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SPACES WITH HOMOGENEOUS NORMS

A.J. PRYDE

Spaces with homogeneous norms are closely related to the Beppo

Levi spaces of Deny and Lions, to spaces of Riesz potentials, and

to Sobolev spaces. In this paper we survey the literature on

them, give a broad extension of their definition, and present

their basic theory. Many of the properties of Sobolev spaces

have their analogues. In fact, the two families are locally

equivalent. Spaces with homogeneous norms are especially suited

to the study of boundary value problems on Ft for homogeneous

elliptic operators with constant coefficients. We will use them

extensively in a forthcoming paper to study elliptic partial

differential equations with mixed boundary conditions on a

smoothly bounded domain.

1. Introduction

The most common class of function spaces in which to study boundary

value problems for elliptic partial differential equations is the class of

Sobolev spaces. However, a number of authors have also used spaces related

to the Beppo Levi spaces of Deny and Lions [4].

Following initial work by Beppo Levi, Nikodym, Deny and others (see

the references in [4]), Deny and Lions defined Beppo Levi spaces as

follows. Let ft be a connected open subset of Ft and E a complete

Hausdorff locally convex space continuously embedded in P'(ft) , the space
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190 A . J . Pryde

of Schwartz distributions on Si . For a non-negative integer m , BL (E)

m

is the space of distributions u satisfying uu 6 E for all partial

derivatives uu of u of order m , and is given the coarsest topology

for which all the maps u -*• D u are continuous from BL (E) into E .
m

The closure of {0} in BL (E) is P™' (SI) the space of polynomials on

SI of degree less than m . One of the main results ([4], Theorem 2.1) is

that the spaces BL^(E) = BL (E)//?~1(fi) are complete.

It follows that the spaces BL-(Sl) = BL-(L2(Sl)) are Hilbert spaces

with norm ||u|| given by the Dirichlet integral

„ n2 v- f i a ,2

Deny ana Lions used these spaces, with m = 1 , to consider the Dirichlet

and Neumann boundary value problems for the Laplacian.

Also with a view to studying the Dirichlet problem for the Laplacian,

Hormander and Lions [6] considered the completion tf(Sl) of the space

C (Si) with the respect to the norm (l.l). So u(Si) can be identified

with a closed subspace of BL'(Sl) .
m

Malgrange [S] improved the results of Hormander and Lions by replacing

the Dirichlet integral with a generalised Dirichlet integral corresponding

ct— ft
to a Hermitlan form of the type 2, a o? C where la I = |8| = m and

cxp

Following on work of Frostman, Riesz, Cartan and Deny (see the

references in [ 2 ] ) , Aronszajn and Smith [2] considered, for 0 < s < n/2 ,

the space RP (if ) , say, of. Riesz potentials u = K *f of order s of
s

functions / £ L [Ft ) , where
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The space is provided with the norm ||w||g = | | / | | . Defining the Fourier
L

transform / of / € L1 [if1) by

(1.3) /(C) = (2TT)"n/2

and extending the definition in the usual way to arbitrary / in the

Schwartz space S'[FT) , it follows that

(l.U) KU) = |C|"S , for 0 < s < n/2 .
O

Hence the norm of RP (FT) i s also given "by

(1.5) N l , = \\\Z\Su
, 2

Further, since j |C|Sw : u € C™^) >• i s dense in L2{Rn) (Lemma 2.1

below), i t follows that RPS [if1] i s a completion of ^(if1) . Also, as i s

proved in Stei n([20], v.1.1 and v.1.2), for example, if 0 < s < n/2 and

1/q = 1/2 - s/n , then

(1.6) EPS{Rn) ctfilf1)

and the embedding is continuous.

