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We examine the effects of horizontally layered heterogeneities on the spreading
of two-phase gravity currents in a porous medium, with application to numerous
environmental flows, most notably geological carbon sequestration. Heterogeneities,
which are ubiquitous within geological reservoirs, affect the large-scale propagation of
two-phase flows through the action of small-scale capillary forces, yet the relationship
between these small- and large-scale processes is poorly understood. Here, we derive
a simple upscaled model for a gravity current under an impermeable cap rock, which
we use to investigate the effect of a wide range of centimetre-scale heterogeneities
on kilometre-scale plume migration. By parameterising in terms of different types of
archetypal layering, we assess the sensitivity of the gravity current to the distribution
and magnitude of these heterogeneities. Furthermore, since field measurements of
heterogeneities are often sparse or incomplete, we quantify how uncertainty in such
measurements manifests as uncertainty in the macroscale flow predictions. Using realistic
parameter values, we demonstrate that heterogeneities can enhance plume migration
speeds by as much as 200 %, and that uncertainty in field measurements can have dramatic
consequences on flow predictions, particularly in post-injection scenarios where the role
of capillary forces in heterogeneities is accentuated.

Key words: gravity currents, gas/liquid flow, porous media

1. Introduction

Injection of CO; into underground reservoirs to reduce greenhouse gas emissions, also
known as geological carbon sequestration, is one of the major proposed technological
solutions to meet future global temperature targets (Bickle 2009; Bui et al. 2018).
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During this process, the injected CO; rises as a buoyant plume within the porous aquifer,
encountering impermeable cap rocks which force it to spread laterally as a gravity current.
As the flow spreads out, capillary forces play a key role in determining the saturation
distribution and consequent flow properties via the relative permeability and capillary
pressure (Nordbotten & Celia 2011). Heterogeneities in rock properties at the 1-100 cm
scales substantially amplify and complicate the effect of variations in pore-scale capillary
forces, and are manifest in the large-scale saturation distributions within the CO, current.
Hence, in order to ensure safe and efficient sequestration, it is imperative to be able to
model how small-scale heterogeneities, which are ubiquitous in all subsurface reservoirs,
affect spreading rates at the macroscale (Jackson & Krevor 2020; Benham, Bickle &
Neufeld 2021).

The only previous attempts to model such flows in heterogeneous media involve
using upscaled relative permeability data, often acquired using numerical calculations
or core flooding experiments (Jackson et al. 2018), and applying these to reservoir
simulators (Braun, Helmig & Manthey 2005; Cavanagh & Haszeldine 2014; Li &
Benson 2015; Trevisan, Krishnamurthy & Meckel 2017). However, these studies are often
computationally demanding and focus on a specific type of heterogeneity (e.g. over some
horizontal/vertical length scale, as investigated by Jackson & Krevor 2020). In particular, it
is not currently understood how generic small-scale heterogeneities affect the propagation
of such large-scale flows. Furthermore, since heterogeneities are usually measured through
isolated and sparsely distributed bore hole samples, such measurements often come with
a large degree of uncertainty. Yet, despite this, there are very few studies which discuss
how such uncertainty at small scales translates to large-scale predictions. Indeed, whilst
the studies of Hinton & Woods (2020a, 20200) investigated how variations in permeability
cause shear dispersion for miscible flows, the corresponding effects due to capillary forces
within immiscible flows have not yet been addressed. However, as discussed by Jackson
& Krevor (2020), these capillary forces associated with the heterogeneities play a critical
role during CO, migration, and, therefore, require careful modelling.

In this study we derive a simple upscaled model for the evolution of an axisymmetric
two-phase gravity current beneath an impermeable cap rock, where the structure and
distribution of layered heterogeneities is a model input. This simplified approach not only
greatly reduces the computational demand of modelling such small-scale details, but also
allows us to study a large range of heterogeneities by parameterising them as different
types of archetypal sedimentary layering. In this way, we assess how the properties of the
heterogeneities affect the macroscale flow, as well as how uncertainty in the measurements
is manifest in such flow predictions. Our simple model provides other key insights, such
as the self-similar nature of the upscaled gravity current, scaling laws for the speed of
propagation and an understanding of where and when the flow transitions between the
so-called capillary and viscous limiting behaviours.

In modelling subsurface migration of CO», a key difficulty is resolving the complex
properties of the heterogeneous porous medium. This is a two-fold challenge since
resolving all the details of the rock geometry is very computationally intensive, and it
is almost impossible to obtain such fine-scaled resolution over field (kilometre) scales
from field measurements. Hence, there is a strong motivation for an upscaled modelling
approach which describes the bulk, or average effect of heterogeneities on the large-scale
flow features. There are many possible levels of upscaling, from the pore scale upwards,
as discussed by Krevor er al. (2015). Here we focus on length scales between the size
of the heterogeneities and the size of the aquifer. Therefore, in the context of this study
small-scale heterogeneities refer to variations on the scale of 10~2=1 m, and the large-scale
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flow refers to a gravity current which is typically around 1-10 m thick (Cowton et al.
2016). We do not consider pore-scale heterogeneities, which occur at 107°-10~3 m, since
these are difficult to resolve with bore hole measurements, and are typically incorporated
into bulk properties instead, such as pore entry pressure. Likewise, we do not consider
heterogeneities larger than the metre-scale because of the exceedingly long time it would
take to establish capillary equilibrium over such length scales.

Heterogeneity types range from variation within the pore structure of a rock to
variation in the rock type itself. Owing to the complexity of geological processes,
these heterogeneities arise from many different causes, including sedimentary layering,
subsequent diagenetic changes in the mineral fabrics and tectonic fracturing and
faulting. Each type of heterogeneity affects the flow in a different way, via the action
of small-scale capillary forces, thereby presenting a significant challenge for generic
upscaling approaches. However, the low computational cost of our approach allows
us to investigate a wide variety of heterogeneity types via simple parameterisations
of archetypal cases. Among these, we study the effects of lithostatic compaction as
well as sedimentary strata with permeability sampled from a probability distribution.
The latter case is particularly useful since it captures how the uncertainty in field
studies, due to a lack of measurements, is manifest in the uncertainty of modelling
predictions.

When upscaling the effect of heterogeneities, a key parameter is the capillary number
(Jackson et al. 2018), which is defined as the ratio between horizontal flow-driving
pressure gradients (associated with Darcy flow) and vertical capillary pressure gradients
(associated with the capillary forces). Hence, in the limit of a small capillary number,
known as the capillary limit, the capillary forces due to heterogeneities dominate the flow
behaviour, while in the limit of a large capillary number, known as the viscous limit, they
have a negligible effect. Many previous studies focus on each of these cases separately,
though recently semi-analytical approaches have been derived by Benham et al. (2021)
and Boon & Benson (2021) that capture the transition between the viscous and capillary
regimes, demonstrating which regions of a confined aquifer are in each of these limits, and
which regions are in between the limits. However, gravity was neglected in those studies,
restricting the applicability to very thin aquifers.

For CO; sequestration sites in large aquifers, gravity plays a dominant role in the rise
and spreading of the buoyant plume of injected fluid (Nordbotten & Celia 2011). The
role of buoyancy is characterised by the ratio between the strength of gravitational forces
and capillary forces, and may be quantified by a dimensionless Bond number (Golding,
Huppert & Neufeld 2013) (defined in § 2.3). As discussed by Benham et al. (2021), the
Bond number is greater than unity for aquifers larger than around ~1 m thick, in which
case gravity alters the upscaled flow properties significantly. Hence, in this study we
focus on the upscaled modelling of such gravity currents, so that more general injection
scenarios in larger aquifers can be addressed.

There is a long history of studying gravity currents in porous media, from early work
which explored the behaviour in the absence of capillary forces and heterogeneities
(Huppert & Woods 1995), to later studies which investigated the effect of confinement
(Pegler, Huppert & Neufeld 2014), permeability variations (Hinton & Woods 2018) and
capillary forces (Golding et al. 2013). Recently, Jackson & Krevor (2020) showed that
small-scale capillary heterogeneities can significantly modify the large-scale migration
of a buoyant plume within an aquifer. However, their numerical approach is both
computationally intensive, and does not provide general scalings for different types of
heterogeneity.
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The aim of the present study is to quantify the macroscopic effect of a wide range
of heterogeneities on the axisymmetric injection of CO; beneath an impermeable cap
rock. The low computational cost of our simple approach allows us to explore different
parameterisations of heterogeneities, providing insights into the dominant controls on the
evolution of the gravity current. Similar to Benham et al. (2021) (though focusing on
gravitational effects), we investigate both the viscous limit, the capillary limit and the
transition between these limits using a locally defined capillary number that determines
where and when heterogeneities play an important role. We show that away from this
transition zone the upscaled gravity current is self-similar, where the front moves like the
square root of time (like the homogeneous case discussed by Golding et al. 2013) and
the prefactor varies significantly depending on the type and strength of the heterogeneity,
as well as the Bond number. In addition, we provide a framework for managing real
permeability data with uncertainty in the measurements, illustrating how this uncertainty
is manifest in modelling predictions. Finally, we use our upscaled approach to investigate
how heterogeneities may have affected the injection of CO; at the Sleipner site in the
North Sea (Bickle et al. 2007).

Our paper is organised as follows. In § 2 we derive a simplified model for the upscaled
gravity current, discussing different types of heterogeneities. Section 3 presents both
numerical and analytical results, demonstrating that heterogeneities can significantly
accelerate plume migration. Moreover, we show that uncertainty due to lack of field
measurements has profound consequences on such predictions, especially in post-injection
scenarios where capillary effects are enhanced as the plume thins out. In § 4 we apply our
results to the case study of the Sleipner project, and finally we close with some concluding
remarks in § 5.

