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Abstract
In the context of mortality forecasting, “rotation” refers to the phenomenon that mortality decline accelerates at
older ages but decelerates at younger ages. Since rotation is typically subtle, it is difficult to be confirmed and
modeled in a statistical, data-driven manner. In this paper, we attempt to overcome this challenge by proposing an
alternative modeling approach. The approach encompasses a new model structure, which includes a component
that is devoted to measuring rotation. It also features a modeling technique known as ANCOVA, which allows us to
statistically detect rotation and extrapolate the phenomenon into the future. Our proposed approach yields plausible
mortality forecasts that are similar to those produced by Li et al. [Extending the Lee-Carter method to model the
rotation of age patterns of mortality decline for long-term projections. Demography 50 (6), 2037–205, and may be
considered more advantageous than the approach of Li et al. in the sense that it is able to generate not only static
but also stochastic forecasts.

1. Introduction

Continuous decline in mortality in the developed world necessitates forecasts of future mortality. In
demography, mortality forecasts are crucial to various applications such as population and dependency
ratio projections [13,20,29]. Mortality forecasts are also important to policymakers when evaluating
social security and public pension systems [19,34,35], and to the life insurance industry when setting
premiums and developing risk management strategies [24,32,48].

Among all extrapolative approaches for forecasting mortality, the Lee–Carter (LC) model [17] is
probably the most commonly used.1 The model assumes that the natural logarithm of the central death
rates at all ages are driven by a single time-varying index (typically denoted by 𝑘 (𝑡)), of which the
evolution over time 𝑡 follows a linear stochastic time-series process. The response to the time-varying
index at each age 𝑥 is determined by a parameter (usually represented by 𝑏(𝑥)), which is assumed to be
invariant over time. In effect, the model implies that central death rates at all ages decline exponentially
at constant (but different) rates.

Given how the LC model is specified, it is clear that the model’s validity depends heavily on (1) the
linearity of the expected trajectory of the time-varying indexes and (2) the invariance of the response
parameters over time. The problems associated with assumption (1) have been studied extensively by
researchers including Coelho and Nunes [8] and Li and Chan [22] who developed linearity tests for
the LC time-varying index, and Van Berkum et al. [40] who examined how the existence of multiple
structural breaks in the LC time-varying index may affect mortality projections. The problems associated

1According to Google Scholar, the original work of Lee and Carter [17] has been cited 2,572 times as of this writing.
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with assumption (2) have been less extensively studied. Exemplified by the contributions of Booth et
al. [3], Lee and Miller [18], and Li and Li [26], most of the previous studies on assumption (2) focus
on the search for a calibration window over which the response parameters can be reasonably assumed
to be constant. This approach is very passive, and completely ignores the possibility that the response
parameters may vary in the future.

Recently, Li et al. [31] approached the problems associated with assumption (2) from a different
angle. They attributed the variation in LC response parameters over time to a phenomenon known
as “rotation,” which refers to the deceleration (acceleration) of mortality decline at younger (older)
ages, a pattern that is anticipated in developed countries where deaths from infectious diseases (which
represent a main driver of mortality at younger ages) have been largely eliminated. This phenomenon has
been demonstrated by researchers in demographic and medical sciences including Rau et al. [36] who
reported increasing annual percentage declines in age-specific death rates over 1970–2005 for Japanese
aged between 80 and 99, and Christensen et al. [6] who pointed out that since the 1950s, and especially
since the 1970s, mortality at ages 80 years and older in some countries declines at an accelerating pace.
Other researchers such as Kannisto et al. [12] and Li and Gerland [23] have also shown the acceleration
(deceleration) of mortality decline at older (younger) ages by graphical means.

Variation in the age distribution of mortality decline over time may also be seen in mortality heat
maps, which are often used in actuarial research and practice. A mortality heat map indicates the level
of mortality decline at each age and time with a certain color, with a warmer color representing a faster
mortality decline and a cooler color representing the opposite. For instance, Li and Liu [27] found that
between 1990 and 2010, the color of the mortality heat map for Canadian males aged between 65 and
85 is particular warm, indicating an acceleration of mortality decline at these ages occurred in recent
decades.

Building on their previous work [23], Li et al. [31] developed an extension of the LC model that
captures rotation of age patterns of mortality decline. In the extended model, the 𝑏(𝑥) schedule shifts
gradually over time to an “ultimate” 𝑏(𝑥) schedule, which is determined primarily by averaging the
values of 𝑏(𝑥) in the original LC model over ages 15–65, and the projected values of 𝑘 (𝑡) are adjusted
accordingly in such a way that the life expectancy forecasts produced by the extended model are the
same as those generated from the original model. Compared with its original counterpart, the extension
yields long-term mortality projections that have more biologically reasonable age patterns, in the sense
that they remain U-shaped, reducing from a relatively high level at infancy to a minimum at a certain
teen age, and increasing thereafter [7,15,16].

Although the contribution of Li et al. [31] represents an important breakthrough, a few limitations
still remain. First, their model comes with no formal statistical test to support the existence of rotation.
In the absence of a formal test for rotation, any long-term mortality projection derived from the model
lacks scientific rigor. Arguably, such a formal test is not straightforward to develop, because, as Li et al.
[31] pointed out, rotation is typically a subtle phenomenon. Although Vékás [41] recently contributed
a method to measure rotation and gauge its statistical significance, the method has no connection to any
mortality projection model, thereby leaving the testing and modeling of rotation in a unified framework
an open question.

Second, in the model of Li et al. [31], the ultimate 𝑏(𝑥) schedule is determined in a rather subjective
manner. Also, the adjusted future 𝑘 (𝑡) values do not progress logically from the 𝑘 (𝑡) values over the
calibration window, and as such the interpretation of 𝑘 (𝑡) as a time trend of the overall mortality level
is weakened, if not lost. More importantly, the way in which the model of Li et al. [31] is developed
entails some sort of circular reasoning: the model is developed to incorporate rotation into long-term
mortality forecasts, but it draws from the life expectancy forecasts produced by the original LC model,
which does not take rotation into account. However, we do concur with Li et al. [31] in their view
that modeling rotation with a data-driven approach is highly challenging. This is in part because of
the subtlety of rotation, and in part because allowing a time-varying 𝑏(𝑥) schedule often involves a
substantial relaxation of the model structure, and with a reduced degree of rigidity, the model may result
in erroneous forecasts of future mortality rates.
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Third, the model of Li et al. [31] does not indicate the uncertainty surrounding the best estimate of
future mortality rates. Tuljapurkar [39] described mortality forecasting as a “bumpy road to Shangri-
La,” as the demographic future of any human population is a result of complex and only partially
understood mechanisms, and is highly uncertain. It is, therefore, important to quantify the uncertainty
associated with a mortality projection, and ideally, a mortality forecasting model should be able to
generate “sample paths” of future mortality, allowing the user to understand how an age-specific death
rate may possibly evolve from the forecast origin to a certain future time point. However, given the way
in which Li et al. [31] handle the time-varying index 𝑘 (𝑡), it is unclear to us as to how the model of Li
et al. [31] can be further extended to incorporate forecast uncertainty.

In this paper, we attempt to address these limitations by introducing an alternative mortality fore-
casting method that incorporates rotation. After a myriad of experiments, we come up with a method
that is composed of the following two key components:

1. A new model structure
We develop a parsimonious model structure for capturing rotation in historical and future age
patterns of mortality decline. All terms in the new model structure are readily interpretable, and one
of them is devoted to measuring the extent of rotation over time. While the new model structure
takes rotation into account, it still retains much of the rigidity of the original LC model to avoid the
possibility of producing erroneous mortality forecasts.

2. ANCOVA
Given that rotation is typically a subtle phenomenon, a test for its existence should require a “big
data” analytic method that pools data from a large collection of developed countries. We synthesize
the “rotation component” in the new model structure with a data analytic technique known as
ANCOVA, producing a statistical test for the existence of rotation and a stochastic process for
extrapolating rotation into the future. With the aid of the stochastic process, we can gauge the
uncertainty surrounding the best estimate of future mortality, and even generate sample paths of
future mortality rates.

We have applied our proposed method to data from 17 developed countries, and drawn the following
major conclusions. First, the new model structure yields a significantly better fit to historical data, even
if the use of additional parameters is penalized. Second, the existence of rotation is supported by the
statistical test we developed. Third, our proposed method produces long-term mortality forecasts that
are (i) more plausible than the original LC forecasts and (ii) comparable to those generated from the
extension developed by Li et al. [31] but come with measures of uncertainty. Fourth, the proposed
method can be generalized easily to a multi-population version, producing nondivergent (coherent)
mortality forecasts for a collection of related populations [25].

The rest of this paper is organized as follows. Section 2 reviews the LC method and its extension
developed by Li et al. [31], and discusses their limitations in further detail. Section 3 presents the
new model structure. Section 4 introduces the ANCOVA technique for testing the existence of rotation
and modeling rotation over time. Section 5 explains how extrapolative forecasts can be obtained from
the estimated model and ANCOVA result. Section 6 evaluates the mortality forecasts produced by our
proposed method and discusses the implication of our proposed method on annuity pricing. Finally,
Section 7 concludes the paper with a discussion on how our proposed method may be generalized into
a coherent multi-population version.

2. A review of the Lee–Carter (LC) and Li–Lee–Gerland (LLG) models

2.1. The LC model

We let 𝑚(𝑥, 𝑡) be the central death rate at age 𝑥 and in year 𝑡. The original Lee-Carter (LC model
assumes that

ln(𝑚(𝑥, 𝑡)) = 𝑎(𝑥) + 𝑏(𝑥)𝑘 (𝑡) + 𝜖 (𝑥, 𝑡), (1)
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where 𝑎(𝑥) is an age-specific parameter representing the average level of mortality at age 𝑥 over the
calibration window, 𝑘 (𝑡) is a time-varying index which can be regarded as the (only) driving force of
mortality decline, 𝑏(𝑥) is another age-specific parameter that measures the sensitivity of the log central
death rate at age 𝑥 to the time-varying index, and 𝜖 (𝑥, 𝑡) is the error term.

The LC model can be estimated using methods such as singular value decomposition and maximum
likelihood. It is well known that the LC model is subject to an identifiability problem in the sense that
there exist multiple parameter combinations that give exactly the same fit to historical data. To stipulate
parameter uniqueness, the following constraints are often used in the estimation process:

𝑡𝑛∑
𝑡=𝑡1

𝑘 (𝑡) = 0,
𝑥𝑛∑
𝑥=𝑥1

𝑏(𝑥) = 1, (2)

where [𝑡1, 𝑡𝑛] represents the calibration window and [𝑥1, 𝑥𝑛] denotes the age range to which the model
is applied.

To capture the evolution of log mortality rates over time, the time-varying index 𝑘 (𝑡) is further
modeled by a time-series process. In the original work of Lee and Carter [17] and many other applications
of the LC model, it is assumed that 𝑘 (𝑡) follows a random walk with drift:

𝑘 (𝑡) = 𝑑 + 𝑘 (𝑡 − 1) + 𝜀(𝑡), (3)

where 𝑑 is the drift term and 𝜀(𝑡) represents the time-𝑡 innovation. It is assumed that 𝜀(𝑡) possesses no
serial correlation, is uncorrelated with 𝜖 (𝑥, 𝑡), and follows a normal distribution with a zero mean and
a constant variance.

Although the LC model has been widely used (see, e.g., [1,14,45]), it has received some criticisms,
one of which is that it does not permit the age pattern of mortality decline to vary with time. This
limitation can be discerned easily by jointly considering equations (1) and (3), which imply that the
expected annual rate of mortality decline (in log scale) at age 𝑥 is simply−𝑏𝑥𝑑, a value that is independent
of time 𝑡. A time-invariant age pattern of mortality decline is unconvincing, in part because over the
long run the pattern of age-specific death rates will become biologically implausible should the same
rates of mortality decline continue indefinitely [31] pp. 2018–9, and in part, because it is contrary to
researchers’ observation that mortality decline at older ages has accelerated in recent decades while the
opposite is true for younger ages [10,12,23]. This limitation is particularly significant when the model
is used to project mortality far into the future.

2.2. The LLG model

Li et al. [31] coined the phenomenon of varying age patterns of mortality decline as rotation. They
mitigated the limitation mentioned in the previous subsection by extending the original LC model to
incorporate rotation. Throughout the rest of this paper, we call this extension the Li–Lee–Gerland (LLG)
model.