Aronszajn and Smith [3] showed that for all s > 0 an equivalent norm

to (1.5) is given by the generalized Dirichlet integral

(1.7) IM 2 = T \Dau\2dx , if s is an integer,
8 |ct|=s >

where [s] is the largest integer less than s . However, ([3], p.

if s 2: n/2 , C1™^) normed by (1.5) or (1.7) is not a functional space,

since norm convergence does not imply pointwise convergence of a sub-

sequence in any reasonable sense. For this reason, Aronszajn and Smith

turned their attention to Bessel potentials.

The Sobolev space IT (/r) , for s > 0 , is the space of Bessel
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potentials u = G *f of order s of functions / € L (if1) , wheres

(1.8) a8(« = d + k i 2 ) - s / 2 .

This defines a functional completion of C. {if1) with the norm

(1.9) M I 8 = w ( i + \ z \ r u \ \ .
L (R }

Moreover, the homogeneous norm (1.5) and the Sobolev norm (1.9) are

equivalent on C.(fl) for any bounded open subset !1 of / ( [ 3 ] ,

p . 1*08).

For a rb i t r a ry r ea l s , a (n ) i s the space of dis t r ibut ions

u € S'ilf1) for which u 6 ^ o c K ) and ( l + | ? | 2 ) s / 2 w € £ 2 ( i f ) . I t i s a

completion of C (it J with the norm (1 .9 ) . For an arbi t rary open subset

Q. of FT , ff (ft) denotes the subspace of H8 (if1) of dis t r ibut ions with

support in fi , and n{0l) the space of r e s t r i c t i ons to fi of

d i s t r ibu t ions in IIs (Ft ) with the infimum norm.

Shamir [77] and C'S] defined the space (/'(ft) , for an open subset Q

of n and s 5; 0 , to be the completion of C.(fi) with respect to the

norm (l.T). His purpose was to study elliptic partial differential

equations with mixed boundary conditions.

It is the purpose of this paper to extend the definition of these

spaces based on Riesz potentials to the case of arbitrary real s when

Q = K , K or R , and to present some of their important properties.

By Rn (i/2) is meant the subset of i?" determined by x > 0 (a; < 0)

where x = (x , ..., x ) = (x', x) €if". The notation we use for the

spaces is Z (ft) and we refer to them as spaces with homogeneous norms.

When handling elliptic equations with mixed boundary conditions,

various authors including Peetre [7/], [72], Shamir [77] and [79], and
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Vishnik and Eskin [27] and [22], have made use of known a priori, estimates

for the ordinary boundary conditions, and reduced similar estimates for the

mixed boundary conditions to estimates for Wiener Hopf operators. As

indicated in Pryde [15] and as we plan to demonstrate in a future paper,

this reduction can be generalized and greatly simplified using spaces with

homogeneous norms. They appear to be the natural spaces in which to

consider boundary value problems in R for homogeneous elliptic operators

with constant coefficients.

To indicate the use of these spaces we state a theorem to be proved in

a later paper. For this we consider an operator A{D) and boundary system

{BAD)) as follows. With E = (E , ..., E J = (£', f ) E fl" , let

4(5) = I «fe(5'>s! and B A D = 1 b -(£')£* , 0 < j «p-l ,
k=0 ° k=0 °K n

where aAZ,') and &.,(£') are positively homogeneous of order m - k

and m. - k respectively, and continuous for £' / 0 . For each £' f 0 ,

let

!•(£')

4+(C z) = TT K ( O )

where the 3,(5') are the roots of A(£,', 3) with positive imaginary

part. Let r = max r(C') and define the p x r matrix 8(^') = (8 .fe(£'))

by

B.(E', 3) E X B (£')/ (mod 4+(£', 3)) , 0 < j < p-1 ,
3 k=0 °K

where 8 .,(£') = 0 for r(C') ̂  fc S r-1 .

THEOREM 1.12. Suppose A is elliptic and let B denote the

operator

{BAD)) : %erA{l?l) -> f t Z8""^" V " 1 )

t/ze subscript ker 4 cfewotes t?ze kernel of A in the indicated
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spaee. Then B is left (right) invertible if and only if rank
8(?') = r(C') (respectively p ) for all £' + 0 .