2. Upscaled modelling of two-phase gravity currents

In this section we outline the assumptions used to model an upscaled two-phase gravity
current in a heterogeneous porous medium, making note of how the saturation of
phases varies within the current. Then, we derive the upscaled governing equations and
boundary conditions which describe the macroscopic dynamics. Subsequently, we discuss
a variety of different types of heterogeneity and how these are manifest in the upscaled
properties. Finally, despite the added complexity of the heterogeneities, we demonstrate
the self-similar nature of the gravity current, thereby greatly reducing the complexity of
the problem.

2.1. Fundamentals of two-phase flow in heterogeneous porous media

The flow scenario we consider is illustrated in figure 1 with a radial coordinate system
(r, 7). A buoyant non-wetting phase (e.g. CO») is injected at a point source at the origin
with flow rate Q into a surrounding porous medium saturated with a denser wetting
phase (e.g. water). The resulting current spreads out radially under gravity with thickness
z = h(r, t) beneath a horizontal impermeable cap rock located at z = 0. Motivated by the
dominant heterogeneity arising from sedimentary layering, we consider a porous medium
which has vertically varying permeability k(z) and porosity ¢ (z).

We model this scenario using conservation of mass and Darcy’s law for two-phase flow
(Bear 2013). Hence, the governing equations are

aS; )
¢(Z)E+V°ui:07 i=n,w, 2.1)
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Figure 1. Schematic diagram of an axisymmetric gravity current (with constant injection Q) in both
the homogeneous case (a) and the heterogeneous case (with sedimentary strata) (c), also illustrating the
corresponding vertical non-wetting saturation profiles (b,d), given by (2.10), (2.12) (note the heterogeneity
wavelength is exaggerated for illustration purposes). (¢) Relationship between mean non-wetting saturation s
(2.13) and gravity current thickness &.

_ _MV(Pi_pigZ)’ i=n,w, 22

;=
i

where subscripts i = n, w indicate non-wetting and wetting phases, and S;, p;, u;, pi, Ii,

kyi(S;) are the saturations, pressures, Darcy velocities, densities, viscosities and relative

permeabilities of the two phases. We assume that the pore spaces are filled, such that

Sn + Sy = 1. Furthermore, due to capillary forces, the pressure difference between phases

satisfies

Pn — Pw = Pc(Sn), 2.3)

where p.(S,) is the capillary pressure. As is often done, we assume that both k,; and
pc depend on the saturation only for simplicity (though in general they may have more
complex dependencies). These are usually approximated with empirical parameterised
formulae, such as those proposed by Corey (1954), Brooks & Corey (1964) or Chierici
(1984). Here we use the Brooks—Corey and Corey relationships, which are given by

Pe =pe@(1 — )"V, (2.4)
krn = krnos®, (2.5)
922 A7-5
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where p,(z) is the pore entry pressure, s = S, /(1 — S,,0) is the reduced saturation of the
non-wetting phase, A represents the pore size distribution, &, is the end-point relative
permeability and o is a fitting parameter. The irreducible wetting saturation S, is the
amount of wetting phase that is permanently stored in the pores during drainage flows, and
consequently, the end-point relative permeability corresponds to k,,0 = kn(s = 1). In this
new formulation, the reduced saturation s conveniently varies between 0 and 1.

The pore entry pressure p.(z) is the minimum pressure difference required to allow
the non-wetting phase to enter the largest pore spaces at a given position. Likewise, as
the pressure difference between phases increases, the non-wetting phase is able to enter
smaller and smaller pore spaces. Hence, clearly the pore entry pressure depends on the
size and geometry of the pores (and, hence, varies vertically), and the same is true for the
permeability and porosity. However, whilst this dependence has been measured for specific
rock types, it is not fully understood in general. Hence, as is often done, we use power laws
to relate these different quantities, such that

¢ ok, (2.6)
pe kb, (2.7)

for some constants a, b > 0, which we take to be positive since large pore size corresponds
to large porosity, large permeability and small pore entry pressure. As discussed by Cloud
(1941) and Nelson (1994), we do not expect these constants to be the same for different
rock types. Therefore, we keep them in general form for this analysis. However, we
note a commonly used scaling proposed by Leverett (1941), p, ~ (¢/k)'/> which implies
b=1/2(1 — a).

Motivated by field observations of gravity currents (e.g. see Cowton et al. (2016), where
the aspect ratio of the gravity current at Sleipner was calculated to be less than ~1/1000)
and following Golding et al. (2011, 2013), we assume that the gravity current is long and
thin, such that the vertical velocity is much smaller than the horizontal velocity w; < u;.
In this case, the pressure within each phase is approximately hydrostatic,

8 .
P=pig, i=now, 28)
0z
and consequently, (2.8) is integrated to match the capillary pressure (2.3), giving
pe = —Apg(z—h) + po, (2.9)

where pg is the capillary pressure at the edge of the gravity current (z = h) and Ap =
Pw — pn- The saturation is calculated by combining (2.4) and (2.9), enforcing the physical
lower bound on s, such that

-1
5 = max 1—[”0 +Apg(h_Z)} ol (2.10)
De(2) Pe(2)

To determine the value of pg we consider that the edge of the gravity current is defined as
the boundary below which no saturation of non-wetting phase exists. Hence, from (2.9),
(2.10), it is sufficient to ensure that s = 0 for all z > & if we choose py = minp,(z). In
other words, by setting the capillary pressure at the edge of the gravity current as the
smallest required pressure difference to invade any pores in the aquifer, we guarantee that
anywhere below the edge of the gravity current (p. < pp) no saturation will be found.
Therefore, even though there may be disconnected regions of non-wetting phase within
0 <z < h(e.g. see figure 1c,d), there will never be such regions for z > h.
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The saturation distribution (2.10) represents a balance between capillary forces (due to
heterogeneities) and gravitational forces. However, this is only valid for situations where
capillary forces are large enough to drive the saturation into regions of larger pore space,
or equivalently, when the capillary number is small. Therefore, in general, the saturation
distribution must depend on the local capillary number N,, which is given as the ratio
between the horizontal flow-driving pressure gradient and the typical vertical gradient in
pore entry pressure (Benham et al. 2021). For the former, we use the pressure gradient of
the non-wetting phase dp,/dr, and for the latter we use Ap,/h, where Ap, = max p,(z) —
min p,(z) is the maximum difference in pore entry pressure across the aquifer (constant),
and the gravity current thickness % is used as the vertical length scale. Hence, the capillary
number is given by

h 9py

2.11
Ap, Or @10

c=‘

In the limit of very small capillary number N, < 1, also known as the capillary limit,
the saturation distribution (2.10) remains accurate. However, when the capillary number
is very large, also known as the viscous limit, capillary forces due to heterogeneities are
effectively negligible (i.e. we can ignore pore entry pressure variations p.(z) = po), and
the saturation distribution becomes

|
M} , (2.12)

Po

which is identical to the homogeneous case addressed by Golding et al. (2013).

For an intermediate capillary number (i.e. when the flow is neither in the viscous
limit nor the capillary limit), the saturation distribution lies in between (2.10) and (2.12),
and, therefore, the expression for the saturation must contain the capillary number itself
s = s(z, h, N¢). Typically, the dependence of the saturation on the capillary number is
logarithmic (Virnovsky, Friis & Lohne 2004; Benham et al. 2021), as with the upscaled
flow properties, and we will return to address this later in § 3.3.

In figure 1(c) we illustrate a radially symmetric gravity current in a heterogeneous
layered medium composed of sedimentary strata. We contrast this to the classic
homogeneous case in figure 1(a) (as studied by Golding et al. 2013), which is equivalent
to the upscaled viscous limit (V. > 1) for a heterogeneous medium. (We note that
although the upscaled description of the viscous limit is mathematically identical to
the homogeneous case, the model would still have to account for flow variations due to
permeability gradients through an effective permeability. The saturation would, however,
be identical to the homogeneous case.) For each case, we plot typical vertical saturation
profiles in figure 1(b,d). In the homogeneous case the saturation distribution satisfies a
balance between capillary and buoyancy forces, so that lighter regions (of high saturation)
are pushed towards the cap rock. In the heterogeneous case the same overall balance is
sustained, but within that balance capillary forces push the saturation into layers where the
pores are larger. Hence, significant oscillatory behaviour is observed within the vertical
saturation profile, including patches where the saturation drops to zero. This corresponds
with regions where the pore spaces are too small to allow any non-wetting phase (i.e. the
zero value is chosen in (2.10)). Hence, one interesting consequence of heterogeneities is
that they modify the mean saturation value in the gravity current. In figure 1(e) we plot the
mean saturation, defined as

s=1—|:l+

1 h
s(th) = Z/(; sdz, (2.13)
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whilst varying the gravity current thickness 4 for both the homogeneous and heterogeneous
cases. In both cases s is an increasing function of 4, but the heterogeneous case always has
a lower mean value. This is due to the substantial fraction of the gravity current with zero
saturation.

2.2. Upscaled model: governing equation and boundary conditions

Having discussed the flow scenario and laid down the key assumptions, now we outline the
upscaling procedure, deriving a single governing equation and accompanying boundary
conditions for the macroscopic description of the gravity current.

To do so, (2.8) is integrated to obtain the pressure, and then the conservation of mass
equation for the non-wetting phase (2.1) is integrated between z = 0 and z = A(r, ), such
that

o . up 0 r oh (!
— dz — —— — k(2)k dz| =0, 2.14
wat/O ¢ (2)sdz o |:k0km0 or Jo (Dkn(s) z} (2.14)

where ¢ = (1 — Sy0)¢o is the reduced porosity scaling, ¢o and ko are typical scalings for
the porosity and permeability (where <13 = ¢/¢o), and up = koknoApg/ ity 1s the buoyancy
velocity.

We note that the flow of the wetting phase is ignored in this analysis under the long-thin
approximation. Essentially, the flow of the non-wetting phase within the gravity current
decouples from the flow of the wetting phase, which is not present at leading order.
Nevertheless, multiphase effects are still manifest at leading order via the multiphase
properties, such as the relative permeability and capillary pressure. However, as we discuss
later in § 2.3, this assumption breaks down if the contrast in permeabilities of the layers
becomes very large. In particular, if there are regions of very low permeability, these will
act as a vertical obstruction to the flow. In such situations, as discussed by Pegler et al.
(2014), the flow must be treated as confined, where the displacement of the ambient fluid
and the viscosity contrast between phases alter the dynamics and, therefore, can no longer
be ignored. We give more details of this consideration in the next section.