By noting that the age pattern of mortality decline is determined exclusively by the 𝑏(𝑥) schedule,
Li et al. [31] constructed the LLG model by replacing 𝑏(𝑥) with a time-varying response 𝑏(𝑥, 𝑡), and
𝑘 (𝑡) with another time-varying index 𝑘★(𝑡) that is adapted accordingly; that is,

ln(𝑚(𝑥, 𝑡)) = 𝑎(𝑥) + 𝑏(𝑥, 𝑡)𝑘★(𝑡) + 𝜖 (𝑥, 𝑡) (4)

for 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . .. As in the original LC model, 𝑎(𝑥) represents the average log central death
rate at age 𝑥 over the calibration window, and 𝜖 (𝑥, 𝑡) is the error term. Within the calibration window
[𝑡1, 𝑡𝑛], the LLG and LC models are identical.

The time-varying response 𝑏(𝑥, 𝑡) is defined as the following weighted average:

𝑏(𝑥, 𝑡) = (1 − 𝑤𝑠 (𝑡))𝑏(𝑥) + 𝑤𝑠 (𝑡)𝑏𝑢 (𝑥), (5)
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for 𝑥 = 𝑥1, . . . , 𝑥𝑛 and 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . ., where 𝑤𝑠 (𝑡) is a smooth time-varying weight function,
𝑏(𝑥) is the response to 𝑘 (𝑡) in the original LC model, and 𝑏𝑢 (𝑥) is the “ultimate” value of 𝑏(𝑥, 𝑡). The
schedule of 𝑏𝑢 (𝑥) governs the age pattern of mortality decline in the distant future.

The values of 𝑏𝑢 (𝑥) are obtained by tweaking the values of 𝑏(𝑥) in the original LC model. Suppose
that the LLG model is fitted to data from age 𝑥0 = 0 to age 𝑥𝑛 ≥ 70. The initial estimates of 𝑏𝑢 (𝑥) for
𝑥 = 0, . . . , 𝑥𝑛 are calculated as follows:

�̃�𝑢 (𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
51

65∑
𝑥=15

𝑏(𝑥), 0 ≤ 𝑥 ≤ 65,

�̃�𝑢 (65), 66 < 𝑥 < 70,
𝑏(𝑥) × �̃�𝑢 (65)/𝑏(70), 70 ≤ 𝑥 ≤ 𝑥𝑛.

Notably, for ages 0–65, �̃�𝑢 (𝑥) is simply set to the arithmetic average of 𝑏(𝑥) in the original LC model
over the age range of 15–65. The final estimates of 𝑏𝑢 (𝑥) for 𝑥 = 0, . . . , 𝑥𝑛 are given by

𝑏𝑢 (𝑥) = �̃�𝑢 (𝑥)∑𝑥𝑛
𝑥=0 �̃�𝑢 (𝑥)

, 0 ≤ 𝑥 ≤ 𝑥𝑛.

Same as the schedule of 𝑏(𝑥) in the original LC model, the sum of 𝑏𝑢 (𝑥) over 𝑥 = 0 to 𝑥 = 𝑥𝑛 is one.
The smooth time-varying weight function 𝑤𝑠 (𝑡) also takes two steps to construct. First, a crude

weight function 𝑤(𝑡), 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . ., is defined as follows:

𝑤(𝑡) = 𝑒0(𝑡) − 80
102 − 80

(6)

if 𝑒0(𝑡) > 80, 𝑤(𝑡) = 0 if 𝑒0(𝑡) ≤ 80, and 𝑤(𝑡) = 1 if 𝑒0(𝑡) ≥ 102, where 𝑒0(𝑡) is the life expectancy at
birth in year 𝑡, projected by the original LC model. Next, 𝑤(𝑡) is smoothed by a trigonometric function
to yield the smooth time-varying weight function 𝑤𝑠 (𝑡):

𝑤𝑠 (𝑡) =
{
0.5

[
1 + sin

( 𝜋
2
(2𝑤(𝑡) − 1)

)]} 𝑝
, (7)

for 𝑡 = 𝑡𝑛 + 1, . . ., where 𝑝 (which is set to 0.5) is a parameter that controls the speed of the rotation.
It is quite clear that 𝑤𝑠 (𝑡) = 0 when 𝑒0(𝑡) ≤ 80, so rotation does not begin until the life expectancy at

birth becomes greater than 80 years. As 𝑒0(𝑡) increases from 80, 𝑏(𝑥, 𝑡) converges smoothly from 𝑏(𝑥)
(the original LC response parameter) to its ultimate value 𝑏𝑢 (𝑥). Rotation ceases when the 𝑒0(𝑡) reaches
102, beyond which 𝑤𝑠 (𝑡) = 1. Empirically, 𝑏(𝑥) in the original LC model roughly decreases with age.
Therefore, given how 𝑏𝑢 (𝑥) is calculated, it is anticipated that 𝑏𝑢 (𝑥) is smaller than 𝑏(𝑥) at younger
ages (especially ages lower than 15). Furthermore, because the values of 𝑏𝑢 (𝑥) over the entire age range
sum to one, if 𝑏𝑢 (𝑥) is smaller than 𝑏(𝑥) at younger ages, then 𝑏𝑢 (𝑥) must be greater than 𝑏(𝑥) at higher
ages. Hence, as 𝑤𝑠 (𝑡) increases from zero to one, mortality decline at younger ages decelerates while
mortality decline at older ages accelerates.

Finally, the adjusted time-varying index 𝑘★(𝑡), for 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . ., is determined. As with the
calculation of the weight function 𝑤(𝑡), this step draws from the life expectancy forecasts from the
original LC model. In particular, the value of 𝑘★(𝑡) in a given year 𝑡 is determined such that the life
expectancy at birth implied by 𝑘★(𝑡) and the previously estimated values of 𝑎(𝑥) and 𝑏(𝑥, 𝑡) over the
entire age range of age range [𝑥1, 𝑥𝑛] is equal to 𝑒0(𝑡), the life expectancy at birth in year 𝑡 projected by
the original LC model.

It is clear that after rotation commences (i.e., after year 𝑡𝑛 or the year when the life expectancy at birth
exceeds 80, whichever is the latest), the values of 𝑘★(𝑡) and 𝑘 (𝑡) are different. The solution to 𝑘★(𝑡) takes
no analytical form, and thus has to be obtained using numerical methods. Having determined 𝑘★(𝑡), the
LLG forecasts of age-specific log central death rates can be obtained straightforwardly with Eq. (4).
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2.3. Shortcomings of the LLG model

The LLG model represents an important breakthrough, as to date no other extension of the original LC
model features a time-varying 𝑏(𝑥) schedule to capture rotation. Nonetheless, we believe that the LLG
model is subject to some significant limitations, which we now discuss.

First, the LLG model involves a large extent of subjectivity. In particular, subjective decisions have
to be made concerning the form of the 𝑏𝑢 (𝑥) schedule, the life expectancy when rotation begins, the life
expectancy when rotation ends, and the weight function that blends 𝑏(𝑥) into 𝑏𝑢 (𝑥). There appears to
be room to develop a more data-driven approach to incorporate rotation into mortality forecasts.

Second, unlike 𝑘 (𝑡) in the original LC model, 𝑘★(𝑡) in the LLG model cannot be considered as the
(only) driver of mortality dynamics, because both the response 𝑏(𝑥, 𝑡) and the index 𝑘★(𝑡) itself are
time-varying. More importantly, given how 𝑘★(𝑡) is determined, the evolution of 𝑘★(𝑡) should deviate
from that of 𝑘 (𝑡) (which follows a random walk with drift), but there is no clue as to what stochastic
process 𝑘★(𝑡) should follow. Without an identifiable stochastic process, we are unable to quantify the
uncertainty surrounding the central mortality forecast and to generate sample paths of future mortality
rates. A better model for capturing rotation would be one that is more interpretable and is able to produce
stochastic mortality forecasts.

Third, the LLG model is purely forward-looking, giving no indication of rotation in the past. Without
confirming the statistical significance of rotation, mortality projections featuring rotation lacks scien-
tific rigor. Furthermore, if the life expectancy at birth has already exceeded 80 within the calibration
window (i.e., rotation should have already begun within the calibration window, according to the model
assumptions), then it follows from Eqs. (5) to (7) that 𝑘★(𝑡) would not progress logically from the 𝑘 (𝑡)
values over the calibration window, resulting in a discontinuation between historical (fitted) and pro-
jected mortality rates at the forecast origin (year 𝑡𝑛) as illustrated later in Section 6. This problem might
not be material when considering long-term forecasts only, but is significant if short-term forecasts also
matter to the application in question. We believe that an improved approach should feature a statistical
test for rotation, and maximize continuity at the forecast origin.

Finally, the LLG model draws heavily from the output of the original LC model. Specifically, the
original LC life expectancy forecasts are used as an input in the calculation of 𝑤𝑠 (𝑡), and also as a
benchmark in the sense that the values of 𝑘★(𝑡) for 𝑡 > 𝑡𝑛 are calibrated to ensure that the LLG model
produces the exactly the same life expectancy forecasts as the original LC model. The heavy reliance
of the output of the original LC model is not very convincing, as the original LC model does not
incorporate rotation but rotation is a phenomenon that we believe is important and intend to capture.
A more convincing model should be self-contained, without referencing to another model (particularly
one that does not take rotation into account).

3. A new model structure

The limitations of the LLG model motivate us to develop an alternative method for capturing rotation.
Our proposed method is composed of two key components: a new model structure and the ANCOVA
technique. In this section, we present the new model structure and two estimation methods for it. In
the next section, we introduce the ANCOVA technique for statistically testing the existence of rotation
and modeling the evolution of rotation over time. Finally, in the section after next, we explain how
extrapolative forecasts can be obtained from the new model structure and the ANCOVA result.

3.1. Specification

The model structure we propose is given by

ln𝑚(𝑥, 𝑡) = 𝑎(𝑥) + 𝜏1(𝑡) + 𝑐(𝑥)𝜏2 (𝑡) + 𝜖 (𝑥, 𝑡). (8)
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As in the original LC model, 𝑎(𝑥) is an age-specific parameter representing the average level of mortality
at age 𝑥 over the calibration window, and 𝜖 (𝑥, 𝑡) is the error term. The proposed model structure contains
two time-varying indexes. We can interpret the first time-varying index 𝜏1(𝑡) as the baseline driving force
of mortality decline, affecting all ages equally. The other time-varying index 𝜏2(𝑡) serves an additional
driving force of mortality decline. It interacts with an age-specific response parameter 𝑐(𝑥), thereby
permitting the rates of mortality decline at different ages to deviate from the baseline rate of mortality
decline.

The proposed model can be seen as an extension of the original LC model in two ways. First, it is
obvious that if 𝜏1(𝑡) = 0 for every 𝑡, then the proposed model degenerates to the original LC model with
𝑏(𝑥) = 𝑐(𝑥) and 𝑘 (𝑡) = 𝜏2(𝑡). It is also clear that if 𝜏2(𝑡) = ℎ𝜏1(𝑡) for every 𝑡 and some constant ℎ ≠ 0,
then the proposed model degenerates to the original LC model with 𝑏(𝑥) = 1 + ℎ𝑐(𝑥) and 𝑘 (𝑡) = 𝜏1(𝑡).
Second, by rewriting Eq. (8) as

ln𝑚(𝑥, 𝑡) = 𝑎(𝑥) +
(
1 + 𝑐(𝑥)𝜏2 (𝑡)

𝜏1(𝑡)

)
𝜏1(𝑡) + 𝜖 (𝑥, 𝑡), (9)

we can understand the proposed model as the LC model with a time-varying index 𝑘 (𝑡) = 𝜏1(𝑡) and a
time-varying response 𝑏(𝑥, 𝑡) = 1 + 𝑐(𝑥)𝜏2 (𝑡)/𝜏1(𝑡) to the index. It can also be inferred from Eq. (9)
that the proposed model is capable of capturing rotation, provided that the evolution of 𝜏2(𝑡) over time
is specified appropriately. The proposed model structure retains much of the rigidity of the original LC
model structure, thereby preventing it from generating implausible forecasts of future mortality rates.

We also remark that the proposed model may be regarded as a special case of the LC variant
considered by Renshaw and Haberman [37], which can be expressed as

ln𝑚(𝑥, 𝑡) = 𝑎(𝑥) + 𝑏(1, 𝑥)𝑘 (1, 𝑡) + 𝑏(2, 𝑥)𝑘 (2, 𝑡) + 𝜖 (𝑥, 𝑡),

where 𝑎(𝑥), 𝑏(1, 𝑥), and 𝑏(2, 𝑥) are age-specific parameters, 𝑘 (1, 𝑡) and 𝑘 (2, 𝑡) are time-varying indexes,
and 𝜖 (𝑥, 𝑡) is the error term.2 This LC variant degenerates to our proposed model with 𝜏1(𝑡) = 𝑘 (1, 𝑡)
and 𝜏2(𝑡) = 𝑘 (2, 𝑡) if 𝑏(1, 𝑥) is set to one for all 𝑥 = 𝑥1, . . . , 𝑥𝑛. However, it should be emphasized that
Renshaw and Haberman [37] focused only on the improvement of fit over the original LC model without
considering the issue of rotation. The reason why having 𝑏(1, 𝑥) = 1 for all 𝑥 = 𝑥1, . . . , 𝑥𝑛 facilitates us
to capture rotation is made clear in Section 4 where the modeling of rotation is detailed.