2. Definitions

For real s let e [FT) denote the subspace of S'[lr) consisting
of polynomials of degree less than or equal to s and set

= <u € CQ{K) : u(x)p(x)dx = 0 for all p £ P

with the topology of S(i?") .

LEMMA 2 . 1 . For each real s , the operator | v | s : Vs[if1] ->• L2{lP) ,

defined by ( |v | su)~(£) = |£ | su(£) , is bounded and has dense range.

Proof. The boundedness i s clear for s 2 0 . If s < 0 , set

1 - s - n/2 = r + S where r is an integer and 0 £ 6 < 1 . Then

u € Vs [if1] implies p(D)u = 0 for a l l p € P5""1 (i/1) , and by Schwartz's

lemma ( [ 5 ] , Theorem I .A.8) , |£ | u is bounded on the unit ba l l by

M = sup |u(£) | £ ||u||
|C|£1 L1

Hence,

t
< e||M||2 + Hull2

Since the topology of S [if1] is finer than that of L1 [if1] and
boundedness is proved.

To show the range is dense, let m be a positive integer such that

t = 2m + s > 0 . Then |V | *(l+|V| ̂  "* / 2 : L2^) * L2^) is bounded,

selfadjoint and injective, and therefore has dense range. But Cn[lr) is

dense in ' fl*(fl") = (l+|v| ^- t / 2£2(if") , giving M ^ t f * ) is dense in
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L2[lf) . Since M 2 " ^ [it1) c 0s (i^) , |v|V(i^) is dense in

//

Now the (sesquilinear) pairing between S(« ) and S'[fP) , given by

2
the usual extension of the L inner product, induces a pairing between

Ptf) and S'(i^)/p-a-n/2(^) . For, since P"8"^2^) is finite

dimensional, i t is the annihilator of V* [it J . From the lemma, by taking

duals, we obtain a bounded inject ion

(2.2) |V|S : L2^) +S ' ( f l n ) /p-S-" / 2 ( ;?*) .

DEFINITION 2.3. Take s r ea l and fl = i?^ or i ? " . Then Zs (ii^)

denotes |V| L ( F ) with the homogeneous norm (1 .5) , a Hilbert space

continuously embedded in S< [if1] /PS~n' 2(i?") ; Zs(ft) denotes the subspace

of Z [FT] consisting of factor classes containing a d is t r ibut ion with

support in fi ; and Z (fi) denotes the space of r e s t r i c t ions to J2 of

members of ZS [if1] , with the infimum norm.

3. Basic properties

By considering the sequence

I -S

we see that Vs [iT) can be identified with a dense subspace of Zs [ft1)

Similarly, for s 2 0 there is a continuous dense embedding

^[ft1) c ZS(fl") . For arbitrary s , the isomorphisms

|V|S : £2(i?") * Z~S(i?*) with inverse |V|"S , say, induce a pairing

(3.1) <u, V> = (|V|
S
M, IVl-%)

2
which is an extension of the £ inner product on the dense subspace

Vs[it1) x P"s(i?") . Hence, for s < 0 , we have a continuous dense
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196 A.J'. Pryde

embedding ZS [if1) c if [if1) .

Let Rn : ZS (if1) -*• ZS{U) denote the (bounded) r e s t r i c t i on operator.

If ft' = if1 - ft , the kernel of R , is Zs(fi) , which i s therefore a

Hilbert space. We show that ZS(Q) is also a Hilbert space by-

constructing a bounded r ight inverse P of RQ .

For t h i s , take a posi t ive integer m > 2 + \s\ and l e t a, be the

unique rea ls sat isfying

m
(3.2) Y, [(-k)3+(-k) J ] a , = 1 for 0 < j < m-1 .