We also note that (2.14) is already an upscaled description of the flow, since the
heterogeneities are only manifest within the integrals. Hence, (2.14) represents how the
heterogeneities affect the evolution of the gravity current in a spatially averaged sense.
Such an upscaling approach is desirable, since we wish to avoid having to resolve all the
heterogeneities, both to reduce computation time, and also because the low resolution of
field measurements means that such details are uncertain anyway.

It is convenient to write (2.14) in a more standard diffusion equation form to render
it amenable to conventional analysis. Therefore, by switching variables to the integrated
saturation S(h, N.), which is defined as

h
S=¢ f b(2)sdz, (2.15)
0

(2.14) may be rewritten as
oS 10 S
—— e 2.1
ot ror |:r.7:(5, Ne) Br] ’ (2.16)

where the flux is given by

up [ K(h, N.:) j| @2.17)

B kOkrnO Sh(ha Nc)
922 A7-8
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and the two functions K(h, N.) and Sy, (h, N.) are defined as

h
IC:/ k(2)kyy (s) dz, (2.18)
0

h
Sp = (p/ $(2)0s/dhdz = s (2.19)
0 dh

Further details of this coordinate transformation are presented in Appendix B. We note that
S has dimensions of length, and F has dimensions of length squared over time. Therefore,
(2.16) is just a standard diffusion equation for the total volume of the non-wetting phase
(per unit area), where the flux is a nonlinear function that represents how capillary forces
modify the flow. Hence, there is an interesting analogy between our scenario and a viscous
gravity current, where the flux function represents how viscous forces modify the flow
(e.g. plug flow, Poiseuille flow, etc...). As we will find out later, F is sometimes well
approximated by a power law of S, and the solutions to such equations are detailed by a
large, historical body of literature (see Huppert (1982) for example).

In general, (2.16) must be solved in tandem with the equation for the capillary number
(2.11). Therefore, writing (2.11) in terms of the integrated saturation S, we arrive at the
transcendental equation for the capillary number,

Apg h(S, N,) 0S
N, = —,
Ape Sn(h(S,N.), N¢) or

where / is written in terms of S under the assumption that (2.15) has a uniquely defined
inverse (which we later find to be the case).

For the remainder of this study (up until § 3.3), we restrict our attention to the two
limiting cases of small and large capillary number (capillary and viscous limits), where
the saturation is given by (2.10) or (2.12) and the flux is just given by F = F(S), thereby
decoupling (2.16) and (2.20). However, later in § 3.3 we address the case of an intermediate
capillary number, for which the equations must be solved in tandem.

The governing equation (2.16) must be accompanied by some initial and boundary
conditions to create a well-posed system. Firstly, we define the nose of the gravity current
at position r = ry(t), at which the thickness is zero, such that

(2.20)

Sly=ryw = 0. (2.21)
Secondly, we impose zero flux through the nose of the current,
oS
27 [r]-'—} =0. (2.22)
P dr=m )

Finally, following Golding et al. (2013), we impose global conservation of mass of the
non-wetting phase, such that

rn (D)
27:/ rSdr = 01, (2.23)
0
or equivalently, we impose the input flux at the origin,
S
P |:r}"—:| _o. (2.24)
or r=0

The finite flux value Q in (2.24) indicates that the gradient dS/9r must become infinite as
r — 0. Therefore, it is expected that the long-thin approximation made earlier may become
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Heterogeneity type Functional form Parameters
Kiow
Sedimentary strata k = low at ratio: Hyy/Hpign kiow /knigh» Hiow/Hpigh
high
1 — kiow/kni
Turbidites k=ko[l — (2A/m)tan" ! cot 2nmz)] A= 1= Kiow/Knigh
U+ kiow /knign
Spectrum k = exp (U[10g kioy. 10g knign]) Kiow/Knigh
Compacted k=ko(l+2) P =0

Table 1. Definitions of the different types of heterogeneity (characterised by the permeability), as displayed
in figure 2. Sedimentary strata take binary permeability values kjo, knign, With the width ratio of low/high
regions given by Hj,,/Hpign. Turbidites, the deposits of turbidity currents, consist of a periodic array of
layers with linearly varying permeability, where the wavenumber n is considered in the limit nh — oco. In
the spectrum case, permeability is a series of strata, where each layer has permeability taken from a uniform
random distribution, distributed logarithmically across range [Kjow, knign]. Likewise, the widths of the layers
are taken from a uniform random distribution on a linear scale. Compacted rock corresponds to a permeability
profile which decreases with depth under a power law g, starting with a finite value at z = 0.

invalid very close to injection. Furthermore, near the nose of the gravity current r = ry,
where the gravity current becomes thinner than the heterogeneity length scale, we do not
expect our upscaled approximation to be accurate.

2.3. Incorporating heterogeneity

To close the system, we must choose a type of vertical heterogeneity. Since we have used
power laws a, b to relate the porosity and pore entry pressure to the permeability, we
need only choose a functional form for k(z). Whilst in general this function may vary
in three dimensions (i.e. k(x)), here we restrict our attention to pure vertical variation
since, not only does this capture the leading-order behaviour for sedimentary layering, but
also because this is consistent with the long-thin approximation of a gravity current made
earlier.

To model the permeability, we have a variety of different physically motivated choices
which we list in table 1 and plot in figure 2. Firstly, sedimentary strata represent a periodic
deposition of two different types of sediments, such that the permeability alternates
between two values, ki, and kpign, in a periodic array of layers, where the width
ratio of each of these is given by Hj,y, /Hpign (see figure 2a—c). Unlike the sedimentary
strata, which are uniformly deposited in each layer, turbidites represent the deposition of
sediments from the continuous arrival of turbidity currents, such that within each layer
the permeability varies linearly. The sign of the linear slope indicates that layers become
more permeable as one descends deeper, since this corresponds to the early/late arrival
of large/small particles in a turbidity current. Thirdly, we consider a permeability profile
which is generated by randomly sampling from a distribution, or spectrum, of permeability
values, spread out logarithmically. This case is motivated by realistic measurements of
sedimentary strata which are often noisy and aperiodic. Finally, we consider a compacted
rock, where the permeability decreases with depth due to the buildup of lithostatic pressure
over time.

Although there are many other possible choices for the permeability, we restrict our
investigation to these four examples since they are canonical cases from which we may
learn about the fundamental effects of heterogeneities. Each case is parameterised, either
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Figure 2. Illustrations of the different types of heterogeneity we consider, where the heterogeneity is
characterised by variation of the permeability with depth. Plots (a—f) represent the deposition of sediments
through various geological mechanisms, whereas (g) represents compaction due to lithostatic pressure. In
(a—c) we illustrate the case of sedimentary strata with greyscale permeability maps for three different values of
the width ratio between low/high permeability regions (Hjey/Hpign). In the spectrum case (f) we display the
probability density function (p.d.f.) of the permeability which is randomly sampled from a uniform distribution
on a logarithmic scale.

by the ratio of the permeabilities and widths of the lowest—highest permeability regions
kiow/knigh> Hiow/Hpigh, or by the compaction power law B, which represents the strength
of the compaction effect.

It is important to note the possible limitations on these parameters. In particular,
sufficiently low permeability layers may cause a vertical obstruction, such that an
unconfined description of the gravity current is no longer applicable. To investigate the
limitations on the permeability ratio kjo/kpnign, we have performed a set of numerical
simulations of the two-dimensional miscible Darcy equations using the DarcyLite finite
element package in Matlab, adapted to account for gravity (Liu, Sadre-Marandi & Wang
2016; Harper et al. 2021). The miscible Darcy equations are equivalent to the immiscible
equations (2.1)—(2.2) in the limit where the relative permeabilities become independent of
the phases, k., k-, — 1, and the phase pressures equalise such that p. — 0. Studying
the miscible flow problem allows us to investigate the applicability of upscaling for
small values of the permeability ratio kj,y,/kpign (i.€. large permeability contrasts) without
accounting for the more complex effects of immiscible phase saturations. We do not
display the numerical results here, since a rigorous analysis of this query is outside the
scope of this paper, but we describe our findings in writing instead.

For very small values of the permeability ratio (e.g. kjow/knign = 0.001), there are
several important observations from these numerical simulations. At early times, due to
the effective obstruction from the low permeability layers, the injection is focused within
the nearest high permeability layers instead, and behaves approximately like a confined
flow in which the pressure has significant streamwise gradients (i.e. deviating away from
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the hydrostatic condition (2.8)). As a result, the shape of the gravity current is highly
distorted and loses its self-similar structure. At later times, once the gravity current has
invaded a sufficient number of vertical layers, it begins to assume self-similar dynamics
and the pressure becomes hydrostatic to good approximation. Therefore, there is no strict
lower bound on the permeability ratio ki, /kpign for an upscaling procedure, but rather
this becomes a question of temporal and spatial scales. In other words, for any non-zero
permeability ratio, given enough time and spatial extent, such an injection will eventually
resemble a self-similar gravity current and is therefore amenable to upscaling. However, to
avoid dealing with the prolonged transient effects that precede self-similarity in the case
of very small permeability ratios, for the remainder of this study, we restrict our attention
to klow/khigh > 0.01.

