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Abstract
A two-port ceramic-based antenna loaded with partially reflecting surface (PRS) is structured
and explored. Fan-shaped slot is utilized to create circularly polarized wave in both frequency
ranges. Dual frequency ranges are due to hybridmode creation inside the ceramicmaterial, i.e.
HEM11δ and HEM12δ modes. PRS is used to change the phase gradient, which in turn tilts the
radiation beam (±35∘) obtained fromdifferent port in opposite direction.This concept is useful
to reduce the envelop correlation coefficient using far-field. Experimental verification confirms
that the designed antenna works from 26.1 to 27.5 GHz and 31.7 to 33.6 GHz along with less
than 3-dB axial ratio from 26.5 to 27.1 GHz and 31.9 to 33.1 GHz respectively. Orthogonal
placement of ports introduces the concept of polarization diversity and decreases the coupling
between ports by an amount of −25 dB. Good gain value (up to 7.0 dBi) and better value of
diversity performance make the designed radiator applicable for 5 G millimeter-wave uses.

Introduction

In the modern domain of mobile communication, there is wide necessity of large data rate
without enhancing the transmitted power. For fulfilling this requirement, two techniques are
very famous in literature: (i) use of multiple input, multiple output (MIMO) communication
system in order to improve the signal-to-noise ratio [1] and (ii) shifting of communication
toward millimeter (mm)-wave/sub mm-wave frequency ranges [2]. Different types of anten-
nas are available to fulfill the above requirement such as microstrip antenna or its array.
However, these radiators suffer from high radiation losses at mm-wave frequency due to the
presence of metallic and surface wave losses [3]. Dielectric resonator–based radiators remove
the difficulties of metallic antennas because these are free from metallic and surface wave
losses [4].

In literature, some articles are available in the area of mm-wave MIMO dielectric resonator
antenna (DRA). Zhang et al. [5] designed a dual-port dielectric-based MIMO antenna, which
works from 27.25 GHz to 28.59 GHz. Metallic strips are utilized on the top of the rectan-
gular ceramic for further reducing the mutual coupling level up to −12 dB. Pan et al. [6]
proposed a new technique to improve the isolation level between two-port ceramic antenna
using the vias. This antenna design works from 25 to 27 GHz with an isolation level more
than 40 dB. Murthy [7] used the concept of metallic strip over the ceramic to improve the
isolation among the four ports. This radiator works from 26.6 GHz to 29.57 GHz with the
isolation level around 17 dB. Hasan et al. [8] structured a dual-port ceramic-based radiator
and used hybrid isolator between the ports to enhance the isolation. It works from 58.8 GHz
to 63.6 GHz with an isolation level around 40 dB. Alanazi et al. [9] designed an aperture-
coupled rectangular ceramic at mm-wave frequency. It supports dual frequency ranges (i.e.
27.9–28.8 GHz and 37.89–38.02 GHz) with isolation around 27 dB by placing the radiators
on opposite side of the substrate. Kumar et al. [10] proposed a dual-port CDRA at mm-wave
frequency range. With the assistance of plus-shaped aperture, it creates circularly polarized
(CP) waves in between the working frequency range (i.e. 25.5–27.79 GHz). Sharma et al. [11]
designed a dual-port ceramic-based filtenna, which works from 27.9 to 28.5 GHz. Antiparallel
placing of ports improves the isolation level to more than 30 dB. From the aforementioned
literature, it is clear that still the work is required of improving the diversity performance
in far-field region. Varshney et al. [12–14] proposed different shapes of ceramic to create
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CP waves and improve the impedance bandwidth in DR-
based MIMO antennas such as, semicircular ceramic, Z-shaped
ceramic, and epsilon-shaped ceramic. Varshney et al. [15]
designed an aperture-coupled rectangular ceramic to create wide-
band characteristics by combining the three different operating
modes.

In this article, a designing of dual-port dual band CP ceramic-
based radiator is discussed. Partially reflecting surface (PRS) is also
suspended over the antenna in order to tilts the beamby an amount
of ±30∘. Due to this, the value of ECC (by far-field) is reduced
and diversity performance becomes good in far-field region. Fan-
shaped aperture creates the CP waves in dual frequency ranges,

i.e. 26.5–27.1 GHz and 31.9–33.1 GHz, respectively. For better
understanding, the given article is segmented in various sections:
(i) geometrical layout, (ii) antenna analysis, (iii) experimental out-
come, and (iv) conclusion.

