
THE REASON 
FOR ANTIPARTICLES 

Richard P. Feynman 

The title of this lecture is somewhat incomplete 
because I really want to talk about two subjects: 
first, why there are antiparticles, and, second, the 
connection between spin and statistics. When I 
was a young man, Dirac was my hero. He made a 
breakthrough, a new method of doing physics. He 
had the courage to simply guess at the form of an 
equation, the equation we now call the Dirac 
equation, and to try to interpret it afterwards. 
Maxwell in his day got his equations, but only in 
an enormous mass of 'gear wheels' and so forth. 

I feel very honored to be here. I had to accept 
the invitation, after all he was my hero all the time, 
and it is kind of wonderful to find myself giving a 
lecture in his honor. 

Dirac with his relativistic equation for the 
electron was the first to, as he put it, wed quantum 
mechanics and relativity together. At first he 
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thought that the spin, or the intrinsic angular 
momentum that the equation demanded, was the 
key, and that spin was the fundamental conse­
quence of relativistic quantum mechanics. How­
ever, the puzzle of negative energies that the 
equation presented, when it was solved, eventually 
showed that the crucial idea necessary to wed 
quantum mechanics and relativity together was the 
existence of antiparticles. Once you have that idea, 
you can do it for any spin, as Pauli and Weisskopf 
proved, and therefore I want to start the other way 
about, and try to explain why there must be anti-
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particles if you try to put quantum mechanics with 
relativity. 

Working along these lines will permit us to 
explain another of the grand mysteries of the world, 
namely the Pauli exclusion principle. The Pauli 
exclusion principle says that if you take the wave-
function for a pair of spin \ particles and then 
interchange the two particles, then to get the new 
wavefunction from the old you must put in a 
minus sign. It is easy to demonstrate that if Nature 
was nonrelativistic, if things started out that way 
then it would be that way for all time, and so the 
problem would be pushed back to Creation itself, 
and God only knows how that was done. With the 
existence of antiparticles, though, pair production 
of a particle with its antiparticle becomes possible, 
for example with electrons and positrons. The 
mystery now is, if we pair produce an electron and 
a positron, why does the new electron that has just 
been made have to be antisymmetric with respect 
to the electrons which were already around? That 
is, why can't it get into the same state as one of the 
others that were already there? Hence, the exis­
tence of particles and antiparticles permits us to 
ask a very simple question: if I make two pairs of 
electrons and positrons and I compare the 
amplitudes for when they annihilate directly or for 
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when they exchange before they annihilate, why is 
there a minus sign? 

All these things have been solved long ago, in a 
beautiful way which is simplest in the spirit of 
Dirac with lots of symbols and operators. I am 
going to go further back to Maxwell's 'gear wheels' 
and try to tell you as best I can a way of looking at 
these things so that they appear not so mysterious. 
I am adding nothing to what is already known; 
what follows is simply exposition. So here we go as 
to how things work-first, why there must be anti-
particles. 

RELATIVITY AND ANTIPARTICLES 

In ordinary nonrelativistic quantum mechanics, if 
you have a disturbing potential U acting on a 
particle which is initially in a state 4>0, then the 
state will be different after the disturbance. Up to 
a phase factor and taking h = 1, the amplitude to 
end up in a state x is given by the projection of x 
onto U$0. In fact, we have: 

A m P*„~x = -i/d3xX*£/<J»o= -i<x|tf|ft>>. (1) 

The expression (xl^l^o) 1S Dirac's elegant bra 
and ket notation for amplitudes, although I will 
not use it much here. I will suppose though that 
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this formula is true when we go to relativistic 
quantum mechanics. 

Now suppose that there are two disturbances, 
one at a time t1 and another at a later time t2, and 
we would like to know what the amplitude is for 
the second disturbance to restore the particle to its 
original state <J>0. Call the first disturbance Ux at 
time tv and the second U2 at time t2. We will need 
to express the successive operations of: the 
disturbance Ux, evolution from time tx to t2, and 
the disturbance £/2-this we will do using pertur­
bation theory. Of course, the simplest thing that 
could happen is that we go straight from <>0 to <j>0 

direct, with amplitude (<J>0|4>o) = 1- This is the 
leading order term of the perturbation expansion. 
It is the next to leading order term that corres­
ponds to the disturbance Ux putting the state <>0 

into some intermediate state i//m of energy Em, 
which lasts for time (t2 - tj, before the other 
disturbance U2 converts back to <>0. All possible 
intermediate states must be summed over. The 
total amplitude for the state <f>0 to end up in the 
same state <#>0 is then: 

Amp^^l-L^ol^x^J 
m 

xexp(-i£m(r2 - O X ^ J t A M ^ o ) - (2) 
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(I have assumed, for simplicity, that there is no 
first order amplitude to go from </>0 to <J>0; that is, 
that ( . y t / ^ o ) = 0 and (<t>0\U2\<j>0) = 0.) If we 
use plane waves for the intermediate states \pm and 
expand out the amplitudes (<j>0\U2\\pm) and 
( ' / U ^ i K ) . we see that 

/

t d3p 
d3x, d3x2 / \ b*(\7) 1 2J (2w)32Ep

 V 2} 

Xexp[-i[Ep(t2-tl) 

- p - ( x 2 - x 1 ) ] } a ( x l ) . (3) 

Here 

fl(Xl) = UfaWiWEp)* 

b(x2) = u2{x2)k>MA2Ep). 

and Ep = j(p2 + m2) for a particle of mass m. 
These E factors are arranged just to make 
the relativistic properties more apparent, as 
d3p/(2ir)32Ep is an invariant momentum density. 
The process can be written pictorially as in Fig. 1. 

We are going to study some special cases of the 
above formula. The way I am going to do it is first 
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(xl>t1) = xi 

(a) (b) 

Fig. 1 Diagrammatic representation of two contri­
butions to the amplitude for the transition <J>0 -* <J>0. 
(a) Direct; (b) indirect. 

to examine some very simple examples and then 
proceed a little more generally. Hopefully you will 
understand the simple examples, because if you do 
you will understand the generahties at once-that's 
the way / understand things anyway. 

In the indirect amplitude the particle is scattered 
from X! to x2 and the intermediate states are 
particles with momentum p and energy Ep. We are 
going to suppose something: that all the energies 
are positive. If the energies were negative we know 
that we could solve all our energy problems by 
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dumping particles into this pit of negative energy 
and running the world with the extra energy. 