Note that the matrix of coefficients of this system is a sum of Vandermonde

matrices. Its determinant, found by techniques similar to those of van der

Poorten [/3], is

(3.3) 2(m\)1-m f~\"fj (j-fc)(j*-l) * 0 .
k=2 j=l

If a = < or i^.we define Pft : ̂ ( j j ) - C^"1^) by

(3.U) ?JJ"(«) = u(x) if a; € Q ,

= | aj^u[x', -kxn)+u[x', -k~\ if x € Jl' .

As proved in Lions and Magenes [7], §1.2.2, for a similar such reflection

operator, if s > 0 , P_ extends to a bounded operator

(3.5) PQ

Moreover, by a duality argument, the condition s > 0 can be omitted for

our P_ . We can now define

(3.6) &s(fi) = (X-Pfi,i?n,)P
s(ff") and VS(Q) = RQV

S [if1) .

To show that P o also extends to a bounded operator
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PQ : ZS(ft) •+• Z* (if1) , we obtain an equivalent norm on ZS(ft) when s > 0 .

p
Denoting the generalized Dirichlet integral (1.7) "by [w, ft] when the

s

integrations are over ft , we reca l l (Agranovich [ / ] , pp. 19-21, for

example) that
(3.7) Ikll . ~ HMII „ + [", «]„ for s 2 0 .

HS(Q) £2(ft) S

Now for u € Vs(ti) and s > 0 , define «„(*) = u(x/z) where

e > 0 . Then [uE, 0 ] s = E " / 2 " S [ M , n ] g and P ^ = (P Q U) £ . From (3.5)

we obtain \\PrU II - C\\u || , with C independent of u .

Letting E -»• 0 we obtain Pfiw, Fp\ < C[u, ft] . Hence

[u, a]g « inf |[u,(3.8) [u, a]g « inf |[u, i?"]s : w €

As the second term in (3.8) i s equivalent to ||u|| we have
ZS(Q)

(3.9) Hull _ ~ [M, n] for s 2 0 .
S s

It also follows from (3.8) that, for s > 0 ,

(3.10) IIP u | | 5 C||u

For u € VS(Q) and s < 0 ,

implies

for a l l v € /r(frj such that RQV = u . Scaling as above we obtain
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| | £ | S ( P u H | <C|||C|Su||o „ for all v<LZS[lP) ( c g 5 ^ ) such

L2fi?") L ^

tha t RQV = u . So (3.10) holds for s < 0 as well .

So, for rea l s , Z (fi) i s complete and we have the following exact

sequence

(3.ii) o + 1s(n>) -L zs(fl") - ^ zs(n) - o ,

where i is the embedding and R~ has the r ight inverse P_ . Hence

ZS(fi) can be ident i f ied with Z 8 ^ ) /$?(&') . Moreover, as

and ZS(Q) =^ZS( i?") , ^ (U) and

dense subspaces of Z (fi) and Z (ft) respectively.

Applying the arguments of Peetre 1102 for similar results in Sobolev

spaces, it follows from the Paley-Wiener theorem that, for all real s ,

the following pseudo-differential operators are isomorphisms:

(3.12) [Dn-ien\V'\)
S

where efi = +1 if fl = lP+ , -1 if £2 = Fp_ . The symbols of these

operators, (£ ±£|£'|) are defined by taking the branch of £S

determined by -TT < arg ? 5 T T . If n = 1 , £' = 0 and

(£w±£o) = lim^ [E,n±i6] . The second isomorphism in (3.12) is defined via
6-K)

the identification given by (3.11). As a consequence

(3.13) <u, v) =

defines a pairing on 2T (JJ) x Z (fl) which is an extension of the L

inner product on the dense subspace Vs (Si) x V6 (Q) .
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4. The trace theorem

As customary, l e t y .u , for 3 = 0, 1, . . . , and u € C [Q.) , denote

the r e s t r i c t i on to the boundary FT of 8 of Eru = — g— u .

