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On a Li-type criterion for zero-free regions of certain
Dirichlet series with real coefficients

Alina Bucur, Anne-Maria Ernvall-Hytönen, Almasa Odžak and Lejla Smajlović

Abstract

The Li coefficients λF (n) of a zeta or L-function F provide an equivalent criterion for
the (generalized) Riemann hypothesis. In this paper we define these coefficients, and their
generalizations, the τ -Li coefficients, for a subclass of the extended Selberg class which is known
to contain functions violating the Riemann hypothesis such as the Davenport–Heilbronn zeta
function. The behavior of the τ -Li coefficients varies depending on whether the function in
question has any zeros in the half-plane Re(z) > τ/2.We investigate analytically and numerically
the behavior of these coefficients for such functions in both the n and τ aspects.

1. Introduction

The extended Selberg class S], introduced in [10], consists of Dirichlet series F satisfying the
following axioms.

(i) (Dirichlet series) F possesses a Dirichlet series representation

F (s) =

∞∑
n=1

aF (n)

ns
(1.1)

that converges absolutely for Re(s) > 1.
(ii) (Analytic continuation) There exists an integer m > 0 such that (s−1)mF (s) is an entire

function of finite order. The smallest such number is denoted by mF and called the polar
order of F .

(iii) (Functional equation) The function

ΦF (s) = F (s)QsF

r∏
j=1

Γ(λjs+ µj),

with QF > 0, r > 0, λj > 0, |w| = 1, Re(µj) > 0, j = 1, . . . , r, satisfies the functional
equation

ΦF (s) = wΦF (1− s̄).
The numbers λj and µj are called the spectral parameters of F.

The Selberg class of functions, introduced in [16], consists of functions F ∈ S] which satisfy
the Ramanujan conjecture and are such that logF (s) =

∑∞
n=1 bF (n)n−s, where bF (n) are zero

unless n = pm with m > 1 and a prime p and bF (n)� nθ for some θ < 1/2.
It is conjectured that the Selberg class contains all L-functions possessing an Euler

product with coefficients in the Dirichlet series suitably normalized so that they satisfy
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the Ramanujan conjecture, that is, L-functions whose Dirichlet series representation has
multiplicative coefficients a(n) such that for any ε > 0 we have a(n) � nε. Moreover, it
is conjectured that the generalized Riemann hypothesis holds true for all functions F ∈ S,
meaning that all non-trivial zeros of F are on the line Re(s) = 1/2. If a function from S] does
not have an Euler product or does not satisfy the Ramanujan conjecture, it is not expected to
satisfy the generalized Riemann hypothesis. There are numerous examples of functions that
belong to S] and possess zeros off the critical line Re(s) = 1/2 and even off the critical strip
0 6 Re(s) 6 1. Therefore, the question of existence and location of zero-free regions remains
an important open question for such functions.

A well-known example of a function in S] with zeros in the half-plane Re(s) > 1 is the
Davenport–Heilbronn L-function LDH(s) introduced in [5]. However, there exists σDH > 1
such that LDH(s) is non-vanishing for all s in the half-plane Re(s) > σDH. In [2], it is shown
that the approximate value of the smallest such σDH, up to six decimal places, is 1.120362.
Actually, Bombieri and Ghosh in [2] conducted an investigation of a certain Dirichlet series,
called a series of Davenport–Heilbronn type, and, in the case when coefficients in the Dirichlet
series are real or purely imaginary numbers, derived an equation satisfied by the smallest value
σL > 1 such that the Davenport–Heilbronn-type L-series L(s) has no zeros in the half-plane
Re(s) > σL.

Another arithmetic example of a function from S] that does not possess an Euler product
is the cubic L-function Lc(s), defined and studied by Proskurin in [15], who proved that the
function Lc(s) possesses both zeros off the critical strip 0 6 Re(s) 6 1 and a zero-free region.

Therefore, for functions in S] that do not have an Euler product representation, it is of
interest to define a criterion for zero-free regions. For functions in S] that possess an Euler
product representation, Droll [6] formulated a very simple positivity criterion for zero-free
regions stating that for τ ∈ [1, 2], a function F ∈ S][ has no zeros in the half-plane Re(s) > τ/2
(or, equivalently, no zeros in the half-plane Re(s) < 1− τ/2) if and only if the sequence of real
numbers Re(λF (n, τ)), defined below, is non-negative for all n > 1.

Here, S][ is a certain subclass of the extended Selberg class introduced in [17] and λF (n, τ)
denotes the nth τ -Li coefficient associated to the function F and defined for an integer n and
a real parameter τ ∈ [1, 2] by

λF (n, τ) =
∑∗

ρ∈Z(F )

(
1−

(
ρ

ρ− τ

)n)
, (1.2)

where Z(F ) stands for the set of non-trivial zeros of F and ∗ indicates that the series converges
in the ∗-sense, that is, as a limit limT→∞

∑
ρ∈Z(F ),|Im(ρ)|<T .

For F ∈ S], it can be proved that the series (1.2) is convergent, by a method similar to the
one presented in [11]. Namely, a straightforward application of the argument principle yields
formulas for the distribution of zeros in the upper and lower half-planes, which imply that, for
large positive T , the number of zeros ρ ∈ Z(F ) such that 0 6 Im(ρ) 6 T and the number of
zeros ρ ∈ Z(F ) such that 0 > Im(ρ) > −T differ at most by O(log T ). Then the application of
the method presented in [11] yields that the series

∑∗
ρ∈Z(F ) (1/ρ) is convergent. Since F is of

order one, this is sufficient to conclude that the series (1.2) is convergent.
On the other hand, the functional equation axiom yields that non-trivial zeros of F ∈ S]

are symmetric with respect to the critical line Re(s) = 1/2 and no further symmetry exists in
general; hence, it is very difficult to derive a different expression for the series (1.2). Especially,
it is hard to relate the series

∑∗
ρ∈Z(F )(1/(s− ρ)) to the logarithmic derivative at s /∈ Z(F ) of

the complete function ξF (s) defined below, a relation which is important in our method for
fast computation of λF (n, τ).
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Therefore, in this paper we define τ -Li coefficients for a subclass S]R of the extended Selberg
class consisting of Dirichlet series (1.1) from S] with real coefficients aF (n) and real spectral

parameters µj , j = 1, . . . , r, in axiom (iii). A subclass S]R is chosen for two reasons: first, it arises
naturally in many cases of number-theoretical interest and contains all arithmetic L-functions
with real coefficients, including those with non-multiplicative coefficients in the Dirichlet
series representation (such as cubic L-functions [15], Davenport–Heilbronn L-functions [5],
Davenport–Heilbronn-type L-functions [2] etc); second, in this class, due to the reflection
principle, zeros are symmetric with respect to the real line and hence it is possible to relate
the series

∑∗
ρ∈Z(F )(1/(s− ρ)) to ξ′F (s)/ξF (s) for s /∈ Z(F ).

