation of the CPI-extension to various s tandard domain-
theoretic constructions is discussed. Support ing examples are presented a t the 
end of each of Sections 2 and 3 showing tha t various improvements cannot be 
made on our results. 

The authors thank the referee for pointing out how Section 2 could be simpli­
fied using the results appearing in [6]. 

2. T h e p r i m e case . Throughout this section the following notat ion will 
be used: 

(i) D denotes an integral domain, 
(ii) P denotes a prime ideal of D, 

(iii) D denotes the residue class ring D/P, 
(iv) Q denotes the quotient field of D, 
(v) <p denotes the canonical homomorphism from D onto D, and 

(vi) SF denotes the epimorphism from DP onto Q defined by ^r(a/b) = 
<p(a)/<p(b). (The argument tha t establishes tha t ^ is an epimorphism 
is straightforward. I t is also straightforward to show tha t PDP is the 
kernel of V). 

2.1 Definition. The pre-image of D under ^ is called the CPI-extension of 
D with respect to P and is denoted by C(D, P). 

The prefix CPI in this context refers to the fact tha t C(D, P) is the "complete 
pre-image" of D, complete in the sense of being ^~1(D) wThere the extension of 
ip to ^ has been taken as far as it can be taken meaningfully. This construction 
arises natural ly in a number of contexts where one is trying to relate some 
structure of a domain D to the s t ructure of a homomorphic image of D. For 
example, Boisen and Larsen [3] used this construction to form a Priifer domain 
with a specified Priifer ring as a homomorphic image. Similarly, Boisen and 
Sheldon [4, Theorem 1] used this construction to obtain a valuation domain 
with a specified valuation ring as one of its homomorphic images. 
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The CPI-extension is closely related to a number of s tandard construct ions 
in domain theory. The most obvious of these is t ha t of localization since when 
P is a maximal ideal of D, C(D, P) = DP. This can be seen by observing tha t 
when P is a maximal ideal, D is a field and hence ^(DP) = Q = D and so 
C(D, P) = ^~1{D) = Dp. However, when P is a non-maximal prime ideal, 
C(D, P) is a proper subring of DP, bu t is still closely related to DP as some of 
the results in this section show. 

Another related construction is the composite of valuat ion domains [12, p. 35]. 
In the construction of the composite V of two valuat ion domains \\ and \\, 
we require V\ to be a valuat ion domain with quot ient field equal to the residue 
class field of V2. Then V is defined to be the complete pre-image in V2 of V\ 
under the natura l mapping of V2 to its residue class field. While the formation 
of this construction is somewhat different from t h a t of the CPI-extension, the 
spirit is very similar. In fact, in the case where D and DP are both valuat ion 
domains, C(D, P) is precisely the composite of D and DP. T o il lustrate this 
si tuation in a nontrivial context, we cite the example of a Prufer domain D t ha t 
is not a valuat ion domain, bu t which has a nonmaximal prime ideal P contained 
in only one maximal ideal. In this case both D and DP are valuat ion domains, 
and hence C(D, P) is their composite. (See also Example 2.11). 

Finally we note t ha t the CPI-construct ion resembles the D + M construc­
tion [2] in a number of ways. For one thing, it is s traightforward to see t ha t 
the set C{D,P) equals the set D + PDP, but , unlike £> + M, this sum is never 
direct. The true analog to the case of D + M would be when D contains a copy 
of D and C(D, P) is the direct sum of this copy and PDP; however, our general 
construction method fails to guarantee t ha t such a s t ructure exists in C(D. P). 
On the other hand, PDP has a proper ty in C(D, P) which is much like one of 
the significant properties of M in D + M, namely t ha t of being comparable 
to every ideal of C(D, P) (Proposition 2.3). Moreover, C(D, P) inherits 
certain propert ies from D and DP (see Propositions 3.11 and 3.12), much as 
D + M inherits its properties from D and the valuat ion domain (D + M) M. 

2.2 Remark. Gilmer and Ohm in [6] considered domains S = D0 + A where 
D0 is a subring of a domain E and A is an ideal of E. As observed in the pre­
vious paragraph, C(D, P) = D + PDP is of this form (where DP = E). Two 
results t ha t appear in [6] are of interest to us in our s tudy of CPI-extensions. 
For convenience, we now translate these results into our notat ion. 

(a) If Q is a pr imary ideal of C(D, P) such t h a t Q ÇI PDP, then Q is an 
ideal in DP. 

(b) If B is an ideal of C(D, P) such t ha t B £ PDPj then B = (B C\ D) 
+ PDP. 

Sta temen t 2.2(a) is a res ta tement of Proposition 5.1(a) [6] and s t a t ement 
2.2(b) is a res ta tement of Proposition 5.1(f) [6]. 

As an immediate consequence of Remark 2.2(b) we obtain the following 
result. 
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2.3 PROPOSITION. Every ideal of C(D, P) is comparable to PDP. 