Geometrical layout of the designed radiator

Figure 1 presents the structural layout of the designed
antenna with different views. The substrate utilized to struc-
ture the dual-port antenna and PRS is Rogers RT 5880
substrate(𝜀r = 2.2; tan 𝛿 = 0.0009). The thickness of the substrate

(a)
(b)

(c) (d)

Figure 1. Geometrical layout of the designed radiator: (a) feeding structure, (b) expanded view of aperture, (c) partial reflecting surface, (d) side view of antenna.

(a) (b)

(c) (d)

Figure 2. Pictures of fabricated antenna: (a) designed aperture, (b) dual-port ceramic antenna, (c) partially reflecting surface, (d) 3D view of the proposed antenna.
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Table 1. Optimized dimension of the designed mm-wave dual-port antenna

Symbol Dimension (mm) Symbol Dimension (mm)

WS 20.0 LF 13.5

LS 40.0 L2 1.8

WF 1.3 L3 1.6

L1 2.0 LP 5.0

HD 3.0 GP 5.0

WPR 10.0 LPR 30.0

is 0.254 mm. Fan-shaped aperture has been etched from the
substrate to excite the ceramic material.The ceramic material used
as substrate is alumina having permittivity of 9.8 and loss tangent
of 0.002. The optimized diameter (D) of cylindrical ceramic is
taken as 8.0 mm. Table 1 lists the optimized dimension of various
parameters of the proposed radiator. Figure 2 shows the pictures
of fabricated radiator.

Analysis of the designed radiator

In this section, the detailed analysis of the designed radiator has
been carried out using high-frequency structure simulator electro-
magnetic simulator. The analysis of the proposed antenna starts
with single-port structure. Figure 3 shows the reflection coefficient
variation of the designed antenna in the presence and absence of
ceramic material. From Fig. 3, it is observed that the complete fre-
quency band is due to the cylindrical ceramic material. Spectrum
shown in Fig. 3 has two significant resonant peaks at 26.2 GHz
and 32.1 GHz, respectively. In order to find the accountability of
these resonances, Fig. 4 shows the E-field variation on cylindrical
ceramic at 26.2 GHz and 32.1 GHz, respectively. From Fig. 4, it
is confirmed that the resonant peaks at 26.2 GHz and 32.1 GHz

Figure 3. |S11| variation in the presence and absence of DRA for single-port
antenna.

are due to HEM11δ and HEM12δ modes, respectively [16]. These
resonant peaks can also be calculated as follows [17]:

fr,HEM11𝛿
= 6.321c

𝜋D√𝜀r,eff + 2
[0.27 + 0.36( D

4HD
)

+0.02( D
4HD

)
2
] (1)

In eqn. (1),D andHD denote the diameter and height of the alu-
mina ceramic, respectively. From eqn. (1), the resonant frequency
is found to be 25.95 GHz. In literature, no empirical formula is
available to calculate the resonant frequency of HEM12δ mode.
However, it can be predicted on the basis aspect ratio of cylindrical
ceramic by using the following formulation [18]:

fr,HEM12𝛿
≥ 1.25 × fr,HEM11𝛿

(2)

(a) (b)

(c) (d)

Figure 4. E-field on cylindrical ceramic: (a) top view at 26.2 GHz, (b) side view at 26.2 GHz, (c) top view at 32.1 GHz, (d) side view at 32.1 GHz.
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Figure 5. |S11| variation with different changes in the aperture of single-port
antenna.

From eqn. (2), the resonant frequency of HEM12δ mode is
≥32.43 GHz, which is closer to the simulated outcome.