Continuing our upscaling analysis we note that, given a particular type of heterogeneity
k(z) and power laws a, b for the porosity and pore entry pressure, the integrals (2.15),
(2.18)—(2.19) must first be calculated before we can solve (2.16). For general values of a, b,
these integrals must be calculated numerically, using a trapezoidal integration rule for
example (see code in the supplemental material). In the layered cases, we wish to remove
the dependence of these integrals on the heterogeneity wavelength, since it is undesirable
to have upscaled properties like F that oscillate depending on the gravity current thickness.
Therefore, instead of resolving all of the details of the flow, we build a macroscopic
picture of the gravity current. This is similar to the approach of Boon & Benson (2021)
who calculated the bulk flow speeds for an upscaled Buckley—Leverett problem in layered
media, but contrasts the upscaling studies of Anderson, McLaughlin & Miller (2003) (for
a single-phase gravity current) and Jackson & Krevor (2020) (for a two-phase gravity
current), where some of the small-scale flow details due to heterogeneities are resolved.

In the case of sedimentary strata, since k (and, therefore, p, and ¢) takes either one of
two possible values, integrals can be simply decomposed into bulk fractions,

-dz + Hpign / -dz

Hlow/
/ 'dZ — kiow khigh i (225)
Hipw + Hhigh

thereby removing the need to resolve individual layers. A similar approach can be taken
in the case of the permeability spectrum, although in that case (2.25) is replaced by a
sum over the number permeability values sampled from the random distribution. (Note
that in the case of the permeability spectrum, we sample N pairs of values {k;, H;} (i =
1,...,N) from a random distribution of permeabilities and layer widths. Once sampled,
it does not matter how these values are arranged. Therefore, a bulk decomposition like
(2.25) is still possible.) However, in the case of the turbidites, to remove the dependence
on the wavenumber 7 (as defined in table 1), the integrals must be calculated with a fine
numerical scheme for a large but finite value of nh > 1.

The most salient features of this analysis are the integrated saturation S(h) and the
flux F(h), since F allows us to solve the diffusion equation (2.16), and S allows us
to calculate the gravity current thickness by way of inversion. These both depend on a
number of non-dimensional parameters. Ignoring the capillary number (since for now we
restrict our attention to N. < 1 or N, > 1) there are a total of eight non-dimensional
parameters which govern the problem. These consist of the heterogeneity parameters
kiow/knigh> Hiow/Hpign, B (if compaction present); the power laws relating porosity and
pore entry pressure to the permeability a, b; the Brooks—Corey parameters A, «; and finally
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the Bond number, which is defined as

0A 12
Bo= (=P8 (2.26)
kOkrnOP()

The Bond number, which can alternatively be written as Bo = ApgH/po, where H =
/Q/uyp, is the buoyancy length scale, is interpreted as the ratio between buoyancy forces
and capillary forces. We note that for situations in which the injection flux is switched
off (e.g. in post-injection scenarios), the Bond number must be redefined in terms of
the thickness of the current, which evolves according to a fixed volume constraint, as we
discuss in the conclusion.

The Bond number (2.26) largely controls the saturation distribution (2.10), (2.12), which
is evident upon dimensional analysis. For example, when Bo >> 1, the saturation, written
in dimensionless form, approximates to

s—l—[ 1 Bo(h/H—z/H)}_ANI
— Lpe@/po Pe(2)/po0 '

It should be noted that the above expression is not valid for extreme pore entry pressure
variations (p./po > 1), and in such cases the criterion for uniform saturation (s &~ 1)
must be replaced by Bo x po/p. > 1. However, all of the cases we consider in this study
have moderate power laws (2.7), resulting in first-order pore entry pressure variations
pe/po = O(1).

We note that some of the above parameters have already been studied by other authors.
For example, the power laws a, b were already addressed by Benham et al. (2021)
and the Brooks—Corey parameter A was studied by Golding et al. (2013). In particular,
variations in saturation are amplified by larger values of a (i.e. stronger pore entry
pressure heterogeneity p.(z)) or smaller values of A (i.e. wider distribution of pore space).
Meanwhile, larger values of b (i.e. stronger permeability heterogeneity k(z)) make the flux
more nonlinear via (2.18). Hence, the effects of heterogeneities are amplified with larger
values of a or b, and smaller values of A.

For the remainder of the current study, we focus on the heterogeneity parameters
kiow/knigh> Hiow/Hhpign, B and the Bond number as the key parameters of interest. We
use the homogeneous case kjoy/knigh = 1 as a proxy to study the viscous limit behaviour
N. > 1, since they are equivalent (see bracketed comment in § 2.1). We fix the remaining
parameters at typical valuesa = 1/7,b = 3/7, A = 3 and o = 4, which we have extracted
from a variety of different sources (Leverett 1941; Golding et al. 2011; Berg, Oedai & Ott
2013; Bickle et al. 2017). Up until § 4 we keep the same values for these parameters so that
we can focus on the effect of the heterogeneities instead, but we note that our approach is
by no means restricted to these values.

Nevertheless, continuing with these parameter values, we illustrate how the flux F
depends on the type of heterogeneity and the Bond number in figure 3(a—c). For each
of the layered cases, we use a permeability ratio value of kjoy,/kpign = 0.1, whereas in the
compacted case we use a power law of B = 1. In all cases (except the spectrum case) the
flux is well approximated by a power law F oc S for some value of 1 between 1/2 and 2.
In some cases, as we will show later in § 3.2, these power laws can be derived analytically.

Figure 11 in Appendix A displays the integrated saturation S, as well as the
velocity distribution u, o Apgk(z)k,(s)/u, within the gravity current. There are several
interesting observations to make. Firstly, no matter which type of heterogeneity nor
which Bond number we choose, the integrated saturation S(h) is always a monotonically
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Figure 3. (a—c) Variation of the flux F (2.17) of the integrated saturation S in (2.16) for different values of
the Bond number Bo. Both F and S are normalised by reference values (measured at twice the mid-range
value of the gravity current thickness, hpqr = h(rn(t)/2, t)) for illustration purposes. In each plot we indicate
power law values of 1/2, 1 and 2 with dotted lines for comparison. (d) Analogy between a two-phase gravity
current in a heterogeneous porous medium and a non-Newtonian viscous gravity current with viscosity power

law 1 oc (du/dz)*. The resultant flux power law is given by fé’ udz oc B2H1/0+9) g indicated with the blue
curve. Red dashed lines illustrate particular power law values of interest.

increasing function, such that the inversion 4 = S~1(S) is always well posed. Secondly,
we note that there is an interesting interpretation to the value of the flux power law 1,
by way of analogy to viscous gravity currents. In the governing diffusion equation for
a classic viscous gravity current, the flux power law relates to the velocity distribution
within that current. For example, the velocity distribution for Poiseuille flow, which varies
quadratically in the vertical coordinate, when integrated gives a cubic flux power law.
Likewise, a uniform plug flow, when integrated gives a linear flux power law.

In general, any viscous gravity current flux power law can be achieved by considering
a shear thinning/thickening power law viscosity p o (du/dz)*. Then, the lubrication

balance 9/dz[udu/dz] ~ dp/dx can be integrated to give a flux F = foh u dz which obeys

the power law F oc h2+H1/(+6) This is illustrated in figure 3(d), indicating specific cases
with dashed lines. For example, a shear thinning fluid with power law x = —5/3 will

produce a flux with power law F o< h'/2. Whilst our upscaling problem is very different
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Figure 4. Schematic illustration of our methodology, with stages going from left to right (a—e). We
start by parameterising the heterogeneity k(z), p.(z), ¢(z); then we use (2.10) to determine the saturation
distribution s(z, h); then we obtain the velocity distribution u, o Apgk(z)ky,(s)/wm, (velocities for high and
low permeability regions are illustrated in addition to the mean); then from this we calculate the integrals
comprising the flux F(h(S)) (2.17); then finally we use (2.16) to calculate the gravity current thickness 4 (via
S(h)).

from a non-Newtonian viscous gravity current, the analogy is nevertheless useful in
helping to relate the flux functions observed in figure 3(a—c), to the velocity distributions
within our gravity current (which are displayed in figure 11(b.d,f) in Appendix A).

Now that all the steps in our approach have been outlined, we summarise our
methodology for analysing the gravity current in figure 4. This illustrates the steps between
initially choosing a heterogeneity type and finally solving for the gravity current thickness
h. We have provided some example codes in the supplemental materials to demonstrate
these steps in the case of sedimentary strata, including how to numerically calculate the
flux functions.

2.4. Discussion of self-similarity and the numerical scheme

There is a final simplification that can be made owing to a coordinate invariance,
which allows calculation of the solution using a simple numerical scheme. In particular,
much like the classic single-phase axisymmetric gravity current discussed by Lyle et al.
(2005), the heterogeneous case is self-similar. (Note that the two-dimensional case is
not necessarily self-similar. The two-dimensional gravity current thickness scales like
h ~ t1/3, such that the flux function F(h) cannot be written in a general self-similar
form. However, this becomes possible in certain specific cases (e.g. a linear power law
F o h, as discussed by Huppert & Woods 1995).) Upon inspection, for constant flux, our
governing equation (2.16) (under the assumption of viscous N, >> 1 or capillary N, < 1
limits) admits the similarity variables

n = (*/Qup) r71/2, (2.28)
S = Hof(n), (2.29)

where the nose of the gravity current is located at n = ny for some constant ny which
we will determine shortly. To further simplify the equations, and to convert to a unit

interval domain, we write our system in terms of the variables y = n/ny and f (y) =f().
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In this way, the governing equation for the integrated saturation (2.16) and the boundary
conditions (2.21)—(2.23) become

[yﬁ (f’)f"]/ + ik =0, (2.30)
f()y=o, (2.31)
FFanf ) =0, (2.32)

|
v [ZR fo () dy} =1, (2.33)

where F = F ¢/upH. The system can be solved numerically using a simple finite
difference scheme, starting at y = 1 and marching back towards y = 0. To find the constant
nn, we start with an initial guess ny,, and then use Newton’s method to iteratively solve
the flux condition (2.33) (see the code in the supplemental material available at https://doi.
org/10.1017/jfm.2021.523).

We make the key observation that, independent of the form of F ( f), the gravity
current is self-similar, with a nose that moves like the square root of time. Hence,
the heterogeneities are only capable of modifying the prefactor ny for the nose speed,
not the power law (which is always r ~ t!/2). However, the heterogeneities may also
change the shape of the gravity current via F and S.