We begin our s tudy of CPI-extensions by considering two of the s tandard 
questions t ha t can be asked of any extension construction: when does it yield 
a proper extension and what happens if the extension process is performed 
twice? 

2.4 T H E O R E M . The extension C(D, P) equals D if and only if every ideal of D 
is comparable to P. 

Proof. (=>) Since PDP lies over P and is contained in C(D, P) and since 
C(D, P) = D, we have PDP = P. Hence, by Proposition 2.3, every ideal in D 
is comparable to P. 

(<=) Now assume P is comparable with every ideal of D. We want to show 
tha t D = C(D, P). Since C(D, P) equals D + PDP} it will suffice to show 
PDP C D. We note tha t each element of PDP is of the form p/s for some p in P 
and s in D\P. Since sD Çt P, then P C sD, and hence p/s £ D; we therefore 
conclude tha t PDP Ç D, and the proof is complete. 

Example 2.11 will show tha t the condition t ha t P is comparable to each of 
the prime ideals of D is not equivalent to the condition tha t P is comparable 
to each of the ideals of D. Consequently, knowledge about the position tha t P 
occupies in the pospec is insufficient to determine whether C(D, P) = D. 

T o consider the effect of applying the CPI-extension process twice, we need 
a more precise formulation of the question. In particular, we must decide which 
prime ideal of C(D, P) is to be used to form the CPI-extension of C(D, P). 
The natura l choice for such a prime ideal seems to be P- C(D, P ) , the extension 
of P to C(D, P), bu t it turns out tha t P - C(D, P) is not, in general, a prime ideal 
of C(D, P ) . (See Example 2.10.) T h e next result shows tha t PDP is the natural 
choice to consider in the sense tha t it is the only prime ideal of C(D, P) lying 
over P ( tha t is, PDP C\ D = P ) . Wi th this choice, we see in the next result 
t ha t the second application of the CPI-extension process fails to yield a 
proper extension. 

2.5 PROPOSITION. The only prime ideal of C(D, P ) contracting to P is PDP. 
Moreover, the CPI-extension of C(D, P) with respect to PDP is C(D, P) itself. 

Proof. Let P' denote a prime ideal of C(D, P) lying over P . If PDP C P', 
by Remark 2.2(b) we know tha t P ' = ( P ' H D ) + PDP = P + PDP = PDP. 
If P' Ç. PDP} then Remark 2.2(a) implies tha t P' is an ideal of DP. But the 
only ideal of DP t ha t contracts to P is PDP. The final s ta tement of the proposi­
tion now follows from Propositions 2.3 and 2.4. 

We now state the main result of this section which characterizes 
Spec (C(D,P)). 

2.6 T H E O R E M . The prime spectrum of C(D, P) is homeomorphic to the subspace 
of the prime spectrum of D consisting of all prime ideals of D that are comparable 
to P. 
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This theorem will follow from the next proposition and its corollary which 
describe more specifically the relationship between the ideal s t ructure of 
C(D, P) and tha t of D. 

2.7 PROPOSITION. Contraction of ideals from C(D, P) to D defines the following 
order-isomorphisms with respect to set inclusion: 

(i) between the ideals of C(D, P) containing PDP and the ideals of D con­
taining P,and 

(ii) between the primary ideals of C(D, P) contained in PDP and the primary 
ideals of D contained in P. 

Furthermore, in both of these order-isomorphisms, prime ideals correspond to 
prime ideals. 

Proof, (i) By Remark 2.2(b) , each ideal B of C(D, P) containing PDP is of 
the form (B C\ D) + PDP and so this result follows. 

(ii) Since DP = C(D, P)PDp, the s tandard properties of localization imply 
tha t contraction determines an order-isomorphism between the set of pr imary 
ideals of DP contained in PDP and the set of pr imary ideals of C(D, P) con­
tained in PDP. (In view of Remark 2.2(a) , this implies t ha t the pr imary ideals 
of C(D, P) contained in PDP are the pr imary ideals of DP.) Similarly, con­
traction yields an order-isomorphism between the set of all pr imary ideals of 
DP contained in PDP and the pr imary ideals of D contained in P. Composing 
these order-isomorphisms we have the desired order-isomorphism. Moreover, 
since the original order-isomorphisms were determined by contract ion from 
DP to C(D, P) and D respectively, and since D is contained in C(D, P), it 
follows t ha t the composed order-isomorphism is determined by contract ion 
from C(D, P) to D. 

T o prove the final sentence in the theorem we need merely note t ha t in both 
of the above cases the final mappings were formed by composing correspon­
dences t ha t are known to preserve pr ime ideals. 

2.8 COROLLARY. Pospec (C(D, P)) is order-isomorphic to the partially ordered 
set of all primes in Pospec (D) that are comparable to P. 

For convenience in the following proof and elsewhere in this paper, we will 
refer to a prime ideal of D t h a t is a contract ion of a prime ideal of C(D, P) 
simply as a contracted prime ideal. 