Figure 5 shows the reflection coefficient (|S11|) curve with var-
ious modifications in the shape of the aperture. Four different
shapes are taken into the account: (i) square-shaped aperture,
(ii) plus-shaped aperture, (iii) equal fan along with plus-shaped
aperture, and (iv) unequal fan-shaped with plus-shaped aperture
(proposed). FromFig. 5, it can be perceived that both the frequency
bands are obtained with all shapes of aperture. However, only
the impedance matching of each band is changing with aperture
shape. The best reflection coefficient is achieved in the proposed
case. One more thing is observed from Fig. 5 that square-/plus-
shaped aperture is capable of creating both the hybrid modes, i.e.
HEM11δ and HEM12δ. Aperture acts as a magnetic dipole, so it
will be able to generate HEM11δ. It is a very well known fact that
HEM12δ mode is the orthogonal mode of HEM11δ. Square-shaped
aperture excites the x-polarized and y-polarized waves with equal
strength [19]. Due to which, HEM12δ mode is also produced by
square-/plus-shaped aperture at 32.1 GHz. Figure 6 shows the axial
ratio variation with the aforementioned changes in the shape of

Figure 6. Axial ratio variation with different changes in the aperture of single-port
antenna.

aperture. It can be perceived from Fig. 6 that in case of asymmetri-
cal fan-shaped aperture-loaded ceramic, the CPwaves are obtained
in both the operating bands. In the proposed aperture, fan blades
are aligned orthogonally.These blades are able to create the orthog-
onalmodes with equal amplitude. Now, change in the size of blades
(make it asymmetrical) creates the path delay between the field line.
Thiswill result in the phase difference. Parametric analysis has been
done to create the phase difference of 90∘, which is shown in Fig. 7.
It can be observed from Fig. 7(a) and (b) that as the fan blade size
becomes nonuniform, the axial ratiomoves toward the 3-dB down.
In this wave, the necessary condition to create CP waves has been
fulfilled by the proposed antenna [20].

After that, single-port antenna is converted into the dual
port. There are two possibilities with dual-port antenna: (i)
parallel orientation and (ii) perpendicular orientation. Figure 8
shows the reflection coefficient comparison of single-port and
dual-port (with parallel and perpendicular orientation) antennas.
From Fig. 8, it is confirmed that the reflection coefficient curve is
approximately same in all three cases. Figure 9 shows the mutual
coupling curve variation in parallel and perpendicular orienta-
tion of dual-port antenna. From Fig. 9, it is confirmed that mutual

(a) (b)

Figure 7. Axial ratio variation with variation in size of fan blade: (a) lower operating band and (b) upper operating band.
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Figure 8. |S11| variation of single-port and dual-port (parallel and perpendicular
placement) antennas.

Figure 9. |S12| variation of parallel and perpendicular placement of dual-port
antenna.

coupling reduced to −40 dB in case of perpendicular orienta-
tion. For this reason, perpendicular orientation has been chosen
in the proposed one. Figure 10 shows the axial ratio variation with
single-port and dual-port (with parallel and perpendicular orien-
tation) antennas. It is confirmed that in all three cases, the axial
ratio variation is approximately the same. It is required for MIMO
antennas.

In the next step, a PRS is suspended over the radiator for tilts the
radiation pattern obtained from different ports in different direc-
tion. In the proposed antenna, a superstrate that comprises of the
parasitic square patches with continuous change in dimension, i.e.
L1, L2, and L3 is placed over the dual-port antenna. These patches
are called as capacitive grids. Beam titling can be achieved by con-
tinuous phase variation.This can be done through constant change
in dimension of parasitic square patches (Fig. 1(c)). Therefore, the
proposed superstrate acts as the PRS [21]. Figure 11 shows the
S-parameter variation in the absence and presence of PRS. From
Fig. 11, it is confirmed that the S-parameter is approximately the

Figure 10. Axial ratio variation of single-port and dual-port (parallel and
perpendicular placement) antennas.

Figure 11. S-parameter variation of dual-port antenna in the presence/absence of
PRS.

