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Abstract. Given a quasi-projective complex varietyX and a projective varietyY, one may endow
the setofmorphisms,Mor�X ;Y �, fromX toY with the natural structureofatopological space.We
introduce a convenient technique (namely, the notion of a functor on the category of s̀mooth
curves') for studying these function complexes and for forming continuouspairingsofsuch.Build-
ing on this technique, we establish several results, including (1) the existence of cap and join prod-
uctpairings in topological cycle theory; (2) the agreementofcupproduct and intersectionproduct
for topological cycle theory; (3) the agreement of the motivic cohomology cup product with
morphic cohomology cup product; and (4) the Whitney sum formula for the Chern classes
in morphic cohomology of vector bundles.
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At ¢rst glance, imposing a topology on the set Mor�X ;Y � of morphisms between two
complex algebraic varieties seems unnatural. Nevertheless, just such a construction
applied to the set of morphisms from X to certain Chow varieties of cycles in pro-
jective space leads to the `morphic cohomology' of X as introduced in [FL-1]. In
this paper, we show that, in general, the `topology of bounded convergence'
(introduced in [FL-2]) on Mor�X ;Y � has a natural algebraic description arising from
the enriched structure on Mor�X ;Y � as a contravariant functor on the category of
smooth curves. This functorial interpretation leads to a convenient formulation
of the technique of demonstrating `uniqueness of specialization' introduced in [F-1]
for the construction of continuous algebraic maps. We use this new technique to
establish the continuity of various constructions and pairings involving the `function
spaces'Mor�X ;Y �an, where X and Y are complex (but not necessarily projective)
varieties.

More generally, we introduce the notion of a `proper, constructible presentation'
of a functor (cf. De¢nition 2.1), a property which provides a natural topological
realization of a contravariant functor on smooth curves. This point of view
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facilitates (cf. Theorem 2.6) a careful proof of the continuity of the slant product
pairing of [FL-1] and the cap product pairing relating Lawson homology and
morphic cohomology which plays a central role in [F-3]. Indeed, our techniques
provide, not merely a pairing on the level of homology groups, but pairings (in
the derived category) of the presheaves of chain complexes used to de¢ne Lawson
homology and morphic cohomology. Similarly, the join product of cycles in pro-
jective spaces determines a cup product in morphic cohomology as ¢rst recognized
in [FL-1]. We provide a de¢nition of this product at the level of presheaves of chain
complexes on an arbitrary complex quasi-projective variety (Proposition 3.3). As
we make explicit in (4.1.1), there is a natural map of presheaves of chain complexes
from those complexes which de¢ne motivic cohomology to those which de¢ne
morphic cohomology. In Theorem 4.4, we show that this natural map commutes
with products. On a smooth variety X , we show cup product corresponds to the
intersection product of cycles under duality ^ that is, we re¢ne the intersection prod-
uct of [F-G] to be a pairing of presheaves of chain complexes on X compatible with
our cup product.

In verifying in [F3] that suitably enriched versions of Lawson homology and
morphic cohomology satisfy the axioms of Bloch^Ogus [B-O], the ¢rst author intro-
duced a cap product whose continuity was not evident. One of the motivations of the
present paper is a careful proof of continuity of cap product, set in a more general
context. Moreover, the formulation of cup product presented here in terms of a
pairing of complexes of sheaves also permitted the veri¢cation in [F3] of the stronger
result that this `topological cycle theory' satis¢es the stronger axioms of H. Gillet
[G].

In the ¢nal section of this paper, we apply our improved understanding of products
to show in Theorem 5.4 that the geometric construction of [FL-1; 10] does indeed
determine Chern class maps on K0�X � for a quasi-projective variety X and that these
Chern classes satisfy the expected Whitney sum formula.

Throughout this paper, all varieties considered will be quasi-projective varieties
(by which we mean reduced, locally closed subschemes of projective space) over
a base ¢eld of characteristic 0 (usually the complex ¢eld C). We shall frequently
consider Chow varieties associated to projective varieties. If Y � PN is a projective
variety provided with a given closed embedding in some projective space PN , then
Cr;dY denotes the Chow variety whose rational points are the effective r-cycles
on Y of degree d. We shall consider the Chow monoid CrY �

`
dX 0 Cr;dY of all

effective r-cycles on Y , a monoid whose isomorphism type is independent of the
projective embedding Y � PN (cf. [B]).