Proof. By Proposition 2.3, every prime ideal of C(D, P) is comparable to 
PDP; consequently, each prime ideal of C(D, P) is in one of the categories 
discussed in Proposition 2.7. From this we conclude t ha t the set of contracted 
primes of D is precisely the set of prime ideals t ha t are comparable to P. T o 
prove the corollary, it will suffice to prove tha t contract ion is an order-iso­
morphism from Pospec (C(D, P)) to the set of contracted primes of D. We 
know from Proposition 2.7 t ha t it is an order-isomorphism both on the set of 
primes of C(D, P) containing PDP and on the set of primes of C(D, P) con-
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tained in PDP. Since all primes of C(D, P) are comparable to PDPj it follows 
tha t both the one-to-one and the order-preserving properties carry over when 
we consider contraction as a mapping on the union of these two sets, t ha t is, 
onPospec (C(D,P)). 

Proof of Theorem 2.6. As we noted in the proof of Corollary 2.8, contraction 
defines a one-to-one correspondence between the set of prime ideals of C(D, P) 
and the set of prime ideals of D comparable to P. To show tha t this mapping 
is in fact a homeomorphism of the corresponding topological spaces, we begin 
by noting tha t if 6 is the inclusion mapping from D into C(D, P), then 6 in­
duces the continuous mapping Spec(#) : Spec (C(P , P)) —* Spec(D) (see [9, 
p. 259]) and we note tha t Spec(0) is simply the contraction mapping. T h u s we 
need only show tha t contraction is a closed mapping to conclude tha t it is a 
homeomorphism between Spec(C(J9, P)) and the set of prime ideals of D 
comparable to P. Suppose tha t {Pa} is a closed set in Spec(C(D, P)) and let 
/ = DaPa- We want to show tha t { i V } , the set of contracted primes, is 
closed. Let Q denote a prime ideal of C(D, P) such tha t its contraction Qc 

contains C] Pa = (Pi Pa) H D = I C\ D. We need to show tha t Q must be 
in {Pa\- In view of par t (i) of Proposition 2.7, if either Q or / is not contained 
in PDP, then I C\D Ç,QC\D implies tha t I C Q. If both / and Q are contained 
in PDP, then / is the intersection of the P a ' s tha t are contained in PDP and so, 
by Remark 2.2(a) , / and Q are ideals of DP. Therefore, since / P\ D Ç Q C\ D, 
we must have / Ç Q. Consequently, in either case I C Q. Since \Pa\ is closed, 
Q is some Pa as required. 

In view of Proposition 2.3, we may think of the ideal s t ructure of C(D, P) 
as having two p a r t s - tha t above PDP and tha t below PDP — and Proposition 
2.7 indicates t ha t the structure above PDP mimics tha t of D while tha t below 
resembles the ideal s t ructure of DP. Consequently, it is not surprising tha t 
in some cases when D and DP both have a certain property, then C(D, P) has 
the same property. For example, it is shown in a more general context in the 
next section (Propositions 3.11 and 3.12) tha t when both D and DP are Priifer 
domains, so is C(D, P), and similarly when both are integrally closed, then so 
is C(D, P). However, a number of other properties do not carry over from D 
and DP to C(D, P). For example, when D is a polynomial ring in more than 
one indeterminate over a field and when P is a minimal prime ideal generated 
by one of the indeterminates, then it follows from Theorem 2.6 tha t C(D, P) 
has a unique minimal prime ideal and has Krull dimension greater than one. 
Such a domain can be neither Noetherian (by Krull 's Principal Ideal Theorem 
[8, Theorem 142, p. 104]) nor a unique factorization domain nor even a Krull 
domain (since a Krull domain is the intersection of its localizations a t its mini­
mal primes, [10, Proposition 8.18, p. 182]) even though both DP and D are 
Noetherian unique factorization domains. From the next result, we obtain 
detailed information about all such examples in which C(D, P) fails to be 
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Noetherian while both DP and D are Noetherian. Specifically, it is shown tha t 
the bad behavior must be restricted to those ideals of C(D, P) contained in 
PDP. 

2.9 PROPOSITION. Let A denote an ideal of C(D, P) properly containing PDP 

and let Â denote the image of A in D. Then A is a finitely generated {respectively, 
principal) ideal if and only if Â is a finitely generated {respectively, principal) 
ideal. 

Proof. Clearly if A is finitely generated or principal then so is Â. Suppose 
tha t Â is finitely generated, say Â — (ô"i, â2, . . . , ân). The ideal (ai, a2, . . . , an) 
of C(D, P), where ai is a preimage of âif contains PDP since it is not contained 
in PDP. Therefore, (ai, . . . , an) is an ideal of C(D, P) containing PDP whose 
image is Â. Consequently (ai, . . . , an) = A by the correspondence theorem. 
A similar a rgument can be used to establish the assertion for principal ideals. 