We investigate analytically and numerically the behavior of the coefficients λF (n, τ) for large
sets of positive integers n and for different real values of τ . Analytically, we prove the τ -Li
criterion for zero-free regions of functions in the class S]R and derive different formulas for the
evaluation of the τ -Li coefficients.

Then we focus on three examples of functions from S]R \ S and investigate numerically the
behavior of τ -Li coefficients attached to those functions for different values of τ . Numerical
computations are based on the representation of τ -Li coefficients of F ∈ S]R in terms of
coefficients in the Taylor (Laurent) series representation of F and conducted using the interval
arithmetic package Arb, a C library for arbitrary-precision floating-point ball arithmetic,
developed by Johansson [8]. We also discuss the precision of the numerical results.

2. Properties of the class S]R

In this section we derive some basic analytic properties of the functions from S]R. For F ∈ S]R,
we define the complete function by

ξF (s) = smF (s− 1)mF ΦF (s).

The zeros of ξF are called the non-trivial zeros of F ∈ S]. The set of non-trivial zeros of F is
denoted by Z(F ). The properties of the class S]R are summarized in the following proposition.

Proposition 2.1. Let F ∈ S]R. The following statements are true.
(i) Z(F ) = 1− Z(F ).
(ii) The function F is a meromorphic function of order one, with at most one pole. If it

exists, the pole is situated at s = 1.
(iii) The complete function ξF satisfies the functional equation ξF (s) = ±ξF (1− s).
(iv) There exists a number σ0 > 1 such that ξF (s) 6= 0 for all s with Re(s) > σ0.
(v) Assume additionally that 0 /∈ Z(F ). Then the series

∑
ρ∈Z(F )(s − ρ)−1 is ∗-convergent

for all s ∈ C \ Z(F ) and one has

ξ′F
ξF

(s) =
∑∗

ρ∈Z(F )

1

s− ρ
. (2.1)

Proof. (i) The statement follows from the functional equation in axiom (iii) and the
reflection principle.

(ii) The statement is a special case of [17, Lemma 3.3].
(iii) The coefficients aF (n) of the Dirichlet series (1.1) are real and hence F (s) = F (s).

Furthermore, for j = 1, . . . , r, we have λj , µj ∈ R and hence ξF (s) = ξF (s). Therefore, the
functional equation from axiom (iii) reads as ξF (s) = wξF (1−s) for some complex constant w
of modulus one. Since the function ξF (s) attains real values for all real s, we deduce w = ±1.
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(iv) Let K denote the smallest positive integer such that aF (K) 6= 0. Then we have

|F (s)| > |aF (K)|
KRe(s)

−
∞∑

n=K+1

|aF (n)|
nRe(s)

.

For Re(s) > α > 1 and n > K + 1, it is obvious that

|aF (n)|
(n/K)Re(s)

6
|aF (n)|
(n/K)α

= Kα |aF (n)|
(n)α

and hence the absolute convergence of the Dirichlet series (1.1) for Re(s) > 1 implies that
the series

∑∞
n=K+1 |aF (n)|/(n/K)Re(s) converges uniformly in the half-plane Re(s) > α > 1.

Therefore,

lim
Re(s)→+∞

∞∑
n=K+1

|aF (n)|
(n/K)Re(s)

=
∞∑

n=K+1

lim
Re(s)→+∞

|aF (n)|
(n/K)Re(s)

= 0

and hence there exists σ0 > 1 such that for every s with Re(s) > σ0, we have

|aF (K)| >
∞∑

n=K+1

|aF (n)|
(n/K)Re(s)

or, equivalently,

|aF (K)|
KRe(s)

−
∞∑

n=K+1

|aF (n)|
nRe(s)

> 0,

which yields that |F (s)| 6= 0 for all s in the half-plane Re(s) > σ0. Since the gamma function
has no zeros, this yields the statement.

(v) Since Z(F ) = 1−Z(F ), the non-trivial zeros of F ∈ S]R may be paired as ρ = σ+ it and
1− ρ = 1− σ − it. Moreover, 0 /∈ Z(F ) implies 1 /∈ Z(F ) and hence we have∑

ρ∈Z(F ),
|Im ρ|6T

1

ρ
=

∑
ρ∈Z(F )∩R

1

ρ
+

∑
ρ∈Z(F )

0<Im ρ6T

(
1

ρ
+

1

1− ρ

)
=

∑
ρ∈Z(F )∩R

1

ρ
+

∑
ρ∈Z(F )

0<Im ρ6T

1

ρ(1− ρ)
.

Part (iv) together with the functional equation yields that Z(F ) ⊆ {z ∈ C : 1 − σ0 6
Re(s) 6 σ0}. Zeros of entire functions form a discrete subset of C and hence the first sum in
the above equation is finite. Since ξF is an order-one entire function, the second sum in the
above equation converges as T → +∞; therefore, the series

∑
ρ∈Z(F )(1/ρ) is ∗-convergent and∑∗

ρ∈Z(F )

1

ρ
=
∑∗

ρ∈Z(F )

1

1− ρ
.

When 0 /∈ Z(F ), the Hadamard factorization theorem and (ii) imply that the function ξF
can be represented as a product over its zeros

ξF (s) = ξF (0)ebF s
∏

ρ∈Z(F )

(
1− s

ρ

)
es/ρ,

where bF = ξ′F (0)/ξF (0). Therefore,

ξ′F
ξF

(s) = bF +
∑

ρ∈Z(F )

(
1

s− ρ
+

1

ρ

)
(2.2)
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for all s ∈ C \ Z(F ). Specializing to s = 1, we obtain

ξ′F
ξF

(1) = bF +
∑

ρ∈Z(F )

(
1

1− ρ
+

1

ρ

)
= bF + 2

∑∗

ρ∈Z(F )

1

ρ
.

The statement (iii) implies that

0 =
ξ′F
ξF

(1) +
ξ′F
ξF

(0) = 2

(
bF +

∑∗

ρ∈Z(F )

1

ρ

)
and hence

bF =
ξ′F
ξF

(0) = −
∑∗

ρ∈Z(F )

1

ρ
. (2.3)

This, together with formula (2.2), completes the proof.

3. Li-type criterion for zero-free regions of functions in the class S]R
In this section we prove that the τ -Li coefficients attached to a function F ∈ S]R are well
defined, derive three equivalent formulas for computing them and prove the τ -Li criterion for
zero-free regions of F .

Proposition 3.1. Fix τ ∈ [1,+∞), an arbitrary real number. Let F ∈ S]R with the property
that 0, τ /∈ Z(F ). Then the sum (1.2) defining λF (n, τ) is ∗-convergent for every positive
integer n.

Proof. By Proposition 2.1(v), the series
∑
ρ∈Z(F ) 1/ρ is ∗-convergent and so is the series∑

ρ∈Z(F ) τ/ρ.

