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Linearized gravity around a rotating black hole or compact object introduces the concept
of a gravitomagnetic field, which originates from the matter–current in the rotating object.
Plasma in proximity to this object is subsequently subjected to motion guided by this
gravitomagnetic term (where mass serves as the effective charge) in addition to the
conventional magnetic field. Such an interplay of fields complicates the accessible plasma
waves of the system and thus merits exploration to delineate this interplay, to identify
any observable signatures of the gravitomagnetic field in weakly magnetized systems, and
to motivate future numerical work in a fully relativistic setting where the effects may be
stronger. In this work we analyse the dispersion of the upper and lower hybrid electrostatic
waves in a plasma immersed in both magnetic and gravitomagnetic fields. In particular,
we discuss the effective augmentation or cancellation of the two fields under the right
conditions for the upper hybrid wave. In contrast, the lower hybrid wave experiences a
frequency up-shift from the gravitomagnetic field regardless of whether it is parallel or
antiparallel to the magnetic field for the studied field strengths.
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1. Introduction

When the spacetime near a black hole or compact star is stationary, one can slice
the spacetime into three-dimensional space plus one-dimensional time. This approach is
dictated by the stationarity of background spacetime and is known as ‘3 + 1’ splitting
(Thorne & Macdonald 1982; Thorne, Price & MacDonald 1986). The three-dimensional
space is considered as curved rather than Euclidean and is the spatial part of background
metric gμν in an appropriately chosen coordinate system. The metric of a stationary
spacetime in the Boyer–Lindquist coordinate can be written as

ds2 = −α2c2 dt2 + gij(d x j + N j dt)(d xi + N i dt), (1.1)

where α is the lapse function, N i is the shift vector and gij is the spatial metric. In the weak
gravity and low velocity (v � c) limit, one can define two gravitational potentials in this
space: the traditional Newtonian gravitational scalar potential Φg and a vector potential
Ag = c N known as the gravitomagnetic potential.
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These two potentials can be used to define the following two vector fields:

g = −∇ ln α, Bg = ∇ × Ag, (1.2a,b)

where g is the Newtonian gravitational field (gravitoelectric) and Bg is a ‘magnetic’-type
gravity known as the gravitomagnetic field, respectively (Braginsky, Caves & Thorne
1977; Hobson, Efstathiou & Lasenby 2006; Bhattacharjee & Stark 2021). The analogy
of these two fields with the electromagnetic ones becomes more obvious when the 3 + 1
split is applied to a weakly gravitating, rotating body. It can be shown that in the weak
gravity limit, the Einstein field equations for this object can be cast into a form similar to
the time-independent Maxwell’s equations,

∇ · g = −4πρm, ∇ · Bg = 0, (1.3a,b)

∇ × g = 0, ∇ × Bg = −4πG
c

J m, (1.4a,b)

where ρm and J m are the mass and mass-current density of the gravitating body,
respectively. It should be noted that the minus sign indicates gravity is attractive.

One of the major predictions of gravitomagnetism is the precession of the gyroscope
near a large rotating mass, also known as the frame-dragging effect. This notably has been
confirmed by the Gravity Probe B experiments in 2005 (Everitt et al. 2011). Recently,
the pulsar PSR J1141-6545 circling a white dwarf has been detected to show a long-term
orbital drift by measuring the pulses emanated from the pulsar to an accuracy to within
100 μs over a period of nearly 20 years (Krishnan et al. 2020). In the context of black
hole accretion disk theory, the gravitomagnetic force is predicted to cause differential
precession of the disk. This force acting in conjunction with the viscous force can cause the
accretion disk to have a warped structure, a phenomenon known as the Bardeen–Petterson
effect (Bardeen & Petterson 1975; Kumar & Pringle 1985; Thorne et al. 1986; Nelson &
Papaloizou 2000; Lei, Zhang & Gao 2012; Nealon, Price & Nixon 2015). Observationally,
this effect can cause the astrophysical jets emanating from the black holes to change their
orientations rapidly (Miller-Jones et al. 2019).

