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MODIFIED HERMITE POLYNOMIALS IN THE SPECTRAL

APPROXIMATION FOR BOUNDARY LAYER PROBLEMS

NEVENKA ADZIC

The solution of the linear boundary layer problem is presented as a sum of the
reduced solution and the layer function, which is approximated by a truncated
orthogonal series. The layer subinterval is determined through the numerical layer
length, which depends on the perturbation parameter and the degree of the spec-
tral approximation. Modified Hermite polynomials are used as an orthogonal basis.
Systematic methods are presented to obtain the recurrence relations for the coef-
ficients in modified Hermite series solution of linear differential equations with
polynomial coefficients. The upper bound for the error function is constructed and
the numerical example is included.

1. INTRODUCTION

In this paper we shall consider the boundary layer problem

(1.1) Ly = -e2y"(x) + f(x)y'(x) + g(x)y(x) = h(x), x G [0, 1]

(1.2) Gy = 0/(0), 2/(1)) = (A, B)

where e > 0 is a small parameter. Our assumptions are:

(2.1) / (*) , g(x), h(x) G C[0, 1],

(2.2) 0 < F ^ f(x), F(ER, x G [0, 1],

(2.3) K2 ^ g(x), K £R, x G [0, 1].

It is well known that the solution of the problem (1.1), (1.2) has a boundary
layer at x = 1. The problems of this kind are involved in mathematical models of
diffusion-convection phenomena. In many applications the diffusion coefficient e is
much smaller than the convection coefficient f(x). It has long been recognised that
difficulties can arise when standard spectral approximations are applied. The author
has already developed the modification of these standard spectral methods in several
papers; for example see [5]. Here, that modification is combined with the use of special
orthogonal basis, that is, modified Hermite polynomials. The recurrence relations,
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which are going to be constructed, are much simpler than the corresponding relations
for Chebyshev orthogonal basis, obtained by Homer in [2], or for Legendre polynomials,
developed by the author and applied in [4]. The method presented here is highly
accurate although only a small number of terms in the appropriate truncated series is
used. This is confirmed by the numerical results.

In Section 2 we shall transform the original problem and determine the layer subin-
terval. In Section 3 we shall define the orthogonal projection according to the modified
Hermite polynomial basis and we shall develop certain recurrence relations. In Section
4 we shall estimate the error by constructing the upper bound function upon the layer
subinterval and in the final section we shall illustrate all the theoretical results by a
numerical example.

2. TRANSFORMATION

It is well known (see for example [l]) that under the assumptions (2.1) - (2.3) the
problem (1.1), (1-2) is inverse monotone, which ensures that it has a unique solution
y(x) £ C2[0, 1]. It is also known that the reduced problem

(3) LryT = f{x)yr(x) + g(x)yr(x) = h(x), x e [0, 1], yP(0) = A

has a unique solution yr(x) € C2[0, 1], which in general, does not satisfy the right side
boundary condition. We are going to look for the solution of (1.1), (1-2) in the form

(4.1) y(x) = yP(x) + ye(x)

where ye[x) is approximated by

( o x e [o, i - 6]

*•>-{«.) .,11-Ml,
and u(x) satisfies the boundary value problem

(4.3) L u = - e 2 u " ( x ) + / ( x ) u ' ( x ) + g{x)u{x) = e 2 y r ' ( * ) > x e [ l - S , l ]

(4.4) Du = (u(l-6),u(l))=(0,B°), B°=B-yr(l).

Here 6 > 0 is the so-called numerical layer length which is going to be determined using
the definitions and lemmas, given by the author in several papers, for example [5].

DEFINITION 1: A function p(x) € C2[l — S, 1] is called a resemblance function for

the problem (4.3), (4.4) if

1° Dp=(0)B°),

2° x = 1 — 6 is the stationary point for p(x),

3° p{x) is concave for B° > 0 and convex for B° < 0.
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LEMMA 1 . The n -th degree polynomial

(5) Pn(x) = B

is a resemblance function for the problem (4.3), (4.4).

PROOF: We have to verify the conditions from Definition 1. It is easily seen that

- * ) = 0 and pn(l) = B°.