Let Zτ (F ) = {ρ/τ : ρ ∈ Z(F )}. Then Z(F ) = 1 − Z(F ) implies Zτ (F ) = {(1 − ρ)/τ : ρ ∈
Z(F )}.

Since ξF is an entire function of order one, the series
∑
ρ∈Z(F ) 1/(1−ρ)k converges absolutely

for every integer k > 2 and so does the series
∑
ρ∈Zτ (F ) 1/(1− ρ)k. Now, we have

λF (n, τ) =
∑∗

ρ∈Zτ (F )

(
1−

(
ρ

ρ− 1

)n)
= n

∑∗

ρ∈Zτ (F )

1

1− ρ
+

n∑
k=2

(
n

k

) ∑∗

ρ∈Zτ (F )

(−1)k−1

(1− ρ)k

and both series on the right-hand side are convergent. The proof is complete.

Remark 1. For F ∈ S]R and τ ∈ [1,∞), the coefficients λF (n, τ) are real.

Indeed, by the reflection principle, Z(F ) = Z(F ) and hence (1.2) implies λF (n, τ) ∈ R.

Let dF (n, z0) be the power series coefficients in the expansion of the logarithmic derivative
of ξF (1/(1− s)) around the point z0 6= 1, which is not a zero of ξF (1/(1− s)), that is, assume
that in a small neighborhood of z0, we have

d

ds
log ξF

(
1

1− s

)
=

∞∑
n=0

dF (n, z0)(s− z0)n. (3.1)

Performing calculations analogous to those in the proofs of [6, Lemma 2.1.2] and [7, Theorem

15] and keeping in mind the properties of the class S]R, we are able to derive alternate definitions

of the τ -Li coefficients attached to F ∈ S]R.
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Proposition 3.2. Let F ∈ S]R and let τ ∈ [1,∞) be an arbitrary fixed real number such
that 0, τ /∈ Z(F ). For every positive integer n, one has

λF (n, τ) =
τ

(n− 1)!

[
dn

dsn
(sn−1 log ξF (s))

]
s=τ

=
1

τn
dF

(
n− 1, 1− 1

τ

)
. (3.2)

Proof. The proof of (3.2) follows the lines of the proof of [6, Lemma 2.1.2], which may be
applied since the function ξF is an entire function of order one that satisfies (2.1).

The following theorem is the Li-type criterion for the zero-free regions of functions from S]R.

Theorem 3.3. Let F ∈ S]R and let τ ∈ [1,∞) be such that 0, τ /∈ Z(F ). Then the following
statements are equivalent.

(i) ξF possesses no zeros in the half-plane Re(s) > τ/2.
(ii) λF (n, τ) > 0 for all n > 1.

(iii) For every fixed δ > 0, there exists a constant c(δ) such that λF (n, τ) > −c(δ) exp(δn).
(iv)

lim sup
n→∞

|λF (n+ 1, τ)|1/n 6 1. (3.3)

Proof. It is obvious that (ii) implies (iii). First, we prove that (i) is equivalent to (iv). Then
we prove that (i) implies (ii) and that (iii) implies (i).

(i) ⇔ (iv) The assumption τ /∈ Z(F ) implies that the point τ0 = 1− 1/τ is not a zero of the
function ξF (1/(1− s)); hence, by (3.2), in a small neighborhood of τ0, one has

d

ds
log ξF

(
1

1− s

)
=

∞∑
n=0

τn+1λF (n+ 1, τ)(s− τ0)n. (3.4)

The conformal mapping w = 1/(1− s) maps the disc D(1−1/τ , 1/τ) = {z : |z−1+1/τ | < 1/τ}
onto the half-plane Re(w) > τ/2. Therefore, the function ξF (w) = ξF (1/(1− s)) has no zeros
in the half-plane Re(w) > τ/2 if and only if the function log ξF (1/(1− s)) or, equivalently, the
function (d/ds) log ξF (1/(1− s)) is holomorphic inside D(1 − 1/τ , 1/τ). This is equivalent to
the statement that the radius of convergence of the power series (3.4) is greater than or equal
to 1/τ . Therefore, the function ξF (w) has no zeros in the half-plane Re(w) > τ/2 if and only if

lim sup
n→∞

|τn+1λF (n+ 1, τ)|1/n 6 τ,

a condition equivalent to (3.3).
(i) ⇒ (ii) A straightforward computation shows that∣∣∣∣ ρ

ρ− τ

∣∣∣∣2 = 1 + 2τ
Re(ρ)− τ/2
|ρ− τ |2

. (3.5)

Since Re(ρ) 6 τ/2 for all ρ ∈ Z(F ), (3.5) implies |ρ/(ρ− τ)| 6 1 for all ρ ∈ Z(F ). Therefore,
λF (n, τ) > 0 for all positive integers n.

(iii) ⇒ (i) Assume that (i) does not hold true, that is, assume that there exists ρ ∈ Z(F )
such that Re(ρ) > τ/2. Then equation (3.5) implies that, for such ρ, one has |ρ/(ρ− τ)| > 1.
Since τ is fixed, there exists a maximal value of |ρ/(ρ− τ)| = |1 + τ/(ρ− τ)| that is attained
at the finite subset Zmax(F ) = {ρ1, . . . , ρM} of elements of Z(F ) with real part greater than
τ/2. Let us put

max
ρ∈Z(F )

{∣∣∣∣ ρ

ρ− τ

∣∣∣∣} = 1 +m > 1.
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Since |ρ/(ρ− τ)| = |ρ/(ρ− τ)| and Z(F ) = Z(F ), it is obvious that elements of Zmax(F ) are
either real or come in conjugate pairs. We put M = 2k+ l, where k is the number of complex-
conjugate pairs of elements of Zmax(F ), l > 0 is the number of real elements of Zmax(F ) and
we numerate the set Zmax(F ) so that ρj+k = ρj for j = 1, . . . , k and the real zeros are ρ2k+i,
i = 0, . . . , l. Note that if 1/2 ∈ Z(F ), we have, as τ > 1,∣∣∣∣ 1/2

1/2− τ

∣∣∣∣ =
1

2τ − 1
6 1,

so 1/2 /∈ Zmax(F ). Moreover, one cannot have both ρ ∈ Zmax(F ) and (1−ρ) ∈ Zmax(F ), since
one of them has real part which is less than or equal to τ/2.