In this article, we study the impact of the gravitomagnetic field on the plasma waves in
the accretion disk around a rotating black hole or compact object. Plasmas in the accretion
disk are often magnetized, but the presence of a background gravitomagnetic field can
change the characteristics of the plasma wave modes. The traditional approach is to
solve the fully general relativistic (GR) system including the Einstein’s field equation and
relativistic plasma equation of motion. The analytical complexities of such a calculation
makes it impossible to understand the results in terms of classical plasma wave modes.
Here, we are primarily motivated to uncover possible first-order corrections to the
classical plasma wave modes, which can serve as a benchmark and motivation for a
much more detailed GR calculation in stronger gravity in the future. As a part of this
scheme, we investigate two electrostatic wave modes important to astrophysical plasma
phenomena: upper hybrid and lower hybrid modes in the presence of both magnetic
and gravitomagnetic fields. In a magnetized plasma, these electrostatic modes travel
perpendicular to the background magnetic field, which is often oriented along the axis
of rotation. In this study, we allow the gravitomagnetic field to be parallel or antiparallel to
the background field to best elucidate the interplay of the two fields. One can expect that
the presence of a gravitomagnetic field in a magnetized plasma can alter the characteristics
of these two modes and potentially have observational effects on the electromagnetic
spectrum, plasma heating and magnetic reconnection processes in the accretion disk near a
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compact object under the right conditions (Roy & Lakhina 1985; Bell & Ngo 1990; Lesch
1991; Pécseli et al. 1996; Cairns & McMillan 2005; Wallace et al. 2010; Liang et al. 2013;
Chen et al. 2020).

We present the background on plasma dynamics in a gravitomagnetic field in the first
section. Next, we derive the dispersion relations for both modes the upper and lower hybrid
waves. We conclude with a discussion of the application of these results to accretion disk
plasmas.

2. Plasma dynamics

In this article, we consider the plasma dynamics in an accretion disk near a slowly
rotating compact object such as a black hole or neutron star. The slowly rotating object
can be characterized by its mass M and spin parameter a = J/Mc � 1 (in the units of
half-Schwarzschild-radius rg = GM/c2), in which G is the gravitational constant, c is the
speed of light and J is the angular momentum (Misner, Thorne & Wheeler 1973; Thorne
et al. 1986; Hobson et al. 2006). Moreover, the plasmas we consider here are (i) located
at larger radii from the Schwarzschild radius (r � 2rg = GM/c2) and (ii) moving with a
bulk velocity much lower than the speed of light (v � c).

The accretion disk considered here is assumed to be unmagnetized initially, implying
the magnetorotational instability is not operational yet. It has been shown in the pure
hydrodynamical set-up that angular momentum transport can still be sustained in these
types of disks (Fragile & Anninos 2005; Paoletti et al. 2012; Ghosh & Mukhopadhyay
2021). Instead of investigating the plasma dynamics of the accretion disk which has
settled to its equilibrium structure, we concentrate on the time scale when seed magnetic
fields are being generated in the disk by mechanisms such as Biermann battery, spacetime
curvature drive, gravitomagnetic drive, etc. (Mahajan & Yoshida 2011; Bhattacharjee, Das
& Mahajan 2015; Bhattacharjee & Stark 2021). Therefore, our analysis of wave modes will
be limited to the range of seed magnetic field values in the accretion disk or where there
are relatively unmagnetized regions of a larger structure.

Under these approximations, the plasma dynamics of individual species (labelled s) can
be represented by the equation of motion and the continuity equation, respectively (Thorne
et al. 1986; Bhattacharjee & Stark 2021),

msns

(
∂

∂t
+ vs · ∇

)
vi = −∇ps + qsnsE + qsns

c
(vs + N ) × B + msns

c
(vs × Bg)

+ msnsg, (2.1)

∂ns

∂t
+ ∇ · (nsvs) = 0, (2.2)

where ms is the species mass, ns is the plasma number density, vs is the velocity, ps
is the pressure, E is the electric field, B is the magnetic field and g = −∇ΦG is the
Newtonian gravitational acceleration. It should be noted here that the two new terms
containing (N × B) and (vs × Bg) on the right-hand side of (2.1) are corrections due to
rotating spacetime with Bg representing the ‘magnetic’-type gravitomagnetic field and its
corresponding vector potential Ag = c N . The shift vector is divergence-free ∇ · N = 0
in the Boyer–Lindquist coordinate (Thorne et al. 1986) and can be interpreted as the
angular velocity of zero angular momentum observers (also known as fiducial observers)
in a stationary background spacetime. It should be noted here that the Lorentz force term in
(2.1) has a coupling between the magnetic field and gravity through the term N × B. The
msns(vs/c × Bg) term on the right-hand side of (2.1) is a new force that can be attributed
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to the frame-dragging caused by the spacetime’s intrinsic rotation. The consequence of
this new force has been studied quite extensively in the context of fluid dynamics in black
hole accretion disks and is known as the Bardeen–Petterson effect (Bardeen & Petterson
1975; Nelson & Papaloizou 2000).