As discussed later in § 3.3, in the case where the capillary number is neither small nor
large, the flux must depend on the capillary number itself. In this case, since the capillary
number involves derivatives of S with respect to r, this modifies the form of the governing
equation (2.16), rendering such similarity variables inadmissible. Over time the solution
changes from a viscous limit regime (self-similar) to a capillary limit regime (self-similar),
but the transition itself, therefore, cannot be self-similar.

3. Results: viscous limit, capillary limit and transition

Our results comprise the following three different cases.

(1) The capillary number is large throughout the aquifer (viscous limit), in which case
the upscaled problem is equivalent to the homogeneous case.
(i1) The capillary number is small throughout the aquifer (capillary limit), in which case
the upscaled problem is dominated by the effect of the heterogeneities.
(iii)) The capillary number varies across the aquifer, such that different regions
simultaneously lie within the viscous limit and the capillary limit, and other regions
lie between these limits.

We start by addressing the former two cases (viscous and capillary limits), for which the
problem is self-similar. The homogeneous case is used to study the viscous limit (since
they are equivalent in an upscaled sense) and the heterogeneous cases are used to study
the capillary limit. The gravity current thickness must be calculated numerically by solving
the ordinary differential equation (ODE) system (2.30)—(2.33). In specific limiting cases,
such as when the Bond number is very large or very small, analytical progress can be
made. We first present our numerical results which we use to understand the broad effect
of the heterogeneities across large parameter regimes. Then, we use asymptotic analysis
to help interpret the results in certain limiting cases. Finally, we address the transition
between the viscous and capillary limits, for which the full partial differential equation
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Figure 5. Numerical results for the capillary limit in the case of sedimentary strata (a,c,e) and turbidites (.d, f)
(with kiow /knigh = 1/3, Hiow/Hpigh = 1). From top to bottom, capillary forces become less important with
respect to gravitational forces. The radius r is given in terms of the nose position ry(7), and the thickness
h is normalised by the reference value 2hyqr = 2h(rn()/2, t) for the sake of comparison. The heterogeneity
wavelength is exaggerated for illustration purposes. In each plot inserts illustrate the vertical saturation profile,
normalised by the uppermost value so = s(0).

(PDE) system (2.16), (2.21)—(2.23) must be solved in tandem with an algebraic equation
for the local capillary number (2.20).

3.1. Numerical solution in the viscous and capillary limits

The capillary limit numerical solution for different types of heterogeneity is plotted in
figures 5 and 6 for Bond number values between Bo = 1072 and Bo = 10°. Typical
saturation profiles are also displayed as inserts in each plot. To compare the different
profiles, we have normalised the thickness by twice its mid-range value hpqr =
h(rn(t)/2, t). The radial coordinate is normalised by the nose position ry(f) so that the
shape remains on a fixed domain for all time. For now, we do not include plots of the
viscous limit numerical solutions, since these are very similar to the study by Golding et al.
(2013). However, shortly we will use these as a reference when comparing the different
types of heterogeneities.

Let us first focus on the non-compacted cases in the capillary limit (figures 5 and 6a,c,e).
For a small Bond number Bo « 1, the saturation becomes near zero s & 0, but with spikes
of linearly increasing magnitude that represent the thin regions where the permeability is
near its maximum value k ~ kp;gn. As we increase the Bond number towards unity, the
saturation becomes larger, with an overall curved profile and significant oscillations. At
high Bond number, the saturation tends towards s & 1 everywhere except very close to z =
h, where it rapidly drops to s = 0. The shape of the gravity current changes from having
a sharp nose at high Bond number to having a rounded blunt nose at low Bond number.
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Figure 6. Numerical results for the capillary limit in the case of spectrum permeability (a.,c,e) (with mean
permeability ratio ki /knigh = 0.04) and compacted rock (b,d,f) (with compaction power law g = 1). In
each plot inserts illustrate the vertical saturation profile, normalised by the uppermost value so = s(0). The
heterogeneity wavelength is exaggerated for illustration purposes.

There is not a noticeable difference in the shape of the gravity current between the different
types of heterogeneity.

Apart from the shape and the saturation distribution, there are two other important
metrics which are useful for describing the current. Firstly, the prefactor ny relates to the
speed of the advancing nose, and secondly, the mid-range thickness hpqr = h(ry(1)/2, 1)
indicates the approximate size of the current. Following Golding et al. (2013), we use the
classic single-phase limit values as a useful reference. Using a subscript notation, these
are given by ny, = 1.155 and hpgqr, = 0.348H (Lyle er al. 2005). In figures 7(a—c), 8(a)
we plot these quantities for different values of the Bond number. In the limit Bo >> 1 all
cases converge to the single-phase limits, which is expected due to (2.27). Likewise, in
every case the flux converges to a linear power law, corresponding to a uniform velocity
profile, as can be seen in figures 3(c) and 11(f).

In the limit Bo < 1 the mid-range thickness hy,¢ behaves similarly for all
non-compacted cases, growing approximately like Apqr ~ Bo~'/2, as described by
Golding et al. (2013) for the homogeneous case. On the other hand, the prefactor
ny behaves rather differently. In all cases, we see an increase in ny for stronger
heterogeneities, indicating that capillary forces accelerate the gravity current. However,
each heterogeneity affects the prefactor ny differently, as can be seen in the different
shaped curves in figure 7. This reflects the complex nature of the velocity distributions
and flux functions depicted in figures 3 and 11. It is interesting to note that despite having
a permeability profile with the same mean value, the different variations within each layer
for each heterogeneity type are sufficient to alter the flux of saturation, and, hence, modify
the speed of propagation of the gravity current. This sheds light on both the need for
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Figure 7. Nose growth prefactor ny given in terms of the single-phase limit 7y, = 1.155 for all heterogeneity
types, parameterised by the permeability ratio kjoy, /kpign, the width ratio Hje, /Hpign, and the compaction power
law B. In the case of the permeability spectrum, we show the mean result alongside one standard deviation
above and below. Limiting behaviours are illustrated with dashed lines. Solid black curves correspond to the
homogeneous case, which is equivalent to the viscous limit, whereas all other curves correspond to the capillary
limit.

detailed bore hole measurements to infer as much information about the heterogeneities as
possible, as well as the usefulness of such an upscaling approach as we have taken here.

For each of the different types of strata, we compare the capillary limit curves against
the homogeneous case (solid black line), which is equivalent to the viscous limit. This
allows us to quantify the effect of the heterogeneities on the prefactor more clearly. The
strongest effect on the prefactor occurs when there are thin regions of high permeability
(Hjow/Hpigh = 10) in which the non-wetting saturation concentrates. This focusing of the
saturation feeds into the nonlinearity of the relative permeability, thereby amplifying the
effect on the flux function . By contrast, thin regions of low permeability (Hjo./Hpigh =
0.1) produce results which are very close to the homogeneous case, so we do not display
them here.

In the case of the permeability spectrum, we choose a permeability distribution whose
standard deviation divided by the mean is o (k)/ko = 1, and whose mean permeability
ratio (between lowest and highest values) is . (kjoy /knign) = 0.04. The standard deviation
is chosen to represent moderately heterogeneous media, as opposed to extremely
heterogeneous media (o (k)/ko > 1), according to the criteria laid out by Corbett &
Jensen (1992) and Martinius et al. (1999). Likewise, the permeability ratio between layers
kiow/knign is consistent with moderate to extreme permeability variations, and indeed
similar (e.g. two orders of magnitude) variations have been observed in Salt Creek, USA
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(Bickle et al. 2017), Goldeneye field, North Sea (Jackson & Krevor 2020) and in the Tilje
formation in Norway (Martinius et al. 1999).

We calculate the prefactor ny for 50 different realisations of this distribution and plot
the results in figure 7(c). For each Bond number, we display the mean value, as well as
one standard deviation on either side i (ny) &= o (ny). The mean result is reminiscent of
the previous sedimentary strata cases. However, it is interesting to note that the standard
deviation is largest for a low-medium Bond number and shrinks as the Bond number gets
larger. Hence, predictions are particularly prone to uncertainty if the Bond number is less
than order unity. For CO; sequestration applications, this indicates that particular attention
towards measurements of heterogeneities should be paid for injection sites with low flow
rates (see discussion at the end of this section).

Next, we move on to describe the compacted case in the capillary limit (figure 6b.d, f).
The presence of compaction is most noticeable in the small Bond number cases. By
comparing figures 6(b) and 6(a), we see that compaction significantly increases the
saturation within the gravity current, which is due to the permeability gradient forcing
the non-wetting phase upwards. This is accompanied by an increase in the prefactor ny
and a decrease in Ay, as seen in figures 7(d) and 8(b). This is expected since, if a larger
saturation is maintained, mass conservation indicates that the gravity current must be
thinner. By varying the compaction power law § from O to 1, we illustrate a fairly uniform
transition of the values of ny and hjqr between those of a uniform rock and those of a
strongly compacted rock.

For Bo > 1, the saturation becomes near uniform s~ 1, as before, and this is
accompanied by both ny and A converging to their single-phase limits. Hence, at such
large Bond numbers the effect of compaction on the saturation distribution and gravity
current shape is not particularly noticeable. This is expected, since compaction forces the
saturation upwards, just like gravity.