Now here is a surprise: if we evaluate the 
amplitude for any a ^ ) and b(x2) (we could even 
arrange for a(xj) and b(\2) to depend on p) we 
find that it cannot be zero when x2 is outside the 
light cone of \ v This is very surprising: if you start 
a series of waves from a particular point they 
cannot be confined to be inside the light cone if all 
the energies are positive. This is the result of the 
following mathematical theorem: 

If a function f{t) can be Fourier decomposed 
into positive frequencies only, i.e. if it can be 
written 

r e-,w'F(w)dw, (4) 
o 

then / cannot be zero for any finite range of t, 
unless trivially it is zero everywhere. The vahdity 
of this theorem depends on F(u) satisfying certain 
properties, the details of which I would prefer to 
avoid. 

You may be a bit surprised at this theorem 
because you know you can take a function which is 
zero over a finite range and Fourier analyze it, but 
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then you get positive and negative frequencies. I 
am insisting that the frequencies be positive only. 

To apply this theorem to the case at hand, we fix 
xl and x2 and rewrite the integral over p in terms 
of the variable w = Ep. The integral is then of the 
form (4) with F(u) zero for w < m; F(u) will 
depend on xx and x2. The theorem applies directly; 
we see that the amplitude cannot be zero for any 
finite interval of time. In particular, it cannot be 
zero outside the light cone of xv In other words, 
there is an amplitude for particles to travel faster 
than the speed of light and no arrangement of 
superposition (with only positive energies) can get 
around that. 

Therefore, if t2 is later than t1 we get 
contributions to the amphtude from particles 
traveling faster than the speed of light, for which 
Xj and x2 are separated by a spacelike interval 
(' spacelike-separated'). 

Now with a spacelike separation the order of 
occurrence of f/j and U2 is frame-dependent: if we 
look at the event from a frame moving sufficiently 
quickly relative to the original frame, t2 is earlier 
than tv (Fig. 2). 

What does this process look like from the new 
frame? Before time t'2, we have one particle hap-
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pily traveling along, but at time t'2 something 
seemingly very mysterious happens: at point x2, a 
finite distance from the original particle, the dis­
turbance creates a pair of particles, one of which is 
apparently moving backwards in time. At time /{, 
the original particle and that moving backwards in 
time disappear. So the requirements of positive 
energies and relativity force us to allow creation 
and annihilation of pairs of particles, one of which 
travels backwards in time. The physical interpreta­
tion of a particle traveling backwards in time can 
most easily be appreciated if we temporarily give 
our particle a charge. In Fig. 2b, the particle 
travels from Xj to x2, bringing, say, positive charge 
from Xj to x2, yet since x2 occurs first it is seen as 
negative charge flowing from x2 to xx. 

In other words, there must be antiparticles. In 
fact, because of this frame-dependence of the se­
quence of events we can say that one man's virtual 
particle is another man's virtual antiparticle. 

To summarize the situation, we can make the 
following statements: 

(1) Antiparticles and pair production and de­
struction must exist. 

(2) Antiparticle behavior is completely deter­
mined by particle behavior. 
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-»x 

Light cone 

00 

0o 
(b) 

Fig. 2 The same process viewed from two different 
frames, (a) Original frame (f2 > tx)\ (b) moving 
frame (t'2 > t{). 

We will elaborate on the second point in detail 
below; for now, let the following suffice. If we 
reversed the sign of x, y, z and t then a particle 
initially traveling forward in time would find itself 
traveling backwards in time. If we define P as the 
parity operator which changes the sign of the three 
spatial directions, T as the time reversal operation 
which changes the direction of the flow of time, 
and finally C as charge conjugation which changes 
particles to antiparticles and vice versa, then 
operating on a state with P and T is the same as 
operating on the state with C, that is PT = C. 
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SPIN-ZERO PARTICLES AND BOSE 

STATISTICS 

Next I would like to study the sizes of amphtudes 
for different processes. This will lead us along a 
new direction in which we will get a clue about our 
second subject, the connection between spin and 
statistics. The central idea is that if we start with 
any state and act on it with any set of dis­
turbances, then the probabilities of ending up in 
all possible final states must add up to one. 

We will first look at a nonrelativistic example 
and then compare it to the relativistic case. Let us 
suppose there is a particle initially in a state <j>0 

and that it is acted upon by a disturbance. We 
want the probability of being in a given final state, 
calculated in perturbation theory. The amplitude 
that the particle is in <J>0 after the disturbance is 
given by (3); from this the probability of not doing 
anything is 

P r o b^*„ = 1 - 2 R e / d 3 x i d 3 x 2 

c d3p 
x / f—b*(\2) 

Xexp{-i{Ep(t2-tl) 

- p - ( x 2 - x1)]}a(x1), (5) 
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using |1 + a\2 = 1 + a + a* + ••• = 1 + 2 Re a 
+ ••• . 

The amplitude that the particle is in state \pp 

after the disturbance is 

A m p ^ , = -i/d3x^(x)tf(x)<J>0(x). (6) 

Notice that in Amp(4>0 -»<f>0) we kept terms of 
order U° and U2 and ignored higher order terms. 
Here we have only a term of order U1 and ignore 
terms of order U2 and higher to get Prob(<>0 -* p) 
to order U2. The probabihty is 

P r o b _ = 't'o — P 
-i/d3x^(x)J7(x)<,0(x) • (7) 

The total probability must be 1: 

P r o b - - ° + / p^? r o b— " '• (8> 

From this, we get a relation between the two 
processes: the process of scattering into another 
state, and the process of scattering twice ending up 
in the original state. DiagrammaticaUy, this is 
shown in Fig. 3. It is not too much work to show 
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2 2Re2 
p 

00 

Fig. 3 A diagrammatic identity that must be true if 
the total probability is to be one. 

that this relation is indeed satisfied for an arbitrary 
potential U(x, t). 

Let us move on to the relativistic case, for spin-
zero. Now we have a problem. In addition to the 
diagrams above, we need to allow for the fact that 
the intermediate state can be an antiparticle; in 
other words, we must add a diagram like Fig. 2b. 
To the total probability we must add twice the real 
part of this diagram. We have to find something 
else that cancels the contribution to the total 
probability of this new diagram so that the total 
probability remains one. 

14 

https://doi.org/10.1017/CBO9781107590076.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107590076.002


The reason for antiparticles 

2 * 2Re2 
i 

<f>o 

Fig. 4 A diagrammatic identity, for spin-zero parti­
cles, involving antiparticles. 

A clue to the mystery is that we can make an 
observation, shown in Fig. 4, which is analogous to 
Fig. 3. This relation is not supposed to be self-
evident, but if we calculate the two amplitudes we 
find that it is true. 

The new diagram, on the left hand side of Fig. 4, 
forced on us by relativity, is related to the diagram 
where a pair is created, with the particle in the 
state 4>0. Notice that it makes a negative contri­
bution to the total probability. So if we could 
introduce the diagram on the left hand side of Fig. 
4 into the calculation of the total probabiUty, the 
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total probability would turn out to be one and we 
would have the problem solved. 