From Proposition 2.7, we see t ha t the contract ion mapping from the set of 
all ideals of C(D, P) into the set of ideals of D is very well-behaved, being 
one-to-one both on the ideals of C(D, P) containing PDP and on the pr imary 
ideals of C(D, P) contained in PDP. Of course, in the lat ter case we really can 
expect no more of the contract ion mapping than is true of the contract ion 
mapping from a localization to the base ring, since when P is maximal ideal of 
D, then C(D, P) = DP. However, it turns out t h a t the contract ion mapping 
from C(D, P) to D fails to duplicate all of the good behavior t h a t contract ion 
mappings from localizations have. Specifically, contract ion from DP to D fol­
lowed by extension to DP is the identi ty mapping, bu t the following example 
show^s tha t the same proper ty does not hold for contract ion from C(D, P) to 
D followed by extension to C(D, P) even for ideals inside PDP. In fact, the 
example shows tha t a t the ideal PDP itself, contract ion followed by extension 
does not yield PDP. 

2.10 Example. Let D = F[X, Y] where F is a field and let P = ( 7 ) . Then it 
is straightforward to show t h a t 

g(X, Y), k(X, Y) G F[X, Y], h(X) ^ 0, h(X) d iv ides / (X) in F[X]> , 

and 

p°r = {kixyfy^xTY) i h ^ * °- ̂ - F>' ̂  y>e F[x'Y]} • 
From the above observations, we see tha t Y/X 6 PDP. However, since 1/X (I: 
C(D, P), Y/X $ P-C(D, P). Therefore, {PDP C\ D)-C(D, P) = P-C(D, P) 
9e PDP. Fur thermore , P- C{D, P) cannot be a prime ideal by Proposition 2.7. 

https://doi.org/10.4153/CJM-1977-076-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-076-6


CPI-EXTENSIONS 729 

The final example of this section serves a dual purpose. First, it shows t ha t 
it is possible for C(D, P) to be a proper integral extension of D. This under­
scores the fact tha t a CPI-extension is in general basically different from a 
localization (which is never a proper integral extension), even though it has 
some of the properties of a localization, and it equals DP when P is a maximal 
ideal. The second purpose of this example is to show tha t Theorem 2.4 is no 
longer true when only prime ideals of D are considered in the second condition 
of the theorem. In other words, it is not necessarily true tha t C(D, P) equals D 
when every prime ideal of D is comparable to P. 

2.11 Example. The domain D and the prime ideal P defined below are the 
same as those labeled D and P in Example 1.6 of [5]. They are constructed as 
follows: 

(i) F denotes a field and X and Y are polynomial indeterminates; 
(ii) Di denotes F[X, { YkXm\k, m Ç Z, k > 0}], M1 denotes the maximal 

ideal of D\ consisting of all expressions in D\ with zero constant term, and V 
denotes (Di)Ml; 

(iii) Do denotes F[X, { YkXm\k, m G Z, k > 0, m ^ -k2}], M0 denotes 
Mi H Do, and P 0 denotes the ideal of DQ generated by { YnX~n \n > 0} ; and 

(iv) D denotes (DQ)MQ, M denotes MQD, and P denotes PQD. 
Among the known properties of this example are the facts tha t V is integral 

over D and tha t the pospec of D is (0) £ P Ç M [5, Lemma 1.8 and Proposi­
tion 1.9]. Since it is evident t ha t F is a proper overring of D, the example will 
be completed by the following proposition. 

2.12 PROPOSITION. Following the notation just established, DP = F[X, F ] ( F ) 

andC(D,P) = V. 

Proof. First , we note tha t F[X, Y] C DQ and F[X, Y]\(Y) C DQ\P0, and 
we conclude tha t 

F[X} 7](y) Ç (£>o)p0 = ((DO)MO)PQ{DO)MQ = Dp. 

T o show the reverse containment , let t denote an element of DP. Then we may 
write t as a/b, where a G DQ and b Ç DQ\PQ. Note tha t for a sufficiently large 
positive integer m, aXm G F[X, Y] and bXm £ F[X, Y]\(Y); consequently, 
a/b = aXm/bXm G F[X, Y]m. So DP C F\X, Y]{Y) and we have established 
the first equali ty in the proposition. 

T o prove C(D, P) = V, we begin by recalling the earlier observation t ha t 
in general C(D, P) = D + PDP. Let a denote an element of PDP. Then a can 
be writ ten as be, where b G P and c G DP. By the first par t of this proof, we 
know tha t DP = F[X, F ] ( F ) , so c can be writ ten as a fraction whose numerator 
is a polynomial in F[X, Y] and whose denominator is a polynomial in F[X, Y] 
with a t least one nonzero monomial not involving Y. Since b is an element 
of PQ(DO)MO, it can be writ ten as a fraction that , after multiplying numerator 
and denominator by an appropriate power of X, has numerator in YF[X, Y] 
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and denominator in F[X, F] with a t least one nonzero term not involving F. 
Multiplying b and c together, we conclude tha t a can be writ ten as 

a = Y>f(X, Y)/(g(X) + Y.h(X, F ) ) 

with g(X) 9* 0. Let Xk, k ^ 0, be the smallest power of X in g(X). Mult iplying 
numerator and denominator by X~k, we can express a as a fraction whose 
numera tor is in Di and denominator in D\MX. So a G (Di)Ml = V, and hence, 
PDP Ç V. Since it is clear from the definition of D and V t h a t D Ç F , we 
have shown tha t D + P£>P C F . 