2° p'n(z) = 0 only for x = 1 - S.

3° sgnp^(x) = sgn 5°.

D
DEFINITION 2: The sufficiently small number 8, for which the resemblance func-

tion satisfies equation (4.3) at the layer point x = 1, is called the numerical layer
length.

LEMMA 2 . The numerical layer length is given by the expression

_ rn - ^Jr2n2 - 4qe2n{n -

with

(6-2)

PROOF: By substituting (5) into (4.3), at x = 1 we obtain the equation

and its solution 0 < 6 < 1 is given by (6.1). The existence of this solution is ensured
by the conditions (2.1) - (2.3) since

D = /2(l)n2 - 4e2n(n - 1) ( ^ & - - fl(l)) ^ 0

for sufficiently small e. D

Once the numerical layer length 6 is determined we can proceed to construct the
approximate solution for the problem (4.3), (4.4). One of the main problems is the
approximation of the functions f(x) and g[x). If they are approximated by power series
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or some orthogonal series of large degree, the calculations may be rather complicated.
Under the additional assumption (which is not very restrictive) that f(x), g(x) €
C3 [1 — S, 1] it is sufficient to approximate them by the polynomials of degree up to 2.

(7) f(x) w cix2 + c2x + c3, g(x) w ctx
2 + c5x + c6.

REMARK. The order of such an approximation is O(6S) , and, as 8 is always small, this

approximation does not affect the accuracy of the approximate solution significantly.

As for the function y"(x), it has to be approximated by the appropriate orthogonal

series rn(x). Thus, we are looking for the spectral solution of the problem

(8.1)
Laua = -£2<'(z) + (cja;2 + c2x + Ci)u'a(x) + (ax2 + c5x + c6)uo(z) = rn(x),

x € [1 - 6, 1]

(8.2)
Dua = (« . (1 - S), ua (

3. SERIES SOLUTION

The spectral solution of the problem (8.1), (8.2) is a truncated orthogonal series of
degree n , according to some orthogonal basis of the space Pn of all real polynomials
of degree up to n. In this paper we are going to choose modified Hermite polynomials
as the elements of the basis. Let us, first, remind ourselves of some of their properties.

Classical Hermite polynomials represent a particular solution of the Hermite dif-
ferential equation

H'k'(x) - 2xH'k(x) + 2kHk{x) = 0.

The modified Hermite polynomials, introduced in [3], are defined as

(9.1) Hk{x) = akHk((3x),

(9.2) ak = ^—, /3eR.
K ' (2/3)*fc!

They satisfy Bonnet's recurrence relation

(10.1) xHk(x) = (k + l)Hk+1(x) + ^Hk-iix),

and for the derivatives we have

(10.2) H'k(x) = Hk^ix), H'k'(x) = Hk.2{x).
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Our aim is to approximate the solution ua(x) of the problem (8.1), (8.2) by

(11) «„(*) = ^ o
*=o

and it is well known that when n —> oo, un —* ua. If we represent rn(x) as

(12)
k=0

we can prove the following theorem:

THEOREM 1 . The coefficients ak in the solution (11) of the problem (8.1), (8.2)
represent the solution of the system

(13.1)
Jfc+3 / 6

(13.2)

Jt=o *=o

wiere w\ j is the element of the i-th row and j-th column of the matrix

non-zero elements of which are given in Table 1.

Table 1.

the

i = k + 3
O-k+3

i = k + 2

a*+2
i = fc + 1

i = k
ak

i = k-l
a*-i
i = k-2
a*-2

e2

-4 /3*

1

2/32(2fc + l )

4/3*Jfc(ifc - 1)

C2

2/32

4^4Jfe

C3

4/3*

c4

1

2/32{2k + 1)

4/3*Jfe(fc - 1 )

2/32

4/3* fc

4/3*

The nonzero elements of the matrix
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PROOF: We substitute (11) and (12) into (8.1), make use of (10.2), (10.1) and the
formula

x2Sk(x) = {k + 1)(* + 2)Hh+2(x) + 2-^Hk(x) + JLSk-t{x), * = 2, 3, . . . .

which is obtained from (10.1).
After equating the coefficients at Hk(x), k = 0, l , . . . , n — 2 and multiplying the

obtained equations by 4/34 we come to the system

(2/32c2 + c4 - 4/3*e2)ak+2 + 2/32((2fc + l ) C l + 2/?2cs

+ 2/32(2/32Jfec2 + (2k + l)c« + 202c6)ak + 4/94(fc(fc

+ 4/34A:(fc - l)c4ajt_2 = 4/3*6*, k = 0, 1, . . . , n - 2.