However, simply including this diagram makes 
no sense, for a couple of reasons. First, the diagram 
on the left hand side of Fig. 4 starts from a 
different initial state (the vacuum rather than <f>0); 
and, second, there seems to be no reason to restrict 
ourselves to pair creation with the particle in state 
<f>0-any particle state is possible. We get the correct 
answer, but for the wrong reason. 

What I have told you so far is the truth but not 
the whole truth. We have neglected several 
diagrams, and when it is all put together we will 
get an important feature of Bose statistics: that 
when a particle is in a certain state the probability 
of producing another particle in that state is 
enhanced. 

Let us take one step back: instead of starting 
with a particle in <J>0 let us start in the vacuum V 
(i.e. the no-particle state), and examine our familiar 
idea that the total probability must be one. In the 
nonrelativistic case this would have been a trivial 
exercise: starting with no particles nothing could 
happen, and the probability of nothing happening 
would be one. In the relativistic case; on the other 
hand, we have seen that pair creation and annihi­
lation must be included. Because of this, the 
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(Vacuum-vacuum) 

(a) 

(b) (c) 

Fig. 5 Processes starting in the 'no particle state', i.e. 
the vacuum. 

disturbance can create and annihilate pairs of 
particles. It is not difficult to see that, to lowest 
order in perturbation theory, three diagrams are 
important, as shown in Fig. 5. The first diagram 
represents nothing happening: the vacuum remains 
the vacuum throughout the disturbance. The second 
diagram is a sum of vacuum to vacuum processes, 
summed over all the possible intermediate parti­
cles. In the third diagram a pair is produced. 

As usual, the total probability for something 
to happen is one. So in terms of the diagrams in 
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2 

Fig. 6 A diagrammatic identity where the initial state 
is the vacuum. 

Fig. 5, 1 = \5a + 5b+---\2+ |5c+ • • • | 2 + - - - , 
which gives the relation shown in Fig. 6. 

Returning now to processes where initially we 
have a particle in state <J>0, we must include pair 
creation and annihilation. We get a total of six 
diagrams, as shown in Fig. 7. The first four restore 
the system to its original state, and the remaining 
two alter the state of the system. 

We have seen in the nonrelativistic case that the 
probabilities from Fig. 7b and e cancel (see Fig. 3) 
so those from Fig. 7c, d and e must also cancel. At 
first sight, comparing these diagrams with those in 
Fig. 5, it seems as though Fig. 7d and f should 
cancel as did Fig. 5b and c, since they differ only 
by a 'spectator' particle which is irrelevant (or so it 
seems). We would then be left with Fig. 7c, which 
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(a) (b) 

2 * 
<7 

00 

(c) 

2 

(d) (e) 

2 P N y / ^ 

(0 

Fig. 7 Diagrams starting with a particle in the state 
<f>o-

is the problem we ran into immediately when we 
began the relativistic case: what cancels this contri­
bution to the probability? 

The resolution is subtle and beautiful: the 'spec­
tator' in Fig. 7f is far from irrelevant! Con­
sider the special case of Fig. 7f where the state p is 
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h |0o I i0o 0O I 

+ 

Fig. 8 One of the diagrams from Fig. 7f, with the 
exchange diagram. 

the initial state <|>0. Then we have initially one 
particle in the state 4>0, and finally two particles in 
this state and one antiparticle in the state q. How 
can we be sure which of the final particles is the 
initial one, and which arose from the pair creation? 
The answer is that we cannot. In other words, we 
must include an extra diagram; Fig. 8 shows one 
of the diagrams contributing to Fig. 7f, as well as 
showing this so-called 'exchange' diagram. 

It is this additional exchange possibility which 
resolves our problem. The two diagrams of Fig. 8 
interfere constructively, and this extra contribution 
to the total probability cancels the negative 
contribution (see Fig. 4) from Fig. 7c. 
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So let me summarize the situation. We've added 
a few extra diagrams to account for the fact that 
pair production can occur; in particular we've had 
to add the diagram in Fig. 7c. We discovered that 
when we try to check the sum of the probabilities, 
this diagram (Fig. 7c) makes a negative 
contribution to the total probabihty, which must 
cancel something. What it cancels is an extra 
probability for producing, in the presence of a 
'spectator' particle, the special particle-antipar-
ticle pair where the newly produced particle is in 
the same state as the 'spectator'. 

This enhanced probabihty is a very profound 
and important result. It says that the mere presence 
of a particle in a given state doubles the proba­
bility to produce a pair, the particles of which are 
in that same state. If there are n particles initially 
in that state, the probabihty is increased by a 
factor n + 1. This can obviously become very im­
portant! This is a key feature of Bose statistics, 
which makes the laser work, among other things. 

As another example, let's look at some higher 
order vacuum-to-vacuum diagrams. Suppose the 
disturbing potential acts four times, producing and 
annihilating two particle-antiparticle pairs, as in 
Fig. 9a. Now suppose you compared that to what 
would happen if you produced the pairs and each 
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00 CO 
(a) (b) 

Fig. 9 (a) Two pair productions with no exchange, 
(b) Two pair productions with an exchange. 

particle didn't annihilate with the antiparticle it 
was created with, but with the other antiparticle. 
You would get a diagram like Fig. 9b. These two 
amplitudes add to make a contribution to the 
vacuum-to-vacuum amplitude. It is very simple 
and it makes Bose statistics. 

Bose statistics, as a matter of fact, is not so very 
mysterious. The fact that the amplitude is to be 
added when two identical particles going A, B to 
A', B' arrive A to B' and B to A' instead of A to 
A' and B to B', seems very natural, for it appears 
to be merely a special case of the general quantum 
mechanical principle: if a process can occur in 
more than one alternative way, we add an ampli­
tude for each way. Again, if particles arise from 
the quantization of a classical field (such as the 
electromagnetic field, or the vibration field of a 
crystal) the correspondence principle requires Bose 
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particles if intensity correlations are to be correct, 
such as in the Hanbury Brown Twiss Effect.* More 
simply the field mode harmonic oscillators, when 
quantized, automatically imply a representation as 
Bose particles. 

What we will find out later is that for fermions, 
particles with half-integral spin, unexpected minus 
signs arise. In the case of Fig. 9, for example, each 
loop gives the amplitude a minus sign. Therefore 
Fig. 9a has two minus signs, whereas Fig. 9b 
(which has only one loop) has one minus sign, so 
the amplitudes subtract and you get Fermi statis­
tics. We are going to have to understand why with 
spin \ there is a minus sign for each loop. The key 
is that there are implicit rotations by 360°, as we 
shall see. 