Furthermore, since zeros of an entire function do not accumulate around any finite point,
there exists ε > 0 such that∣∣∣∣ ρ

ρ− τ

∣∣∣∣ 6 1 +m− ε for all ρ ∈ Z(F ) \ Zmax(F ). (3.6)

Assume 1/2 /∈ Z(F ). Using the fact that Z(F ) = 1− Z(F ), we may write λF (n, τ) as

λF (n, τ) =

k∑
j=1

(
2− 2 Re

(
ρj

ρj − τ

)n)
+

k∑
j=1

(
2− 2 Re

(
1− ρj

1− ρj − τ

)n)

+

2k+l∑
j=2k+1

(
2−

(
ρj

ρj − τ

)n
−
(

1− ρj
1− ρj − τ

)n)
+

1

2

∑
ρ∈Z(F )

ρ/∈Zmax(F ),1−ρ/∈Zmax(F )

(
2−

(
ρ

ρ− τ

)n
−
(

1− ρ
1− ρ− τ

)n)
, (3.7)

with the convention that in the case when k = 0 or l = 0 the empty sum is equal to zero.
Let φj denote the argument of ρj/(ρj − τ), j = 1, . . . , k; then the first sum on the right-hand

side of (3.7) is equal to

2k − 2(1 +m)n
k∑
j=1

cos(nφj).

The inequality Re(ρj) > τ/2 implies 1−Re(ρj)− τ/2 < 0; hence, applying formula (3.5) to
ρ = 1−ρj yields that |(1− ρj)/(1− ρj − τ)| < 1. Therefore, the second sum on the right-hand
side of (3.7) is dominated by 4k.

For real ρj ∈ Zmax(F ), it is obvious that (ρj/(ρj − τ))n = (±1)n(1 +m)n, where the sign is
equal to the sign of the difference ρj − τ . In this case, |(1− ρj)/(1− ρj − τ)| < 1; hence, the
sum in the second line of formula (3.7) is −l1(1 +m)n − l2(−1)n(1 +m)n +O(4l), where l1 is
the number of indices j ∈ {2k + 1, . . . , 2k + l} such that ρj > τ and l2 = l − l1.

It is left to estimate the sum in the third line of (3.7). In order to do so, we write
{ρ ∈ Z(F ) : ρ /∈ Zmax(F ), 1 − ρ /∈ Zmax(F )} as a disjoint union Z1(F ) ] Z2(F ), where
Z1(F ) = {ρ ∈ Z(F ) : ρ /∈ Zmax(F ), 1 − ρ /∈ Zmax(F ) and min{|ρ|, |1 − ρ|} > nτ}. For
ρ ∈ Z1(F ), one has n|τ/ρ| < 1; hence, nk|τ/ρ|k < n2|τ/ρ|2 for all integers k > 3. Therefore,
for ρ ∈ Z1(F ), we have(

ρ

ρ− τ

)n
=

(
1− τ

ρ

)−n
= 1 +

nτ

ρ
+O

(
n2
∣∣∣∣τρ
∣∣∣∣2) as |ρ| → ∞.

Analogously, for ρ ∈ Z1(F ), one gets(
1− ρ

1− ρ− τ

)n
= 1 +

nτ

1− ρ
+O

(
n2
∣∣∣∣ τ

1− ρ

∣∣∣∣2) as |ρ| → ∞.
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Therefore,

∑
ρ∈Z1(F )

(
2−

(
ρ

ρ− τ

)n
−
(

1− ρ
1− ρ− τ

)n)

= −nτ
∑

ρ∈Z1(F )

1

ρ(1− ρ)
+O

(
2n2τ2

∑
ρ∈Z(F )

1

|ρ|2

)
= O(n2τ2), (3.8)

since the function ξF has order one, so both series on the right-hand side of (3.8) are convergent.
It is left to estimate the sum over Z2(F ). Since the series

∑
ρ∈Z(F ) |ρ|−µ and

∑
ρ∈Z(F ) |ρ−

τ |−µ converge for all real numbers µ > 1, the number of elements of the set Z2(F ) is bounded
by Cn2 for some positive constant C depending upon F and τ ; hence, the bound (3.6) implies

1

2

∑
ρ∈Z2(F )

(
2−

(
ρ

ρ− τ

)n
−
(

1− ρ
1− ρ− τ

)n)
= O(n2(1 +m− ε)n).

Inserting this, together with (3.8), into (3.7), we get, for even values of n,

λF (n, τ) = 2k − 2(1 +m)n
k∑
j=1

cos(nφj)− l(1 +m)n +O(n2τ2) +O(n2(1 +m− ε)n). (3.9)

Note that, if 1/2 is a zero, then 1/2 ∈ Z2(F ) and it is taken into account in the above estimate.
Applying Dirichlet’s theorem on simultaneous Diophantine approximations, we can make

the sum
∑k
j=1 cos(nφj) arbitrarily close to k. Since k and l cannot both be equal to zero, this

shows that the value of λF (n, τ) can be infinitely many times negative and exponentially large
in amplitude, which contradicts (iii).

Using the functional equation from axiom (iii), we immediately deduce the following
consequence of Theorem 3.3.

Corollary 3.4. Let F ∈ S]R and let τ ∈ [1,∞) be such that 0, τ /∈ Z(F ). The following
statements are equivalent.

(i) All the non-trivial zeros of the function F lie in the strip 1− τ/2 6 Re(s) 6 τ/2.
(ii) The τ -Li coefficients λF (n, τ) > 0 for all n > 1.

(iii) For every fixed δ > 0, there exists a constant c(δ) such that λF (n, τ) > −c(δ) exp(δn).
(iv) The τ -Li coefficients of F have the property that

lim sup
n→∞

|λF (n+ 1, τ)|1/n 6 1.

4. Some examples of functions in S]R
In [2], Bombieri and Ghosh considered the twisted Dirichlet series of Davenport–Heilbronn
type defined by

f(s, ξ;ψ) =

∞∑
n=1

a(n, ξ)ψ(n)

ns
, (4.1)

where ξ is a complex number, ψ is a completely multiplicative function satisfying the condition
|ψ(p)| < p for all primes p and the coefficients a(n, ξ) are defined as
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a(n, ξ) =



1, n ≡ 1 (mod 5),

ξ, n ≡ 2 (mod 5),

−ξ, n ≡ 3 (mod 5),

−1, n ≡ 4 (mod 5),

0, n ≡ 0 (mod 5).

In this section we consider in greater detail two special cases of the function f(s, ξ;ψ).We also
define a new Dirichlet series of similar type using congruence modulo 7 and two parameters
ξ and ρ. We deduce sufficient conditions for those functions to belong to the class S] and,
further, to S]R.

Example 1. When ψ ≡ 1 and ξ = ξ+ = −φ+
√

1 + φ2, where φ = (1 +
√

5)/2 is the golden
ratio, the Dirichlet series f(s, ξ;ψ) coincides with the Davenport–Heilbronn L-function; see for
example [18, § 10.25]. Actually, ξ+ is one solution of the quadratic equation

sin

(
4π

5

)
+ ξ sin

(
8π

5

)
= ξ

(
sin

(
2π

5

)
+ ξ sin

(
4π

5

))
(4.2)

whose second solution is ξ− = −φ−
√

1 + φ2.
Let us put LDH(s, ξ) = f(s, ξ;ψ), where f(s, ξ;ψ) is the series defined by (4.1) with ψ ≡ 1

and ξ is a complex number. Then, following [18, § 10.25], we easily see that the function
LDH(s, ξ±) satisfies the functional equation(

5

π

)s/2
Γ

(
s+ 1

2

)
LDH(s, ξ±) = ±

(
5

π

)(1−s)/2

Γ

(
1− s

2

)
LDH(1− s, ξ±). (4.3)

Actually, we can say more about the function LDH(s, ξ) when the parameter ξ takes real
values.

