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Abstract

We exhibit a scaling law for the critical SIS stochastic epidemic. If at time 0 the population
consists of

√
N infected and N − √

N susceptible individuals, then when the time and
the number currently infected are both scaled by

√
N , the resulting process converges, as

N → ∞, to a diffusion process related to the Feller diffusion by a change of drift. As a
consequence, the rescaled size of the epidemic has a limit law that coincides with that of
a first passage time for the standard Ornstein–Uhlenbeck process. These results are the
analogs for the SIS epidemic of results of Martin-Löf (1998) and Aldous (1997) for the
simple SIR epidemic.
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1. Introduction

Among the most thoroughly studied stochastic epidemic models are the simple SIR and SIS
epidemics (see [13] for the origin of the SIS model); among the many problems associated with
these models, perhaps the most basic and most interesting are to do with the duration and size
of the epidemic. When the epidemic is either subcritical or supercritical, the large-population
behavior of the duration and size is reasonably well understood: in the subcritical case the
epidemic is stochastically dominated by a subcritical Galton–Watson process (see below), and
in the supercritical case the epidemic may become endemic (see [7] and [12]). For critical
epidemics, large-population asymptotics are more delicate. It was shown in [9] (see also [1])
that the size S = SN has an interesting and nontrivial asymptotic behavior as the population
size N tends to ∞. If the number X0 of individuals initially infected is of order bN1/3, then
the total infection time SN (i.e. the sum of the total infection times over the whole population)
has a limit distribution

SN

N2/3
d−→ T ∗

b , (1)

where T ∗
b is the first passage time of W(t) + t2/2 to the level b, W(t) is a standard Wiener

process, and ‘
d−→’ denotes convergence in distribution. Furthermore, the critical exponent is

equal to 1
3 , i.e. the quadratic drift is not felt if X0 is much smaller than N1/3. If X(0) ∼ bNα
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Critical scaling for the SIS stochastic epidemic 893

for some α < 1
3 then SN/N2α converges in law to the first passage time of W(t) to the level b.

(This is neither proved nor stated in [9], but it can be deduced from the methods used there.)
The purpose of this note is to establish an analogous scaling law for the critical SIS epidemic.

If the number X0 of individuals initially infected is of order b
√

N then, as N → ∞,

SN

N

d−→ τb,

where τb is the time of first passage to 0 of a standard Ornstein–Uhlenbeck process started at b.
Our approach has a rather different character than those in [1] and [9]. We shall establish that
the SIS epidemic process itself, suitably rescaled, converges in law to a diffusion process we
call the attenuated Feller diffusion. This has a law absolutely continuous with respect to, but
not equal to, that of the standard Feller diffusion. (See (4), below, for the stochastic differential
equation governing the Feller diffusion; see (7), below, for the attenuated Feller diffusion.)
Furthermore, we will show that the critical exponent is equal to 1

2 in the following sense. If
X(0) ∼ bNα for some α < 1

2 then the rescaled SIS process converges in law to a standard
Feller diffusion with no drift. It will follow that the duration of the epidemic, rescaled by√

X(0), converges in law as N → ∞ to the first passage time to 0 of the corresponding Feller
diffusion.

Our analysis will show that the critical scaling window for the transmissivity parameter β

(see below) is of order 1/
√

N . This scaling window has also been observed – but in a different
context – in [10] and [11], where it was shown that the quasistationary distribution of the SIS
epidemic undergoes a scaling transition when the transmissivity parameter varies from below
1 − O(N−1/2) to above 1 + O(N−1/2). This phenomenon does not seem to be directly linked
to the critical scaling in our Theorem 1.

2. The SIS epidemic and its branching envelope

2.1. The SIS model

The SIS epidemic is a continuous-time birth–death Markov chain Xt = X(t) on the state
space [N ] := {0, 1, 2, . . . , N} whose infinitesimal transition probabilities are as follows:

P{X(t + δt) = x + 1 | X(t) = x} = βx

(
1 − x

N

)
δt + o(xδt),

P{X(t + δt) = x − 1 | X(t) = x} = xδt + o(xδt),

P{X(t + δt) = x | X(t) = x} = 1 − βx

(
1 − x

N

)
δt − xδt + o(xδt).

(2)

These probabilities describe a population of N individuals in which Xt are infected and the
remainder, N −Xt , are susceptible to infection at time t . Infected individuals recover at rate 1,
after which they once again become susceptible to (re-)infection, and susceptible individuals
become infected at rate βXt/N proportional to the number of infected individuals in the
population. The epidemic ends at the first time T = TN = t when Xt = 0 (note that state
0 is absorbing). The epidemic is said to be critical when β = 1, and nearly critical when
β − 1 = O(

√
N).