THE RELATION OF PARTICLE AND 

ANTIPARTICLE BEHAVIOR 

Before we talk about fermions, I would like to 
return to explain in a bit more detail the 
relationship between particle behavior and anti-
particle behavior. Of course, the antiparticle 

* R. P. Feynman (1962). Theory of Fundamental Processes, pp. 4-6, 

W. A. Benjamin. 
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behavior is completely determined by the particle 
behavior. Let me analyze this more carefully in the 
simplest case of spin-zero and scalar potentials U. 
We have seen that for t2 > tx the amplitude for a 
free particle of mass m to go from xx to x2 is 

, d3p F{2>l) = hn^7 
J (2w) 2Ep 

Xexp{-i[Ep{t2- tx) - p - ( x 2 - X l ) ] } . 

(9) 

This formula is relativistically covariant, so for 
spin-zero we may take a, b constant in (5). We 
want to know what the amplitude is for t2 < tv 

For t2< tx and spacelike separation, the answer 
is easy: the amplitude is still F(2,1). This is because 
we know F(2,1) is correct in the spacelike region 
for t2 > tv but if we look at such a process in a 
different frame, it must always be spacelike but we 
can have t2 < tv In that frame we would get the 
same amplitude-it can't depend upon which frame 
we're in-and when we try to write F(2,1) in terms 
of the transformed frame's coordinates we get the 
same formula because .F(2,1) is relativistically 
covariant. So F(2,1) is the correct formula for the 
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amplitude in either the forward light cone or in the 
spacelike region. What about the backward light 
cone? 

The other piece of information we need is that 
for t2< tx we are still propagating only positive 
energies. Therefore in this region we must be able 
to write the amplitude in the form 

G(2 , l )= r e
+ i ^ - ' ' )

X ( x 1 , x 2 , ( o ) d c o ) (10) 
•'o 

where x is some function we want to determine. 
The reason for the change of sign in the exponential 
is as follows. We are creating waves at xv which 
we insist contain only positive energies or 
frequencies as we leave the source. In other words, 
the time dependence must be exp(-iwAr) with 
w > 0. Here At is the time away from the source, 
which must be positive. For t2 > tl the waves have 
existed for time At = t2 - tx; for t2 < t1 the waves 
have existed for time At = t1 — t2. 

So for t2 < tv whether in the past light cone or 
the spacelike region, we must be able to write the 
amplitude in the form of (10). This means that 
when t2 < tx in the spacehke region, we could use 
either (9) or (10) to obtain the amplitude. This is 
going to determine G in that region, and it will 
then extrapolate uniquely for all t2 < tv 
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For t2< tx and xt and x2 spacelike separated, 
we have an expression (9) which is a sum of 
negative frequencies. The question is, can we also 
express it as a function of positive frequencies 
alone? Ordinarily you can't do it. It's magic, but 
for this particular function which is relativistically 
invariant it is possible. Let me show you why. 

First, for tx = t2, F(2,1) is real. In that case the 
exponential is just exp[ip • (x2 - \x)] and the 
imaginary part is an odd function integrated over 
an even domain, which is zero. But if F is real for 
tl = t2 then it must be real for any tx and t2 with 
spacelike separation by relativistic invariance: a 
moving observer would calculate the same real 
amplitude, yet to him t2 ¥= tx. Since it is real it is 
equal to its complex conjugate, which has the 
opposite-sign time dependence. So a solution for 
G(2,1) is the complex conjugate of F{2,1): 

, d3p 

Xexp{+i[£„(f2 - h) - p • (x2 - X l)]}. 

(11) 

This has the correct form: it propagates only posi­
tive energies. This must be the unique solution, for 
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no function of type (10) can differ from this solely 
in the backward light cone, by theorem (4). So if t2 

is above tx in the forward light cone, the answer is 
equation (9); if /2 is below tx in the backward light 
cone the answer is equation (11); and in the 
intermediate region where tx and t2 are spacelike 
separated the answer is either (9) or (ll)-they're 
equal! 

We started by knowing something in one region 
of spacetime, and, just by supposing that it is 
relativistically invariant, we were able to deduce 
what happens all over spacetime. That's not so 
mysterious. If we knew something in just one 
region of a four-dimensional Euclidean space, but 
knew its rotational transformation properties (in 
our example, the function is invariant) we could 
rotate our region in any direction and watch things 
change in some well-defined way; then we could 
work things out all over our Euclidean four-space. 
Here we have four-dimensional Minkowski space-
time, x, y, z and t, which is a little different-but 
not that much; we can still do it. The difficulty 
with Minkowski space is that there is a kind of 
no-man's land where t2 is outside the light cone of 
tx\ the Lorentz transformations can't really move 
through there. But we have obtained the correct 
continuation across this spacelike region because 
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supposing the energies are always positive limits 
the solution. In other words this operation PT 
which changes the sign of everything is really a 
relativistic transformation, or rather a Lorentz 
transformation, extended across the spacelike 
region by demanding that the energy is greater 
than zero. So it is not so mysterious that relativis­
tic invariance produces the whole works. 

SPIN \ AND FERMI STATISTICS 

So that was spin-zero, and now I would like to do 
spin \ and see what happens. If you have a spin \ 
state and you rotate it about, say, the z-axis by an 
angle 8, then the phase of the state changes by 
e-i0/2 There is a whole mass of group theoretic 
arguments to prove this sort of thing which I won't 
go into now, although it's a lovely exercise. The 
point is that if you rotate by 360° then you end up 
multiplying the wavefunction by (-1). At this 
point all attempts to do anything by instinct fail, 
because this result is hard to understand. How can 
a complete 360° rotation change anything? One of 
the hardest things now will be to keep track of 
whether you've made a 360° rotation or not, i.e. 
whether you should include the minus sign or not. 
In fact, as we shall see, the mysterious minus signs 
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in the behavior of Fermi particles are really due to 
unnoticed 360° rotations! 

Dirac had a very nice demonstration of this 
fact-that rotation one time around can be 
distinguished from doing nothing at all.* 
In fact, it's rotation twice around that is 
about the same as doing nothing. I'll show 
you something you can find dancing girls 
doing! Here-I am going to rotate this cup 
(see photograph sequence overleaf), re­
member which way, all the way around 
until you can see the mark again, and now 
I have rotated 360°, but I'm in trouble. 
However, if I continue to rotate it still 
further, which is a nervy thing to do under 
the circumstances, I do not break my arm, 
I straighten everything out. So two rota­
tions are equivalent to doing nothing, but 
one rotation can be different, so you have 
to keep track of whether you've made a 
rotation or not, and the rest of this talk is a 
nerve racking attempt to try to keep track 
of whether you've made a rotation or not*. 

* For this demonstration due to Dirac, his famous scissors demonstra­
tion, see R. Penrose and W. Rindler (1984). Spinors and Space-lime, 
vol. 1, p. 43. Cambridge University Press. 