Proposition 4.1. Assume that the function LDH(s, ξ) with real ξ has a zero outside the
critical strip 0 6 Re(s) 6 1 (or outside the critical line under the generalized Riemann
hypothesis for the L-functions L(s, χ), where χ is a character modulo 5).

Then LDH(s, ξ) ∈ S]R if and only if ξ = ξ±, that is, ξ is one of the solutions of the
equation (4.2).

Proof. If ξ = ξ± are the solutions of (4.2), it is obvious that LDH(s, ξ±) ∈ S]R. Furthermore,
in [18, § 10.25], it is proved that LDH(s, ξ+) has a zero outside the critical strip 0 6 Re(s) 6 1.
Bombieri and Ghosh [2] have proved that the function LDH(s, ξ−) also possesses zeros outside
the critical strip 0 6 Re(s) 6 1. Therefore, it is left only to show the converse statement.

Notice first that LDH(s, ξ) has real coefficients and hence LDH(s, ξ) = LDH(s̄, ξ). Therefore,
the functional equation condition implies that if LDH(s, ξ) = 0, then also LDH(1 − s, ξ) = 0.
We may write

LDH(s, ξ) =
1− ξi

2
L(s, χ) +

1 + ξi

2
L(s, χ̄),

where χ is the character modulo 5 that takes the values χ(1) = 1, χ(2) = i, χ(3) = −i, χ(4) =
−1. Also,

LDH(1− s, ξ) =
1− ξi

2
L(1− s, χ) +

1 + ξi

2
L(1− s, χ̄).

Hence, if LDH(1− s, ξ) = 0, then

1− ξi
2

L(1− s, χ) +
1 + ξi

2
L(1− s, χ̄) = 0
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and thus

L(1− s, χ̄) = −1− ξi
1 + ξi

L(1− s, χ). (4.4)

On the other hand, if LDH(s, ξ) = 0, then by the functional equation for the L-functions L(s, χ)
and L(s, χ̄), we have

τ(χ)
1− ξi

2
L(1− s, χ̄) + τ(χ̄)

1 + ξi

2
L(1− s, χ) = 0.

Substituting (4.4), we obtain

τ(χ)
1− ξi

2

(
−1− ξi

1 + ξi
L(1− s, χ)

)
+ τ(χ̄)

1 + ξi

2
L(1− s, χ) = 0.

The above equation holds true for all zeros s of LDH(s, ξ). Now, we take s to be the zero
of LDH(s, ξ) outside the critical strip 0 6 Re(s) 6 1 (or outside the critical line under the
generalized Riemann hypothesis for the L-functions L(s, χ)); hence, L(1 − s, χ) 6= 0 and the
above equality becomes

−τ(χ)
(1− ξi)2

1 + ξi
+ τ(χ̄)(1 + ξi) = 0. (4.5)

Since

τ(χ) = 2i sin

(
2π

5

)
− 2 sin

(
4π

5

)
and

τ(χ̄) = 2i sin

(
2π

5

)
+ 2 sin

(
4π

5

)
,

a simple computation shows that equation (4.2) is equivalent to (4.5). This completes the
proof.

Example 2. Define the function

L7(s, ξ, ρ) =

∞∑
m=1

b(m, ξ, ρ)

ms
, (4.6)

where

b(m, ξ, ρ) =



1, m ≡ 1 (mod 7),

ξ, m ≡ 2 (mod 7),

ρ, m ≡ 3 (mod 7),

−ρ, m ≡ 4 (mod 7),

−ξ, m ≡ 5 (mod 7),

−1, m ≡ 6 (mod 7),

0, m ≡ 0 (mod 7)

and the complex numbers ξ and ρ satisfy the system of equations
sin

(
4π

7

)
+ ξ sin

(
8π

7

)
+ ρ sin

(
12π

7

)
= ξ

(
sin

(
2π

7

)
+ ξ sin

(
4π

7

)
+ ρ sin

(
6π

7

))
,

sin

(
6π

7

)
+ ξ sin

(
12π

7

)
+ ρ sin

(
18π

7

)
= ρ

(
sin

(
2π

7

)
+ ξ sin

(
4π

7

)
+ ρ sin

(
6π

7

))
.

(4.7)
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The properties of the function L7(s, ξ, ρ) can be summarized in the following proposition.

Proposition 4.2. For all complex values of ξ and ρ satisfying the system (4.7), the function
L7(s, ξ, ρ) defined by (4.6) belongs to the class S] and satisfies the functional equation(

7

π

)s/2
Γ

(
s+ 1

2

)
L7(s, ξ, ρ) =

2√
7

Ξ(7)

(
7

π

)(1−s)/2

Γ

(
1− s

2

)
L7(1− s, ξ, ρ), (4.8)

where

Ξ(7) := sin

(
2π

7

)
+ ξ sin

(
4π

7

)
+ ρ sin

(
6π

7

)
. (4.9)

Proof. First, we prove that if ξ and ρ are solutions of the system (4.7), then

|Ξ(7)|2 = 7
4 .

Adding the trivial equation

sin

(
2π

7

)
+ ξ sin

(
4π

7

)
+ ρ sin

(
6π

7

)
= sin

(
2π

7

)
+ ξ sin

(
4π

7

)
+ ρ sin

(
6π

7

)
as the first equation of the system (4.7), multiplying the jth equation by sin( 2πj

7 ), j = 1, 2, 3,
and taking the sum, we get the equation

3∑
j=1

sin2

(
2πj

7

)
+ ξ

3∑
j=1

sin

(
2πj

7

)
sin

(
4πj

7

)
+ ρ

3∑
j=1

sin

(
2πj

7

)
sin

(
6πj

7

)
= |Ξ(7)|2.

A simple application of trigonometric identities implies that the factors multiplying ξ and ρ
in the above equation are equal to zero, while the constant term on the left-hand side is equal
to 7/4; hence, |Ξ(7)|2 = 7/4. This shows that the term

2√
7

Ξ(7)

that multiplies the right-hand side of the equation (4.8) is a complex number of modulus one.
The function given by (4.6) is a Dirichlet series with bounded coefficients and hence it

converges absolutely in the half-plane Re(s) > 1. It is holomorphic also at s = 1. Therefore, it
is obvious that L7(s, ξ, ρ) satisfies the first two axioms of the class S]. In order to prove that it
belongs to S], it is left to prove the functional equation axiom. For that purpose we will write
L7(s, ξ, ρ) as a linear combination of Hurwitz zeta functions ζ(s, z), namely,

L7(s, ξ, ρ) =
1

7s

(
ζ

(
s,

1

7

)
+ ξζ

(
s,

2

7

)
+ ρζ

(
s,

3

7

))
− 1

7s

(
ρζ

(
s,

4

7

)
+ ξζ

(
s,

5

7

)
+ ζ

(
s,

6

7

))
.