Furthermore, if 𝜏2(𝑡) is set to a linear deterministic function of time 𝑡, then the proposed model can
be seen as the APCI model without a cohort effect [38]. It should be noted that this variant does not
allow any rotation, as it implies that the mortality improvement rate (the change in log central death rate
per annum) at any given age 𝑥 is a constant over time.

The proposed model requires three constraints to stipulate parameter uniqueness. This requirement
can be explained as follows. If 𝑎(𝑥), 𝑐(𝑥), 𝜏1(𝑡), and 𝜏2(𝑡) are parameters of the proposed model, then
𝑎′(𝑥) = 𝑎(𝑥) − 𝑐3 + 𝑐(𝑥)𝑐2, 𝜏′1(𝑡) = 𝜏1(𝑡) + 𝑐3, 𝑐′(𝑥) = 𝑐(𝑥)/𝑐1, and 𝜏′2(𝑡) = 𝑐1 (𝜏2(𝑡) − 𝑐2) for any
constants 𝑐1, 𝑐2, and 𝑐3, where 𝑐1 ≠ 0, are equivalent parameters, because

𝑎′(𝑥) + 𝜏′1(𝑡) + 𝑐′(𝑥)𝜏′2 (𝑡) = 𝑎(𝑥) + 𝜏1(𝑡) + 𝑐(𝑥)𝜏2 (𝑡).

Consequently, three parameter constraints are needed, so that the three constants 𝑐1, 𝑐2, and 𝑐3 can be
fixed. We use the following three constraints:

𝑡𝑛∑
𝑡=𝑡1

𝜏1(𝑡) = 0,
𝑡𝑛∑
𝑡=𝑡1

𝜏2(𝑡) = 0, and
𝑥𝑛∑
𝑥=𝑥1

(𝑐(𝑥))2 = 1. (10)

2Booth et al. [2] also considered a similar LC variant with 𝑏 (𝑖, 𝑥) and 𝑘 (𝑖, 𝑡) for 𝑖 = 1, . . . , 5.
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The last constraint merits some discussions. Unlike 𝑏(𝑥) in the original LC model which is typically
positive for every age 𝑥, 𝑐(𝑥) in the proposed model may be positive or negative, because mortality
decline at any age 𝑥 may be faster or slower than the baseline rate of mortality decline. As the deviations
from the baseline rate of mortality decline even out, the average (and hence sum) of 𝑐(𝑥) over the entire
age range under consideration should be close to zero, and consequently forcing 𝑐(𝑥) to sum to one
would make the estimation process highly unstable. For this reason, the last constraint is based on the
sum of (𝑐(𝑥))2 instead.

The constraints above are not sufficient to fix the signs of 𝑐(𝑥) and 𝜏2(𝑡), because if 𝑐(𝑥) and 𝜏2(𝑡) are
parameters satisfying the constraints, then correspondingly −𝑐(𝑥) and −𝜏2(𝑡) must also be parameters
satisfying the constraints. We fix the sign of 𝑐(𝑥) such that 𝜏2(𝑡) possesses a downward trend over time,
thereby preserving the interpretation of 𝜏2(𝑡) as an additional force of mortality decline.

3.2. Estimation methods

We propose two methods for estimating the proposed model.
Method I: Least Squares and Singular Value Decomposition. In Method I, we first obtain estimates

of 𝑎(𝑥) and 𝜏1(𝑡) by minimizing the following sum of squared errors:

𝑥𝑛∑
𝑥=𝑥1

𝑡𝑛∑
𝑡=𝑡1

(ln �̃�(𝑥, 𝑡) − 𝑎(𝑥) − 𝜏1(𝑡))2,

where �̃�(𝑥, 𝑡) denotes the observed value of𝑚(𝑥, 𝑡). It can be shown that the solution to this minimization
problem is

�̂�(𝑥) =
∑𝑡𝑛
𝑡=𝑡1 ln �̃�(𝑥, 𝑡)
𝑡𝑛 − 𝑡1 + 1

, 𝑥 = 𝑥1, . . . , 𝑥𝑛, (11)

and

𝜏1(𝑡) =
∑𝑥𝑛
𝑥=𝑥1

(ln �̃�(𝑥, 𝑡) − �̂�(𝑥))
𝑥𝑛 − 𝑥1 + 1

, 𝑡 = 𝑡1, . . . , 𝑡𝑛. (12)

The estimates of 𝑎(𝑥) and 𝜏1 (𝑡) given in Eqs. (11) and (12) satisfy the constraints presented in Section 3.1.
Next, 𝑐(𝑥) and 𝜏2(𝑡) are estimated by applying a singular value decomposition (SVD) to matrix of

ln �̃�(𝑥, 𝑡) − �̂�(𝑥) − 𝜏1(𝑡),

𝑥 = 𝑥1, . . . , 𝑥𝑛 and 𝑡 = 𝑡1, . . . , 𝑡𝑛. In particular, the estimates of {𝑐(𝑥); 𝑥 = 𝑥1, . . . , 𝑥𝑛} and {𝜏1(𝑡); 𝑡 =
𝑡1, . . . , 𝑡𝑛} are set to the first left and right singular vectors, respectively. The SVD estimates of 𝑐(𝑥) and
𝜏2(𝑡) are rescaled so that they satisfy the constraints presented in Section 3.1.

Method II: Maximum Likelihood. Method II is based on a likelihood function that is constructed by
imposing a distributional assumption on death counts. We let 𝐷 (𝑥, 𝑡) be the observed death count at age
𝑥 and in year 𝑡, and 𝐸 (𝑥, 𝑡) be the corresponding exposure count. Following Wilmoth [43], we assume
that 𝐷 (𝑥, 𝑡) is a realization from a Poisson distribution3 with a mean of

𝐸 (𝑥, 𝑡) exp(𝑎(𝑥) + 𝜏1(𝑡) + 𝑐(𝑥)𝜏2 (𝑡)).

3If it is believed that over-dispersion exists (i.e., the variance of a random death count is greater than the corresponding mean), then a negative
binomial assumption may be used instead (see [30]).
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Given this distributional assumption, the log-likelihood function of the proposed model is given by

𝑙 =
𝑥𝑛∑
𝑥=𝑥1

𝑡𝑛∑
𝑡=𝑡1

(𝐷 (𝑥, 𝑡)(𝑎(𝑥) + 𝜏1(𝑡) + 𝑐(𝑥)𝜏2 (𝑡))

− 𝐸 (𝑥, 𝑡) exp(𝑎(𝑥) + 𝜏1(𝑡) + 𝑐(𝑥)𝜏2 (𝑡)) + 𝐷 (𝑥, 𝑡) ln 𝐸 (𝑥, 𝑡) − ln(𝐷 (𝑥, 𝑡)!)). (13)

Parameter estimates are obtained by maximizing 𝑙 with respect to the model parameters. The max-
imization can be accomplished by an iterative Newton–Raphson algorithm, which is detailed in
Appendix A.

Method II is advantageous of being able to reconcile the total expected and fitted death counts in
each year over the calibration window (see [43]). It also enables us to quantify parameter uncertainty
through the asymptotic normality of the parameter estimates or parametric bootstrapping methods (see
[21]). Parameter estimates obtained from Methods I and II are generally very similar.

3.3. Estimation results

We estimate the proposed model to data from 17 developed countries, including Australia, Austria,
Belgium, Canada, Denmark, Spain, Finland, France, Ireland, Italy, Japan, the Netherlands, Norway,
Sweden, the United Kingdom, Switzerland, and the United States, separately for each gender. The
required data are obtained from the Human Mortality Database [11]. For all populations considered, we
use an age range of 𝑥1 = 0 to 𝑥𝑛 = 100, and a calibration window from 𝑡1 = 1950 to 𝑡𝑛 = 2010. Note
that Li et al. [31] also considered a calibration window that begins in 1950.

Figure 1 displays the parameter estimates for the United States, obtained using Method II. To ease
comparing and contrasting with the original LC model, the estimates of 𝑏(𝑥) and 𝑘 (𝑡) in the original
LC model are displayed in tandem. The following observations are made.

1. Similar to the estimates of 𝑘 (𝑡) in the original LC model, the estimates of the primary time-varying
index 𝜏1(𝑡) in our proposed model possess a downward trend, indicating a steady decline in overall
mortality over the calibration window.

2. A downward trend is also observed in the estimates of the other time-varying index 𝜏2(𝑡) in the
proposed model, so we can regard 𝜏2(𝑡) as an additional force of mortality change. As 𝜏2(𝑡)
interacts with an age-specific parameter 𝑐(𝑥), its impact on different ages are different.

3. The estimates of 𝑐(𝑥) are positive for young ages but negative for old ages, suggesting that over the
calibration window mortality generally declines faster at younger ages than at older ages.

4. The age pattern of mortality decline implied by the parameter estimates can be seen more clearly by
considering first differences. We let Δ be the first difference operator (with respect to time). Given the
patterns of both 𝜏1(𝑡) and 𝜏2(𝑡), Δ𝜏1(𝑡) and Δ𝜏2(𝑡) are negative on average. Ignoring the error term
in Eq. (8), the proposed model implies that the change in log central death rate from year 𝑡 to 𝑡 − 1 is

Δ ln𝑚(𝑥, 𝑡) = Δ𝜏1(𝑡) + 𝑐(𝑥)Δ𝜏2 (𝑡),

with Δ𝜏1(𝑡) representing the baseline rate of change in ln𝑚(𝑥, 𝑡). The more negative
Δ𝜏1(𝑡) + 𝑐(𝑥)Δ𝜏2 (𝑡) is, the faster the mortality decline at age 𝑥 is.
At younger ages when the estimates of 𝑐(𝑥) are positive, we have

Δ𝜏1(𝑡) + 𝑐(𝑥)Δ𝜏2 (𝑡) < Δ𝜏1(𝑡),

suggesting that mortality at younger ages improves faster than the baseline rate of mortality decline
over the calibration window. Similar reasoning can also be applied to older ages for which the
estimates of 𝑐(𝑥) are negative.
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Figure 1. Estimates of 𝑎(𝑥), 𝑐(𝑥), 𝜏1(𝑡), and 𝜏2(𝑡) in the proposed model and estimates of 𝑏(𝑥) and
𝑘 (𝑡) in the original LC model, US males (left panels) and US females (right panels).

It is interesting to see that the estimates of 𝑐(𝑥) ages 20–60 are very close to zero for female,
implying that the rates of mortality decline for these ages are virtually the same as the baseline rate
within the calibration window.

5. Despite having similar patterns, the estimates of 𝜏1(𝑡) and 𝜏2(𝑡) do not follow a proportional
relationship; that is, it is not possible find a constant ℎ such that 𝜏2(𝑡) = ℎ𝜏1(𝑡) for every 𝑡.
Therefore, the proposed model does not degenerate to the original LC model.
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For the sake of space, we only display the parameter estimates for the United States, but we remark
that the observations noted above also apply to the other 16 developed countries considered.

We now evaluate the fit of the proposed model to historical data. Since the proposed model contains
𝑡𝑛 − 𝑡1 + 1 extra model parameters, it naturally offers an improvement in statistical fit (in terms of, for
example, the maximized log-likelihood value). To fairly compare the proposed model with the original
LC model, a penalty for the extra parameters should be taken into consideration. In this regard, we
evaluate fit to historical data using the Akaike information criterion (AIC), defined as

AIC = 𝑙 − 𝑛𝑝 ,

where 𝑙 is the maximized log-likelihood value, and 𝑛𝑝 is the number of parameters. In the AIC, 𝑙
measures the fit to historical data, while 𝑛𝑝 represents a penalty that increases with the number of
parameters used. It is clear from the definition that we prefer a model with a higher AIC value. Table 1
compares the values of 𝑙 and AIC resulting from our proposed model and the original LC model, for all
of the 17 developed countries considered with a calibration window [1950, 2010]. The results suggest
that our proposed model consistently provide a better fit to historical data compared with the original
LC model, even when the use of additional parameters is penalized.

4. Testing and extrapolating rotation

In this subsection, we explain how the existence of rotation can be statistically tested and how rotation
can be extrapolated into the future. As we are about to reveal, the test and extrapolation are based heavily
on Δ𝜏2(𝑡), the first difference of 𝜏2(𝑡).