THEOREM 4 . 1 . For s > h > let k = [s+%] and y = (YQ, . . . , Y&_1) •

Then y extends -uniquely to a bounded surjection

y : f ( )

If s $ h (mod 1) then ker y =

Proof. That Y extends uniquely to a bounded operator follows by a

simple scaling argument. Next observe that on V(Q) the norms ||u||

and l|w|| „ are equivalent for s > % , s i % (mod l ) , since the
zs(fi)

analogous result in Sobolev spaces is true (Lions, Magenes [7]) and the

present result follows by scaling. Hence, for these s , 2T(U) can be

identified with a closed subspace of Zs(n) .

For

g - [gQ, ...,9kl) € T T Vs'3'-V"1)
3=0

And e > 0 , define E g by

3=0

where <(>•(*) are the polynomials of degree less than or equal to k - 1
3

satisfying [l+t^~StJ $.{t)dt = 6.., (see Aronszajn and Smith [3 ] ,
Jjo 3 33

P. 1*58).

As |cj>.(*)| 2 c f n - t 2 ) ^ " 1 ^ 2 i t follows, as in [3] , that
t/
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S i m i l a r l y

j = 0

w h e r e a .(£ ' ) = ( l + 1 ? ' | ~ 2 ) ( f e - s ) / 2 i f j = fc _ i a n d s < k , a . ( ? ' ) = 1

o t h e r w i s e , and e i s i n d e p e n d e n t o f e . A l so Y ^ Q ^ 9 = 9 •

In particular E extends to a bounded operator

J=0

with yRcfr. = I • So Y is a surjection as required. In addition, if

s \ h (mod 1) , {l-R^Ey)lf(U) = ker(Y/ffS(f2)) = ̂ (fi) . Wow ^ € £

and by t h e L e b e s g u e d o m i n a t e d conve rgence t h e o r e m , Eg-*- E.g i n ZS [if1]

a s e -»- 0 . Hence [l-R^Qy)ZS(Cl) = k e r Y c Z S ( n ) . The r e v e r s e i n c l u s i o n

is clear. //

5. Multiplication by smooth functions

A property that Sobolev spaces do not in general share with spaces

with homogeneous norms is that multiplication by a smooth function is

continuous on the former. However

THEOREM 5.1. Let M denote multiplication by $ € <?°°(ir̂ ) . For

s > 0 j M extends to a bounded operator in ZS(Q) .

Proof. Let B be an open ball in It containing the support of (j> ,

and let £ be any bounded right inverse of R : /7s (#") -»• ff^B) . For

u € PS(Q) which is dense in ZS(fi) , ^EJljM. = <fru , and
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(5-2) HHI Q v, - elli?
R

MH ~ > where a depends only on
H8^) B HS(B)

We prove further that

(5-3) \\RB

I t then follows t h a t M, extends t o a bounded opera to r M, : Z (U) -+ H (fi)

from which we ob ta in the theorem.

For (5 .3) we note f i r s t l y t h a t fo r u € IIs'(B) ,

(5.k) ||u|| S a\[u, B]2 + V If Daudx\ V .
HS(B) I s | a j < s I J B ' >

This generalised Poincare inequality is proved for integer s in Necas

[9], Theorem 1.1.5. The modification of the proof for other s is not

difficult.

Now, for u € u € HS(B)/PS(B) we can take p € F^(B) such that

D (u+p)dx = 0 for a l l |a | < s . Therefore

h
(5-5) llu|| < c [ M , S] .