For applications to CO; storage, it is useful to infer from the above results how much
we can expect heterogeneities to affect the speed of propagation of a gravity current. Such
information allows one to make efficiency predictions for CO; storage that help pinpoint
the best sites for injection, as well as safety predictions that ensure the CO, does not
spread beyond the desired perimeter. Using the homogeneous case, Koy /knigh = 1 (Which
is equivalent to the viscous limit), as the base case, we define the efficiency parameter v
as the relative difference we can expect heterogeneities to make on the prefactor 1y, such
that

(B0, k(2)) = [NNper/ MNpom — 1] % 100 %. (3.1)

Clearly v depends on a number of parameters, but here we focus on the different types
of heterogeneity k(z) and the Bond number. Restricting our attention to the layered
cases (ignoring compaction), we plot the heterogeneity efficiency v in figure 9 for
different values of the Bond number. The largest heterogeneity efficiency is observed for
the sedimentary strata with thin bands of high permeability (Hjoy/Hpign = 10). As we
mentioned earlier, this can be explained by a nonlinear focusing of the saturation into
these high-speed bands. The most we can expect heterogeneities to accelerate the gravity
current at high Bond number is around v = 10-50 %, whereas at low Bond number the
speedup can be as much as v = 100-200 %. In the case of the permeability spectrum
we also illustrate the standard deviation of the predictions, indicating that the results are
particularly sensitive to uncertainty at low Bond number.

It is interesting to note that whilst fluid is injected at constant flow rate O, the Bond
number is held constant, but if the flow were to stop suddenly this would no longer be
the case. In such situations, the buoyancy length scale H = /Q/up, which was previously
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Figure 8. Mid-range thickness of the gravity current hjq = h(ny/2), given in terms of the single-phase

limit A4, = 0.348H for the non-compacted cases (a) and the compacted case (b). Limiting behaviours are
illustrated with dashed lines.
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Figure 9. Heterogeneity efficiency v (3.1), describing the relative increase in prefactor value ny due to
heterogeneities, given as a ratio of the prefactor value for the homogeneous case. Here we focus on the layered
cases (S.S. stands for sedimentary strata), ignoring compaction. In the case of the permeability spectrum we
plot the mean value as well as one standard deviation on either side. The permeability ratio for all cases
is Kiow/knigh = 0.04. An arrow illustrates how the Bond number may decrease over time in post-injection
scenarios (as the plume thins out).

used to define the Bond number, would be rendered meaningless. Instead, the appropriate
length scale for the flow would be the gravity current thickness itself 4 which, after the
cessation of Q, would gradually decrease towards zero (see discussion in the conclusion).
Hence, the Bond number of the flow would decrease accordingly, as illustrated in figure 9,
causing the effect of the heterogeneities to be increasingly amplified with time.

This is particularly relevant for CO, storage applications, where the injection of gas
is switched off once the aquifer is deemed to have reached maximum safe capacity.
Hence, in such situations, it is clear that modelling heterogeneities is essential for
understanding the post-injection spread of the CO,. However, it is important to note
that such situations involve imbibition flows, as opposed to drainage flows, as we have
studied here (Woods 2015). Imbibition flows typically have different capillary pressure
and relative permeability curves than drainage flows, though the approach studied here is
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still applicable. Furthermore, we note that even in such situations the leading edge of the
plume is still a drainage flow.

It is also useful to note here the typical ranges of Bond numbers for different carbon
sequestration sites. To do so, we take upper and lower bound estimates for the gravity
current thickness scale H = 1-10 m, the density difference Ap = 232440 kg m~—> and
the pore entry pressure pg = 1.3-493.6 kPa (Bennion & Bachu 2006; Golding et al.
2011; Cowton et al. 2016; Williams & Chadwick 2017). Hence, the Bond number Bo =
ApgH /po is in the range 0.005 < Bo < 35. This indicates that the effects we observe at
low Bond number are relevant for many carbon sequestration sites, indicating the need for
careful upscaled modelling and detailed heterogeneity measurements. In the next section
we show that several useful analytical results can be derived in the limit of large and small
parameter values using asymptotic analysis.

3.2. Limiting cases and analytical solutions

Some simplifications can be made in the limits of strong and weak capillary forces (i.e.
small and large Bond numbers). Here we address these and derive analytical solutions
which we use to explain some of our earlier numerical results. We split the analysis into
situations without compaction 8 = 0 and with compaction g > 0. As in the previous
section, here we restrict our attention to viscous limit and capillary limit behaviour only.

3.2.1. Weak capillary forces without compaction

We already showed earlier that in the limit of a large Bond number the saturation
distribution (2.27) is approximately uniform s ~ 1. Inserting this into the integrals (2.15),
(2.18), we see that

S ~ ¢h, 3.2)
K~ kOkrn()h, (33)

which allows us to calculate the dimensionless flux

A

F=Ff (3.4)

This linear power law matches with our numerical observations in figure 3(c). Comparing
(3.2), (3.4) with the study by Lyle et al. (2005), we see that the limit of a large Bond
number is identical to the classic single-phase limit. This is of course expected, since in
the limit of weak capillary forces the flow of phases decouples, such that a single-phase
model becomes appropriate. This explains the convergence behaviour for both ny and /4
for Bo > 1, as we illustrate with dashed lines in figures 7 and 8.

3.2.2. Strong capillary forces without compaction

To address the limit of strong capillary forces, we first consider the homogeneous case
kiow/knigh = 1 (equivalent to the viscous limit) since this makes the analysis for the
subsequent heterogeneous cases easier. Hence, in the limit of small Bo < 1 in the
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homogeneous case, the saturation distribution (2.12) approximates to a linear function

(h—z)

~ AB . 3.5
s 0 H (3.5)

Inserting this into the integrals (2.15), (2.18) we get

pABo ,
S~ h=, 3.6
H (3.6)
kokrmoHA*Bo® [ h\*"!

K~ DOEmOHA B0 (1 ’ (3.7)

o+ 1 H

from which we calculate the dimensionless flux

P [2“/2(430)“/“ } jar2,

a1 69

In this case, the flux has an «/2 power law, which matches with our numerical calculations
in figure 3(a) (for which & = 4). The gravity current thickness is given by inverting (3.6),
such that
R 1/2
h=H <2f//lBo> . (3.9)

Clearly, the thickness grows like 4 ~ Bo~!/? as Bo — 0, which we illustrate in figure 8
with dashed lines. Our numerical results show good agreement, indicating their robustness.
We also note that the square root in (3.9) explains why we see a blunting of the gravity
current nose at low Bond numbers in figures 5 and 6.

If we now consider a finite heterogeneity ko /knigh < 1, then in the case of sedimentary
strata, the saturation distribution takes one of two possible values,

k= klow,

0:
~ 3.10
s {ABo(h —2)/H: k= kpigh. (310

Since the low/high permeability layers are distributed according to the ratio Hjoyy/Hpigh,
the integrals (2.15), (2.18) approximate to

S~ ( Hiigh ) (kh"g”>a vaBo,» 3.11)
Hypigh + Hiow ko 2H
!
K ~ ( Hiigh ) knighkrmoHA* Bo® ( h )0‘+ ‘ 3.12)
Hhigh + Hiow a+1 H

Hence, the dimensionless flux is

P ( Hiigh )“/2 (khigh)”“*“/” 2PAB T e a3
Hhigh + Hiow ko a—+1 ' ’

Like the homogeneous case, the heterogeneous flux has an «/2 power law, which also
matches with our numerical calculations for sedimentary strata in figure 3(a) (for which
o =4). We note that in the above analysis, the saturation approximation (3.10), and
consequently the flux (3.13), are only valid for heterogeneities which have a small
enough permeability ratio that (1 — ki /knign) /(1 + kiow/knign) > Bo. However, for this
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study, we restrict our attention to significantly heterogeneous media (rather than weakly
heterogeneous).

We also note that in both the homogeneous case and the heterogeneous case, the
coefficients in (3.8), (3.13) depend on the Bond number itself. Therefore, we do not expect
a constant value asymptote for the prefactor ny in the limit Bo — 0 (except in the specific
case o = 2), which is consistent with our numerical observations in figure 7.

In the case of the permeability spectrum, a similar analysis is possible since
the only contribution to the integrals will come from the regions with the largest
permeability value k = ky;g;,. However, since there are potentially many more than just two
permeability values in the spectrum, one needs to replace the factor Hpig /(Hpigh + Hiow)
in (3.11)—(3.13) with the fraction of the aquifer occupied by such high permeability layers,
which we denote Hpjgn/Hyorar- In the case of the turbidites, a similar analysis to the above
is much more difficult, since we cannot approximate the saturation distribution as simply
as (3.10).

It is important to briefly discuss the case where there is no gravity. For example, a
previous study (Benham er al. 2021) addressed the effects of heterogeneities on fluid
displacement in a long-thin confined aquifer (also known as a Buckley—Leverett flow),
for which gravity is negligible. However, it is not possible to make a direct analogy here,
since the flow of the ambient phase is neglected in the present study (because the current
is unconfined). Indeed, our model formulation does not permit a complete removal of
the gravitational force, since we have neglected pressure gradients due to injection which
would otherwise drive the flow. Nevertheless, the expressions (3.8) and (3.13) represent the
limiting behaviour as gravity becomes vanishingly small compared with capillary forces.
Hence, to isolate the individual effects of gravity and capillary forces, it is sufficient to
compare (3.4) to (3.8) and (3.13) (and, more usefully, the resulting prefactors ny which
determine plume migration speeds).

3.2.3. Weak capillary forces with compaction

In the case where the rock is compacted, the saturation (2.27) must be approximately
uniform s & 1 in the limit of a large Bond number, as before. Inserting this into the
integrals (2.15), (2.18), we see that

(14 h/H)'= -1
1—ap

(A +n/H)'P -1

1-8 ’

Note that if either 8 or af equals unity, we get analytical expressions with logarithms
instead of (3.14), (3.15). Assuming that g #1, aB #1, we then calculate the
dimensionless flux, which we write in terms of 4 for now,

S~ gH , (3.14)

K~ kokmoH (3.15)

(1 + h/H)Pe=D+ _ (1 4 h/H)P

1-p ’
Clearly the flux (3.16) is not a linear function of & (3.14) as in the homogeneous case.
However, we note that for weak porosity—permeability power laws a < 1 (e.g. a = 0.14 for
the Salt Creek case study, Bickle er al. 2017) the integrated saturation (3.14) approximates

to a linear function S = @h, as we observe in our numerical calculations in figure 11(e).
Furthermore, in situations where the compaction law is weak 8 < 1, or alternatively
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where the gravity current thickness is small #/H < 1, the flux (3.16) reduces to F~h /H,
thereby recovering the single-phase limit (3.4). This is in accordance with our numerical
observations in figure 3(c).