In an axisymmetric stationary spacetime near a weakly rotating object, the
gravitomagnetic field takes the following form:

Bg = 2G
c

(
J
R3

− 3(J · r)r
R5

)
(2.3)

with its corresponding vector potential

Ag = 2G
c

J × r
R3

. (2.4)

Here, R = √
r2 + z2 is the distance to the plasma element from the central mass, and

r is associated with the cylindrical coordinate system (r, φ, z). If we take the angular
momentum of the object J along the z-axis and assume the disk to be thin (z � r), then
(2.3) becomes

Bg = 2G
c

J
r3

, (2.5)

which can be expressed in the following normalized form:

Bg = 2ãc2

rg

1
r̃3

ẑ. (2.6)

Here we have used the following normalizations: spin parameter ã = J/Mcrg and radial
distance r̃ = r/rg. The spin parameter ã can have a maximum value of 1. However, in order
for the gravitomagnetic approximation to be valid, we consider cases where spin parameter
|ã| < 0.3. This specific range has also been confirmed to produce the frame-dragging
effect when modelling the accretion disk near a rotating object by means of Newtonian
physics (Chakrabarti & Khanna 1992).

3. Electrostatic wave modes in electron–ion plasma

To obtain the electrostatic wave modes in an incompressible electron–ion plasma, we
need (2.1), (2.2) and Poisson’s equation,

∇ · E =
∑

s

nsqs. (3.1)

First, we assume the background electric field E0 = 0 and a uniform background plasma
density, i.e. ∇n0s = 0. Next, we look for wave modes in the electron–ion plasma with
wavevector k = kx̂ in a background magnetic and gravitomagnetic fields (B0, Bg) ||ẑ.
Then, using the following perturbations: n = n0s + δns, E = δE||k and vs = v0s + δvs, we
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linearize (2.1), (2.2) and (3.1) and solve for the dispersion relation of the system, yielding

1 − ω2
pe

(ω − k · v0e)2 − γekbTek2/me − ω̃2
e/m2

e

− ω2
pi

(ω − k · v0i)2 − γikbTik2/mi − ω̃2
i /m2

i
= 0, (3.2)

where Te, Ti stand for electron and ion temperature, respectively; electron plasma
frequency ωpe = √

4πneq2
e/me, ion plasma frequency ωpi =

√
4πniq2

i /mi, ω̃s = (qs/cB0 +
msωg) is the modified cyclotron frequency for both species, gravitomagnetic frequency
ωg = Bg/c and γ is the adiabatic index for each species.

For simplicity in isolating the new physics, for the rest of this article we assume
background flow v0s ≈ 0 for both species and write (3.2) as

1 − 1
ω̃2 − β2

e − ω̃2
ce(1 − εe)2

− 1
Z2

α

ω̃2 − γ̃ αβ2
e − α2Z2ω̃2

ce

(
1 + 1

αZ
εe

)2 = 0. (3.3)

In (3.3), we have used the following normalizations: ω̃ = ω/ωpe, ω̃ce = ωce/ωp,
α = me/mi, βe = √

γe(kvth(e)/ωpe), γ̃ = γi/γe, qi = Ze, εe = ωg/|ωce|, εi = 1/Zα εe where
thermal velocity for both species vthe(s) = √

kbTs/ms, Z is the atomic number, and electron
cyclotron frequency |ωce| = eB/mec.

In (3.3), it should be noted that both the second and third terms on the left-hand side
are modified by the factors (1 − εe)

2 and (1 + (1/αZ)εe)
2, respectively. These two terms

are explicit contributions from gravitomagnetism with the factor εe = ωg/|ωce| measuring
the relative strength between the gravitomagnetic and magnetic field. In the absence of
a gravitomagnetic field, (3.3) becomes the standard dispersion relation for electrostatic
waves in a magnetized electron–ion plasma.