Using the functional equation for the Hurwitz zeta functions together with the relation

sin
πs

2
cos

2jmπ

7
+ cos

πs

2
sin

2jmπ

7
− sin

πs

2
cos

2(7− j)mπ
7

− cos
πs

2
sin

2(7− j)mπ
7

= sin

(
2jmπ

7
+
πs

2

)
− sin

(
2(7− j)mπ

7
+
πs

2

)
= 2 sin

2jmπ

7
cos

πs

2

for j = 1, 2, 3, we obtain that, for Re(s) < 0,

L7(s, ξ, ρ) =
4Γ(1− s)
7s(2π)1−s

cos
πs

2

∞∑
m=1

1

m1−s

(
sin

(
2mπ

7

)
+ ξ sin

(
4mπ

7

)
+ ρ sin

(
6mπ

7

))
.
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Applying the doubling formula for the gamma function and using the fact that

cos
πs

2
=

π

Γ((s+ 1)/2)Γ((1− s)/2)
,

we get

L7(s, ξ, ρ) = 2 · 7−sπs−1/2 Γ(1− s/2)

Γ(1/2 + s/2)

∞∑
m=1

1

m1−s

(
sin

(
2mπ

7

)
+ξ sin

(
4mπ

7

)
+ρ sin

(
6mπ

7

))
.

Comparing the coefficients of the series

∞∑
m=1

b(m, ξ, ρ)

m1−s · Ξ(7)

and
∞∑
m=1

1

m1−s

(
sin

(
2mπ

7

)
+ ξ sin

(
4mπ

7

)
+ ρ sin

(
6mπ

7

))
,

we notice that (4.7) implies

L7(s, ξ, ρ) = 2Ξ(7) · 7−sπs−1/2 Γ(1− s/2)

Γ(1/2 + s/2)
L7(1− s, ξ, ρ).

This equation is equivalent to (4.8), which completes the proof.

Remark 2. In the case when ξ and ρ are real numbers satisfying (4.7), it is obvious that

L7(s, ξ, ρ) ∈ S]R. In this case, the set of equations (4.7) is satisfied for all (ξ, ρ) on the line
going through the points (0,−(sin 4π

7 )/(sin 12π
7 )) and (−(sin 6π

7 )/(sin 12π
7 ), 0).

Remark 3. There exists a σ > 0 such that L7(s, ξ, ρ) has no zeros in the region Re(s) > σ.
Indeed, L7(s, ξ, ρ) is a Dirichlet series with bounded coefficients and hence there exists σ > 0

such that ∣∣∣∣ ∞∑
m=2

b(m, ξ, ρ)

ms

∣∣∣∣ 6 ∞∑
m=2

|b(m, ξ, ρ)|
mRe(s)

< 1 for all s with Re(s) > σ

and therefore |L7(s, ξ, ρ)| > 0.

Example 3. Define L35(s, ξ−, χ7) = f(s, ξ−, χ7), where f is defined by (4.1) and χ7 is the
principal Dirichlet character modulo 7, namely,

χ7(m) =

{
1, m 6≡ 0 (mod 7),

0, m ≡ 0 (mod 7).

Writing the function L35(s, ξ−, χ7) as a linear combination of Hurwitz zeta functions and
proceeding as in the proof of Proposition 4.2, we see that L35(s, ξ−, χ7) belongs to the class

S]R and satisfies the functional equation(
35

π

)s/2
Γ

(
s+ 1

2

)
L35(s, ξ−, χ7) = (−1)

(
35

π

)(1−s)/2

Γ

(
1− s

2

)
L35(1− s, ξ−, χ7). (4.10)
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5. Numerical computations

In this section we present some numerical computations of τ -Li coefficients for different
L-functions. Our main focus will be the functions from the class S]R, especially the functions
discussed in the previous section. Moreover, since the classical Davenport–Heilbronn function
LDH(s, ξ+) and its associated function LDH(s, ξ−) can be written as a linear combination of
Dirichlet L-functions L(s, χ) and L(s, χ̄), where χ is the Dirichlet character of modulus 5 such
that χ(2) = i, in this section we will also conduct numerical computations related to the
function L(s, χ).

There are a number of approaches to the problem of numerically computing the τ -Li
coefficients of a given function. They are based on the different definitions for τ -Li coefficients
or on arithmetic formulas for these coefficients. Computationally speaking, the problem is quite
demanding, at least for large values of n. The main issue is the accumulation of the error terms
and the time required for the computation. In order to obtain some meaningful results, high
precision is needed in the input. Calculations based on the definition of τ -Li coefficients in
terms of sums over zeros of corresponding L-functions done with Mathematica 9 with precise
error estimates are presented in [7].

In this paper we use Arb, a C library for arbitrary-precision floating-point ball arithmetic,
developed by Johansson [8]. It supports efficient high-precision computation with power series
and special functions over the real and complex numbers with automatic error control. Thus,
the definition of the nth τ -Li coefficient in terms of the nth derivative of the complete
L-function given in Proposition 3.2, together with the power series representation of the
corresponding L-function, turns out to be acceptable for calculations.

Moreover, each function we used in the Arb implementation has precision as one of its
arguments (variable prec) that is used to control the error of the output. Since the ball
arithmetic is used, the output is written in the form of pairs of numbers; the first number
is the mid point and the second number is the radius of the interval to which the actual values
belong. The resulting error term is equal to the largest radius in the output and hence the size
of the error can be easily read off from the data obtained.

We start with the Taylor series representation around a given τ of the function log(ξF (s)),

log(ξF (s)) =

∞∑
k=0

ak(s− τ)k. (5.1)

From (3.2), it follows that

λF (n, τ) = n

n−1∑
k=0

(
n− 1

k

)
τn−kan−k. (5.2)

Thus, the main problem in this approach is to obtain coefficients ak from (5.1). In the present
paper we are dealing with the L-functions that can be expressed in terms of Hurwitz zeta
functions. This allows us to obtain the coefficients ak from the Taylor series representation
of Hurwitz zeta functions (a task Arb is especially adept to), combined with the power series
representation of the gamma factors that appear in the functional equation.