To show the reverse containment , we will show tha t D\ Ç /} + P£*P and 
tha t l /^ i G D + PDP for each s1 Ç Di\Mi. If di G Di , then it is an ^-linear 
combination of nonnegative powers of X and monomials of the form YkXm 

with k > 0 and m Ç Z. Since powers of X are in D and monomials of the 
form YkXm are in PDP, we conclude t ha t di Ç L> + P D P and hence DiQ D + 
PDP. Now let si denote an element of Di\Afi. So si is of the same form as i\ 
with the addit ional condition of having a nonzero cons tant term. Say S\ = 
g(X) + YX~mf(X, Y) where g(X) is a polynomial with nonzero cons tant term, 
f(X, Y) is a polynomial, and m is a nonnegative integer. Then 

1 _ _ L _ = _ YfÇX, F)  
^ g(X) g(X)(g(X)Xm + F/ (X, F ) ) ' 

and therefore 1/si - l/g(X) G P ^ P . Bu t l / g ( Z ) G 2?, so 1/si Ç D + PDP as 
required, and the proof t ha t V = D -\- PDP = C(D, P) is complete. (Note 
t ha t the motivat ion to pick l/g(X) as the candidate for an element in D t ha t 
differs from 1/si by an element of PDP arises from the observation t ha t under 
the homomorphism SF, F goes to zero and hence, ^(\/si) = ty(l/g(X)). 

3. T h e genera l case . T h e steps in the construction of the CPI-extension of 
an integral domain with respect to a prime ideal presented in the previous 
section can be performed with certain modifications with respect to ideals in 
general. The resulting domain has many properties similar to those found in 
the CPI-extension for the prime case and will be studied in this section. Through­
out this section the following notat ion will be used: 

(i) D denotes an integral domain, 
(ii) A denotes an ideal of D, 

(iii) D denotes D/A and <p denotes the canonical homomorphism from D 
onto D. 

(iv) S denotes {d Ç D\<p(d) is a regular element in D} (A regular e lement is 
defined to be an element t ha t is not a zero divisor. I t is straightforward 
to show tha t 5 is a multiplicative system in D and consequently we can 
form the quot ient overring Ds.)} and 

(v) \F denotes the epimorphism from D s onto T, the total quot ient ring of 
D, defined by ^r(d/s) = <p(d)/(p(s). (The fact t ha t ^ is an epimorphism 
is straightforward to establish.) 
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3.1 Definition. The preimage of D under ^ is called the CPI-extension of D 
with respect to A and is denoted by C(D, A). 

I t is easy to show tha t the ideal ADs, denoted by As, is the kernel of ^ 
and hence, an ideal of C(D, A). This ideal plays much the same role played by 
PDP in the CPI construction described in the previous section. Specifically, it 
satisfies the condition of being a CPI-ideal as formally defined below. 

3.2 Definition. The ideal A is a CPI-ideal of D in case C(D, A) = D. 

3.3 PROPOSITION. The ideal A s is a CPI-ideal of C(D, A). 

Proof. Let t be an element of C(D, A) such tha t ^(t) is a regular element in 
D. Using the fact tha t D = D/A = C(D, A)/As, we see tha t ^ ( / ) = ty(s) 
for some s G S and hence, t — s £ As. Therefore, t — s = a/V where d Ç i 
and s' G S and so £ = (a + ss')/s'. Since <p(a + ss') = (p(ss') is a regular 
element of 5 , a + ss' G 5 . Thus , (a + s s ' ) - 1 € £>s which implies tha t t~l G 
Ds. Therefore, if T = {t G C(D, ^4)1^(0 is a regular element in 5 j , then 
C(D, A) T = Ds and since C(J9, ^4) is already the complete preimage of the 
extension of <p to Ds, C(D, A) is the CPI-extension of C(D, A) with respect 

Proposition 3.5 will show tha t the properties of contraction from C(D, P) 
to D shown in Proposition 2.7 carries over to the general case with A s playing 
the role of PDP. However, the application of this result will be less complete 
than in the prime case since it is not true in general tha t all of the ideals of 
C(D, A) are comparable to As (Example 3.13). We first s tate a result t ha t is 
analogous to the comparabil i ty result s tated for the prime case in Proposition 
2.3. 

3.4 PROPOSITION. If B is an ideal of C(D, A), then either B contains As or B 
does not intersect S. 

Proof. Suppose B C\ S p^ 0 and let 5 Ç B C\ S. Let a/s\ G As where a Ç A 
and s\ G S. Then s{a/ss\) = a/si G B since a/ssi G C(D, A) and so As Q B 
as required. 

