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Pulsar pair-production theories imply that the plasma leaves the source already flowing relativistically.
Such winds might also have relativistic injection temperatures. MHD models of relativistic pulsar winds
were considered, and it was shown that in this case cold wind theories can be misleading.

On the other hand, due to synchrotron radiation losses, the temperature of collisionless, strongly
magnetized, relativistic plasma quickly becomes anisotropic. In this case the plasma pressure is no longer
a scalar and to describe the properties of stellar wind a hydrodynamical model of relativistic plasma with
the anisotropic temperature distribution should be developed.

In this paper we get a closed set of relativistic hydrodynamical equations, which describes relativistic
strongly magnetized, collisionless plasma with an anisotropic pressure tensor. Such a model was suggested
by Chew, Goldberger and Low (1954) for a nonrelativistic plasma.

The microscopic state of the relativistic collisionless plasma can be described by means of the plasma
particle’s relativistic distribution function ®,(z%,p.), which satisfies the kinetic equations
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here H is the Hamiltonian of the particle system, a denotes the particle species, z} = (ct,r,) denotes a

4-space vector, p\, = (£4/c,p,) denotes the particle 4-momentum (g, = c\/p2 + m2c?), i = 0,1,2,3.
Of course, the following system of Hamilton equations is valid
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where dsg = \/dz}, dzsi = cy;'dt, and v, = 1/4/1 — u2/c? is the relativistic factor.
Let us consider the plasma in the presence of electric and magnetic fields. The particle equation of
motion is as follows (Landau and Lifshitz 1967)
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Using equations (2) and (3) one can reduce eq.(1) to the following form
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It is well known (Baranov and Krasnobaev 1986), that from the kinetic equations one can obtain
the system of transport equations for the macroscopic plasma parameters (e.g. for the particle density
ng, hydrodynamical velocity u,, and for the mean thermal energy m,c?W,—taken in the particle rest
frame). Hence for each plasma component the following definitions are introduced (Landau and Lifshitz
1986)
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where prime means that all quantities under the integral are defined in the rest frame of the given plasma
component, d§; = d(£q/c)d3p, is the relativistic invariant, and ¢'/ is the ordinary fundamental tensor in
the noncurved space
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In the nonrelativistic limit one can obtain for an isotropic plasma that W, — %Ta/(mac"’), where
T, is the temperature of the given plasma component in its proper frame. However, in relativistic case
the problem of temperature definition is complicated (Javakhishvili and Tsintsadze 1973). It will be
much more reasonable to consider W, as one of the macroscopic parameters, describing together with
parameters n, and u, the plasma hydrodynamical motion. The transition to the laboratory frame may
be made by means of the Lorentz transformation for pi: p% = LiJp,;, where the Lorentz transformation
matrix has the form (Landau and Lifshitz 1967)

ij _ Ya Yalta/c\
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In eq.(7) s*? is obtained in 3-space as

a, B
528 = 698 4 (y4 — 1) —

az a=1,23
Multiplying eq.(4) by 1 and p! and integrating over df),, using equations (5) and (7) the continuity

and energy-momentum equations may be obtained
aJ; 0 OT! - e,
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where J}; = ngIaj; J = (cYaNa, NaVala) is the current 4-vector, and T;j is the energy-momentum tensor.
The symmetrical tensor w)} is defined as

i = / p''p" ¥ dQ., (9)

Obviously 79° = mgc?n, (W, + 1).

The system (8) is not closed, because eq.(9) introduces some new undefined macroscopic values 79
and 798, To close the system one should connect 792 and 72# with the macroscopic parameters ng, t,, Wy
and its derivatives. It should be done in the case when all quantities characterizing the plasma are slowly
changing at distances of the order of the mean free path. It is shown below that this problem can be
solved in case when the collisionless plasma is strongly magnetized, which leads to the anisotropy of
thermal parameters describing plasma.

As is clear from (8), it is necessary to redefine 72> and 7. It can be obtained e.g. by the construction
of the additional transport equation for m*J. This leads to the necessity of considering the equations for
the third-order moments of the kinetic equation. For this purpose eq.(4) should be multiplied by P}PJ
and integrated over d2,. This leads to

OMiik e, . -
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where M‘ijk = LeiLmjLﬂkNaemn (11)
and NJ¥ is defined as
Nt = [ vt i, (12)

The Ni/* and ¥ tensors can be defined as
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where it is convenient to define n,, W, V,, 728, uo8, 44,9, and n2°7 using three dimensional distribution

functions fs(r4,Pg,t) in the following way (Javakhishvili and Tsintsadze 1973)
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ng = /fc'. dp,, W,= m/%fa dp' -1, Vo= m/% fadp,
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Here all integrals are taken in the plasma rest frame; wgﬂ is the viscous stress tensor and q, is the
heat flux density (Javakhishvili and Tsintsadze 1973). It can be seen that in the nonrelativistic limit
(¢' = me?) p%P — 72 and the vector g, reduces to the q,. Therefore the tensor u2” can be called the
modified stress tensor and g is the modified heat flux vector. Note that Sp(p2?) = ps® = ngmgec?(V,-1).
To close the set of equations one should e.g. neglect the third order moment 7247,