4.1. A statistical test

Let us revisit the annual changes in log central death rates implied by our proposed model. Ignoring the
error term in Eq. (8), our proposed model implies that:

Δ ln𝑚(𝑥, 𝑡) = Δ𝜏1(𝑡) + 𝑐(𝑥)Δ𝜏2 (𝑡), (14)

where Δ𝜏1(𝑡) and Δ𝜏2(𝑡) within the calibration window are negative on average. The more negative
Δ ln𝑚(𝑥, 𝑡) is, the higher the rate of mortality decline at age 𝑥 is. As such, the pattern of the (negative)
values of Δ ln𝑚(𝑥, 𝑡) across ages for a given year 𝑡 can thus be interpreted to mean the age pattern of
mortality decline in that year.

A change in Δ𝜏1(𝑡) over time would lead to a parallel shift in the pattern of Δ ln𝑚(𝑥, 𝑡) across ages.
Such a change would not result in any rotation, because it would accelerate or decelerate decline in
mortality (in log scale) at all ages by exactly the same amount.

In contrast, through the interaction between 𝑐(𝑥) and Δ𝜏2(𝑡), a change in Δ𝜏2(𝑡) would lead to a
rotation in the age pattern of mortality decline. To explain, let us consider the lower end of the age
range for which the estimates of 𝑐(𝑥) are positive. For these ages, if Δ𝜏2(𝑡) rises (becomes closer to
zero from a negative value), then the values of 𝑐(𝑥)Δ𝜏2 (𝑡) would become closer zero, so that the rates
of mortality decline would reduce and approach the baseline rate of mortality decline, characterized by
Δ𝜏1(𝑡). Using similar arguments, we can deduce that at higher ages for which the estimates of 𝑐(𝑥) are
negative, an increase in Δ𝜏2(𝑡) (which makes Δ𝜏2(𝑡) closer to zero from a negative value) would lead
the rates of mortality decline to increase and approach the baseline rate of mortality decline.

It is now clear that a statistical test for the existence of rotation should be based on the trend in
the values of Δ𝜏2(𝑡). We are particularly interested in an upward trend, which, as explained in the
previous paragraph, represents an acceleration of mortality at older ages and a deceleration of mortality
at younger ages. In this regard, the test for the existence of rotation boils down to a one-sided test for the

Probability in the Engineering and Informational Sciences 631

https://doi.org/10.1017/S0269964822000468 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000468


Table 1. Values of 𝑙 and AIC from our proposed model and the original LC model.

Male Female

Country Model 𝑙 AIC 𝑙 AIC

Australia LC −25188.82 −25451.82 −25076.97 −25339.97
New −24504.74 −24828.74 −24791.73 −25115.73

Austria LC −29317.03 −29580.03 −25378.7 −25641.7
New −27054.11 −27378.11 −24765.47 −25089.47

Belgium LC −32515.83 −32778.83 −26357.85 −26620.85
New −30013.57 −30337.57 −25791.66 −26115.66

Canada LC −39168.67 −39431.67 −29431.37 −29694.37
New −35285.33 −35609.33 −28963.38 −29287.38

Denmark LC −26833.15 −27096.15 −24384.08 −24647.08
New −25505.46 −25829.46 −23803.56 −24127.56

Spain LC −50393.88 −50656.88 −43035.78 −43298.78
New −46052.09 −46376.09 −35382.68 −35706.68

Finland LC −25063.17 −25326.17 −23541.43 −23804.43
New −24204.04 −24528.04 −23146.35 −23470.35

France LC −53269.95 −53532.95 −40307.36 −40570.36
New −45908.77 −46232.77 −37853.88 −38177.88

Ireland LC −26353.6 −26616.6 −23261.62 −23524.62
New −24232.59 −24556.59 −22498.38 −22822.38

Italy LC −69485.02 −69748.02 −42214.88 −42477.88
New −55529.33 −55853.33 −36854.11 −37178.11

Japan LC −65728.17 −65991.17 −112581.69 −112844.69
New −45299.78 −45623.78 −55005.26 −55329.26

The Netherlands LC −30492.43 −30755.43 −21307.13 −21570.13
New −27395.51 −27719.51 −20924.95 −21248.95

Norway LC −21190.15 −21453.15 −17868.4 −18131.4
New −19978.74 −20302.74 −17718.57 −18042.57

Sweden LC −26752.52 −27015.52 −24313.46 −24576.46
New −26272.21 −26596.21 −24107.45 −24431.45

UK LC −48570.83 −48833.83 −41453.74 −41716.74
New −46989.75 −47313.75 −40312.41 −40636.41

Switzerland LC −25693.4 −25956.4 −23714.91 −23977.91
New −25464.88 −25788.88 −23632.7 −23956.7

US LC −86431.99 −86694.99 −50974.19 −51237.19
New −70708.6 −71032.6 −41987.08 −42311.08

significance of the slope of the linear regression of Δ𝜏2(𝑡) against 𝑡. In particular, the null and alternative
hypotheses of the test should be formulated as follows:

• Null hypothesis: There is no rotation. Equivalently speaking, the gradient of Δ𝜏2(𝑡) against 𝑡 is zero.
• Alternative hypothesis: Rotation exists. Equivalently speaking, the gradient of Δ𝜏2(𝑡) against 𝑡 is

positive.

However, this simple test is inadequate. Given that rotation is a subtle phenomenon, running such
a test using Δ𝜏2(𝑡) for one population only would lead to low-powered results, with a good chance
of not rejecting the null hypothesis even if the alternative hypothesis is true. Technically speaking,

J.-H. Li and J. H. T. Kim632

https://doi.org/10.1017/S0269964822000468 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000468


testing trends in first-order differences involves second-order differences. As second-order differences
are typically highly volatile, this simple test would not produce meaningful results if it is not augmented
to take additional information into consideration.

To mitigate the inadequacy, we utilize the ANCOVA (analysis of covariance) technique. In the context
of our application, the ANCOVA can be expressed as follows:

Δ𝜏2,𝑖 (𝑡) = 𝛼𝑖 + 𝛽 · 𝑡 + 𝑢𝑖 (𝑡), (15)

where 𝜏2,𝑖 (𝑡) denotes the value of 𝜏2(𝑡) for population 𝑖, 𝛼𝑖 and 𝛽 are parameters, and 𝑢𝑖 (𝑡) is the error
term. The ANCOVA captures the time trends of 𝜏2(𝑡) for all of the populations under consideration with
a single slope term (𝛽), but to retain some flexibility the intercept terms for different populations are
allowed to be different. We apply the ANCOVA to the 17 developed countries (listed in Section 3.3),
leveraging the information contained in all of the 17 data sets to infer the gradient (𝛽) of the underlying
trend of 𝜏2(𝑡). With the ANCOVA, the null and alternative hypotheses are refined as follows:

• Null hypothesis: There is no rotation when considering the collection of populations jointly (𝛽 = 0).
• Alternative hypothesis: Rotation exists when considering the collection of populations jointly (𝛽 > 0).

We apply the ANCOVA to the values of 𝜏2(𝑡) that are derived using a calibration window of [1950,
2010] (which is the same as that used in Section 3.3) and an age range of [0, 𝑥∗], where 𝑥∗ ≤ 𝑥𝑛
represents a certain high age. To examine the sensitivity of the ANCOVA results to the inclusion of old-
age data, we repeat the ANCOVA for every 𝑥∗ = 65, 66, . . . , 100. Furthermore, to enhance robustness
of the estimated gradient, we implement the ANCOVA with the median regression method instead of
ordinary least squares.4

To illustrate, let us consider the case when 𝑥∗ = 70 (i.e., when the model is fitted to data from age 0
to 70). Figure 2 shows the series of 𝜏2(𝑡) and Δ𝜏2(𝑡) that are obtained using data over the age range of
𝑥1 = 0 to 𝑥∗ = 70. It can be observed that the values of 𝜏2(𝑡) from the 17 populations possess downward
trends, but the trends have somewhat slowed down in recent decades. This observation translates to
gentle upward trends in Δ𝜏2(𝑡), of which the underlying common gradient 𝛽 is the key quantity that
we intend to test and estimate. When 𝑥∗ = 70, the estimates of 𝛽 for male and female are 0.00189
and 0.00091, respectively. For both genders, the 𝑝-values for test of 𝛽 = 0 against 𝛽 > 0 are less than
0.00001, suggesting a rejection of the null hypothesis that there is no rotation at any reasonable level
of significance. These test results provide strong statistical evidence for the existence of rotation, when
considering an age range of [0, 70].

Table 2 reports the test results for other choices of 𝑥∗. For all values of 𝑥∗ up to 88 for males and 92 for
females, the null hypothesis that there is no rotation is rejected at a 1% level of significance.5 These test
results suggest that rotation is significant for both genders, when considering all but the very high ages.

Beyond age 88 for males and 92 for females, the 𝑝-values appear to rise with age and they no longer
imply, at a 1% level of significance, a rejection of the null hypothesis that there is no rotation. These
larger 𝑝-values suggest that when data for the very high ages are included, the statistical evidence for
rotation becomes less strong. In other words, the extent of rotation seems to diminish toward extreme
ages. This finding is in line with the modeling approach of Li and Gerland [23], which assumes that
rotation starts to diminish at a certain high age. This finding is also incorporated into our extrapolation
methods, which we now detail.

4.2. Sensitivity analyses

We now perform two sensitivity analyses. The first sensitivity analysis examines the sensitivity of the
ANCOVA test result relative to the beginning and end points of the calibration window, while the second
investigates the sensitivity of the ANCOVA test result relative to the number of populations included.

4The R package “quantreg” is used.
5At a 1% level of significance, the null hypothesis is rejected if the 𝑝-value is smaller than 0.01.
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Figure 2. Plots of 𝜏2(𝑡) and Δ𝜏2(𝑡) for all 17 populations under consideration, based on a calibration
window of [1950, 2010] and an age range of 𝑥1 = 0 to 𝑥∗ = 70, males (upper panels) and females (lower
panels).

In the first sensitivity analysis, we consider three beginning points (1940, 1950, and 1960) and three
end points (2000, 2010, and 2019),6 which result in nine different calibration windows. For each of the
nine calibration windows, we perform the ANCOVA test for the same collection of 17 populations. The
test results are summarized in Table 3, from which the following observations can be made.

• Rotation is evident for all of the nine calibration windows considered. Specifically, the ANCOVA test
is always significant when the upper limit (𝑥∗) of the age range is no greater than 85.

• When the starting point of the calibration window is 1940, the extent of rotation indicated by the
ANCOVA test is the strongest in the sense that the null hypothesis is rejected for all upper limits of
the age range under consideration (𝑥∗ = 65, 66, . . . , 100). The strength may in part be attributed the
unusually high mortality at younger ages during and shortly after World War II.

In the second sensitivity analysis, we consider various subsets of the collection of 17 populations.
The sizes of these subsets are 𝐾 = 12, 10, 8, 6, and 5. Performing the ANCOVA test for all possible
subsets is extremely computationally demanding. For instance, when the subset size is 𝐾 = 10, the
number of possible subsets is 19,488. As such, we apply a random sampling procedure in which 200
subsets are chosen randomly for every given 𝐾 . To focus on the effect of the number of populations

6The last year for which mortality data from all of the 17 populations under consideration is 2019.
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Table 2. Estimates of 𝛽 and the 𝑝-values for the test of 𝛽 = 0 against 𝛽 > 0, based on various choices
of 𝑥∗, male and female.

Male Female

𝑥∗ Estimate of 𝛽 𝑝-value Estimate of 𝛽 𝑝-value

65 0.00147 0.00000 0.00099 0.00000
66 0.00156 0.00000 0.00086 0.00023
67 0.00163 0.00000 0.00096 0.00002
68 0.00164 0.00000 0.00089 0.00020
69 0.00178 0.00000 0.00082 0.00022
70 0.00189 0.00000 0.00091 0.00006
71 0.00175 0.00000 0.00094 0.00018
72 0.00185 0.00000 0.00097 0.00013
73 0.00190 0.00000 0.00085 0.00122
74 0.00196 0.00000 0.00077 0.00224
75 0.00187 0.00000 0.00086 0.00052
76 0.00195 0.00000 0.00088 0.00018
77 0.00203 0.00000 0.00086 0.00066
78 0.00181 0.00000 0.00087 0.00027
79 0.00178 0.00000 0.00094 0.00028
80 0.00202 0.00000 0.00104 0.00002
81 0.00180 0.00000 0.00106 0.00000
82 0.00154 0.00000 0.00111 0.00000
83 0.00166 0.00000 0.00109 0.00000
84 0.00167 0.00000 0.00119 0.00001
85 0.00141 0.00000 0.00088 0.00023
86 0.00117 0.00003 0.00127 0.00001
87 0.00106 0.00009 0.00102 0.00039
88 0.00091 0.00086 0.00101 0.00017
89 0.00055 0.03964 0.00116 0.00002
90 0.00041 0.07369 0.00082 0.00064
91 0.00041 0.08902 0.00071 0.00282
92 0.00027 0.19525 0.00081 0.00065
93 0.00000 0.49780 0.00056 0.02348
94 0.00011 0.35383 0.00049 0.04426
95 0.00008 0.38891 0.00058 0.02726
96 −0.00014 0.67109 0.00035 0.13425
97 0.00003 0.45656 0.00048 0.06186
98 0.00004 0.45560 0.00036 0.13159
99 −0.00006 0.56562 0.00042 0.08964
100 −0.00009 0.61337 0.00046 0.07564

involved, we fix the calibration window to 1950–2010. We also set 𝑥∗ to 65.7 To address the aim of this
sensitivity analysis, we examine how many of the 200 ANCOVA tests performed for each subset size 𝐾
indicate statistically significant rotation. In particular, we are interested in the relationship between the
fraction and the subset size 𝐾 .