Figure 1(a) plots the dispersion relation for different values of εe, where the traditional
upper hybrid oscillation is represented by a black dotted line. For the rest of the article,
we assume a hydrogen plasma for simplicity. For different values of εe, we notice different
vertical shifts in the frequency plot from the εe = 0 case (black line). As |εe| increases from
0, the frequency at βe = 0 shifts from the classical upper hybrid oscillation in a direction
depending on the sign of εe. For εe < 0, the frequency is pushed above the classical value,
whereas for εe > 0, the frequency is pushed below it. In the latter case, we see that setting
εe = 1.0 results in a starting frequency at ωpe. In this case, there is an effective cancellation
of the magnetic and gravitomagnetic fields, resulting in ωs = 0. Here the wave behaves
as a standard unmagnetized electron plasma wave. We note, however, that for εe > 1.0,
the gravitomagnetic field will then no longer be cancelled by the magnetic field and the
frequency will once again rise above the plasma frequency. At εe = 2.0, the mode will
match the case of εe = 0, but now the mode is primarily influenced by the gravitomagnetic
field as opposed to the magnetic field.

The interplay between the magnetic and gravitomagnetic fields can further be visualized
by constructing a ωce, ωg phase space plot showing the cutoff frequency ω(βe = 0) for
each combination. Figure 1(b) gives ωg and ωce each in the range of −1 to 1 (still
normalized to ωpe) and the colour coding is ω(βe = 0) using the same normalization.
The diagonal blue region is where both fields are parallel and equal in magnitude in the
plasma (εe = 1); however, because the electron has a negative charge in the magnetic field
and a positive effective charge (its mass) in a gravitomagnetic field, the effect of the fields
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(a)

(b)

FIGURE 1. (a) Plot of ω versus β for the upper hybrid wave with modifications due to different
εe values. The classical upper hybrid oscillation is given in the dashed black line. (b) Plot of the
cutoff frequency ω(β = 0) in ωce, ωg phase space. Contours are given in black and additional
annotation shows the relative contributions of the gravitomagnetic and magnetic fields.

on the electron will cancel. This implies that a purely magnetized plasma near a weakly
rotating object can sustain a Langmuir wave perpendicular to the background field under
the right conditions, which is possible because both magnetic and gravitomagnetic fields
cancel in their impact on electrons.

In contrast, the yellow regions at the upper left-hand and lower right-hand corners
indicate that magnetic and gravitomagnetic fields are colinear (εe = −1) in the plasma.
Here the force on an electron in the gravitomagnetic field will be in the same direction as
that from the magnetic field, so the effective magnetic field or cyclotron frequency will
increase. Contours of ω(βe = 0) are denoted in black. The remaining four regions in the
phase space can be distinguished based on the relative magnitudes of the background
magnetic and gravitomagnetic fields within the plasma. This implies unmagnetized
or weakly magnetized plasmas near the object can sustain electrostatic wave modes
mimicking those seen in magnetized plasma.
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Figure 2(a) shows the lower hybrid wave dispersion for different values of εe. In contrast
to the high-frequency modes, we do not see any significant differences in the dispersion
relations between εe values of the same magnitude but opposite sign. As the classical lower
hybrid oscillation frequency depends on both the electron and ion cyclotron frequencies,
there will always be one species where the gravitomagnetic field effectively increases the
cyclotron frequency and one species where it effectively reduces this frequency. Under the
assumption of εe � α, the lower hybrid oscillation (setting βe = 0) is

ω2
LH ∼ αω2

ce

1 + ω2
ce

+ ε2
e ω

2
ce (3.4)

to lowest order in α and εe. The dashed horizontal line shows the classical lower hybrid
oscillation frequency, and all tested values of εe cause an increase from this value due to
the ε2

e dependence in the equation.
In figure 2(b), we once again plot the phase space of the gravitomagnetic and cyclotron

frequencies and colour code by the cutoff frequency ω(βe = 0), this time for the
lower hybrid wave. When the magnitude of the magnetic field increases, the relative
gravitomagnetic contribution diminishes. We note that no field cancellation is observed in
this lower frequency mode in the plasma under this set of plasma conditions. The contour
lines (black) form a unique island-type structure for lower values of both magnetic and
gravitomagnetic fields, but the contours become mostly vertical in the case of |ωce| � |ωg|.
4. Discussion and conclusion

We have presented the dispersion relation of electrostatic waves in a warm electron–ion
plasma travelling perpendicular to background magnetic and gravitomagnetic fields. The
plasma is assumed to be non-relativistic and located in an accretion disk near a weakly
rotating astrophysical object. Though the system is non-relativistic, the first-order effect
from GR in the plasma dynamics is in the form of a gravitomagnetic force. As a result,
the combination of both magnetic and gravitomagnetic fields alters the standard cyclotron
frequency, and this results in modifications to the classical upper and lower hybrid waves.
The relative orientation of magnetic and gravitomagnetic fields permits the existence of
pure Langmuir waves in this magnetized plasma under the conditions of gravitomagnetic
cancellation. The existence of these modes can potentially be verified in observations
during the propagation of electromagnetic transmissions in the accretion disk (Chen 2012).
This prediction becomes obvious when we ignore the ion dynamics and consider the cold
plasma limit. In this limit, (3.2) can be rewritten as