However, we note that by choosing sufficiently strong compaction/porosity power laws
a, B, the single-phase limit is no longer recovered in the limit of a large Bond number.
Physically speaking, this is because even with weak capillary forces, if the medium
is sufficiently compacted the velocity distribution within the gravity current becomes
dominated by the permeability variation, which upon integration creates a flux power law
that is not equal to one.

3.2.4. Strong capillary forces with compaction

To address the compacted case at small Bond number, we first consider the form of the
saturation (2.10). In particular, we note that since k is monotone decreasing with depth, the
saturation s is also monotone decreasing. In particular, we can calculate that s will intercept
zero at some depth z* which satisfies Apg(h — z*) + po = pe(z*), and will remain zero for
all larger depths than this z > z*. Therefore, without loss of generality, we take py = p.(h),
such that there are no regions of zero saturation within the gravity current. In this way, for
a small Bond number, (2.10) approximates to a finite expression which is independent of

Bo,
| ABb
s:el—(li;) . (3.17)

This explains why the properties of the gravity current (e.g. 1y, hpaf) asymptote to
constant values for Bo — 0 in figures 7(d) and 8(b). For general power laws a, b, 4, «, 3,
inserting (3.17) into the integrals (2.15), (2.18) leads to very complicated analytical
expressions, which we do not display here. As we can see in figure 3(a), the flux for this
case does not obey a fixed power law, but the exponent varies roughly between 1 and 2.

The power law of the flux function can be roughly interpreted as the amount of distortion
that heterogeneities cause on the velocity within the gravity current (e.g. via the relative
permeability and capillary pressure). Hence, a power law which varies between 1 and 2 as
the saturation varies can be interpreted as follows. In the thin part of the gravity current
(small §) compaction distorts the flow more (power law closer to 2), whereas in the thick
part (large S) it distorts the flow less (power law closer to 1). This can be explained by the
fact that the compaction profile k(z) (see table 1 or figure 2g) has the largest gradient near
z=0.

3.3. Viscous-capillary transition

Up until now we have only discussed situations where the capillary number (2.20) is
either very large (viscous limit), in which capillary forces due to heterogeneities can be
ignored (i.e. effectively the homogeneous case), or very small (capillary limit), in which
the heterogeneities play a dominant role on the flow behaviour (i.e. the heterogeneous cases
studied above). However, in general, the capillary number may vary between small and
large values throughout the aquifer. In this case, neither the viscous nor the capillary limit
can be applied to the flux function in (2.16), and instead the flux must depend on the local
capillary number, which is effectively a measure of the local pressure gradients within the
gravity current. In this section we discuss how to model this using numerical simulations
of the full PDE (2.16) coupled to the transcendental equation (2.20), thereby determining
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which regions of the gravity current are within the viscous and capillary limits, and which
regions lie in between these limits.

Following the same approach as Benham et al. (2021), we formulate composite
functions for the upscaled properties of the flow, which capture both the viscous and
capillary limit regimes, as well as the transition between these limits. The two upscaled
quantities of interest are the integrated saturation S and the flux F. For each of these
upscaled quantities {S, F}, the transition behaviour is given in terms of the mean
saturation (2.13) and capillary number (2.20) by the formula

log N. — log N,

1 , i}
{S’ F}trans = E [{S(S)s f(S)}, tanh ( 10g 3

) +1{S5@), .7-'(5)}+:| ,  (3.18)
where {S, Fli ={S, Fluisc £{S, Fleqp is given in terms of the viscous limit
(homogeneous) and capillary limit (heterogeneous) upscaled properties derived earlier,
and N,, A, are two fitting parameters which represent the transition capillary number
and folding scale, respectively. The precise values of these fitting parameters depend on
numerous factors, including the type of heterogeneity and the specific power laws used, but
here we use the same values as calculated by Benham et al. (2021), which are N, = 394,
A =35.5, and these were shown to give good comparison with numerical simulations
across a large range of capillary numbers with a mean relative error of ~1 %.

By accounting for the dependence of the upscaled flux on the capillary number, the
system loses its self-similarity. In mathematical terms, this can be seen by noticing that
the capillary number (2.20) in the governing equation (2.16) contains derivatives of S with
respect to r, compromising the self-similar structure of the equations. Therefore, since we
are no longer able to convert to a single governing similarity ODE, we must instead solve
the full PDE (2.16) numerically, in conjunction with the algebraic equation for the capillary
number (2.20). Written in dimensionless terms, we observe that the capillary number is
related to the Bond number according to

_ Bopo WS,N)/H 9S8

N, —.
Ape |Sn(h(S, Ne), Ne) or

(3.19)

For the sake of the calculations in this section, we use a mid-range value of Bo = 1 for the
Bond number, since this represents an even balance between capillary and gravity forces.

In figure 10 we display the numerical solution in the case of sedimentary strata
(kiow/knigh = 1/3, Hijow/Hpigh = 1), plotted at three different times after injection,
illustrating the evolution of the gravity current, as well as the spatial variation in the
local capillary number (3.19). At all times the gravity current has a region which is in
the capillary limit, a region which is in the viscous limit and a region which is in a
transition regime. At early times most of the gravity current lies within either the viscous
limit or a transition regime, whereas the very tip of the nose lies in the capillary limit.
Indeed, the nose of the gravity current lies in the capillary limit for all times, since the
flux vanishes there (since N, ~ hdp,,/or ~ hoh/dr — 0 as r — ry(t) due to (2.22)). At
later times a substantial portion of the gravity current lies within the transition regime,
with the near-origin and near-nose regions remaining in the viscous and capillary limits,
respectively. The position of the nose of the gravity current ry(¢) is plotted on a logarithmic
scale in figure 10(g), also indicating the viscous and capillary limit curves.

We make several observations. Firstly, we note the dynamic transition between
viscous-like behaviour at early times and capillary-like behaviour at late times. This is
evident from figure 10(g), where we see that the nose position initially grows like ~ ¢!/2
with a prefactor corresponding to the viscous limit, and later grows like ~r!/? with a
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Figure 10. Numerical solution of the evolution of the gravity current (2.16), accounting for transition
behaviour between viscous and capillary limits using composite expressions (3.18) for the upscaled flow
properties, where the capillary number is given implicitly by (3.19) (with Bo = 1). The gravity current shape,
shaded to illustrate the saturation distribution (using the same colour scale as in figures 5 and 6), is illustrated
in (a—c), whereas the local capillary number N, is illustrated in (d—f). For all plots, we shade regions with
capillary number one folding scale larger than the transition value N. > N., x A = 2167 in green, and regions
with one folding scale smaller N, < N, x A~! =72 in blue. The transition capillary number N, is illustrated
with a dashed red line within a white region, indicating a transition regime. The evolution of the gravity current
nose position ry(#) is shown on a log-log plot in (g).

capillary limit prefactor. There is a transition period at intermediate times where the
behaviour does not obey a power law (as observed by Benham et al. (2021) in the absence
of gravity). This can be explained by the fact that, as the gravity current spreads out
radially, the capillary number reduces everywhere except near the origin (where N, — 00).
In this way, the composite expressions (3.18) in the majority of the gravity current switch
between viscous limit behaviour to capillary limit behaviour over time. Secondly, we note
that since the viscous-capillary transition point (N. = N,) tends to a constant position
(r/H =~ 0.2) over time, if we continue the simulation indefinitely, the fraction of the gravity
current in the capillary limit tends towards unity, indicating that at late times (fup/H > 1)
a capillary limit model is a good approximation for the whole aquifer.

4. Discussion of applications to CO; sequestration

In this section we discuss the implications of the upscaled description of gravity currents
in the context of CO; sequestration. There are many different sites that we could choose
as case studies, but probably the one with the most available data is at the Sleipner project
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in the North Sea (Bickle et al. 2007). In particular, we focus on the top layer, which has
been investigated by numerous authors (Chadwick, Noy & Holloway 2009; Williams &
Chadwick 2017). Whilst various attempts have been made to model the CO, migration at
Sleipner, and comparisons have been made with seismic measurements of the extent of the
plume (Bickle et al. 2007; Golding et al. 2013; Cowton et al. 2016, 2018), these attempts
have often fitted certain parameters (e.g. the permeability) to match observations, without
accounting for the possible effect of heterogeneities. Therefore, here we use our previous
upscaling procedure to perform this analysis, calculating the effect that different types of
heterogeneities could have had on plume migration speeds. Since little is known about
the geological heterogeneities at Sleipner, we investigate all the different types of layering
we studied earlier, and we account for how uncertainty in such layering may propagate to
uncertainty in the modelling predictions.

As described earlier in §2.3, there are eight non-dimensional parameters in our
model (excluding the capillary number). Of these parameters, five relate to the type of
heterogeneities, about which little is known for Sleipner. Therefore, instead we take the
following values from other similar studies: the porosity—permeability power law used
by Bickle et al. (2017) a = 1/7; the pore entry pressure power law taken from the scaling
proposed by Leverett (1941) b = 3/7; the permeability ratio taken from Bickle ez al. (2017)
kiow/knigh = 0.01, no compaction 8 = 0, and we vary the layer ratio Hj,,,/Hpign between
1 and 10. Since it is unknown whether sedimentary strata, turbidites or a permeability
spectrum is most appropriate, we investigate all of these different heterogeneity types.

There are two parameters relating to the multiphase flow properties A and «, which
define the capillary pressure and relative permeability. We note that not all relative
permeability curves are parameterised as simply as (2.5). For example, other more
nonlinear functional forms have been proposed by Chierici (1984). However, we note that
Chadwick et al. (2009), Williams & Chadwick (2017) use the Brooks—Corey formulation
to model Sleipner, which is given by

ko = Kynos> [1 - s)2] . (4.1)

We could change our formulation to account for this modified parameterisation, but instead
we notice that (4.1) can be approximated by (2.5) with mean relative error 3 % using
a power law value of o = 2.32. Therefore, we stick with our original formulation (2.5)
for the sake of consistency, without sacrificing much accuracy. Meanwhile, the pore size
distribution is estimated by Chadwick et al. (2009) as 4 = 2/3.