7By definition, rotation refers to the simultaneous deceleration and acceleration of mortality decline at younger and older ages, respectively.
Hence, despite the fact that rotation tapers off toward extreme ages, the age range to which the hypothesis test is applied should include at least some
older ages.
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Table 3. Sensitivity of the ANCOVA test result relative to the beginning and end points of the calibration
window.

The lowest value of 𝑥∗ for which the null hypothesis of no rotation is
Starting point End point not rejected at a 1% significant level

1940 2000 For both genders, the null hypothesis is rejected for all 65 ≤ 𝑥∗ ≤ 100
1940 2010 For both genders, the null hypothesis is rejected for all 65 ≤ 𝑥∗ ≤ 100
1940 2019 For both genders, the null hypothesis is rejected for all 65 ≤ 𝑥∗ ≤ 100
1950 2000 86 for male; 87 for female
1950 2010 89 for male; 93 for female
1950 2019 93 for male; for female, the null hypothesis is rejected for all

65 ≤ 𝑥∗ ≤ 100
1960 2000 80 for male; 86 for female
1960 2010 89 for male; 91 for female
1960 2019 93 for male; for female, the null hypothesis is rejected for all

65 ≤ 𝑥∗ ≤ 100

Table 4. Fraction of the 200 ANCOVA tests performed for each subset size 𝐾 that indicate significant
rotation.

Subset size (𝐾) Male Female

12 200 (100%) 146 (73%)
10 200 (100%) 131 (65.5%)
8 189 (94.5%) 88 (44%)
6 153 (76.5%) 65 (32.5%)
5 138 (69%) 48 (24%)

The result of this sensitivity analysis is tabulated in Table 4. For males, the fraction of the ANCOVA
tests that indicate significant rotation remains at 100% when the subset size is reduced to 𝐾 = 10.
However, the fraction decreases as 𝐾 reduces further. A similar pattern is observed for females, but the
fraction already drops to lower than 100% when the subset size is 𝐾 = 12. The result of this analysis
highlights the fact that rotation is a subtle pheonomenon and the need for a joint test that leverage
information from a large collection of populations.

4.3. Comparison with the method of Vékás [41]

Recently, Vékás [41] developed a method to test whether rotation of age patterns in mortality improve-
ments is significant. While our proposed test and the test developed by Vékás [41] have similar objectives,
they are fundamentally different from a statistical perspective. First, our proposed test is a joint test,
which examines whether rotation is jointly significant among the collection of populations in question;
however, the test of Vékás [41] is an individual test that examines whether rotation is significant for each
of the populations in question. Second, our proposed that is parametric, which draws on a parameter in
the ANCOVA model (Eq. (15)); in contrast, the test of Vékás [41] is nonparametric, depending entirely
on Spearman’s rho and rank correlations.

Using the nonparametric test they developed, Vékás [41] found that 11 out of 28 populations exhibit
significant rotation in mortality decline, whereas 17 do not. Although the results they obtained appear
to be somewhat different from ours, the two sets of results are not contradictory to each other when
the fundamental differences between the underlying statistical methods are taken into consideration.
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First and foremost, the test of Vékás [41] is an individual test whereas our proposed test is a joint test.
It is entirely possible that a joint test (for the whole collection of population) suggests significance
while individual tests (for individual populations) indicate insignificance for some of the component
populations at the same level of significance. Situations like this are commonly encountered in statistical
inferences; for example, in a multiple linear regression analysis, a significant F-test result for the overall
regression model does not imply that the t-test results for all individual regression coefficients are
significant. Second, the test of Vékás [41] involves advanced ages, including the age group of 100 years
and older. However, as previously mentioned, the extent of rotation seems to diminish toward extreme
ages and thus including advanced ages in the test may possibly increase the likelihood of not rejecting
the null hypothesis that there is no rotation. As a matter of empirical fact, we have demonstrated in
Section 4.1 that our test no longer suggests significant rotation at a 1% level of significance if we include
ages 89 or above for males and ages 92 or above for females. Finally, because rotation is subtle relative
to the variation in mortality improvement rates (changes in log central death rates), it is more difficult for
an individual test to detect rotation, compared with a joint test that leverages information from multiple
populations. It appears that Vékás [41] attempted to mitigate this problem by considering grouped data,
but the arbitrary age grouping provides no guarantee that the masking effect of the variation in mortality
improvement rates is adequately reduced.

5. Extrapolation and forecasting

In our proposed method, forecasts of age-specific central death rates can be obtained by extrapolating
𝜏1(𝑡) and 𝜏2(𝑡) into the future. As 𝜏1(𝑡) and 𝜏2(𝑡) are extrapolated through their respective processes,
their values beyond the forecast origin 𝑡𝑛 progress logically from their values over the calibration window
[𝑡1, 𝑡𝑛]. This feature differentiates our proposed method from the LLG model, in which the time-varying
index 𝑘★(𝑡) is obtained by benchmarking against some other life expectancy forecasts.

5.1. Extrapolation of 𝝉1(𝒕)
Let us first focus on 𝜏1(𝑡). As with the original LC model, we assume that 𝜏1(𝑡) in our proposed model
follows a random walk with drift:

𝜏1(𝑡) = 𝑑1 + 𝜏1(𝑡 − 1) + 𝑒1(𝑡), (16)

where 𝑑1 is the drift term, and 𝑒1(𝑡) is the time-𝑡 random innovation. The drift term can be estimated
readily as follows:

𝑑1 =
1

𝑡𝑛 − 𝑡1

𝑡𝑛∑
𝑡=𝑡1+1

Δ𝜏1(𝑡) = 𝜏1(𝑡𝑛) − 𝜏1(𝑡1)
𝑡𝑛 − 𝑡1

,

where 𝜏1(𝑡𝑛) and 𝜏1(𝑡1) represent the estimates of 𝜏1(𝑡𝑛) and 𝜏1(𝑡1) obtained in Section 3.3, respectively.8
The central forecast of 𝜏1(𝑡) for 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . . can be calculated straightforwardly as

𝜏1(𝑡) = 𝑑1 + 𝜏1(𝑡 − 1).

5.2. Extrapolation of 𝝉2(𝒕)
We then turn to 𝜏2(𝑡). If we assume that rotation does not continue into the future, then it is natural to
model the dynamics of 𝜏2(𝑡) with a random walk with drift, as what we do for the dynamics of 𝜏1(𝑡):

𝜏2(𝑡) = 𝑑2 + 𝜏2(𝑡 − 1) + 𝑒2(𝑡), (17)

8Note that the values of �̂�1 (𝑡) and �̂�2 (𝑡) , 𝑡 = 𝑡1 , . . . , 𝑡𝑛 , obtained in Section 3.3 are calculated from data over the entire calibration window of
[𝑡1 , 𝑡𝑛 ] and the entire age range of [𝑥1 , 𝑥𝑛 ].
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where 𝑒2(𝑡) is the time-𝑡 random innovation, and 𝑑2 is the drift term, which can be estimated readily as

𝑑2 =
1

𝑡𝑛 − 𝑡1

𝑡𝑛∑
𝑡=𝑡1+1

Δ𝜏2(𝑡) = 𝜏1(𝑡𝑛) − 𝜏2(𝑡1)
𝑡𝑛 − 𝑡1

, (18)

with 𝜏2(𝑡𝑛) and 𝜏2(𝑡1) being the estimates of 𝜏2(𝑡𝑛) and 𝜏2(𝑡1) obtained in Section 3.3, respectively.
Accordingly, if there is no rotation beyond the forecast origin, then the central forecast of 𝜏2(𝑡) for
𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . . can be computed as

𝜏2(𝑡) = 𝑑2 + 𝜏2(𝑡 − 1). (19)

To extrapolate the rotation phenomenon into the future, we need a process that captures the upward
time trend in Δ𝜏2(𝑡). To this end, we incorporate the ANCOVA result described in Section 4.1 into the
process specified in Eq. (17) to obtain:

𝜏2(𝑡) = 𝑑2 + 𝛽 · (𝑡 − 𝑡 ) + 𝜏2(𝑡 − 1) + 𝑒2(𝑡), (20)

where 𝛽 is the slope term in the ANCOVA equation (15), and the constant

𝑡 =
1

𝑡𝑛 − 𝑡1

𝑡𝑛∑
𝑡=𝑡1+1

𝑡

is included to reflect the fact that the value of 𝑑2 is estimated from the values of Δ𝜏2(𝑡) over 𝑡 = 𝑡1 + 1
to 𝑡 = 𝑡𝑛. It can be shown easily that given 𝛽, the least square estimate of 𝑑2 is exactly the same as that
shown in Eq. (18) (i.e., the estimate of the drift in random walk for 𝜏2(𝑡) without the linear trend term).
It should be noted that while the value of 𝛽 is the same for all of the 17 populations under consideration,
the values of 𝜏2(𝑡), 𝑡 = 𝑡1, . . . , 𝑡𝑛 and hence the estimates of 𝑑2 for different populations are different.

As previously discussed, the test results shown in Table 2 are a reflection of the empirical fact that
the extent of rotation tapers off as age 𝑥 approaches the maximum attainable age. Hence, beyond a
certain threshold age, say 𝑥𝑇 , where 𝑥𝑇 < 𝑥𝑛, the extrapolation of 𝜏2(𝑡) should be performed in a
slightly different manner. In our forecasting work, the threshold age 𝑥𝑇 is determined such that the null
hypothesis of no rotation is rejected at a 1% significance level for all 𝑥∗ = 65, 66, . . . , 𝑥𝑇 ; that is, we
set 𝑥𝑇 = 88 for males and 𝑥𝑇 = 92 for females. As shown in Table 2, the corresponding estimates of
𝛽 for males and females are 𝛽 = 0.00085 and 𝛽 = 0.00072, respectively. The extrapolation of 𝜏2(𝑡) for
𝑥 ≤ 𝑥𝑇 and 𝑥 > 𝑥𝑇 is described below.

• 𝑥1 ≤ 𝑥 ≤ 𝑥𝑇
For 𝑥 ≤ 𝑥𝑇 , the central forecast of 𝜏2(𝑡) for a given population and gender follows directly from Eq.
(20), and can be calculated recursively as follows:

𝜏2(𝑡) = min{𝑑2 + 𝛽 · (𝑡 − 𝑡), 0} + 𝜏2(𝑡 − 1), 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . . , (21)

where the initial value of the recursion �̂�2(𝑡𝑛) is the estimate of 𝜏2(𝑡𝑛) obtained in Section 3.3. We
bound 𝑑2 + 𝛽 · (𝑡 − 𝑡 ) above by zero, because, as we now explain, rotation should have reached
completion when 𝜏2(𝑡) = 𝜏2(𝑡 − 1).
When the extrapolation of 𝜏2(𝑡) begins in year 𝑡 = 𝑡𝑛 + 1, 𝑑2 + 𝛽 · (𝑡 − 𝑡 ) and hence Δ𝜏2(𝑡) are
negative. As 𝑡 increases, 𝑑2 + 𝛽 · (𝑡 − 𝑡 ) becomes less negative (since 𝛽 is positive), and so does
Δ𝜏2(𝑡). This trend results in a continuation of rotation, because, as implied by Eq. (14) and the signs
of the estimates of 𝑐(𝑥), the projected mortality decline at younger (older) ages would decelerate
(accelerate) as Δ𝜏2(𝑡) approaches zero from below. When Δ𝜏2(𝑡) reaches zero, the projected rates of
change in ln(𝑚(𝑥, 𝑡)) for all ages below the selected threshold age 𝑥𝑇 would become Δ𝜏1(𝑡), that is,
the baseline rate of change in mortality, and rotation should cease.
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• 𝑥𝑇 < 𝑥 ≤ 𝑥𝑛
When 𝑥 > 𝑥𝑇 , rotation may still take place, but, as previously discussed, the pace of reduction is
likely to reduce as 𝑥 becomes higher. Therefore, the extrapolation of 𝜏2(𝑡) for this age range should
capture the following features: (1) Δ𝜏2(𝑡) converges to zero as 𝑡 increases (i.e., the rotation
phenomenon in general); (2) the rate of convergence reduces as 𝑥 increases (i.e., the effect of rotation
dampens as 𝑥 approaches the highest attained age). To this end, we assume that the effect of rotation
reduces linearly with age 𝑥 when 𝑥𝑇 < 𝑥 < 𝑥𝑛, and becomes zero when 𝑥 = 𝑥𝑛, where 𝑥𝑛 (the upper
limit of the age range to which the model is fitted) is 100 in this study. Given these assumptions, we
have the following equation for extrapolating 𝜏2(𝑡) when 𝑥𝑇 ≤ 𝑥 ≤ 𝑥𝑛:

𝜏2(𝑡) = min
{
𝑑2 + 𝛽 · (𝑡 − 𝑡 ) ·

(
𝑥𝑛 − 𝑥
𝑥𝑛 − 𝑥𝑇

)
, 0

}
+ 𝜏2(𝑡 − 1), (22)

for 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . ., where (𝑥𝑛 − 𝑥)/(𝑥𝑛 − 𝑥𝑇 ) is an adjustment factor that captures the linear
reduction in the effect of rotation between ages 𝑥𝑇 and 𝑥𝑛. It is noteworthy that when 𝑥 = 𝑥𝑛, Eq. (22)
reduces to Eq. (19),9 which implies that rotation ceases when 𝑥 reaches 𝑥𝑛, as what we have assumed.
We remark that the LLG model assumes no rotation for all ages beyond a certain threshold age.
Compared with the LLG model, our proposed model seems to provide a smoother phase-out of the
effect of rotation over the very high ages.