Hence, for u 6 (

(5.6) iKvMl 5 c t V ' S3S
 £ °C". ^ ] s •

So (5-3) holds. For, i f not, there i s a sequence {<)>.} in Vs(n) with

||i?H(().|| = 1 and L / H < l / j . By (5-6) there exist p . €
^ J ^ ( B ) L.7 J s ^J

with i?5<J). + p . •+ 0 in ^ ( B ) . Since PS(B) is f in i t e dimensional,

there is a convergent subsequence {p . } of {p.} with limit p say. So

°k °
/?_((.. -»• -p in ff^B) , g iv ing ||p|| = 1 . But «f). € 5S(J5) , so

Jfe ^ ( ) J

p = 0 on B n fi' which we may assume is nonempty. Hence p = 0 , a

contradiction. / /
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6. Local equivalence with Sobolev spaces

THEOREM 6.1. Let B be an open ball in if and s real. On

functions vanishing outside B , the norms of Zs [if1] and IIs (if) are
equivalent. On the restrictions of those functions to ft , the norms of

ZS(Q) and ff^ft) are equivalent.

Proof. The second part is a consequence of the f i r s t . The f i rs t ,
when s 2 0 , is proved in Aronszajn and Smith [3], p. 1*08, as noted
before. If s < 0 , l e t <J> € C°{2B) with <}> = 1 on B . For

u € V~S(lf) consider ((()«)• € H~S (if) /0P~S (if) and

(flggw)' « H~S(2B)/P~S(2B) . From (5.2), since P~s(lf) is finite

dimensional, and from (5-6) we obtain

(6.2) ll(*w)-|| S c l K ^ - l l ^ c\u, lf]_s .

Now, for a func t ion u € Z (i? ) van ish ing ou t s ide B ,

l)/f[«» ^J_sl] . « « CO(J?") , using (3.1),e r n m ~ S U P ( f ! ( M » u> 2Z [it J w *• L

< c sup ( ( | ( M , W ) | ) / ( | | ( * M ) « | | ) ) , us ing ( 6 . 2 ) ,

w
= 0 SUp (|((()M+(()p, u)|j/(||(j)U+4>p|| ) ,

u,p H~S{Rn) •

« € ^ ) , p i p

s ince (j)U = v and ((|>p, u) = ( p , y) = 0 ,

The reverse inequality follows from the continuous embedding

ZS[lP) c «*(**) . / /

7. Comparison with Beppo Levi spaces

Consider the spaces of Riesz potentials RF^(if) defined for

0 < s < n/2 in the introduction. Setting RP°(lf) = L2(i?") and

X/q = 1/2 - s/n , we have continuous embeddings
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(7.1) RPS(Rn) c tftf1) c V[lP) , for 0 5 s < n/2 .

For these s , E = i??8 (i?") satisfies the required conditions for the
construction of Beppo Levi spaces.

THEOREM 7.2. For s > 0 oraf « > 2 ,, Zei r be the smallest

integer such that 0 5 o = s - r < n / 2 . Then Zs (if1) = BL^(RP° (R*1)) . In

particular, for 0 ± s < n/2 , ZS (if1) = RPS (if1) .

Proof. Note firstly that f (if1) c S ' (if1)/PS~n/2(Rn) and

BL'p(RPa(Rn))^V(Rn)/pC-X(Rn) . However, P 8 " " 7 2 ^ ) = F ^ 1 (*") .

Secondly, the norm on the Beppo Levi space is

\=r

which is equivalent to the homogeneous norm. So it suffices to prove that

CQ (.??")• is dense in BL- (if1) . For this we let u € BL- (if1) with

(u, $) = 0 for all <j) € clffi) , and show ii = 0 .

We use the operator |v|° : S(Rn) •*• L (ff1) and its dual

|V|a : L2(Rn) •+ S '(R71) , each of which is bounded. For u € u ,

\a\=r
= o ,

where < , > denotes t h e p a i r i n g between S ' (R*) and S (if1) . So

| V12cFZ?2otw = 0 . D i f f e r e n t i a t i n g , we ob ta in for a l l |B | = r ,
| |

y
o|=r

\2OD2a(D^'u) = 0 As D My \V\2OD2a(D^'u) = 0 . As DM € ^(i?") , i t has a Fourier transform in
|oc[=r

4 O C • Hence ( Y U| ^C2™) ( A ) " = 0 , giving A = 0 . So

u € V°~ (R*1) and M = 0 as required. / /
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