+ This was taken verbatim from Feynman's lecture. 
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I'll mention something else, just as an example, 
to give you an idea of the nature of the formulas 
that occur—it's typical to have half-angle formulas 
in this work. For example, suppose you have an 
electron and you know that the spin is + ^ along 
the z-axis. Then what is the probability that if you 
make a measurement of spin along another axis, 
call it the z'-axis, that the spin will be + \ along 
this new axis? If the angle between the two axes is 
6, then the answer is 

0 1 + cos 0 
probability = cos2— = 

amplitude = cos(0/2) = j[(l + cos0)/2]. (12) 
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Now we are going to study amplitudes in a spin \ 
theory with a scalar coupling. This means the 
disturbance, U, will be as simple as possible so 
that the spin parts of the amplitudes arise from the 
particles themselves, not from the disturbance, 
which will make the analysis easier. We will get 
formulas like the half-angle formula above, except 
with a relativistic modification. Here we go. 

If we have a particle of mass m we know that 
the energy and momentum must satisfy: 

E2-p2 = m2. (13) 

m2 is just a constant, of course, and p = |p| is the 
magnitude of the momentum. This means that 
given E, p is determined and vice versa, so we 
don't need two different variables. Now (13) looks 
like the trigonometry formula cos20 + sin20 = l, 
except for the factor m2 and a minus sign. We can 
use the hyperbolic functions rather than 
trigonometric functions to parametrize E and p in 
terms of just one variable. If we write 

E = wcoshw, 

p = wsinhw, (14) 

then E and p automatically satisfy (13): w is our 
new variable. It's called the rapidity. 
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Suppose we have a particle at rest in a given 
spin state and that the disturbance puts the particle 
into a state with momentum p. The initial 
momentum four-vector is px = (m, 0,0,0), and the 
final one is say p2- (E, p,0,0) with E and p as 
in (14). The amplitude for this scattering process is 
given by a sort of half-angle formula analogous to 
(12); up to irrelevant factors it is 

A^ a cosh(w/2). (15) 

In analogy to the spatial rotation case above, we 
can write this, again up to irrelevant factors, as 

Acatt a y(coshw + 1) a j(E + m). (16) 

We can uniquely write this amplitude in a 
relativistically covariant way by noting that px • p2 

= Em, where pl • p2 is the dot product of the two 
four-vectors. The amplitude can therefore be writ­
ten: 

^sca.t «APl-P2 + ™2)- (17) 

The power of rewriting it in a relativistically 
covariant way is that this amplitude, which we 
came up with in a special case, is now valid for any 
Pit Pi- We are going to use it to derive the ampli-
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tude for pair production. Suppose we choose px = 
(m, 0,0,0) as before, but p2 = (-E, -p, 0,0). This 
negative energy state represents an antiparticle, of 
course. Now px • p2 = —Em and we get: 

Apairccj(-mE + m2)ay(E-m) (18) 

as the amplitude for pair production. 
Using these results, we are going to modify our 

discussion of total probabilities above to the case 
of spin \, and we will see that we are forced to 
invoke the Pauli exclusion principle. The discus­
sion is quite similar to the spin zero case, so I will 
concentrate mainly on the difference between 
spin-zero and spin \. 

If we study processes starting from the vacuum, 
the spin-zero discussion carries over directly and 
we get the relation shown in Fig. 6. 

Let us now study processes starting from a 
particle in the state <>0, which we now take to be a 
particle at rest. We get the same six diagrams as in 
Fig. 7, but this time the amplitudes among related 
diagrams obey drastically different relations. 

For the total probability, we are interested in the 
real part of Fig. 7b, c, and d, and the absolute 
square of Fig. 7e and f. Let us start with Fig. 7b. 
In this process the particle scatters into the state p 
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at xv and propagates to x2, where it scatters back 
into the state </>0. From (17) we know the scat­
terings give a factor ^(E + m) each, so the ampli­
tude for Fig. 7b is: 

t d3P / 
b J (27r)32£/ ' ' 

Xexp{-i[Ep(t2- tx) - p - ( X J - X J ) ] } , 

(19) 

where the minus sign comes from the factors - i at 
each vertex. 

The probability for the scattering process in Fig. 
7e is given by the absolute square of (16), so 
summing over momenta it turns out that (16) and 
(19) imply that the relation shown in Fig. 3 holds 
for spin \ particles as well. 

We must now be careful to obtain the correct 
expression for Fig. 7c. It must be an expression 
with negative frequencies equal to (19) when r2,x2 

and tv Xj are spacelike separated. But (19) 
evidently equals -[m + i(d/dt2)F(2,l)] (see (7)), 
which equals -[m + \{d/dt2)G{2,1)] in the 
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spacelike region so Fig. 7c must be, uniquely, 

Xexp{+i[£p(f2 - tx) - p • (x2 - xx)]}. 

(20) 

This has been obtained by analytic continuation 
arguments (as in the derivation of (11)), without 
using (18), although the factor (-E+ m) may 
also be thought of as arising from two factors of 
Apair (see (18)). 

The important difference between the spin \ and 
spin-zero cases occurs at this point: the relation 
shown in Fig. 4 is false for fermions. To see this 
for the spin \ case we have all the necessary 
ingredients. From (18) we get E - m for the 
necessarily positive probability of pair production; 
comparing this with the real part of the amplitude 
(20) (which has a factor —E + m times the spin-
zero amplitude) we get the relation shown in Fig. 
10, which differs from Fig. 4 by a crucial minus 
sign. 
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+ 2 = 2 Re 2 
9 

00 

Fig. 10 The corresponding identity to Fig. 4 for spin \ 
particles. 

Now, recall that in the Bose case, Fig. 7c made a 
negative contribution to the total probability. This 
meant there must be an extra, unexpected positive 
contribution in order for everything to balance 
out. The tricky business could be reduced to Fig. 
7d and f with p = 0, and Fig. 7c. It was seen that 
adding the exchange diagram (Fig. 8) provided the 
necessary positive contribution. The net impUcation 
was that Bose statistics were needed. 

In the Fermi case, in contrast, Fig. 7c makes a 
positive contribution to the total probability (as 
can be seen from Fig. 10) so that what we need is 
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an extra negative contribution. In fact, by virtue of 
Figs. 6 and 10, Fig. 7c and d (with p = 0) exactly 
cancel, so we are left with the requirement that the 
two diagrams in Fig. 8 must exactly cancel also, in 
order for the total probability to be one. 