The extrapolation of 𝜏2(𝑡) formulated in Eqs. (21) and (22) has the following implications on the
expected rates of mortality decline. For all ages in the age range [𝑥1, 𝑥𝑛] under consideration, the
expected rates of mortality decline (in log scale), defined by

−Δ ln𝑚(𝑥, 𝑡) = −Δ𝜏1(𝑡) − 𝑐(𝑥)Δ𝜏2 (𝑡),

will converge to a common ultimate value in the long run. The common ultimate value is −𝑑1, the
negative of the expected value of Δ𝜏1(𝑡). However, the rates of convergence for different ages are
different. For all ages between 𝑥1 and 𝑥𝑇 , the rate of convergence is |𝑐(𝑥) · 𝛽 |, which depends on age
through 𝑐(𝑥), the estimate of parameter 𝑐(𝑥). Then, for 𝑥𝑇 < 𝑥 < 𝑥𝑛, the rate of convergence is����𝑐(𝑥) · 𝛽 (

𝑥𝑛 − 𝑥
𝑥𝑛 − 𝑥𝑇

)���� ,
which depends on age through both 𝑐(𝑥) and the adjustment factor (𝑥𝑛 − 𝑥)/(𝑥𝑛 − 𝑥𝑇 ) which reduces
linearly with age 𝑥. Finally, at age 𝑥𝑛, the rate of convergence becomes zero, so that it takes infinitely
long for the expected rate of mortality decline at age 𝑥𝑛 to converge to the common ultimate value.

The extrapolation of 𝜏2(𝑡) before and after the threshold age 𝑥𝑇 is illustrated in Figure 3. Beyond
the threshold age 𝑥𝑇 , the extrapolated trajectory of 𝜏2(𝑡) is less curved, indicating that the effect of
rotation becomes lighter as 𝑥 becomes larger than 𝑥𝑇 . For 𝑥 = 𝑥𝑛, the extrapolated trajectory of 𝜏2(𝑡) is
a straight line, implying that rotation ceases at age 𝑥𝑛, as what we have assumed. It is also noteworthy
that although all of the 17 populations share a common 𝛽 parameter, they may take different amounts of
time to complete rotation. From (the solid lines in) Figure 3, we observe that it takes longer for Finnish
female population to complete rotation compared with US female population.

5.3. Stochastic forecasts

To produce stochastic forecasts of age-specific log central death rates, we need to make distributional
assumptions on 𝑒1(𝑡) and 𝑒2(𝑡). It is assumed that {𝑒1(𝑡); 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . .} and {𝑒2(𝑡); 𝑡 =
𝑡𝑛 + 1, 𝑡𝑛 + 2, . . .} are sequences of independently and identically distributed zero-mean normal random
variables. The variances of 𝑒1(𝑡) and 𝑒2(𝑡) are 𝜎2

1 and 𝜎2
2 , respectively, and the covariance between

9Note that 𝑑2 is negative, and hence, min(𝑑2 , 0) = 𝑑2.
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Figure 3. An illustration of the extrapolation of 𝜏2(𝑡) for all ages below the threshold age 𝑥𝑇 and for
two ages above 𝑥𝑇 (𝑥 = 95, 100), US females and Finnish females.

𝑒1(𝑡) and 𝑒2(𝑡) is 𝜎1,2. In Appendix B, we provide formulas for estimating 𝜎2
1 , 𝜎2

2 , and 𝜎1,2, and explain
how prediction intervals and sample paths of future age-specific log central death rates can be produced.

6. Evaluating mortality forecasts and implications

In this section, we present the forecasts of US mortality that are generated from our proposed model.
Whenever appropriate, we also compare our forecasts with the LC and/or LLG forecasts. This section
is concluded with a brief discussion of the implications of the differences between mortality forecasts
generated from our model and the LC and LLG models on the life insurance industry.

6.1. Projected age patterns of mortality decline

Figure 4 displays the expected age patterns of mortality decline (in log scale) for 𝑡 > 𝑡𝑛 = 2010 implied
by our proposed model, the LC model, and the LLG model. They are computed as the expected or
inferred values10 of the following expressions:

• Our proposed model: −Δ𝜏1(𝑡) − 𝑐(𝑥)Δ𝜏2 (𝑡);
• The LC model: −𝑏(𝑥)Δ𝑘 (𝑡);
• The LLG model: −𝑏(𝑥, 𝑡)Δ𝑘★(𝑡).

As expected, the LC model yields a constant expected age pattern of mortality decline. In stark
contrast, our proposed model leads to an expected age pattern of mortality decline that varies with time.
The expected rates of mortality decline for all ages converge to the same ultimate value over the long
run; however, the paces of convergence for different ages are not identical. As discussed in Section 5,
for ages between 𝑥1 and 𝑥𝑇 , the pace of convergence depends on age 𝑥 through parameter 𝑐(𝑥), and
for ages between 𝑥𝑇 to 𝑥𝑛, the pace of convergence depends on age 𝑥 through both parameter 𝑐(𝑥) and
the adjustment factor (𝑥𝑛 − 𝑥)/(𝑥𝑛 − 𝑥𝑇 ). This feature is illustrated in the top panels of Figure 4, from
which we observe that for both genders the rate of mortality decline at age 95 converges to the ultimate
value notably slower compared to age 90, due primarily to the effect of the adjustment factor (which
reduces with age). Note also that depending on the sign on parameter 𝑐(𝑥), the rates of mortality decline
may converge to the ultimate value from above or below.

10For our proposed model, the expected value of Δ𝜏1 (𝑡) is 𝑑1 and the expected value of Δ𝜏2 (𝑡) can be obtained using Eqs. (21) and (22). For
the LC model, the expected value of Δ𝑘 (𝑡) is the estimate of 𝑑 in Eq. (3). For the LLG model, there is no stochastic process specified for 𝑘★ (𝑡) ,
and, as mentioned in Section 2.2, the value of 𝑘★ (𝑡) is inferred from the corresponding LC life expectancy forecast.
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Figure 4. The future age patterns of mortality decline (in log scale) for selected ages implied by our
proposed model, the LC model, and the LLG model, US males (left panels) and US females (right panels).

Similar to our proposed model, the LLG model also results in an expected age pattern of mortality
decline that varies with time. However, there are two significant differences. First, for both genders,
we observe an abrupt jump in the expected rates of mortality decline produced by the LLG model.
According to the specification of the LLG model, such an abrupt jump occurs when rotation begins, at
either 𝑡𝑛+1 if the life expectancy at birth has already reached 80 before the end point 𝑡𝑛 of the calibration
window (the situation that applies to US females), or the time point beyond which the projected life
expectancy at birth (implied by the LC model) exceeds 80 years if the life expectancy at birth has not
yet reached 80 before 𝑡𝑛 (the situation that applies to US males). The unintended introduction of such
an abrupt jump (which appears to lack demographic intuitions) may be seen as one drawback of the
LLG model. Second, even within the age range over which rotation takes full effect,11 the expected rates
of mortality decline do not converge to a common ultimate value, and as a matter of fact, they begin
to diverge after a few decades from the forecast origin. Technically speaking, this outcome arises from
the fact that despite the convergence of 𝑏(𝑥, 𝑡) to 𝑏𝑢 (𝑥) through rotation, the rate of change in 𝑘★(𝑡) is
generally not a constant as 𝑘★(𝑡) is determined exogenously from a LC life expectancy forecast rather
than being extrapolated directly through a process with a constant drift.

11The LLG model assumes that rotation takes full effect between ages 0 and 70.
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Figure 5. Projected patterns of ln𝑚(𝑥, 𝑡) (dashed lines) across age in 2030, 2050, . . . , 2130, obtained
using our proposed model (upper panels), the LC model (middle panels) and the LLG model (lower
panels), US males (left panels) and US females (right panels). Note: Fitted values of ln𝑚(𝑥, 𝑡) in 1950,
1970, 1990, and 2010 are shown in black solid lines.

6.2. Reasonableness of mortality forecasts

Figure 5 compares the age patterns of projected log central death rates produced by our proposed model,
the LC model, and the LLG model, for years 2030, 2050, and so on. To facilitate analyses, historical log
central death rates are also shown in the figure. As the LC model implies that infant mortality always
declines more rapidly than at other ages, we observe that the LC forecasts of the infant mortality rate
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over longer horizons are very low. As Li et al. [31] pointed out, such low levels of infant mortality
may be considered as implausible, as they do not preserve the U-shaped age pattern of mortality that is
substantiated by evolutionary theories. Compared with the LC model, our proposed model and the LLG
model result in more reasonable age patterns of projected log central death rates.

Another way to assess the reasonableness of mortality forecasts is to consider the ratio of 𝑚(0, 𝑡) to
the average of 𝑚(𝑥, 𝑡) over ages 𝑥 = 15 to 𝑥 = 19. That is,

𝑚(0, 𝑡)
�̄�(15 : 19, 𝑡) , (23)

where �̄�(15 : 19, 𝑡) = 1
5
∑19
𝑥=15 𝑚(𝑥, 𝑡). Li et al. [31] argued that this ratio is the most useful in identifying

anomalies in the cross-age relationships among projected mortality rates for the following reason:

At infant, child, and young-adult ages, during which the change of death rate is the most
complicated, the death rate is known to be highest at age 0 because of the additional risks of birth
and congenital problems; the death rate is perhaps the lowest at ages 15–19, older than the age at
which additional risks occur from becoming independent. Thus, when the ratio of 𝑚(0)/�̄�(15 : 19)
is lower than 1, for example, we would know that it is anomalous because it implies that the risk of
death at age 0 is lower than at ages 15–19, a situation we have not observed in history and do not
expect to appear in the future.

For all of the three models under consideration, the projected value of this ratio can be expressed in
terms of their respective model parameters:

Our proposed model: exp[𝑎(0) − �̄�(15 : 19) + (𝑐(0) − 𝑐(15 : 19))𝜏2 (𝑡)], (24)

The LC model: exp[𝑎(0) − �̄�(15 : 19) + (𝑏(0) − �̄�(15 : 19))𝑘 (𝑡)], (25)

The LLG model: exp[𝑎(0) − �̄�(15 : 19) + (𝑏(0, 𝑡) − �̄�(15 : 19, 𝑡))𝑘★(𝑡)] . (26)

In the expressions above, we have �̄�(15 : 19) = 1
5
∑19
𝑥=15 𝑎(𝑥), �̄�(15 : 19), �̄�(15 : 19, 𝑡), and 𝑐(15 : 19)

are defined in a similar manner.
Figure 6 displays the ratios of 𝑚(0, 𝑡) to �̄�(15 : 19, 𝑡), projected from our proposed model, the LC

model, and the LLG model. The ratio projected by the LC model tends to zero over the long run, an
outcome that would lead to mortality forecasts that are implausible in terms of cross-age relationships.
This undesirable outcome can be deduced easily from expression (25), in which 𝑏(0) − �̄�(15 : 19) is
positive and the expected value of 𝑘 (𝑡) reduces indefinitely according to the stochastic process followed
by 𝑘 (𝑡).