2.2. The branching envelope

When the number of individuals infected is small compared to the population size, the
epidemic evolves approximately as a continuous-time branching process Z(t) = Zt with
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infinitesimal transition probabilities

P{Z(t + δt) = z + 1 | Z(t) = z} = βzδt + o(zδt),

P{Z(t + δt) = z − 1 | Z(t) = z} = zδt + o(zδt),

P{Z(t + δt) = z | Z(t) = z} = 1 − (β + 1)zδt + o(zδt).

(3)

We shall refer to this process as the branching envelope of the SIS process. Observe that the
death rate x is the same as for the SIS epidemic, but that the birth rate βx dominates the birth
rate βx(1 − x/N) of the SIS process; the difference, βx2/N , will be called the attenuation or
attrition rate. It is possible, by a standard construction, to build the SIS process X(t) and its
branching envelope Z(t) on the same probability space in such a way that X(0) = Z(0) and
X(t) ≤ Z(t) for all t ≥ 0. Thus, the size and duration of the SIS epidemic are stochastically
dominated by the total progeny and extinction time of the branching envelope.

2.3. Critical scaling for the branching envelope

It was proved in [4] that a critical branching process, when properly renormalized, behaves
approximately as a Feller diffusion with drift λYt , that is, a solution to the stochastic differential
equation

dYt = λYt dt + √
Yt dWt, (4)

where Wt is a standard Wiener process. (Equivalently, the Feller diffusion with drift parameter
λ may be described as the diffusion process on [0, ∞) with infinitesimal generator Gλ =
λx∂x + x∂2

xx/2.) Feller’s theorem (see [6] or [8] for a proof) asserts that if Zm(t) is a sequence
of branching processes satisfying (3) with β = βm = 1+λ/m and with Zm(0) ∼ bm for some
b > 0 and λ ∈ R, then

Zm(mt)

m

d−→ Yt , (5)

where Yt is the Feller diffusion with drift parameter λ and initial value Y0 = b.

2.4. Critical scaling for the SIS process

Because the branching envelope stochastically dominates the SIS process, the scaling law
(5) limits the duration and growth of the critical and nearly critical SIS process. Since time
is scaled by the factor m, where Zm(0) ∼ bm, it follows that the corresponding SIS process
started with X(0) ∼ bNα infected individuals cannot have duration longer than OP (Nα) time
units. Consequently, we should expect that if the attenuation rate, divided by the scale factor
Nα and integrated to time Nα , is oP (1) then the limiting behavior of the rescaled SIS process
X(Nαt)/Nα should be no different from that of the branching envelope Z(Nαt)/Nα . An easy
calculation shows that this will be the case when α < 1

2 . When α = 1
2 , the accumulated

attrition over the duration of the branching envelope will be of the same order of magnitude as
the fluctuations, and so the rescaled SIS process should have a genuinely different asymptotic
behavior from the branching envelope. Our main result makes this precise.

Theorem 1. Assume that the process X(t) = XN(t) has infinitesimal transition probabilities
defined in (2). If, for some constants α ≤ 1

2 and b > 0, the number of individuals initially
infected satisfies XN(0) ∼ bNα and if the birth rate (2) satisfies β = βN = 1 + λ/Nα , then,
as N → ∞,

XN(Nαt)

Nα

d−→ Yt , (6)
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where

(a) if α < 1
2 then Yt is a Feller diffusion with drift λ and initial state Y0 = b,

(b) if α = 1
2 then Yt is an attenuated Feller diffusion with drift λ and initial state Y0 = b;

that is, Yt is a solution to the stochastic differential equation

dYt = (λYt − Y 2
t ) dt + √

Yt dWt, (7)

where Wt is a standard Wiener process.

Note that the attenuation term ‘−Y 2
t ’ in the drift of the limiting process (7) can be guessed

from the form of the attrition βx2/N . The proof of Theorem 1 is given in Section 4.