Figure 12. Axial ratio variation of dual-port antenna in the presence/absence of
PRS.
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Figure 13. 3D polar plot of dual-port antenna with PRS: (a) Pprt-1 at 26.2 GHz, (b) port-2 at 26.2 GHz, (c) port-1 at 32.1 GHz, (d) port-2 at 32.1 GHz.

same in both the cases. Figure 12 shows the axial ratio plot in the
absence and presence of PRS. From Fig. 12, there is minute change
in the axial ratio in the absence and presence of PRS. Figure 13
shows the 3D radiation pattern in the presence of PRS with port-
1 and port-2 at 26.2 GHz and 32.1 GHz, respectively. From Fig.
13, it can be perceived that the radiation pattern is tilted to −35∘

with port-1 at 26.2 GHz, while beam is tilted to +35∘ with port-
2 at 26.2 GHz. Similarly, in upper frequency band (i.e. 32.1 GHz),
the beam is tilted to −35∘ and+35∘ with port-1 and port-2, respec-
tively. The 3D far-field pattern shown in Fig. 13 is obtained after
placing the PRS. Therefore, it shows tilting from broadside direc-
tion. Without PRS, the radiation pattern is broadsided (i.e. follows
the operating mode). In the designed PRS, the dimension of unit
cell is changing from edge to middle. Due to this uneven distribu-
tion of unit cell, phase gradient has been changed. It will tilt the
radiation beam in the opposite direction [22].

Experimental outcomes

In this section, experimentally measured antenna parameters are
compared with optimized simulated results. Figure 14 shows the
measured and simulated S-parameter for the proposed radiator. It
is measured by using keysight-based E8363C PNA. From Fig. 14,
it is observed that there is good agreement between measured and
simulated S-parameter. The proposed antenna works in between
dual frequency range (i.e. 26.1–27.5 GHz and 31.7–33.6 GHz,
respectively). Isolation level is more than 35 dB between the ports.
Figure 15(a) and (b) shows the measured and simulated axial ratio
variation in lower and upper working frequency band, respectively.
It is measured inside the anechoic chamber. From Fig. 15, it can
be said that there is good agreement between measured and simu-
lated axial ratio.The designed radiator supports the CPwaves from

Figure 14. Measured and simulated S-parameter of the proposed radiator.

26.5 to 27.1 GHz and 31.9 to 33.1 GHz in lower and upper working
frequency band, respectively. Figure 16 shows the measured and
simulated 2D left- and right-handed circular polarization (RHCP)
radiation patterns in XZ plane at 26.75 GHz and 31.5 GHz with
port-1 and port-2, respectively. From Fig. 16, it is observed that the
patterns obtained from port-1 and port-2 have been tilted in differ-
ent direction by ±35∘. Another observation obtained from Fig. 16
was that the designed radiator acts as RHCPwith both the antenna
ports. After seeing the radiation pattern, it can be observed that
cross-pol level is high in the designed radiator. It is due to presence
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(a) (b)

Figure 15. Measured and simulated axial ratio variation of the proposed antenna: (a) lower frequency band and (b) upper frequency band.

(a) (b)

(c) (d)

Figure 16. Measured and simulated LHCP and RHCP radiation pattern: (a) port-1 at 26.75 GHz, (b) port-2 at 26.75 GHz, (c) port-1 at 31.5 GHz, (d) port-2 at 31.5 GHz.

of PRS. In the presence of PRS, cross-pol level increases with incre-
ment in beam tilting. In the designed antenna, the cross-pol level is
approximately 15 dB down in the direction of maximum radiation.
It is a good value of efficient radiator. For the proposed radiator,
the value of FBR is 5.7 dB and 6.4 dB at 26.1 GHz and 32.5 GHz.
respectively. It is low because of the presence of aperture. One can

improve the value of FBR by placing the reflector on the lower side
of the substrate.

Figure 17 shows the gain and radiation efficiency variation of
the designed radiator. Gain is calculated with the help of two
antenna techniques [22]. From Fig. 17, it can be perceived that the
radiation efficiency ismore than 90% in theworking band.Thegain
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Figure 17. Gain (measured/simulated) and radiation efficiency (simulated) curve of
the designed mm-wave antenna.

is approximately 7.0 dBi in both frequency ranges. Table 2 shows
the performance comparison of the proposed dual-port ceramic-
based mm-wave radiator with other existing antennas on the basis
of impedance bandwidth, axial ratio bandwidth, gain, and pat-
tern diversity. Data from Table 2 confirms the overall performance
of the designed antenna is better in comparison to other existing
ceramic-based mm-wave antenna.