(For A: = 1 the last term is omitted and for k = 0 the last two terms are omitted.)
The obtained equalities are obviously of the form (13.1). The last two equations

(13.2) are obtained directly, by substituting (11) into the boundary conditions (8.2).
The values for Hk(l — 6) and -ffjb(l) are evaluated recurrently using the formula (10.1)
in the form

± ( ^ f j k = l,2,...,H0(x) = l, S1(x)=x.

After the system (13.1), (13.2) is solved for ak, k = 0, . . . , n, the value of the
approximate solution (11) at the point x G [1 — 6,1] can be evaluated by the use of the
following algorithm:

let £n+I = tn+i = 0

let tn_k+1 -

let un(x) = l0.

tn_k+1

4. THE ERROR ESTIMATE

Out of the boundary layer, the exact solution of the problem (1.1), (1.2) is approx-
imated by the solution of the reduced problem. It is well known (see for example [1])
that the following estimate is valid

(14) d(x)=\y(x)-yT(x)\^C{e2+exp(-F6/e2)), x e [0, 1 - S\.

Throughout the paper C will denote an arbitrary constant independent of x and e.

https://doi.org/10.1017/S0004972700030136 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030136


[7] Modified Hermite polynomials 273

Let us, now, estimate the error upon the layer subinterval [1 — 6, 1]. The error
function, according to (4.1) and (4.2) is

(15) d(x)=\yc(x)-un(x)\.

In order to estimate it we first have to prove the following lemma:

LEMMA 3 . let xe [1-8,1]. Then

(16) \y.{x) - u{x)\ < d0, d0 = C(e2 + exp (-F8/e2)).

PROOF: The function j/e(x) satisfies the boundary value problem

(17.1)
Lye = -e2y'J(x) + f(x)y'e(x) + g(x)yc(x) = e2y';(x), x G [1 - 8, 1]

(17.2)
Dyc = (y,(l - 8), y.(l)) = (y(l - 8) - yP(l - 8), B°).

Subtracting (4.3), (4.4) from (17.1), (17.2) we obtain

L{yc - u) = 0, D(y. - u) = (y(l - 8 ) - y r ( l - 6), 0 ) .

By the principle of inverse monotonicity we can conclude that

Using the estimate (14) for x = 1 — 8 we obtain (16). D

Before we prove the following theorem we have to give one more lemma.

LEMMA 4 . Assume that for two functions v, w G C2[l — 6, 1] the following
inequalities hold

v^w, Lv ^ 0 < Lw, Dv ^ (0, B°) < Dw.

Then the problem (4.3), (4.4) has a solution u £ C2[l - 8, 1] with

V ^ U ^ W.

This lemma is a special case of L6, which was proved by Lorenz in [6].

THEOREM 2 . Let v(x) and w(x) be the exact solutions of the problems

(18.1)
- e2v"(x) + F2v'(x) + K2v(x) = 0, x £ [1 - 6, 1], v(l - 8) = 0, u(l) = B°

(18.2)
-e2w"{x) + K2w(x) = 0, xe [1-8,1], w(l - 6) = 0,w(l) = B°,
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where F2, Kx, K2 G R are such constants that f(x) ^ F2, K\ ^ g{x) < K\, while

x G [1 - 6, 1] and

(19) dn(x)=max{\v{x)-un{x)\, \w(x) - un(x)\}.

Then the error d(x) defined by (15) can be estimated as

(20) d(x) < d0 + dn{x), x G [1 - S, 1],

where do is defined in (16).

PROOF: We can see that

(21) d{x) < \yc(x) - u(x)\ + \u(x) - un(x)\,

where u(x) is the solution of the problem (4.3), (4.4).