3. Size of the epidemic

The size of an epidemic is usually defined to be the total number ξ of new infections during
its entire course. An asymptotically equivalent quantity is the total infection time, which is
defined as follows:

S = SN =
∫ T

0
Xt dt. (8)

Although the two definitions are not the same, it can be shown that the two quantities have the
same asymptotic behavior for large N , that is, ξN ∼ SN . (This follows from the fact that the
lengths of the infection periods for infected individuals are independent and identically dis-
tributed unit exponential random variables.) Because the integral (8) is a continuous functional
of the path Xt (relative to the Skorokhod topology), Theorem 1 implies that if X(0) ∼ b

√
N

and β = 1 + λ/
√

N then
SN

N

d−→
∫ τ(0)

0
Yt dt,

where Yt is the attenuated Feller diffusion (7) with initial state Y0 = b and τ0 is the first passage
time to 0 of Yt .

By an odd bit of luck, the instantaneous rate Yt dt at which infection time accrues coincides
with the rate of change in accumulated quadratic variation of the semimartingale Yt . (In fact
this is really no accident, but rather an artifact of the fundamental connection between Galton–
Watson processes and random walks via the ‘depth-first search’ algorithm; see [1] for more
details.) This suggests making the natural time change to the diffusion Yt so as to make the
instantaneous quadratic variation constant. The new time scale s = s(t) and the old one, t , are
related by

ds = Yt dt,

and so
∫

Yt dt = ∫
ds is the limit of the rescaled total infection time SN/N . The time-changed

process Vs = Yt(s) satisfies the stochastic differential equation

dVs = (λ − Vs) ds + dW̃s,

where W̃s is a standard Wiener process. Setting Us = Vs − λ, we obtain the stochastic
differential equation for the standard Ornstein–Uhlenbeck process as follows:

dUs = −Us ds + dW̃s.

This proves the following corollary.
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Corollary 1. If X(0) ∼ b
√

N and β = 1 + λ/
√

N then

SN

N

d−→ τ(b − λ; −λ),

where τ(x; y) is the time of first passage to y of a standard Ornstein–Uhlenbeck process started
at x.

The Laplace transforms of the distributions of τ(x; y) can be expressed in terms of parabolic
cylinder (i.e. Weber) functions; see [2]. These do not invert easily. However, in the special case
λ = 0 (i.e. the case corresponding to the critical SIS epidemic), the distribution of τ(b; 0) has
the following simple closed form:

P{τ(b; 0) > s} = Pb{Us > 0} − Pb{Us < 0}.
This can be obtained from a reflection principle, using the symmetry of the Ornstein–Uhlenbeck
process about the origin.

4. Proof of Theorem 1

We prove Theorem 1 using the weak convergence machinery developed in [3], which reduces
the problem to checking convergence, in an appropriate sense, of infinitesimal generators. Let

YN
t = XN(Nαt)

Nα

be the rescaled epidemic process and denote by EN
y the corresponding expectation operator

under the initial condition YN
0 = y. Let Ĉ[0, ∞) be the space of bounded continuous functions

on the time interval [0, ∞), let C2(0, ∞) be the space of twice continuously differentiable
functions on 0, ∞), and let C∞

c (0, ∞) be the space of infinitely differentiable functions with
compact support on (0, ∞). For f ∈ Ĉ[0, ∞), define

GNf (y) = lim
h→0

EN
y [f (Yh) − f (y)]

h

and

Gf (y) =

⎧⎪⎪⎨
⎪⎪⎩

(λy)
∂f

∂y
(y) + y

∂2f

∂y2 (y) if α <
1

2
,

(λy − y2)
∂f

∂y
(y) + y

∂2f

∂y2 (y) if α = 1

2
.

By [3, Section 11.2, Corollary 1.2] the operator G restricted to Ĉ[0, ∞) ∩ C2(0, ∞) generates
a Feller semigroup on Ĉ[0, ∞), and [3, Section 1.5, Proposition 3.3] implies that C∞

c [0, ∞) is
a core for the generator. (An easy calculation, which we omit, shows that 0 is an exit boundary
and ∞ is a natural boundary in both cases.) Moreover, the Markov processes determined by
these Feller semigroups can be constructed so as to satisfy the stochastic differential equations
(4) and (7), respectively. By [3, Theorem 2.5, p. 167] and [3, Theorem 6.1, p. 28], to prove
convergence of (6) it is enough to show that for each f in the core of G the generators converge
in the sense of the following lemma.