3.5 PROPOSITION. Contraction of ideals from C(D, A) to D defines the following 
order-isomorphisms with respect to set inclusion: 

(i) between the ideals of C(D, A) containing As and the ideals of D containing 
A, and 

(ii) between the primary ideals of C(D, A) not intersecting S and the primary 
ideals of D not intersecting S. In addition, when restricted to those primary ideals 
of C(D, A) contained in As the contraction map is onto the primary ideals of D 
contained in A. 

Furthermore, in both these correspondences, prime ideals correspond to prime 
ideals. 
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Proof, (i) We first note t ha t the restriction of \f/ to C(D, A) is a homomor-
phism from C(D, A) onto D with kernel As and <p is a homomorphism from D 
onto D with kernel A. By applying the correspondence theorem to each of these 
homomorphisms, we obtain the pairing \l/~l(B) with <p~l(B) for each ideal B of 
Z), yielding a one-to-one correspondence between the ideals of C(D, A) con­
taining As and the ideals of D containing A. Fur thermore , since <p is the 
restriction of \j/ to D, 

yP~l(B) C\D = {x e D\f(x) e B} 

= {x G D\<p(x) 6 B) 

= v-HB) 

and so this correspondence is realized through contract ion. Since v~l{B) Ç 
<p~l(C) if and only if \j/~l(B) C ^ _ 1 ( C ) , the correspondence is an order-
isomorphism. 

T o prove (ii), we observe t h a t the a rgument given to establish pa r t (ii) of 
Proposition 2.7 can be employed here with Ds playing the role of DP and with 
the observation t ha t C(D, A)s = Ds. This adapted a rgument shows t ha t the 
contract ion mapping yields an order-isomorphism between the pr imary ideals 
of C(D, A) not intersecting 5 and the pr imary ideals of D not intersecting S. 
We now wish to show tha t this correspondence restricted to those pr imary 
ideals of C(D, A) contained in As is onto the set of pr imary ideals of D con­
tained in A. Since A = ker <p and As = ker SF, it is clear t ha t As l^ D = A. 
Therefore, each pr imary ideal of C(D, A) contained in As contracts to a pri­
mary ideal of D contained in A. If B is an ideal of C(D, A ) not contained in A s. 
then there exists an element b/s Ç B where b £ D\A. Since b — s(b/s) 6 B P\ 
D, B C\ D Çt A. Therefore, the contract ion of the pr imary ideals of C(D, A) 
contained in ^4s is onto the pr imary ideals of D contained in A. 

Finally, prime ideals correspond to prime ideals for the same reasons given 
in Proposition 2.7. 

In Section 2 we showed tha t when P is a prime ideal, the prime spectrum 
of C(D, P) is homeomorphic to the subspace of Spec (D) consisting of the 
contracted primes. In Example 3.14, we will show tha t this is not the case for 
CPI-extensions with respect to ideals in general. Nor in this example is the 
pospec of C(D, A) order-isomorphic to the poset of contracted primes of D. 
However, the next result affirms t ha t there is still a strong relation between 
Pospec(C(D, A)) and the poset of contracted primes, since contract ion is a 
one-to-one order-preserving correspondence from the former to the lat ter (the 
inverse of which sometimes fails to be order-preserving) and since on the 
subsets of Pospec(C(D, A)) suggested by Proposition 3.4, contract ion is an 
order-isomorphism. 

T o simplify the s t a tement of the next theorem, we introduce the following 
notat ion. Let SP\ denote the set of all prime ideals of C(D, A) containing As, 
let S?i denote the set of all prime ideals of C(D, A) not intersecting S, and 
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let & denote 0>x U SP<i. (Note that SPX and ^ 2 are not necessarily disjoint.) 
Also, let ^ 1 denote the set of prime ideals of D containing A, let ^ 2 denote the 
set of prime ideals of D not intersecting S, and let *$ denote ? i U ^%. 

3.6 THEOREM. Using the notation introduced above, the following statements 
are true. 

(i) SP is the set of all prime ideals of C(D, A). 
(ii) *$ is the set of all contracted primes of D. 

(iii) contraction is a one-to-one order-preserving mapping from & onto *$. 
(iv) contraction is an order-isomorphism from SP\to ^ \. 
(v) contraction is an order-isomorphism from &<i to ^ 2 . 

Proof. Part (i) follows from Proposition 3.4 and part (ii) follows from 
Proposition 3.5. To show that contraction is one-to-one on SP, suppose that 
P and Q are prime ideals of C(D,A) such t h a t P C\ D = Qf^D.liA C P C\D, 
then since (As)

2 = (ADS)
2 = A(ADS) Q A-C(D, A), we have i s C ? a n d 

As C Q. By Proposition 3.5, P = Q. If A £ P P\ D, then i s g P a n d so, by 
Proposition 3.4, P H 5 = 0 and similarly Ç H 5 = 0. Therefore, again by 
Proposition 3.5, we conclude that P = Q. So contraction is one-to-one. More­
over, it clearly maps onto &, by the definition of contracted primes, and con­
traction is always an order-preserving map. Therefore, part (iii) is established. 
Parts (iv) and (v) follow from Proposition 3.5. 