From this we see that the amplitudes for 
diagrams which differ only by the interchange of a 
pair of fermions must be subtracted. It all fits 
together only if you say that when there is a 
'spectator' particle in a certain state the proba­
bility of producing another particle in that state by 
new pair production is decreased for fermions: 
instead of the amplitude going up to 1 + 1 = 2 as 
in the Bose case, it goes to 1 — 1 = 0 in the Fermi 
case. The rule is that if you have a particle in a 
state you can't make another particle in that state 
by pair production, and the fact that the initial 
particle is preventing something that you expected 
to happen from happening, shifts the probability 
the other way as needed. Thus we have 
demonstrated for a specific example the con­
nection between spin and statistics; that it is 
different for spin \ than it is for spin-zero. We 
have used relativity with quantum mechanics and 
have of course the formulas of the Dirac equation. 
We shall now continue to discuss it to obtain an 
even clearer idea of just why it works. 
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ANTIPARTICLES AND TIME REVERSAL 

What I would like to do now is to formulate the 
general rule that connects a particle to its antipar-
ticle. We said before quite explicitly that all you 
need to do to work out the behavior of the anti-
particle is to look at the particle 'backwards'. To 
be more precise, the following is true. Suppose you 
start with an antiparticle in some initial state of 
momentum pi5 energy Ev spin state u{ (whatever 
spin the particle is). Starting in that state the 
antiparticle could do various things. For example, 
if the antiparticle is charged it could emit a photon 
with polarization a, momentum Qa, energy Ea, to 
end up in a final state of momentum pf, energy E(, 
spin u{. The amplitude for the antiparticle to do 
this is the same as the amplitude for the particle to 
do the reverse, namely for the particle to start off 
with momentum pf, energy E{, spin state (PT)us, 
absorb a photon of polarization - a*, momentum 
Qa, energy Ea, to end up in a state of momentum 
pi( energy E{, spin (PT)~lui (see Fig. 11). Hence 
you get the amplitude for particle behavior just by 
applying PT to the antiparticle behavior. Notice 
that PT applied to a state of momentum p, energy 
E, is also a state of momentum p, energy E. Why? 
Because the time reverse of the state has momen-
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Final state\C £>, p ' ) , M' 

Time r 
AE.,0.), 

. \(£/> p,0, u, 
Initial state 

(a) 

Time 

Final state 

(PTy'ui 

\E„,Qa),-a* 

Initial state le/l 
AEf,pf),(PT)uf 

(b) 

Fig. 11 A process involving (a) an antiparticle and 
(b) the corresponding process for the particle. 
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turn - p , energy E, but then applying parity and 
reversing all spatial directions puts it back to 
momentum p, energy E. PT does affect the 
polarization of the photon though, and also the 
spin states. Note that at one end of the process we 
must make the inverse transformation, i.e. a 
(PT)~l transformation. Although this sounds the 
same as PT, there is a subtle difference as we shall 
see in a minute. Hence the C that changes from 
particle to antiparticle is equivalent to a parity 
reversal P together with a time reversal T. 
Everything is done in the reverse order in time-for 
example, if you have circularly polarized light, the 
polarization vector is say (ex, ey) = (1, i), the time 
reversed polarization is (ex, ey)* = (1, — i) which 
has the electric vector going round in the reverse 
direction. Then PT(ex,ev) = -(ex,ey)* and so 
on. C = Pr-everything backwards in time and 
reversed in space. I'm not going to go through the 
details to prove it though. 

As mentioned above, when getting the particle 
behavior from the antiparticle, one spin state at 
one end has PT applied, the other at the other end 
has (PT)'1 applied. We would prefer to have the 
same transformation applied to both, because if 
the spin states «j and u{ are the same, then so are 
the spin states (PT)u{ and (PT)u(. We will need 
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to use this later. It turns out that there is no 
problem with the parity operation P, so let us 
choose the phases so that P2 = 1, i.e. two space 
inversions is the same as doing nothing. What we 
are going to show though is that for spin \ parti­
cles T~l = -T, i.e. that TT = - 1 , whereas for 
spin-zero TT = +1. That difference in sign, that 
extra minus sign, is where the Pauli exclusion 
principle and Fermi statistics come from. 

THE EFFECT OF TWO SUCCESSIVE 

TIME REVERSALS 

Why should it be that two time reversals change 
the sign of a spin \ particle? The answer is that 
changing T twice is equivalent to a 360° rotation. 
If I flipped the jc-axis twice, I would be rotating 
through 360°, and thinking in four-dimensional 
spacetime; the same could be true of the /-axis too. 
Indeed it is true as I will demonstrate below (even 
without implying any relativistic relation of t and 
x!). Then, as we said above, rotating a spin \ 
particle by 360° multiplies it by (-1), so we find 
TT = - 1 . Let's show that we must have TT = - 1 
for spin \. 

In Table 1 are listed various states, together with 
what you get if you apply T once, and then once 
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Table 1. The effect of time reversal on various states. 

State: \a) 

\p)=Le^\x) 
a\a) + 0\b) 

Integral spin states 
\j, m = 0) 

Spin \ states 
I + ' > 
I " * > 
| + x ) - ( | + z > + | - z » / V 2 
| - x) = (| + z) - | - z » / / Z 

Time reversed: T\a) 

\ - p) =Le-""\x) 
a*T\a) + P*T\b) 

ei*|7,m = 0) 

- | + z ) 
( | - 2 > - | + 2 » / V 2 = - | -JC> 
(| - 2) + | + 2»/ /> = | + *> 

Twice time reversed: TT\a) 

I/O 
«7T|a> + /S7T|A> 

ei*(e-i*|y,W = 0 » = |y,m = 0> 

-I +0 
- | - 2 ) 

- | + x > 
- | - x > 
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more. The first state is the state where a particle is 
at the point x in space; this state is written \x) 
using Dirac's notation. In between the ' | ' and the 
' ) ' one puts the name of the state, or just something 
to label it, which in this case is the point x where 
the state is. Then the time reversed state is T\x) = 
\x), i.e. the particle will be at the same point, no 
big deal. On the other hand, a particle in a state of 
momentum p (i.e. in a state \p)) will time reverse 
into a state of momentum —p, but then back to 
\p) with the second time reversal. 

Considering the state \p) shows us that T is 
what is called an 'antiunitary' operation. \p) can 
be made by combining states \x) at different 
positions with different phases. To get the time 
reversed state | — p) just take the states T\x) = 
\x) but with the complex conjugate of the phases 
used to construct \p). So in general T[a\a) + 
P\b)] = a*T\a) + p*T\b), i.e. for an antiunitary 
operation you must take the complex conjugates of 
the coefficients whenever you see them. Of course, 
if you apply T again, you take the complex conju­
gate of the coefficients again, and if you are very 
good at algebra you know that doing that is a 
waste of time. Now TT\a) must be the same 
physical state |a>, but the damn quantum 
mechanics always allows you to have a different 
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phase. So, by the above argument, TT\a) = phase 
\a) with the same phase for all states that could be 
superposed with the state \a), so that any 
interference between states is the same before and 
after applying TT. Spin-zero and spin ^ states 
cannot be superposed, the two sorts of state are 
fundamentally different; hence the overall phase 
change when you apply TT can be different 
between the two. 