Diversity factors such as envelop correlation coefficient (ECC)
and diversity gain (DG) are highly significant in case of multi-
port radiator. ECC tells about the correlation (either in terms of
scattering or far-field parameter) between the ports [1]. For com-
petent multi-port radiator, the ECC should be as low as possible.
DG expresses the gain of diversity aerial in the fading situation
[1]. Generally, the value of ECC of an efficient MIMO is taken as
<0.3, while the DG is approximately 10 dB.There are twomethods
to measure the ECC and DG, i.e. by S-parameter and by far-field
parameter. The following formulation is used for this purpose [1]:

*ECCS−parameter

=
∣S*11S12 + S*21S22∣

2

((1 − (|S11|
2 + |S21|

2)) (1 − (|S22|
2 + |S12|

2)))
(3)

ECCF =
∣∬
4𝜋

[Ei (𝜃, 𝜙) * Ej (𝜃, 𝜙)] dΩ∣
2

∬
4𝜋

|Ei (𝜃, 𝜙)|2 dΩ ∬
4𝜋

∣Ej (𝜃, 𝜙)∣2 dΩ
(4)

DG =
√
1 − ECC (5)

In eqn. (3–5), the symbols have their usual meaning. Figure 18
shows the DG and ECC variation of the designed aerial using
S-parameter. From Fig. 18, it is perceived that the ECC is <0.15
andDG is around 10 dB inside the operating band. Table 3 provides
the value of ECC and DG of the proposed antenna using far-field.
From Table 3, the ECC and DG of the designed aerial are in the
standard limit.

Conclusion

In this article, a two-port ceramic-based radiator at mm-wave
frequency is structured and investigated. With the help of fan-
shaped slot, the radiator works in dual frequency band, i.e.

Table 2. Performance comparison of the designed antenna with other existing
ceramic-based mm-wave antenna

Antenna
structure

Impedance
bandwidth

(GHz)
Isolation
(dB)

Axial
ratio
band-
width

Gain
(dBi)

Pattern
diversity

Dual-port
rectangular
DRA [5]

1.34 >25 NA 8.0 NA

Dual-port
rectangular
DRA [6]

2.4 >35 NA 6.0 NA

Four-port
rectangular
DRA [7]

2.23 >25 NA 7.0 NA

Dual-port
cylindrical
DRA [8]

4.2 >35 NA 4.0 NA

Dual-port
rectangular
DRA [9]

4.5/3.15 >25 NA 8.0 NA

Dual-port
cylindrical
DRA [10]

2.29 >30 0.33 5.0 NA

Dual-port
cylindrical
DRA [11]

0.6 >25 NA 4.5 ±45∘

Dual-port
semicylin-
drical DRA
[12]

2.1 >15 0.32 4.0 NA

Four-port
Z-shaped
DRA [13]

4.0 >20 0.8 6.0 NA

Dual-port
epsilon DRA
[14]

0.8 >15 NA 6.0 ±35∘

Rectangular
DRA [15]

2.3 >20 NA 5.0 NA

Proposed
antenna

1.6/1.9 >35 0.6/1.2 7.0 ±35∘

Figure 18. ECC and diversity gain curve of the designed mm-wave antenna.

26.1–27.5 GHz/31.7–33.6 GHz and also supports CPwaves in both
bands, i.e. 26.5–27.1GHz/31.9–33.1GHz. A PRS is suspended over
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Table 3. Measured value of ECC and DG using far-field

Frequency (GHz) ECC DG Frequency (GHz) ECC DG

26.1 0.154 9.751 31.7 0.168 9.701

26.5 0.149 9.769 32.1 0.154 9.751

26.9 0.116 9.795 32.5 0.137 9.802

27.1 0.099 9.845 33.1 0.112 9.815

27.5 0.126 9.804 33.6 0.125 9.803

the radiator for tilting the beam in opposite direction from differ-
ent ports. It provides a beam tilt of ±30∘. Orthogonal placement of
antenna ports provides the mutual coupling reduces to −35 dB in
operating bands. All these appearances of the designed aerial find
it appropriate for mm-wave 5G wireless communication system.
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