Extensive sets of numerical data were obtained based on the method explained above. We
will present but a select few in this paper. From the output produced we were able to read
off the error term. If the error term was not satisfactory, we would increase the value of the
variable prec in the arb code in order to reduce the size of the error. For example, in order to
produce data presented in Figure 5, we used the variable prec as equal to 20 times the maximal
value of n used in calculations. In this way we obtained accurate enough results so that there
is no visible difference between the obtained value and the value plus/minus the error term.
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Example 4. The Dirichlet L-function associated to a Dirichlet character χ modulo q is
defined for Re(s) > 1 by the Dirichlet series or the Euler product representation

L(s, χ) =

∞∑
n=1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1
,

and by analytic continuation elsewhere. In the case of the principal character χ0, the
corresponding L-function can be written in terms of the Riemann zeta function. If the character
χ is not principal, L(s, χ) is an entire function. The functional equation for the Dirichlet
L-function is of the form(

q

π

)(s+δ)/2

Γ

(
s+ δ

2

)
L(s, χ) =

τ(χ)

iδ
√
q

(
q

π

)(1+δ−s)/2

Γ

(
1 + δ − s

2

)
L(1− s, χ),

where

τ(χ) =
∑

a mod q

χ(a)e2πi(a/q) and δ =
1− χ(−1)

2
.

The above-mentioned properties make it abundantly clear that L(s, χ) belongs to the Selberg
class. Furthermore, this Dirichlet L-function can be written in terms of Hurwitz zeta functions
as

L(s, χ) =
1

qs

q∑
m=1

χ(m)ζ

(
s,
m

q

)
. (5.3)

We will conduct numerical calculations for L(s, χ), where χ is the Dirichlet character of
modulus 5 with χ(2) = i, that is, the same modulo 5 character that appears in the proof of
Proposition 4.1.

In this case, the L-function F (s) = L(s, χ) belongs to the Selberg class S with QF =
(5/π)1/2, r = 1, λ1 = µ1 = 1

2 and it can be written as

L(s, χ) =
1

5s

(
ζ

(
s,

1

5

)
+ iζ

(
s,

2

5

)
− iζ

(
s,

3

5

)
− ζ
(
s,

4

5

))
.

In Figure 1, we plot the real parts for the Li (τ = 1) and τ -Li coefficients for τ = 2 attached to
L(s, χ). The results are accurate up to 10−500. The fact that the values presented in Figure 1
are non-negative and show the absence of oscillations is evidence in support of the generalized
Riemann hypothesis for Dirichlet L-functions; see also computations presented in [14].

Example 5. The Davenport–Heilbronn functions LDH(s, ξ±), introduced in Example 1,
can be written as the linear combination of two Dirichlet L-functions L(s, χ) associated to the
Dirichlet character χ of modulus 5 with χ(2) = i

LDH(s, ξ±) =
1− iξ±

2
L(s, χ) +

1 + iξ±
2

L(s, χ)

as well as a linear combination of four Hurwitz zeta functions, using relation (5.3). Thus,

LDH(s, ξ±) ∈ S]R with QF = (5/π)1/2, r = 1, λ1 = µ1 = 1/2. The functional equation is given
by (4.3) and the complete function is

ξLDH(s, ξ±) =

(
5

π

)s/2
Γ

(
s+ 1

2

)
LDH(s, ξ±).

The functions LDH(s, ξ±) are amongst the first examples of functions which violate the genera-
lized Riemann hypothesis, as noticed in [9] and [2]. However, Bombieri and Ghosh proved
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Figure 1. Real parts of τ -Li coefficients attached to Dirichlet L-function.

Figure 2. τ -Li coefficients attached to LDH(s, ξ−).

in [2] that LDH(s, ξ−) has no zeros in the region Re(s) > σ−, where σ− ≈ 2.382286, and that
LDH(s, ξ+) has no zeros in the region Re(s) > σ+, where σ+ ≈ 1.120362. We have concentrated
on the function LDH(s, ξ−) and have numerically computed τ -Li coefficients for τ between 2
and 5 with step 0.5 and for n from 1 to 500 with step 5, with accuracy of 10−35. In Figure 2, we
plot some of the data obtained, that is, the τ -Li coefficients for τ ∈ {2, 3, 4, 5} and n up to 350.
The data for n up to 350 is computed with accuracy of 10−110. The negative values of
τ -Li coefficients and their exponentially growing amplitudes for τ = 2 and τ = 3 imply
the existence of zeros outside the strip 1 − τ/2 6 Re(s) 6 τ/2 (by Corollary 3.4). This is
in complete agreement with the plots of the zeros of the function under consideration given
in [2]. The case τ = 4 shows the appearance of small oscillations for n > 300, which increase for
larger values of n, as visible from Figure 3, while the case τ = 5 suggests the complete absence
of zeros in the right half-plane Re(s) > 5/2. Again, this agrees with the plot of zeros given
in [2], and it reflects the fact that there are zeros of LDH(s, ξ−) in the half-plane Re(s) > 2
and there are no zeros of LDH(s, ξ−) in the half-plane Re(s) > 5/2. Better insight into the
behavior of the τ -Li coefficients for LDH(s, ξ−) for a wide range of τ can be gleaned from the
color plot, obtained from the values of τ -Li coefficients for τ between 1 and 5 with step 0.01
and for n from 1 to 500 with step 1, given in Figure 4. As the τ -Li coefficients can take both
very small and very large values, we used a logarithmic scale while preserving the sign. For
all values of τ , notice that there is some range of n with increasing value of τ -Li coefficients.
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Figure 3. τ -Li coefficients attached to LDH(s, ξ−).

Figure 4. τ -Li coefficients attached to LDH(s, ξ−).

For values of τ from 1 to nearly 4, notice the gradually increasing oscillations. Alternating
blue and red sectors correspond to the ranges of n with negative and positive τ -Li coefficients,
while a darker shade indicates the increase in amplitude. The black dots correspond to the
smallest value of n for which λLDH(s,ξ−)(n, τ) is negative for a given τ.

Example 6. In this example we consider the function L7(s, ξ, ρ), where ξ and ρ satisfy the
system of equations (4.7), and look at the special case when ξ = 2 and ρ ≈ −3.2469796. We
have computed values of τ -Li coefficients for τ between 2 and 3 with step 0.2 and for n from
1 to 1000 with step 5 with accuracy 10−64.

The results are presented in Figures 5, 6 and 7, where we notice appearance of oscillations
of τ -Li coefficients for all plotted values of τ . In the case τ = 2.2, negative values of the
coefficients are obtained, so we may conclude that L7(s, 2,−3.2469796) possesses a zero in
the half-plane Re(s) > 1.1. The appearance of tiny oscillations for τ = 3 suggests also the
existence of a zero of L7(s, 2,−3.2469796) in the half-plane Re(s) > 1.5. And, indeed, negative
values are obtained for values of n close to 5000 as shown in Figure 8. For greater values of τ ,
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Figure 5. τ -Li coefficients attached to L7(s, 2,−3.2469796).

Figure 6. τ -Li coefficients attached to L7(s, 2,−3.2469796).