What we are going to use now is that if you have 
a state of angular momentum \j,m), then T\j, m) 
= phase [/', —m). It must be like this for angular 
momentum: the time reverse of something spin­
ning one way is the object spinning in the opposite 
direction. For example, with orbital angular 
momentum L = r A p, we find that since T sends 
r -» r and p -» - p, then 7T = - L, i.e. you get 
the opposite angular momentum when you apply 
T. 

First of all consider integral spin states. There 
will be a state with no z-angular momentum, 
namely [/, m — 0). Applying one T this becomes 
the same state [/, m = 0) times some phase, but 
applying T again can only put the state back to 
exactly [/', m = 0), using the fact that T is 
antiunitary. So since the phase is the same for all 
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states that can be superposed, TT = +1 for 
integral spin states. 

To understand what happens with half integral 
spin let us take the simplest example of spin \. 
Let us try to fill out our table for just the four spe­
cial states, up and down along the z-axis, | + z), 
| — z), and up and down along the x-axis | + x), 
| — x). Elementary spin theory tells us how these 
latter two can be expressed in terms of the | + z) 
and | - z) base states: one of them, | 4- x), is the 
in-phase equal superposition, and the other, | - x), 
is the out-of-phase equal superposition. The physi­
cally time reversed state of | + z) is | - z) and 
vice versa. Likewise, time reversal of | + x) must 
send us to | — x) within a phase. 

For our first entry T\ + z) we must have \ — z), 
at least within a phase. This first phase can be 
chosen arbitrarily, as you can check later, so we 
may as well take T\ + z) = | - z). Now T\ - z) 
must be a phase times \ + z). But we cannot 
choose it to be simply \ + z) because then the 
operation of r on | + x), the in-phase super­
position of | + z) and | - z), will only give back 
the same in-phase state | + x) and not a factor 
times the out-of-phase state | - x), as it physically 
must. To make this phase reversal occur we must 
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take T\ — z) = — | + z), of opposite phase from 
what we did for T\ + z). Now T(T\ + z» = 
T\ - z) = - | + z) and the rest of the table can 
be filled out. Therefore TT = - 1 for spin \, as is 
easily shown for any half integral spin j , where 
time reversal never brings us back to the same 
physical state. Hence combining this with the re­
sult for integral spin particles, we have TT = 360° 
rotation. 

Now we come to the sign of the spin \ loop. 
You will recall that, with a potential in relativistic 
quantum mechanics, pairs can be produced so the 
probability for the vacuum (i.e. the no particle 
state) to remain the vacuum must be less than one. 
Write the amplitude for the vacuum remaining the 
vacuum as 1 + X, where X is the contribution 
from all the closed loops drawn on the right hand 
side of Fig. 6. Then X must contribute a negative 
amount to the probability for the vacuum to remain 
the vacuum, which is what the identity in Fig. 6 
says because the left hand side is strictly negative. 

Consider the loops contributing to X. A loop is 
constructed by starting with an electron, for 
example, in a state with Dirac wavefunction u, say, 
and then propagating around the loop to come 
back into the same physical state u, and we must 
take the trace of the resulting matrix product, 
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Fig. 12 A particle-antiparticle loop with the two 
time reversals T shown. 

summing over the diagonal elements. But there is a 
subtlety; the same physical state could have been 
rotated by 360°, and indeed we see we do have 
that (or its equivalent, TT). Whatever frame you 
watch this process from, the electron at some stage 
changes into a positron moving backwards in time 
(one T), and then later turns back to an electron 
moving forwards in time (another T), so propaga­
ting round the whole loop you eventually come 
back to the state TTu; see Fig. 12. 

The same TT operator will act in the boson 
(spin-zero) case too, but there we have TT = +1 
so there is no problem. In the boson case, 
everything works out; the ordinary trace in X 
leads to a negative contribution. But, in the spin \ 
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case, we have just found an extra minus sign. So to 
ensure the identity in Fig. 6 is true, to ensure that 
X leads to a negative contribution to the proba­
bility, we must add a new rule for half integral 
spin: with every ordinary loop trace we must as­
sociate an extra minus sign to compensate for the 
minus sign coming from TT = - 1 . If we don't put 
in this extra minus sign our probabilities won't add 
up, we won't have a consistent theory of spin \ 
particles. This sign is only consistent with Fermi 
statistics. 

This general rule for spin \ loops, that for each 
closed loop you must multiply by — 1, is why we 
have Fermi statistics; see Fig. 9. There is a relative 
minus sign between the two cases in Fig. 9a and b, 
because Fig. 9a has two loops, whereas Fig. 9b 
only has one loop. Fig. 9 thus says that when 
swapping two particles around you must introduce 
a relative minus sign, i.e. Fermi statistics! 

MAGNETIC MONOPOLES, SPIN AND 

FERMI STATISTICS 

Finally, to elucidate still more clearly the relation 
of the rotation properties of particles and their 
statistics, I would Uke to show you an example in 
which we have a spin \ object for which we know 
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Magnetic monopole \i • 

Fig. 13 A magnetic monopole ji in the presence of 
an electric charge q. 

where the angular momentum comes from. Sup­
pose we had a magnetic monopole in the presence 
of an electric charge (see Fig. 13). A magnetic 
monopole is something that Dirac invented, so it's 
appropriate to mention it in this lecture. A 
magnetic monopole is a source of magnetic flux in 
the same way an electric charge is a source of 
electric flux. No one has ever seen a magnetic 
monopole, but we can always imagine. In fact, if 
you just had a very long ordinary bar magnet then 
the magnetic flux coming out of one end would 
look a bit like one of these magnetic monopoles 
because the other end would be so far away. 

Anyway, suppose we had a magnetic monopole 
with magnetic charge ju. in the presence of an 
electric charge q, and we'll suppose that both these 

49 

https://doi.org/10.1017/CBO9781107590076.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107590076.002


RICHARD P. FEYNMAN 

objects have spin-zero, so we don't have to worry 
about any intrinsic angular momentum. But these 
objects are in each other's presence, so you can 
form the Poynting vector E A B in the normal 
fashion. Integrating over the Poynting vector tells 
you what the momentum is, and, if you work it 
out, this composite object has an angular momen­
tum (along the line joining the charge and pole) 
which is independent of how far apart the two 
objects are. You can work out what the angular 
momentum is in many ways, and I'll leave it as an 
exercise, but it turns out that the angular momen­
tum is equal to nq*. 

Now in quantum mechanics angular momentum 
must be quantized. In fact, one is only allowed to 
have angular momentum in multiples of (1/2)h, so 
let's take the smallest value allowed, that is let 
pq = (1/2) h, so we have constructed ourselves a 
spin \ object. Then we should find that rotating 
this object through 360° changes the phase by - 1 ; 
let's see if it does. 