In contrast, the ratio of 𝑚(0, 𝑡) to �̄�(15 : 19, 𝑡) projected by our proposed model tends to a constant
that is strictly greater than one, thereby preserving the U-shaped age pattern of mortality that is
substantiated by evolutionary theories. This desirable property can be explained using expression
(24) along with the following two facts concerning the model parameters: (i) the expected value of
𝜏2(𝑡) reduces over time and eventually converges to a negative constant when rotation completes
(see Figure 3); (ii) both 𝑎(0) − �̄�(15 : 19) and 𝑐(0) − 𝑐(15 : 19) are positive, with the former being
much larger than the latter (see Figure 1).

For the LLG model, the projected ratio of 𝑚(0, 𝑡) to �̄�(15 : 19, 𝑡) first reduces and then increases.
This pattern can be explained using expression (26). Specifically, the reduction in the ratio over the first
few decades from the forecast origin can be attributed to fact that the implied value of 𝑘★(𝑡) decreases
(becomes more negative) with time. Noting that 𝑏(0, 𝑡) − �̄�(15 : 19, 𝑡) is positive at 𝑡 = 𝑡𝑛 (see Figure 1)
and that the ultimate values of 𝑏(𝑥, 𝑡) for all ages from 0 to 70 are identical, 𝑏(0, 𝑡) − �̄�(15 : 19, 𝑡)
reduces from a positive value to zero during the course of rotation. Beyond a certain time point over
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Figure 6. Ratios of 𝑚(0, 𝑡) to the average of 𝑚(𝑥, 𝑡) over ages 𝑥 = 15 to 𝑥 = 19, for 𝑡 > 𝑡𝑛 = 2010,
produced from our proposed model, the LC model, and the LLG model, US males (left panels) and US
females (right panels).

the forecast horizon, the effect of 𝑏(0, 𝑡) − �̄�(15 : 19, 𝑡) outweighs that of 𝑘★(𝑡), so that the product
of 𝑏(0, 𝑡) − �̄�(15 : 19, 𝑡) and 𝑘★(𝑡) becomes less negative over time, thereby leading to an increase in
the projected ratio of 𝑚(0, 𝑡) to �̄�(15 : 19, 𝑡). Eventually, as rotation completes, 𝑏(0, 𝑡) − �̄�(15 : 19, 𝑡)
becomes zero, and hence, the projected ratio of𝑚(0, 𝑡) to �̄�(15 : 19, 𝑡) becomes exp(𝑎(0)−𝑎(15 : 19)),
a constant that is strictly greater than 1.12 Although the projected ratio of 𝑚(0, 𝑡) to �̄�(15 : 19, 𝑡)

12This ultimate level is reached beyond the forecast horizon, and is therefore not observed in Figure 6.
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produced by the LLG model stays desirably above one, the shape of its time trend does not seem to be
in line with the steady decreasing trend in the historical ratios of 𝑚(0, 𝑡) to �̄�(15 : 19, 𝑡) (see Figure 4
in [31]).

6.3. Prediction intervals and sample paths

Another advantage of our proposed model over the LLG model is that our proposed model is able to
generate stochastic forecasts. The left panels of Figure 7 depict the 95% prediction intervals for the log
central death rates at ages 0, 30, 60, and 95, generated using our proposed model that is fitted to data for
US males, along with past fitted values. Also shown in the same diagrams are 10 sample paths of log
central death rates at each of the selected ages. The impact of rotation on the simulated sample paths is
evident. For instance, we observe that the sample paths of ln𝑚(0, 𝑡) simulated using our proposed model
are curved, with a gradient that reduces over time. The right panels of Figure 7 show the corresponding
prediction intervals and sample paths that are produced by the LC model fitted to the same data set. As
expected, no sign of rotation can be observed from the sample paths simulated using the LC model.

One problem of the LC stochastic forecasts is that the prediction intervals are excessively narrow [18],
especially for high ages. This problem is due in part to the fact that in the LC forecasts, the uncertainty
(standard deviation) of log central death rates is proportional to 𝑏(𝑥), which becomes closer to zero as
𝑥 approaches the upper limit of the age range. As shown in Figure 7, this problem is mitigated when our
proposed model is used, because in our proposed model, the log central death rates at all ages respond
equally to 𝜏1(𝑡) (which contributes most of the forecast uncertainty).

6.4. Limitations of the LLG model

Despite its empirical advantages over the LC model, the LLG model is subject to a number of limitations.
First, while our proposed model is much more data-driven compared with the LLG model, it still
requires some subjective inputs, namely, the choice of the collection of populations in the ANCOVA
implementation, and the threshold age 𝑥𝑇 beyond which rotation is assumed to taper off. Second, although
theoretically speaking our proposed model can be regarded as the LC model with a time-varying 𝑏(𝑥),

𝑏(𝑥, 𝑡) = 1 + 𝑐(𝑥)𝜏2 (𝑡)
𝜏1(𝑡)

,

in practice the computation of 𝑏(𝑥, 𝑡) is not feasible as 𝜏1(𝑡) equals (or very close to) zero for some
𝑡 within the calibration window [𝑡1, 𝑡𝑛]. To visualize the rotation of age-patterns of mortality decline
implied by our model, we can use, for example, the plot of −Δ𝜏1(𝑡) − 𝑐(𝑥)Δ𝜏2 (𝑡) instead. Third, same
as the LLG model, our proposed model results in the same ultimate rates of mortality decline for
all ages (up to the threshold age 𝑥𝑇 ). This pattern of ultimate rates of mortality decline might be an
over-simplification.

6.5. Implications on annuity pricing

We conclude this subsection with an analysis of the implication of the differences between our model
and the LC and LLG models on the life insurance industry. Specifically, we consider the fair price
(actuarial present value) of a life annuity that pays $1 at the beginning of each year since age 65 as long
as the annuitant is alive.

Using a calibration window of 1950–2010 (the baseline calibration window), we obtain the (projected)
cohort life tables necessary for pricing purposes. We calculate projected annuity prices in years 2000,
2020, and 2040. For the price in 2000, the cohort life table used is based in part on realized values
(𝑚(65, 2001), . . . , 𝑚(75, 2010)) and in part on projected values (𝑚(76, 2011) and onwards). For the
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Figure 7. Fitted values (dotted lines), 95% prediction intervals (dashed lines), and 10 sample paths of
ln𝑚(𝑥, 𝑡) (solid lines), for ages 0, 30, 60, and 95, generated using our proposed model (left panels) and
the LC model (right panels), US males.

prices in 2020 and 2040, the cohort life tables used are based entirely on projected values. We consider
the US population, and assume a 3% annual rate of return in the calculations.

The result of this analysis is presented in Table 5, from which we make the following observations.

1. The annuity prices projected by our proposed model are the highest. This is because our proposed
model captures rotation for the entire age range, including the higher ages (at which mortality
decline accelerates) that are most relevant to the annuity; however, the LC model does not take
rotation into account, and the LLG model does not allow rotation beyond age 70.

2. The annuity price gaps between our proposed model and the other two become wider as we project
further into the future.
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Table 5. Annuity prices in 2000, 2020, and 2040 projected from the LC model, the LLG model, and our
proposed model.

Model 2000 2020 2040

US Male LC 12.18 13.23 14.07
LLG 12.18 13.23 14.06
Proposed 12.29 13.39 14.35

US Female LC 14.00 14.95 15.75
LLG 14.01 14.98 15.80
Proposed 14.05 15.14 16.14

3. Annuity prices projected from the LC and LLG models are highly similar. This similarly is not
unexpected, as the latter model is designed to follow the life expectancy projected by the former
model.

7. Conclusion

Although the rotation phenomenon is typically subtle, long-term mortality forecasts may lack rea-
sonableness if it is not adequately taken into account in the forecasting procedure. In this paper, we
contribute a method for testing and modeling the rotation phenomenon. The proposed test provides
a more rigorous ground for extrapolating the phenomenon into the future, while the proposed model
enables us to make the best use historical data in modeling rotation. Compared with the LLG model,
in which the time-varying index 𝑘★(𝑡) has no clear meaning, our proposed model appears to be more
intuitive as both of its time-varying indexes 𝜏1(𝑡) and 𝜏2(𝑡) can be interpreted readily.

We have applied our proposed testing and modeling methods to data from 17 developed countries. On
the basis of the pool of data, the proposed test provides statistical support for the existence of rotation.
The proposed model gives a significantly better statistical fit than the LC and LLG models, even if the
fact that it uses more parameters is penalized. It also produces long-term mortality forecasts that are
more plausible than those generated from the LC model (which ignores rotation), and are comparable to
those generated from the LLG model (which takes rotation into account). We have further demonstrated
that sample paths and prediction intervals of future mortality rates can be obtained from our proposed
model. The ability to produce stochastic forecasts may be seen as an additional advantage of our proposed
model over the LLG model.

Since mid-2010s, some developed countries have experienced a deceleration of mortality improve-
ment. This striking phenomenon has recently been studied by researchers in medical science [9,46] and
actuarial studies [28]. We found that rotation is still significant when the latest data (up to and including
2019) is taken into consideration, but the conclusion may possibly change as mortality experience con-
tinues to unfold. Another possible factor that may affect the conclusion of our test is COVID-19. While
some researchers in the field of actuarial science treated the effect of COVID-19 on mortality as a “transi-
tory jump” [5], others argued that the pandemic may have long-lasting effects on future mortality trends
[4,47]. To more thoroughly examine how these two factors may affect rotation of mortality decline, we
recommend revisiting our proposed testing methodology when data for the 2020s becomes available.

We have applied our proposed model to male and female mortality in isolation. This modeling
approach may result in an indefinite divergence between the projected trajectories of male and female
mortality. Such an outcome is difficult to justify, and appears to be contradictory to the empirical
observations made by White [42] and Wilson [44]. Following the spirit of the augmented common
factor model introduced by Li and Lee [25], we may mitigate this problem is by extending our proposed
model to a two-population version as follows:

ln𝑚(𝑥, 𝑡, 𝑖) = 𝑎(𝑥, 𝑖) + 𝜏1(𝑡) + 𝑐(𝑥, 𝑖)𝜏2(𝑡, 𝑖) + 𝜖 (𝑥, 𝑡, 𝑖), (27)
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for 𝑖 = 1 (male) and 𝑖 = 2 (female), where 𝑚(𝑥, 𝑡, 𝑖) represents the central rate of death for age 𝑥, year
𝑡 and subpopulation 𝑖, 𝑎(𝑥, 𝑖) and 𝑐(𝑥, 𝑖) are age-specific parameters for subpopulation 𝑖, and 𝜖 (𝑥, 𝑡, 𝑖)
is the error term. In this extension, 𝜏1(𝑡) is a time-varying index that captures the overall decline in
mortality, and is shared by both subpopulations being modeled; 𝜏2(𝑡, 𝑖) is a time-varying index that
captures rotation, and is specific to subpopulation 𝑖. Processes similar to those specified in Eqs. (16) and
(20) can be used to model the dynamics of 𝜏1(𝑡) and 𝜏2(𝑡, 𝑖). Ignoring the error term 𝜖 (𝑥, 𝑡, 𝑖), Eq. (27)
implies that the change in the log central death rate for individuals aged 𝑥 in subpopulation 𝑖 between
year 𝑡 − 1 and 𝑡 is

Δ ln𝑚(𝑥, 𝑡, 𝑖) = Δ𝜏1(𝑡) + 𝑐(𝑥, 𝑖)Δ𝜏2(𝑡, 𝑖).

When 𝑡 tends to infinity, the expected value of Δ𝜏2(𝑡, 𝑖) tends to zero, and therefore, the expected rates
of mortality decline for both subpopulations are identical, as governed by the drift term in the random
walk for modeling the dynamic of 𝜏1(𝑡). Since both genders are subject to the same long-term rate
of mortality decline, their expected trajectories of mortality do not diverge in the long run, thereby
satisfying the definition of a “coherent” mortality forecast.