We now turn our attention to the description of the poset ^ of contracted 
primes of D as a subset of Pospec(D). The preceding result shows that a prime 
ideal P is in ^ if and only if either P is comparable with A or (P + A)/A 
consists entirely of zero divisors in D. Unlike in the prime case, ^ , and con­
sequently SP, cannot be characterized purely in terms of the pospec of D 
together with the relative position of A (Example 3.13). However, some partial 
information in this vein can be obtained from the following results. 

3.7 PROPOSITION. If P is a prime ideal of D comaximal with A, then P d (if. 

Proof. Since P + A = D and <p(D) = D, we conclude that <p(P) = D. 
Hence P C\ S ^ 0. Clearly i g P and so P ? ^. 

3.8 COROLLARY. Let M denote a maximal ideal of D. Then M G ^ if and only 
if A C M. 

Proof. Immediate. 

Next we consider the question of when an ideal is a CPI-ideal. We already 
have by Theorem 2.4 an ideal-theoretic characterization of those prime ideals 
that are CPI-ideals, namely that they be comparable to every ideal of D. 
Example 3.13 will show that this characterization does not carry over to the 
general case, and in fact, we have no characterization in the general case. We 
now present two partial results along these lines: 
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3.9 PROPOSITION. If A is a CPI-ideal of D, then A is contained in the Jacobson 

radial of D. 

Proof. Since D = C(D, A), clearly all of the maximal ideals of D are trivially 
contractions of ideals from C(D, A) ( tha t is, each of the maximal ideals of D 
is in cé?). Consequently, by Corollary 3.8, A is contained in all of the maximal 
ideals of D. 

I t is clear, even in the prime case, tha t the condition tha t A is contained in 
the Jacobson radical of D is not sufficient to conclude t h a t A is a CPI- ideal . 
The next result gives a stronger condition which is sufficient. 

3.10 PROPOSITION. If A is contained in the Jacobson radical of D and if D is 
a total quotient ring, then A is a CPI-ideal. 

Proof. We prove t ha t D = C(D, A) by proving the stronger fact t ha t 5 is 
the set of units in D and hence D = Ds. Since each maximal ideal M of D con­
tains A, its image in D is a proper ideal and hence consists entirely of zero di­
visors. Thus , the image of every nonuni t of D is a zero divisor in D. Conse­
quent ly S is the set of units in D. 

In view of Proposition 3.9, the condition t ha t D be a total quot ient ring is 
clearly not sufficient, by itself, for us to conclude tha t A is a CPI-ideal . We 
further note t ha t K[X]/(X2) and K\[X]]/(X2), where K is a held, are iso­
morphic total quot ient rings and yet (X2) is not a CPI-ideal of K[X] while 
(X2) is a CPI-ideal of i£[[X]]. Hence, the s t ructure of D when D is a total 
quot ient ring also appears to be inconclusive in determining whether A is a 
CPI-ideal . 

As promised in Section 2, we now show tha t the properties of being a Prùfer 
domain or being integrally closed are imposed on C(D, A) if Ds and D have 
the corresponding properties. Since D is not necessarily an integral domain, 
the proper ty of D corresponding to being a Prùfer domain is t ha t of being a 
Prufer ring — t ha t is, a ring in which every finitely generated ideal containing 
a regular element is an invertible ideal. We note t ha t an integral domain is 
a Prùfer domain if and only if it is a Prùfer ring. 

3.11 PROPOSITION. If Ds and D are Prufer rings, then C(D, A) is a Prùfer 
domain. 

Proof. The proof of Theorem 2 in Boisen and Larsen [3, p. 88] allows us to 
conclude tha t C(D, A) is a Prùfer domain once it is shown tha t each element 
x of Ds such t h a t ^ ( x ) is a uni t in T, is itself a uni t in Ds- Let x = d/s where 
d e D and s G S. If V(x) is a uni t in T, then ^(d)^(s-1) = V(ds~l) = V(x) 
is a uni t in T. Therefore ^(d) is a uni t in T and consequently ^(d) is a regular 
element in D. Therefore, d £ S and so s/d G Ds which implies tha t x = d/s 
is a uni t of Ds. 
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3.12 PROPOSITION. / / Ds and D are both integrally closed, then C(D, A) is 
integrally closed. 

Proof. Let y be an element of K, the quotient field of D. Suppose tha t there 
exists eo, e1} . . . , en-i £ C(D, A) such tha t yn + en-\y

n~l + . . . + e0 = 0. 
Since Ds is integrally closed, y £ Ds. Let y denote ^f(y) which is an element of 
the total quot ient ring of D. Also for each i, let ë̂  = ^(et), which is an element 
of D since *(C(D, A)) = D. Then f + e^y"'1 + . . . + eQ = 0 in D. Since 
D is integrally closed, we have y £ D. Consequently, y G C(D, A), and there­
fore, C(D, A) is integrally closed. 