(ωce + ωg)
2

ω2
= 1 − 4πnq2

mω2
, (4.1)

where ωg = Bg/c is the gravitomagnetic frequency. As the plasma density varies in the
disk, the electromagnetic transmission through the plasma varies as well based on the
frequency spectrum. This profile should be different from the standard upper hybrid
frequency – to which the electromagnetic waves can couple – because of the existence of
gravitomagnetism and depends on the strength and relative orientation of the background
magnetic and gravitomagnetic fields. This can serve as one of the tests for the GR
prediction of frame dragging in the non-relativistic limit, in additional to serving as a
potential indirect diagnostic of the rotation of the object.

However, since the regime in which the approximations are valid necessitates a relatively
weak gravitomagnetic field, the objects and structures where this can be useful requires
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(a)

(b)

FIGURE 2. (a) Plot of ω versus β for the lower hybrid wave with modifications due to different
εe values. The classical lower hybrid oscillation is given in the dashed black line. (b) Plot of the
cutoff frequency ω(βe = 0) in ωce, ωg phase space. Contours are given in black.

careful consideration. We can estimate ωg as

ωg ∼ ã × 105

M̃r̃3
, (4.2)

introducing M̃ as the mass of the object in units of the solar mass. From this we see that
increasing ωg for a fixed r̃ requires smaller masses, so stellar mass black holes or neutron
stars are more likely to lead to something observable. Looking then at ωc, we find

ωc ∼ 1.76 × 108β, (4.3)
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in which β is the magnetic field (in gauss) at the corresponding location r̃ from the object.
To have ωg ∼ ωc (or εe ∼ 1), therefore

β ∼ 1
176

ã

M̃r̃3
. (4.4)

Even with optimal gravitomagnetic parameters of ã = 0.3, M̃ = 5 and r̃ = 40 – while
still remaining in the regime of validity of the gravitomagnetic approximations – we
find that the magnetic field for εe ∼ 1 is ∼10−9 G, which may be most appropriate for
primordial black hole systems (Safarzadeh 2018; Araya et al. 2021; Papanikolaou &
Gourgouliatos 2023) or other seed-field systems discussed in § 2. Since smaller εe values
still alter the dispersion of the hybrid modes, more modern systems with larger magnetic
fields may potentially have measurable gravitomagnetic fields. However, we would still be
limited to relatively unmagnetized regions of accretion disks, which exist in such systems
with complex structures (Riffert 1980), and in particular when there are oscillatory field
structures (Bhattacharjee, Feng & Stark 2018). Furthermore, extended observation times
would be required to reach frequency resolution necessary to observe any gravitomagnetic
shifts.

This derivation was performed in the post-Newtonian limit, but if this were done in a
full GR setting, one would be able to look at conditions closer to the object where these
effects would be considerably stronger. While this calculation does not directly apply in
such a regime, we hope that it serves as a motivation and benchmark for future simulation
studies (likely requiring a GR particle-in-cell code), where greater specifics of observable
signatures can be better explored.

When ion dynamics plays an important role, we found that the lower hybrid waves
also experience modifications from gravitomagnetism. However, these modes change in
a fundamentally different way compared with the upper hybrid modes, as we do not see
field cancellation for our plasma conditions, even if the relative orientation between these
two fields changes. It should be noted that as the relative strength of the gravitomagnetic
field increases, the cutoff frequency increases as well. This, in turn, alters the spectrum
of waves with which the lower hybrid waves can interact, on both electron and ion scales
(Liu, Chen & Ma 2021). Lower hybrid waves can efficiently transfer energy from the
perpendicular motions of ions to the parallel motions of electrons or vice versa, either
accelerating particles or heating them (Verdon et al. 2008). What our results indicate is
that gravity (through gravitomagnetic contributions to the lower hybrid wave mode) can
play a non-negligible role in this energy transfer mechanism in ion and electron length
scales, which will be explored later in detail. Moreover, the behaviour of these modes in
the small magnitude field limit is quite different from their higher frequency counterparts.
A further analysis is necessary to explore this behaviour in the low-frequency regime,
which will be addressed in future work.
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