Let us, first, assume that B° = y(l) — 2/r(l) > 0. Then, applying the principle of
inverse monotonicity to the problems (18.1) and (18.2), we have v(x) ^ 0 and w(x) ^ 0.
We also have v'(x) ̂  0, w'(x) ̂  0 for x € [1 — S, 1]. We can define the functions
/2(a;) ^ 0, gi(x) > 0, g2{x) > 0, such that /(x) = F2-f2{x). g(x) = K\ + gi(x) and
g(x) = K\- g2(x) for x £ [1 - S, 1). Then, using (18.1) and (18.2), we obtain

(22.1)

Lv = -eV'(z) + (F2 - f2{x))v'{x) + {K\ -g2(x))v(x)

= -Mx)v'(x) - g2(x)v(x) ^0,

(22.2)
Lw = -e2w"{x) + f(x)w'(x) + (K\ + 9l{x))w(x) = f(x)w'{x) + gi(x)w(x) > 0

and

(22.3)

- e 2 ^ - w)"{x) + F2(v - w)'{x) + K2
2{v - w)(x)

= -F2w'(x) - {K\ - Kl)w{x) < 0, x £ [1 - 6, 1]

(22.4)
(v-w)(l-S) = 0, {v - io)(l) = 0.

By the principle of inverse monotonicity from (22.3), (22.4) the following inequality is

valid:

(23) v(x) - w(x) ^ 0 for x G [1 - 6, 1].

Finally,

(24) Dv = Du = Dw = (0, B°).
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Now, according to (23), (22.1), (22.2) and (24), we can apply the result of Lemma 4,
which gives us

v(x) < u(x) ^ w(x), x G [1 - 6, 1].

After subtracting un(x) in the above inequality we can conclude that

(25) u(x) - un(x) ^ max{|v(z) - un(x)\, \w(x) - un(x)|} = dn(x).

In the case B° < 0, using the same technique, we again arrive at (25). Finally, using
the estimates (16) and (25) in (21), we obtain (20). D

REMARK. The same technique can be applied in solving self adjoint boundary layer
problems.

5. NUMERICAL RESULTS

We shall use the following test example

-e2y"(x) +
(i + *)z"x ' (i + xy

y(0) = 0. y(l) = 0,

[0, l]

whose solution is

»(*) =
- * •

This problem was considered in [1],
The solution of the reduced problem is yr(x) = —x, so that we have one boundary

layer at x = 1. The numerical layer length, applying (6.1), is

In the following tables we shall give the values of the exact solution, the error d(x)
and the error estimate (20) in several points from the boundary layer for n = 4 and
e = 10"s(l0-7) . We have chosen 0 = 2/5 in (9.1).

Table 2.
e = 10-5

X

0.99996
0.99997
0.99998
0.999987
0.99999
0.999994
0.999997
0.999999

n =

y(*)
-0.86
-0.78
-0.63
-0.48
-0.39
-0.26
-0.14
-0.05

= 4 6 =
d(x)

4.8(-2)

1.0(-2)

3.4(-2)

5.0(-2)

4.9(-2)

3.9(-2)

2.3(-2)

8.6(-3)

6.93 • 10"5

d0 + dn(x)
5.6(-2)

1.4(-2)
3.2(-2)

4.9(-2)

4.8(-2)

3.8(-2)

2.3(-2)

8.5(-2)
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Table 3.

e = 10"7

X

0.9999996
0.9999997
0.9999998
0.99999987
0.9999999
0.99999994
0.99999997
0.99999999

n =

y(«)
-0.86
-0.78
-0.63
-0.48
-0.39
-0.26
-0.14
-0.05

4 5 =
d(x)

4.9(-2)
9.8(-3)
3.5(-2)
5.0(-2)
4.9(-2)
3.9(-2)
2.4(-2)
9.5(-3)

6.93 • 10"T

do + dn(x)
5.6(-2)
1.4(-2)
3.2(-2)
4.9(-2)
4.8(-2)
3.8(-2)
2.3(-2)
8.5(-3)
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