Next we present an example tha t shows tha t the position an ideal A occupies 
relative to the pospec of D fails to determine the poset *$ of contracted primes 
from C(D, A). In other words, the poset (Pospec(D)) U {̂ 4} does not deter­
mine *$. This is in contrast to the prime case in which the set of contracted 
primes is precisely the set of primes comparable to P. This example also shows 
tha t a CPI-ideal need not be comparable with all of the ideals of D (or even all 
of the prime ideals of D). 

3.13 Example. Let F denote a field and let D = F[X, F ] ( X i F ) . Then A\ = 
(X2,XY) is a CIT-ideal while A2 = (X2) is not a CPI-ideal. Both Ax and A2 

are situated relative to the pospec of D in the position denoted by A in the 
figure below. While all prime ideals of D are contracted primes from C(D, A\), 
the prime ideal ( F ) is not the contraction of a prime from C(D, A2). 

Proof. Since V(X2) = V(X2, XY) = (X) , both A1 and A2 are si tuated 
relative to the pospec of D as described. Since the product of X with any 
nonuni t of D is an element of A\, D/A\ is a total quotient ring. By Proposition 
3.10, A\ is a CPI-ideal. Since C(D, A\) = D, it is clear tha t every prime ideal 
of D is the contraction of a prime ideal of C(D, Ai). Since A2 = (X2) is not 
comparable to ( F ) and since F + A2 is clearly a regular element in D/A2, 
by Theorem 3.6 (See the comment directly following Theorem 3.6), ( F ) is not 
the contraction of a prime ideal of C(D, A2). 

3.14 Example. Let F denote a field and let D = F[W, X} F, Z]. Label the 
ideals (X - YZ, WX, WZ), (W, X, F ) , and (X) oiDasA,P, and Q, respec-
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tively. Then P and Q are both contract ions of prime ideals of C(D, A). Let 
P' and Q' denote the prime ideals of C(D, A) such tha t P' C\ D = P and 
Q' C^ D — Q. Then Q' Çt P' even though Q Q P. Consequently, contract ion 
is neither an order-isomorphism nor a homeomorphism. 

Proof. Since P contains A, it follows from Theorem 3.6, pa r t (ii), t ha t P is 
a contracted prime ideal of D. Also, since WX £ A and W $•_ A, we have tha t 
<p(X) is a zero divisor of D, so Q C\ S = 0. Again by Theorem 3.6, pa r t (ii), 
Q is a contracted prime ideal of D. The example will be complete once we show 
Q' £ P'. We will show tha t X/ Y G < 2 V - We begin by showing t ha t Y £ S. 
Suppose tha t Y-e(W, X, Y, Z) is an element of A for some polynomial e(W, 
X, F, Z) in D. Then 

(*) Y-e(W,X, Y,Z) = (X - YZ)-f+ WX-g + WZ-h 

for s o m e / , g, h £ D. Subst i tu t ing zero for W in the above expression, we get 

Y-e(0,X, Y,Z) = (X - YZ)-f(0,X, Y, Z) 

By unique factorization in D, X — YZ mus t divide e(0, X, Y, Z), and conse­
quently, e(0, X, F, Z) Ç A. Since e(0, X, F, Z) is the sum of those terms of 
e which do not involve W, we may, without loss of generality, assume tha t 
every monomial term of e involves W. Now subst i tu t ing zero in for X and Z 
in (*), we obtain the fact tha t e(W, 0, F, 0) = 0. I t follows a t once tha t every 
monomial term of e involves X or Z. So every term of e is divisible by either 
WX or WZ, and hence, e £ A. Consequently, we have shown t h a t whenever 
Yd £ A, then d G A which is precisely what it means for F to map to a regular 
element in D. Therefore F G S. 

Now XIY € D S f and (XI Y) - Z which equals (X - YZ)/Y, is in A8. 
Hence, X / F G D + As = C(£>, 4 ) , and * ( X / 7 ) = ¥ ( Z ) . Since Z ^ P' and 
since P r = ^ ( ^ ( P ' ) ) » it mus t be the case t ha t Z / F (I P'. Now since 
FCX7 F) e Q and F g Q', we have tha t X / F 6 Q'. So X / F Ç 0 V , as we 
wanted to show. 

T o prove the final sentence in the s ta tement of the example, we note t ha t 
the contract ion map fails to be an order-isomorphism since its inverse fails to 
preserve order. Fur thermore , contract ion fails to be a homeomorphism since 
it fails to preserve closed sets. Specifically, the closed set of all prime ideals of 
C(D, A) containing Q' does not contain P ' , whereas its image in Spec(Z^) is a 
set containing Q bu t not P , which cannot be a closed set in the relative topology. 
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