It is obvious that the kinetic equation for the function f, should be solved. This equation in the
relativistic theory has the form (Belyaev and Budker 1956)
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where f, is the relativistic invariant (Belyaev and Budker 1956) dp,/e;. One should transform eq.(15)
to the plasma rest frame. If R,/L < 1, where R, is the Larmor radius of the particles, and L is the
characteristic spatial scale of the problem, one can look for the solution of eq.(15) in a form of power
series over a small parameter R,/L. Consequently the kinetic equation for f, reduces to the infinite set

of equations
c 6f'(°)
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o Op,
8fa? 2, 0" T W Y A
5t ?Pa r, + eq {E + E’; [paB ]} opL =0 (16)

If one limits by finding only the functions f,',(o), then the solution can be obtained easily by assuming
E' =0.
£ = £Ot, ray 21, Py - B), (17)

where p?, is transverse with respect to the B’ component of the particle momentum.
Using the distribution function eq.(17) it can be shown from eq.(14) that ¢, = g, = 0 and

738 = Py b b? + Po(6°% = bb'P),  p2P = poyb b + par (6*° - b'*b'P) (18)

where P, p1q) and Pay, pa1 are the parallel and transverse components of the pressure and modified
pressure, respectively, which are defined as
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In the case considered (¢ = 0, g = 0) and from eq.(18)) one can obtain
7 = [mac?na(Wa + 1) + Pa1] ¢ — Parg' + (Pq — Pal)g' g’ b5,
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NPT =0
Using the definitions (8), (11), and (20) and the Lorentz transformation matrix one can obtain
T = [mac®ng(Wa +1) + Par] ubul — Pay (g7 + A2 A babg) + P oy AT ASibobg,
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+(ay = Bas)[waASTAZ" + wlATALY + ufATAY] — pas[ug’ +ulg™ +ugg) (21)

where u! (v4,7au/c) is the 4-velocity of hydrodynamical motion and

ij — 9" — ujuj
* T V142 (ua- b2/

Hence for hydrodynamical description of the relativistic collisionless plasma in a strong magnetic field,
the set of macroscopic parameters ny, Wy, Py, PaL, fq) and pay should be introduced, s.e. the number
of parameters in the relativistic theory increases.

Let us now write the closed equation system for the set of macroscopic parameters, describing the
relativistic strongly magnetized plasma. We have yet the continuity equation. From the second relation
of eq.(8) at ¢ = «, using eq.(20) one can obtain the equation of motion. Multiplying this by u,; and
summing up over i one obtains the equation for W, (in fact it is a thermal balance equation)

Pa_L _ dPaJ_
macing dsg,
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is the hydrodynamical derivative. In obtaining eq.(23) we used that F/ugus; = 0. Multiplying eq.(10)
by u4; one obtains the modified equation for energy-momentum

(22)

= (Pai = PapASALI889 225 = 0 (23)
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Excluding from eq.(10) the terms containing du’/ds, and dV,/ds, leads to
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1.7 a 1 a j a a — DiJ jm, & im,_ j
uauauamuan—T- —uauam ————k —uauam % + k - Rd —Rd uauam_Ra uauam (25)
dzk dzk Ozs Ozx§

where M"J" = Mk — mac(mac?ngV, + 3uarul u’u k), and R¥ denotes the right-hand side of eq.(10).
Let us mtroduce the projection operators

DW= Agaihap;b®b?, DU7 = g;i + DY, (26)
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Multiplying eq.(25) by D,(-;-) and Dg;r) and summing over the indices ¢, j one can obtain the equations for
the macroscopic parameters y) and puy

dpta)| _ Maj dng aipBip p.Lai _
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Hence the equations (8) [the second part of eq.(8) at i = 0 should be substituted with eq.(23)], eq.(24)
[for i = a] and eq.(27) then constitute a closed system of hydrodynamical equations for the relativistic
collisionless plasma in the strong magnetic field. Eq.(24) connects the ordinary (P, and P,.) and
the “modified” (uq), ta1) macroscopic parameters of plasma. It is clear that this set of equations is
the relativistic generalization of the Chew, Goldberger and Low theory for the nonrelativistic strongly
magnetized plasma.

The relativistic case considered is caused by two reasons. First, the fact that the hydrodynamical
velocity of plasma motion can be of the order of speed of light, and second, that the mean energy of
plasma particles’ thermal motion can be more than or of the order of the particle’s rest energy. In the
nonrelativistic limit (uq < ¢, T, € mqc?) the system of hydrodynamical equations obtained reduces to a
well known closed set of hydrodynamxca.l equations (Baranov and Krasnobaev 1986). Indeed, in this case
Wa—=0,V,— 1,74 = 1, A% — g s Haj] = Pajjs tar = Pay, and the set of macroscopic parameters is
reduced. In this limit eq.(27) c01nc1des with the equations for the parallel and transverse pressure for the
nonrelativistic case, and eq.(23) reduces to eq.(27) and becomes unnecessary. A detailed examination of
these results will be published subsequently.
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