The parameters in Eq. (27) can be estimated using an adapted version of Method 1 in Section 3.2. In
more detail, we can first estimate 𝑎(𝑥, 𝑖) by setting it to the average of ln(�̃�(𝑥, 𝑡, 𝑖)) over the calibration
window (𝑡 = 𝑡1 to 𝑡 = 𝑡𝑛), where �̃�(𝑥, 𝑡, 𝑖) denotes the observed value of 𝑚(𝑥, 𝑡, 𝑖), and then obtain 𝜏1(𝑡)
by averaging

∑2
𝑖=1 𝑤(𝑖) [ln(�̃�(𝑥, 𝑡, 𝑖)) − �̂�(𝑥, 𝑖)] over the age range (𝑥 = 𝑥1 to 𝑥 = 𝑥𝑛), where �̂�(𝑥, 𝑖) is the

estimate of 𝑎(𝑥, 𝑖) and 𝑤(𝑖) is the weight on subpopulation 𝑖 which can be set proportional to the size of
subpopulation 𝑖. Finally, estimates of 𝑐(𝑥, 𝑖) and 𝜏2(𝑡, 𝑖) can be obtained by applying a first-order SVD
to the matrix of ln(�̃�(𝑥, 𝑡, 𝑖)) − �̂�(𝑥, 𝑖) − 𝜏1(𝑡), for 𝑡 = 𝑡1, . . . , 𝑡𝑛 and 𝑥 = 𝑥1 . . . , 𝑥𝑛, where 𝜏1(𝑡) denotes
the estimate of 𝜏1(𝑡). A more comprehensive study of the two-population extension of our proposed
model is left for future research.
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Appendix A. Maximization of the log-likelihood function

In this appendix, we explain how the log-likelihood function defined in Eq. (13) can be maximized.
To maximize the log-likelihood function 𝑙, we first derive the first-order conditions by differentiating

𝑙 with respect to each of the model parameters. We have

𝜕𝑙

𝜕𝑎(𝑥) =
𝑡𝑛∑
𝑡=𝑡1

(𝐷 (𝑥, 𝑡) − 𝐷 (𝑥, 𝑡)) = 0,

𝜕𝑙

𝜕𝜏1(𝑡)
=

𝑥𝑛∑
𝑥=𝑥1

(𝐷 (𝑥, 𝑡) − 𝐷 (𝑥, 𝑡)) = 0,

𝜕𝑙

𝜕𝑐(𝑥) =
𝑡𝑛∑
𝑡=𝑡1

(𝐷 (𝑥, 𝑡) − 𝐷 (𝑥, 𝑡))𝜏2(𝑡) = 0,

and
𝜕𝑙

𝜕𝜏2(𝑡)
=

𝑥𝑛∑
𝑥=𝑥1

(𝐷 (𝑥, 𝑡) − 𝐷 (𝑥, 𝑡))𝑐(𝑥) = 0,

for 𝑥 = 𝑥1, . . . , 𝑥𝑛 and 𝑡 = 𝑡1, . . . , 𝑡𝑛, where 𝐷 (𝑥, 𝑡) = 𝐸 (𝑥, 𝑡) exp(𝑎(𝑥) + 𝜏1(𝑡) + 𝑐(𝑥)𝜏2 (𝑡)) denotes the
expected number of deaths at age 𝑥 and in year 𝑡 implied by our proposed model.

The first-order conditions can be solved using an iterative Newton–Raphson algorithm. In the
algorithm, the model parameter estimates in the (𝑘 + 1)th update are given by

�̂� (𝑘+1) (𝑥) = �̂� (𝑘) (𝑥) +
∑𝑡𝑛
𝑡=𝑡1 (𝐷 (𝑥, 𝑡) − 𝐷 (𝑘) (𝑥, 𝑡))∑𝑡𝑛

𝑡=𝑡1 𝐷
(𝑘) (𝑥, 𝑡)

,

𝜏 (𝑘+1)
1 (𝑡) = 𝜏 (𝑘)1 (𝑡) +

∑𝑥𝑛
𝑥=𝑥1

(𝐷 (𝑥, 𝑡) − 𝐷 (𝑘) (𝑥, 𝑡))∑𝑥𝑛
𝑥=𝑥1

𝐷 (𝑘) (𝑥, 𝑡)
,

𝑐 (𝑘+1) (𝑥) = 𝑐 (𝑘) (𝑥) +
∑𝑡𝑛
𝑡=𝑡1 (𝐷 (𝑥, 𝑡) − 𝐷 (𝑘) (𝑥, 𝑡))𝜏 (𝑘)2 (𝑡)∑𝑡𝑛

𝑡=𝑡1 𝐷
(𝑘) (𝑥, 𝑡)(𝜏 (𝑘)2 (𝑡))2

,

and

𝜏 (𝑘+1)
2 (𝑡) = 𝜏 (𝑘)2 (𝑡) +

∑𝑥𝑛
𝑥=𝑥1

(𝐷 (𝑥, 𝑡) − 𝐷 (𝑘) (𝑥, 𝑡))𝑐 (𝑘+1) (𝑥)∑𝑥𝑛
𝑥=𝑥1

𝐷 (𝑘) (𝑥, 𝑡) (𝑐 (𝑘+1) (𝑥))2
,

for 𝑥 = 𝑥1, . . . , 𝑥𝑛 and 𝑡 = 𝑡1, . . . , 𝑡𝑛, where 𝐷 (𝑘) (𝑥, 𝑡) = 𝐸 (𝑥, 𝑡) exp(�̂�(𝑥) (𝑘) + 𝜏 (𝑘)1 (𝑡) + 𝑐 (𝑘) (𝑥)𝜏 (𝑘)2 (𝑡))
denotes the expected number of deaths at age 𝑥 and in year 𝑡 on the basis of the parameter estimates in the
𝑘th update. The algorithm runs over 𝑘 = 0, 1, . . . until the difference between the values of 𝑙 evaluated
at the parameter estimates in the 𝑘th and (𝑘 − 1)th iterations becomes sufficiently small, say 10−6.
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We use parameter estimates obtained from Method I (least squares and SVD) as the initial values
of the algorithm (i.e., the parameter values when 𝑘 = 0). At the end of the (𝑘 + 1)th update, where
𝑘 = 0, 1, . . ., we replace

• 𝑐 (𝑘+1) (𝑥) with 𝑐 (𝑘+1) (𝑥)/
√∑𝑥𝑛

𝑥=𝑥1
(𝑐 (𝑘+1) (𝑥))2,

• 𝜏 (𝑘+1)
1 (𝑡) with 𝜏 (𝑘+1)

1 (𝑡) − 𝜏 (𝑘+1)
1 ,

• 𝜏 (𝑘+1)
2 (𝑡) with (𝜏 (𝑘+1)

2 (𝑡) − 𝜏 (𝑘+1)
2 )

√∑
𝑥 (𝑐 (𝑘+1) (𝑥))2, and

• �̂� (𝑘+1) (𝑥) with �̂� (𝑘+1) (𝑥) + 𝜏 (𝑘+1)
1 + 𝑐 (𝑘+1) (𝑥)𝜏 (𝑘+1)

2 ,

where 𝜏 (𝑘+1)
1 and 𝜏 (𝑘+1)

2 represent the averages of 𝜏 (𝑘+1)
1 (𝑡) and 𝜏 (𝑘+1)

2 (𝑡) over the calibration window
[𝑡1, 𝑡𝑛], respectively. This step ensures that the resulting parameter estimates satisfy the constraints
presented in Section 3.1.

Appendix B. Generating confidence intervals and sample paths

To generate stochastic forecasts, we need estimates of 𝜎2
1 , 𝜎2

2 , and 𝜎1,2. They can be obtained using the
formulas below.

For 𝜎2
1 , we have

�̂�2
1 =

1
𝑡𝑛 − 𝑡1

𝑡𝑛∑
𝑡=𝑡1+1

(𝜏1(𝑡) − 𝜏1(𝑡 − 1) − 𝑑1)2,

where 𝜏1(𝑡) and 𝑑1 represent the estimates of 𝜏1(𝑡) and 𝑑1, respectively.
For 𝜎2

2 , we have

�̂�2
2 =

1
𝑡𝑛 − 𝑡1

𝑡𝑛∑
𝑡=𝑡1+1

(𝜏2(𝑡) − 𝑑2 − 𝛽(𝑡 − 𝑡) − 𝜏2(𝑡 − 1))2,

where 𝜏2(𝑡), 𝑑2, and 𝛽 denote the estimates of 𝜏2(𝑡), 𝑑2, and 𝛽, respectively.
For �̂�1,2, we have

�̂�1,2 =
1

𝑡𝑛 − 𝑡1

𝑡𝑛∑
𝑡=𝑡1+1

(𝜏1(𝑡) − 𝜏1(𝑡 − 1) − 𝑑1)(𝜏2(𝑡) − 𝑑2 − 𝛽(𝑡 − 𝑡) − 𝜏2(𝑡 − 1)).

With �̂�2
1 , �̂�2

2 , and �̂�1,2, we obtain

�̂� =

(
�̂�2

1 �̂�1,2
�̂�1,2 �̂�2

2

)
as an estimate of the variance-covariance matrix for the random vector (𝑒1(𝑡), 𝑒2(𝑡))′.

We can generate a large number (say 𝑁) of sample paths of 𝑚(𝑥, 𝑡) for 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . . using the
algorithm below.

1. Simulate realizations of (𝑒1(𝑡), 𝑒2(𝑡))′ from a bivariate normal distribution with a zero mean vector
and a variance-covariance matrix of �̂�. We use 𝑒 [𝑖]1 (𝑡) and 𝑒 [𝑖]2 (𝑡) to represent the simulated values
of 𝑒1(𝑡) and 𝑒2(𝑡) in the 𝑖th iteration, respectively.

2. Calculate realizations of 𝜏1(𝑡) for 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . . with the following equation:

𝜏 [𝑖]1 (𝑡) = 𝑑1 + 𝜏 [𝑖]1 (𝑡 − 1) + 𝑒 [𝑖]1 (𝑡),

where 𝜏 [𝑖]1 (𝑡), for 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . . , represents the simulated value of 𝜏1(𝑡) in the 𝑖th iteration,
and 𝜏 [𝑖]1 (𝑡𝑛) is set to 𝜏1(𝑡𝑛) (the estimate of 𝜏1(𝑡) obtained in Section 3.3).
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3. Calculate realizations of 𝜏2(𝑡) for 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . . and for ages 𝑥 = 𝑥1, . . . , 𝑥𝑛 using the
following equation:

𝜏 [𝑖]2 (𝑡) = min
{
𝑑2 + 𝛽(𝑡 − 𝑡)

(
I𝑥≤𝑥𝑇 + I𝑥>𝑥𝑇

(
𝑥 − 𝑥𝑇
𝑥𝑛 − 𝑥𝑇

))
, 0

}
+ 𝜏 [𝑖]2 (𝑡 − 1) + 𝑒 [𝑖]2 (𝑡),

where I𝐴 is an indicator function which equals 1 if event 𝐴 holds true and 0 otherwise, 𝜏 [𝑖]2 (𝑡), for
𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . . , represents the simulated value of 𝜏2(𝑡) in the 𝑖th iteration, and 𝜏 [𝑖]2 (𝑡𝑛) is set to
𝜏2(𝑡𝑛) (the estimate of 𝜏2(𝑡) obtained in Section 3.3).

4. Calculate a realization of 𝑚(𝑥, 𝑡) using the following equation:

𝑚 [𝑖] (𝑥, 𝑡) = exp(�̂�(𝑥) + 𝜏 [𝑖]
1 (𝑡) + 𝑐(𝑥)𝜏 [𝑖]2 (𝑡)),

where 𝑚 [𝑖] (𝑥, 𝑡) represents the simulated value of 𝑚(𝑥, 𝑡) in the 𝑖th iteration.
5. Repeat Steps 1 to 5 for 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . . to obtain a sample path of 𝑚(𝑥, 𝑡) over time.
6. Repeat Step 5 for 𝑖 = 1, . . . , 𝑁 to obtain 𝑁 sample paths of 𝑚(𝑥, 𝑡) over time.

We can further obtain prediction intervals for future values of 𝑚(𝑥, 𝑡). Suppose that we intend
to construct 95% prediction intervals for 𝑚(𝑥, 𝑡) at 𝑥 = 𝑥1, . . . , 𝑥𝑛 and 𝑡 = 𝑡𝑛 + 1, 𝑡𝑛 + 2, . . ., using
𝑁 = 10,000 simulated sample paths of 𝑚(𝑥, 𝑡). Such prediction intervals can be obtained with the
following procedure.

1. For a given age 𝑥 and a given year 𝑡, sort the simulated values of 𝑚(𝑥, 𝑡), that is,
𝑚 [1] (𝑥, 𝑡), . . . , 𝑚 [𝑁 ] (𝑥, 𝑡), from smallest to largest.

2. The lower and upper limits of a 95% prediction interval for 𝑚(𝑥, 𝑡) can be set to the 250th and
9,750th sorted simulated values of 𝑚(𝑥, 𝑡), respectively.

Prediction intervals with different coverage probabilities (e.g., 90%, 99%) can be obtained in a similar
manner.

Finally, we remark that the sample paths and prediction intervals generated using the methods above
do not take the possible randomness in 𝜖 (𝑥, 𝑡) (i.e., the error term in the model structure) and the
parameter estimates into account. We refer interested readers to Li [21] and Liu and Li [33] for methods
that enable us to quantify these additional sources of uncertainty.
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