* Perhaps the most elementary fashion for determining the angular 
momentum is to find the torque that must be applied to slew the 
axis (the line joining q and /x) around at angular velocity u by 
moving the electron around a circle about the pole. The force, of 
course, comes from the motion of the electron in the magnetic field 
of the pole. 
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Fig. 14 Rotating the electric charge q 360° around 
the magnetic monopole. 

Suppose the magnetic charge is fixed, and let me 
rotate the electric charge around it by 360° (see 
Fig. 14). Now there's a famous theorem that states 
that when you move an electric charge q through 
a magnetic field then the phase changes by 
exp(i^/A • dx), where /A • dx is the line integral 
of the vector potential A along the path that the 
electric charge follows. (That's meant to intimidate 
you!) In this situation, the line integral will be 
round the circle, but simple vector calculus tells me 
that I can convert the line integral of A into a 
surface integral of B, the magnetic field, over a 
surface which has the circle as a boundary. Sup­
pose I convert the line integral into an integral of 
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B over the upper hemisphere. The surface integral 
of B is just the flux flowing through the surface. 
Now the total flux emitted by the magnetic mono-
pole is 47771, i.e. the integral of the flux over an 
entire sphere which completely enclosed the mono-
pole would be 47rju,. Here we're only integrating 
over a hemisphere so we get half this, namely 21771. 
Thus the total phase change will be exp(277iju )̂ 
and using nq = \, this works out as exp(i77-) = - 1 , 
no problem, it's absolutely right. 

At this point I must digress briefly, because we 
are so close to an argument of Dirac's which shows 
that if just one monopole exists somewhere in the 
universe then electric charge must be quantized. 
The argument goes like this. Had I chosen to 
integrate over the lower hemisphere instead of the 
upper one, I would have gotten the same answer. 
In that case, the surface has the opposite 
orientation with respect to the direction of the line 
integral, so the phase change turns out to be 
exp(-i7r), which is still ( -1) . But notice that if 
the charge q were not quantized, at a multiple of 
h/2\i, then the two different surfaces would give 
different answers; an inconsistency. Hence the 
existence of magnetic monopoles implies charge 
quantization, and since we believe charge is 
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Fig. 15 Exchanging two charge-pole objects. 

quantized this makes some people believe in 
magnetic monopoles. 

Now suppose that we have two of these things, 
one charge-pole composite which I will call A, 
and another identical one which I will call B. 
Initially A is at the point x and B is at y (both 
pointing in the same direction, say up). What 
happens if I exchange them? Well, watch. 

Fig. 15a shows the exchange operation. We want 
to compute the phase change acquired in this 
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process. The only sources of phase changes are 
from the change in A moving round the pole in B, 
and the change in B moving round the pole in A. 
(The relative positions of the charge and pole 
within each composite do not change.) As seen by 
B, the exchange operation looks like Fig. 15b, 
while to A it looks like Fig. 15 c. Each relative 
motion contributes to the total overall phase change 
an amount exp(i^/A • dx/h). Since A is moving 
180° around B, and B itself is moving 180° around 
A, there is a 360° rotation here. Working out the 
phase change by looking at the line integrals, Fig. 
15b gives a line integral from x to y, but Fig. 15c 
gives a line integral returning from y to Jt-putting 
the two together you get the line integral around a 
complete closed loop around a pole just as for a 
360° rotation and hence a factor of ( — 1), as we 
have seen before. This is exactly what you expect 
with Fermi statistics of course-one has a factor of 
( -1 ) when two spin \ objects are interchanged. 
(We assumed the spin-zero parts, charges and poles, 
obeyed Bose rules.) 

SUMMARY 

We've gone a long distance in great detail, but the 
basic ideas are the things to remember. Here's how 
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Richard Feynman (presenting 
the Dirac Memorial Lecture). 

it went. If we insist that particles can only have 
positive energies, then you cannot avoid 
propagation outside the light cone. If we look at 
such propagation from a different frame, the 
particle is traveling backwards in time: it is an 
antiparticle. One man's virtual particle is another 
man's virtual antiparticle. Then, looking at the 
idea that the total probability of something hap­
pening must be one, we saw that the extra diagrams 
arising because of the existence of antiparticles 
and pair production implied Bose statistics for 
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spinless particles. When we tried the same idea on 
fermions, we saw that exchanging particles gave us 
a minus sign: they obey Fermi statistics. The 
general rule, was that a double time reversal is the 
same as a 360° rotation. This gave us the con­
nection between spin and statistics and the Pauli 
exclusion principle for spin \. That contains 
everything, and the rest was just elaboration. 

This is properly all that was in the lecture, but 
from talking with some of you and further thought, 
I should like to add some remarks that make the 
connection of spin and statistics still more obvious 
and direct. The discussion of the pole and charge 
objects obtained its result not through relativistic 
analysis of the action of two time reversals, but 
directly as the result of a 360° rotation. This 
argument can be made more general. We take the 
view that the Bose rule is obvious from some kind 
of understanding that the amplitude in quantum 
mechanics that correspond to alternatives must be 
added. What about the Fermi case? 

We have noted that for half integral spin objects 
the sign of an amphtude might be obscure, for 
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360° rotations may have occurred without having 
been noticed. 

Now the spin-statistics rule that we wish to 
understand can be stated for both cases simul­
taneously by the following single rule: The effect 
on the wave function of the exchange of two particles 
is the same as the effect of rotating the frame of one 
of them by 360° relative to the other's frame. And 
why should this be true? Why, simply because such 
an exchange implies exactly such a relative frame 
rotation! 

We have already noticed, in the pole-charge 
example, that if A and B are swapped (by paths 
that do not exactly intersect) A finds B going 
around it by a 180° rotation, and B sees A going 
around it also by 180° in the same direction; a 
mutual rotation by 360°. 

To verify that this is true generally, we can 
imagine (using an idea of David Finkelstein) the 
objects A and B connected at corresponding points 
to the ends of a ribbon or belt running between 
them. We can verify whether the frames have 
rotated relatively by looking for a 360° twist in the 
ribbon (when the ends A and B are exchanged the 
spacial location of the ribbon is approximately 
restored). And sure enough, swapping the objects 
(each moving parallel to itself, with no absolute 
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Fig. 16 In the sequence (a) to (e) the ends of the belt 
have been reversed in position. Note that the twist 
on the right-hand side in (e) conies out opposite that 
in (a). To restore it completely, an additional 360° 
turn of the right belt around the vertical would be 
necessary. 
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rotation) induces exactly such a twist in the ribbon 
(see Fig. 16). 

Since exchange implies such a 360° rotation of 
one object relative to the other, there is every 
reason to expect the (-1) phase factor occasioned 
by such a rotation for exchange of half integral 
spin objects. 
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