Lemma 1. Let f ∈ C∞
c [0, ∞). Then we obtain

lim
N→∞ sup

y∈[N ]/Nα

|GNf (y) − Gf (y)| = 0.
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Proof. Consider first the case α = 1
2 . The first step is to calculate GNf for f ∈ C∞

c [0, ∞).
Using the infinitesimal transition probabilities (3), we have (with x = yN1/2 and h = tN1/2)

EN
y [f (YN

h ) − f (y)]
= [f (1 + N1/2) − f (y)][(1 + λN−1/2)yN1/2(1 − yN−1/2)hN1/2]

+ [f (1 − N−1/2) − f (y)][yN1/2hN1/2] + o(Nhy)

= [f (1 + N−1/2) − f (y)][(yN1/2 + λy − y2 − λy2N−1/2)hN1/2]
+ [f (1 − N−1/2) − f (y)][yN1/2h

√
N ] + o(Nhy).

The error term o(Nhy) is uniform in y because f is assumed to have compact support. Taking
the limit of this expression as h → 0 yields

GNf (y) = [f (1 + N−1/2) − f (y)][N1/2(λy − y2 − λy2N−1/2)]
+ [(f (1 − N−1/2) − f (y)) − (f (y) − f (y − N−1/2))]Ny.

Since f ∈ C∞
c [0, ∞), there exists a constant C > 0 such that f and all its partial derivatives

vanish for y > C. Therefore, uniformly in all y ∈ [N ]/√N ,

lim
N→∞ GNf (y) = ∂f

∂y
(y)(λy − y2) + ∂2f

∂y2 (y)y = Gf (y).

A similar calculation establishes convergence of generators when α < 1
2 .

5. The SIR epidemic revisited

The continuous-time SIR epidemic differs from the SIS epidemic in that individuals may
only be infected once; upon recovery, individuals are effectively removed from the population.
Thus, the state at any time t is determined by two variables, the number currently infected
(I (t) = IN(t)) and the number removed (R(t) = RN(t)). These take values in the set of
nonnegative integer pairs (i, r) such that 0 ≤ i + r ≤ N , where N is the (original) population
size. The instantaneous transition rates are as follows:

(i, r) 
→ (i − 1, r + 1) at rate idt,

(i, r) 
→ (i + 1, r) at rate βi(N − i − r)
dt

N
.

(9)

All states (i, r) with i = 0 are absorbing; the epidemic ends the first time one of these states is
visited.

As for the SIS epidemic, if the numbers of infected and removed individuals are small
compared to the total population size N , then the second transition rate in (9) reduces to βidt ,
and so the process I (t) evolves approximately as the branching process (3). Therefore, by
the same logic as in Section 2.4, the limiting behavior of the epidemic can be deduced by
examination of the accumulated attrition over the duration of the branching process. The result
is as follows.

Theorem 2. Assume that (IN(t), RN(t)) has instantaneous transition rates (9), and assume
that RN(0) = 0. If, for some α ≤ 1

3 and b > 0, the number IN(0) of individuals initially infected
satisfies IN(0) ∼ bNα and if the birth rate β satisfies β = 1 + λ/Nα , then, as N → ∞,(

N−αIN(t)

N−2αRN(t)

)
d−→

(
I (t)

R(t)

)
, (10)
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where the limit process (I (t), R(t)) satisfies

dI (t) = λI (t) dt + √
I (t) dWt,

dR(t) = I (t) dt,

if α = 1
3 and

dI (t) = (λI (t) − I (t)R(t)) dt + √
I (t) dWt,

dR(t) = I (t) dt,

if α = 1
3 .

Equation (1) can be easily recovered from Theorem 2 by the same device as used in Section 3.
Define the new time scale s by ds = It dt and the corresponding time-changed process dJ (s) =
dI (t). Then the total size of the epidemic is just the integral

∫
ds up to the time of first passage

to 0 of J (s). But J (s) is just the Wiener process with a quadratic drift, and so (1) follows.
Theorem 2 can be proved either by martingale methods or by use of the Ethier–Kurtz

machinery. The latter approach is mildly complicated by the fact that the generator G =
(λi − ir)∂i +√

i∂ii + i∂r is not elliptic, but rather parabolic, and singular along the i = 0 axis.
The singularity at i = 0 can be handled by truncating the state space. To prove (10), it suffices
to prove weak convergence for the processes (IN(t ∧ τε), R

N(t ∧ τε)), where τε is the time
of first passage to the level i = ε. Nonellipticity of the generator may be handled by using
standard existence results from the theory of parabolic partial differential equations (see [5]) to
verify the hypotheses of the Hille–Yosida theorem (see [3, Theorem 2.2]). Weak convergence
of the truncated processes may then be proved by checking convergence of generators; this is
another routine calculation similar to that carried out for the SIS epidemic in Section 4.
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