The final parameter we need to describe the problem is the Bond number, which
is defined by (2.26) in terms of six other physical parameters (excluding gravity, g =
9.81 m s~2). For the top layer at Sleipner, Williams & Chadwick (2017) estimate the
temperature between 28-31 °C and pressure between 8.2—-8.9 MPa, which gives a density
difference of Ap = 232-309 kg m~—3. Meanwhile, the viscosity of CO is taken as p, =

54.7-65.5 x 107% Pa s. The input flux is best estimated by Cowton ef al. (2016), which
for the first few years of injection is Q = 1.5-3 x 107> m? s~!. The mean permeability
is estimated by Bickle e al. (2007) as ko = 1.1-5 x 1012 m?. Finally, the pore entry
pressure and end-point relative permeability are given by Williams & Chadwick (2017) as
po = 1.3 kPa and k,,,0 = 0.28. Putting these all together, we estimate the Bond number as
Bo = 8.9-35.5. Hence, Sleipner, being a very permeable reservoir, lies towards the upper
end of the range of Bond numbers for carbon sequestration applications (see discussion at
the end of § 3.1). Consequently, heterogeneities in other sites are likely to accelerate plume
migration by an even larger factor than we calculate here.
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Now that we have determined all the parameter values (up to a given uncertainty),
we follow the procedure outlined earlier to calculate the prefactor ny for the gravity
current using the various different heterogeneity types. In this way, we can measure
the heterogeneity efficiency v (3.1), which tells us how much we can expect the
heterogeneities to modify the speed of propagation. In the low/high Bond number estimate
Bo = 8.9/35.5, we find that v =36 %/31 % for equally distributed sedimentary strata
(Hiow/Hpigh = 1), v = 147%/108 % for sedimentary strata with thin streaks of high
permeability (Hjoy/Hpigh = 10), v = 11%/6 % for turbidites, and v =23 £+ 11 %/9 &+
8 % for a permeability spectrum. In the latter case, we include the standard deviation
values to indicate how these predictions vary due to the uncertainty of the heterogeneity
measurements. Indeed, the large degree of uncertainty in these predictions not only
illustrates the need for more detailed bore hole measurements at Sleipner, but also
demonstrates the importance of accounting for such uncertainty in any modelling
approach.

We note that the permeability ratio in the Sleipner field may not be as small as the value
we have taken from Salt Creek, Koy /knigh = 0.01 (Bickle et al. 2017). Therefore, we also
perform the same analysis as above using a permeability ratio ten times larger. We find
that the efficiencies v calculated for kjoy,/kpign = 0.1 are between 1/5 and 3/5 of their
values for kjoy,/kpign = 0.01. This indicates that, even if we have vastly overestimated the
permeability ratio, the effect of heterogeneities is still likely to be significant.

From this analysis, it is clear that the possible effect that heterogeneities may have had
on the injection of CO, at Sleipner largely depends on the type of heterogeneities present.
In particular, thin sedimentary strata with very high permeability could have caused a
potential speedup of more than 100 %. However, for more moderate permeability profiles,
such as evenly distributed strata or turbidites, these heterogeneities may have only caused
a 10-30 % speedup.

5. Concluding remarks

We have studied the upscaled effect of several different types of heterogeneity on the
evolution of an axisymmetric gravity current under an impermeable cap rock. The four
heterogeneity types considered, which were all given in terms of vertical variations
in the rock properties, were each motivated by different physical mechanisms for the
non-uniform deposition or compaction of sediments. We developed a general method for
calculating the gravity current shape and growth rate in either the viscous or capillary
limits, which involves solving a single similarity equation that depends on an upscaled
flux term evaluated either via numerical integration, or using analytical expressions
which we derived in certain limiting cases. This simplified approach not only greatly
reduces computation time, but also provides key insights into the role of small-scale
heterogeneities on the propagation of the large-scale flow.

In particular, we showed that heterogeneities have the ability to significantly accelerate
plume migration due to the effects of relative permeability and capillary pressure. Indeed,
the observed speedup is a consequence of the combined effect of both of these multiphase
properties, with capillary pressure acting to focus the saturation into high permeability
layers according to (2.10), and relative permeability acting to enhance the flow of saturation
within these layers. The degree of speedup depends on the type of heterogeneity, and
most importantly, the fraction of high/low permeability regions within the medium. The
largest effect (e.g. 200 % faster) was seen in the case of sedimentary strata with thin
regions of high permeability. Using a permeability profile composed of randomly sampled
layers, we demonstrated how uncertainty in heterogeneity measurements can propagate
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to uncertainty in field predictions, an effect which is particularly pronounced for small
values of the Bond number. We also investigated modelling the transition from the viscous
limit regime to the capillary limit regime, shedding light into which regions of the gravity
current are most affected by heterogeneities, and when.

The main motivation for this study was to create an upscaled description of how
small-scale heterogeneities affect large-scale CO, migration, for safe and efficient
sequestration in porous aquifers. To assess the risks associated with any CO, storage
scheme, examining the effect of heterogeneities is essential. To illustrate this, we used
the case study of CO; injection at the Sleipner project in the North Sea. In this case,
for realistic parameter values, we demonstrated that heterogeneities may have sped up the
gravity current by more than 100 % during injection. However, we also illustrated that
this figure depends greatly on the heterogeneity type, indicating the need for detailed core
measurements from bore holes.

For future work, variations in the heterogeneities along the length of the aquifer could
be studied (in addition to the vertical heterogeneities investigated here), similarly to
Jackson & Krevor (2020). In such cases, the upscaled flow properties would depend
on both the horizontal and vertical correlation length scales of the heterogeneities. In
addition, using the upscaled results presented here, predictions of trapping efficiencies
could be calculated for various sequestration sites. This could shed light onto which
aquifers have heterogeneities that could potentially enhance their capability for CO;
storage. Furthermore, as we discussed earlier, it would be interesting to investigate the
evolution of the gravity current after injection has stopped (see figure 9). To address this,
one could consider the dynamics of a fixed volume of fluid V spreading under gravity,
for which the thickness scales approximately like & ~ (V /upt)'/?. Hence, as t — oo, the

Bond number scales like Bo ~ Apg/po(V /upt)!/?> — 0, and so we recover the small Bo
limit post injection. However, to model this fully both imbibition and drainage relative
permeability/capillary pressure curves must be considered, depending on whether the CO;
is invading or being withdrawn from different regions of the aquifer, similarly to Golding,
Huppert & Neufeld (2017).

It would also be interesting to compare our predictions of the plume shape (e.g. figures 5
and 6) and velocity distribution (e.g. figure 110,d, ) with either field or laboratory data.
Such comparisons could be made possible with detailed measurements of subsurface
geological heterogeneities in conjunction with tracer sampling (similar to Bickle et al.
2017), or with X-ray computerised tomography scans of injection into layered samples
(similar to Jackson et al. 2018).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.523,
which includes some code to numerically evaluate the flux integrals and calculate the similarity solution. This
code can also be found on the personal website of G.P. Benham: https://yakari.polytechnique.fr/people/benham/
gravity_current/upscale.m.
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Figure 11. (a,c,e) Variation of the integrated saturation S (2.15) for different values of the Bond number
Bo and different types of heterogeneity. Both S and / are normalised by reference values (at i1 = 2/hyqr)
for illustration purposes. In each plot we indicate power law values of 1/2, 1, 2 and 3 with dotted lines for
comparison. (b,d,f) Corresponding scaled velocity profiles 1 — U = (u,(0) — u,(z))/(4,(0) — u,(h)), where
Uy X Apgk(z)krn(s)/n. We plot the ensemble average of the velocity, rather than the velocity within each
layer, so as not to display oscillatory behaviour between layers.

Appendix A. Extra plots

In this appendix we present extra plots in figure 11 for the integrated saturation S (2.15)
and the Darcy velocity of the non-wetting phase u, x Apgk(2)k,(s)/u, at different Bond
numbers and for different types of heterogeneity.

The relationship between the integrated saturation S and the gravity thickness #, as
shown in figure 11(a,c,e), is useful for understanding how to invert the solution of the
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governing equation (2.16). In all cases S has approximate power law dependence on £,
where the power is between linear and cubic, as illustrated with dotted lines.

The velocity profiles in figure 11(b,d, f) are useful for understanding the form of the flux
function F (which is the integrated velocity), as displayed in figure 3(a—c). We present the
scaled velocity 1 — U = (4,(0) — u,(2)) /(u, (0) — u, (h)) so that U varies between U = 1
atz = 0and U = 0 at z = h. In this way we can see the functional form of U more clearly.
For example, if U is constant (as in figure 11 f), when integrated this will give a linear
dependence between the flux F and the gravity current thickness /.

Appendix B. Derivation of the governing equation (2.16)

In this appendix we provide the details for the derivation of the governing equation for the
integrated saturation S, which is given by (2.16). We start by considering the governing
equation for the gravity current thickness (2.14). To rewrite this in terms of the integrated
saturation (2.15), we first need to transform the derivatives of % into derivatives of S. As
illustrated by figure 11(a,c,e), the integrated saturation is always a monotone increasing
function of the gravity current thickness, so that we can define a unique inverse function

h=S8"1S). (B1)
Then, using the chain rule, the gradient is given by
oh  0h3S
—=——. B2
ar 35 or ®2)
We use the inverse derivative identity to calculate derivatives of (B1), such that
on  (aS\ !
— == . B3
S ( 8h) ®3)
Finally, by defining the flux function K as (2.18), we arrive at the governing equation for
S, which is
S 10 K S
fo_ M 92> _|%2). (B4)
at kokno ¥ Or oS /oh | or
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