Figure 7. τ -Li coefficients attached to L7(s, 2,−3.2469796).

one would need to compute a wider range of n in order to obtain eventual negative values of
τ -Li coefficients. Moreover, a negative value of the τ -Li coefficient is obtained for very large
n, which also indicates that zeros of L7(s, 2,−3.2469796) with real part bigger than 1.5 are
sparse.
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Figure 8. τ -Li coefficients attached to L7(s, 2,−3.2469796) and τ = 3.

Figure 9. τ -Li coefficients attached to L35(s).

Figure 10. τ -Li coefficients attached to L35(s).

Example 7. Let L35(s) = L35(s, ξ−, χ7) be the function defined in Example 3. We have
computed τ -Li coefficients for values of τ between 1 and 3 with step 0.01 and for n from 1
to 500 with step 1, with accuracy up to 10−490. Some of the data obtained is presented in
Figures 9 and 10.
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Figure 11. τ -Li coefficients attached to L35(s) and τ = 4.6 and τ = 4.7.

Figure 12. τ -Li coefficients attached to L35(s) and τ = 4.7.

In [2], it is proved that L35(s) has no zeros in the half-plane Re(s) > σ35 ≈ 2.339463. This
means that we should expect the τ -Li coefficients to exhibit oscillations of growing amplitude
and eventually take negative values for τ < 2σ35 and monotonically increase for τ > 2σ35.
Figure 11 reflects the change in behavior between τ = 4.6 and τ = 4.7. Note that, for τ = 4.6, at
the beginning of the range, it seems that the τ -Li coefficients are increasing, and no oscillations
are visible. But later in the range oscillations develop and then they slowly get big enough
to produce negative coefficients. In this case, we had to go rather far to see the first negative
coefficient. For τ = 4.7, we computed the τ -Li coefficients up to n = 50 000 in order to illustrate
the increasing behavior, as shown in Figure 12.

All the data we obtained in our numerical calculations, partially presented in the plots
above, are in complete agreement with our analytical results and provide numerical evidence
for them. They are also in agreement with all other evidence on this topic that we are aware
of (for example [2, 7, 12]). We also produced some new results related to the location of zeros
of the function L7(s, 2,−3.2469796), which was not considered elsewhere.

The software we used to obtain the results presented here is quite efficient; thus, we were
able to perform the computations in a relatively short time.

Moreover, the above examples clearly indicate that Corollary 3.4 can be interpreted as a
method for detecting half-planes containing zeros of certain L-functions from S]R \ S in the
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sense that the existence of negative values of τ -Li coefficients, computed using the method
described above, implies existence of a zero ρ such that Re(ρ) > τ/2. For example, Figure 8
proves the existence of a zero ρ of L7 in the half-plane Re(s) > 1.5. Moreover, the numerical
investigations suggest that if τ -Li coefficients start oscillating, then it is very likely that for
large values of n they will become negative; therefore, once the oscillations are detected one
should increase the value of n in order to obtain the negative coefficient. Clearly, there is no
numerical method available for proving the zero-free region, since positivity of the first n τ -Li
coefficients can only be related to zero-free rectangles of a certain height, which is a function
of n and τ . (The numerical evidence suggests that the height of the rectangle is O(

√
n), for

large n, where the implied constant depends upon τ .)
For the detection of zeros farther from the critical line, we need greater values of τ and,

as our examples suggest, a wider range of n to obtain eventual negative values of τ -Li
coefficients. The level of complexity of computations depends obviously on the range of n
needed for the detection of a negative coefficient or the approximate position of a negative
coefficient. Besides this, our numerical results show that complexity also depends upon the
overall distribution of zeros of the L-function under consideration, meaning that the level of
complexity of computations is not a unique function of n and τ , independent of the L-function.
For example, for functions similar to the functions of Davenport–Heilbronn type considered in
[2], we have noticed that in the case when a large proportion of zeros of L(s) is concentrated
close to the critical line (which is the case for example for small positive values of ξ), then one
needs large values of n in order to notice oscillations of τ -Li coefficients for values of τ very
close to 2. Similar observations are discussed in [2], where a search for the zeros is performed
using the secant method.

Finally, our method is computationally different from the other methods for searching the
zeros with real part bigger than a given number (for example the secant method, used in [2], or
the method of deforming Dirichlet series presented in [1]). The method itself is very fast and
provides computations with arbitrary precision; however, it is not suitable for computations of
zeros; it provides information about (eventual) existence of zeros in certain right half-planes.
However, the numerical evidence we obtained suggests that if the first negative τ -Li coefficient
is attained at n, then in order to speed up the detection of the approximate location of the
first zero with real part greater than τ/2 using the secant method, one should start with initial
values τ/2 + i

√
n and τ/2 + δ + i

√
n, with some small δ > 0.

Moreover, the set of data we obtained can be used to investigate additional properties of
τ -Li coefficients attached to the functions from S]R, their zero-free regions or their distribution
of zeros. Some additional conjectures could be posed (and hopefully proved) for some specific
examples or for a class as a whole. For example, it is interesting to notice that the black
dots form a parabolic shape in Figure 4. We believe that the parabolic shape and its position
can be described by the zeros of the corresponding function and especially their horizontal
distribution. This will be a subject of our future investigations.

6. Discussion

The data we present above suggests that the τ -Li coefficients of an L-function F in the extended
Selberg class with real coefficients aF (n) can exhibit one of two behaviors as we fix τ and n
increases. The first possibility is that they increase at a rate ∼ cFn log n, for some constant
cF > 0 depending upon F , and exhibit no oscillations. (It is assumed that cF = (τ/2)dF ,
where dF =

∑r
j=1 λj is the degree of F ; see for example [4, 7] or [13].)

The other possibility is that λF (n, τ) start oscillating at some point. In this case the
amplitude of the oscillations keeps growing exponentially, which eventually causes the
coefficients to take negative values for some large n. Namely, from the formula (3.9), we see
that, in the case when the function F possesses a zero in the half-plane Re(s) > τ/2, then
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the leading term of the asymptotic behavior of the τ -Li coefficient λF (n, τ), as n → ∞, is

−2(1 + m)n
∑k
j=1 cos(nφj) − l(1 + m)n for some m > 0. The sum of cosines can be made

arbitrarily close to both k and −k (by Diophantine approximations) and hence this oscillates
with amplitude close to k(1 +m)n (which grows exponentially).

We surmise that no other behavior is possible for the τ -Li coefficients of a Dirichlet series
with real coefficients. Indeed, the same pattern can be seen in the data for the function L7 in
Example 6. There are really small oscillations for τ = 3 in Figure 7, and we found that the τ -Li
coefficients become negative later on, which can be seen in Figure 8. (That is, λL7

(4801, 3) <
0, λL7(4851, 3) < 0, λL7(4901, 3) < 0 and λL7(4951, 3) < 0.) It will be interesting to see if this
pattern extends to the full class of complex meromorphic functions considered in [3].
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