1. Continuous Algebraic Maps

One is naturally led to consider continuous algebraic maps to Chow varieties when
one is confronted with their construction in terms of elimination theory rather than
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as a representable functor. Indeed, as we see in Example 1.3, Chow varieties have a
natural functorial description in terms of functors on smooth curves. A simple obser-
vation which motivates the consideration of such functors is the fact that a con-
tinuous algebraic map X ! Y between quasi-projective varieties is equivalent to
a natural transformation of associated contravariant functors MorW 1�ÿ;X � !
MorW 1�ÿ;Y � (see Proposition 1.1).

The usefulness of this functorial point of view is that the construction of pairings
of functors is often straightforward. In conjunction with the topological realization
considered in the next section, our functorial point of view will provide a good for-
malism for proving the continuity of various pairings.

Eventually, we will be working over the complex numbers, but in this section we
work over an arbitrary ¢eld K of characteristic 0 and we consider varieties de¢ned
over K . Recall that a continuous algebraic map f : X ! Y is a closed subvariety
Gf � X � Y with the property that prX : Gf ! X is ¢nite and bijective on geometric
points ^ or, equivalently, that prX is a universal homeomorphism (cf. [VI; 3.2.4]). We
say that prX is a bicontinuous morphism. We further recall that a variety X admits a
natural normalization ~X ! X (de¢ned locally by taking integral closures in the total
ring of quotients of X ), and that this normalization factors as ~X ! Xw ! X ; where
Xw is the weak normalization of X (cf. [A-B]). The variety Xw has the property that
Xw! X is bicontinuous and is universal among varieties mapping bicontinuously
to X . (The weak normalization Xw coincides with the semi-normalization of X since
K has characteristic zero ^ see [S].) Thus, a continuous algebraic map of algebraic
varieties X ! Y is equivalent to a morphism Xw ! Y . We say a variety X is weakly
normal if it is equal to its weak normalization, in which case every continuous
algebraic map from X to Y is a morphism of varieties.

We proceed to formalize a technique introduced in [F1] to construct continuous
algebraic maps. Let �Sm=K�W 1 denote the category of smooth af¢ne schemes over
SpecK which are essentially of ¢nite type, connected, and have Krull dimension
at most 1. That is, every object of �Sm=K�W 1 is the scheme associated to a ring
A where A has Krull dimension one and is the localization of a ¢nitely generated
smooth, integral K-algebra R. In scheme-theoretic language, we observe that
any C 2 �Sm=K�W 1 is a ¢ltered limit of smooth varieties of ¢nite type over K
(possibly of dimension more that 1) such that the transition maps in the system
are open immersions. A typical example of an object of �Sm=K�W 1 is
SpecOX;x1;...;xn , where X is a smooth, connected variety, the xi are the generic points
of codimension one subvarieties, and OX;x1;...;xn denotes semi-localization at these
points. If C 2 �Sm=K�W 1 and X is a quasi-projective variety over K , then we de¢ne
Mor�C;X � to be the set of morphisms of schemes over SpecK from C to X and
we write MorW 1�ÿ;X � : �Sm=K�W 1ÿ!�Sets� for the functor so de¢ned.

Intuitively, we think of �Sm=K�W 1 as consisting of all curves and the motivation
for its introduction is that a continuous algebraic map on a variety is uniquely
determined by its value on all curves. More precisely, we have the following
key result.
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PROPOSITION 1.1. For any ¢eld K of characteristic 0, a continuous algebraic map
f : X ! Y between quasi-projective varieties over K is equivalent to a natural
transformation of contravariant functors

Ff : MorW 1�ÿ;X �ÿ!MorW 1�ÿ;Y � : �Sm=K�W 1ÿ!�Sets�:

Proof. Assume given such a natural transformation Ff . Then Ff immediately
determines a rational map from X to Y ; namely, given a generic point
Z : SpecF ! X , we send Z to Ff �Z� : SpecF ! Y . Let Y � Y be a projective closure
and let Gf � X � Y be the graph of this rational map, so that Gf is the closed
subvariety whose irreducible components have generic points �Z;Ff �Z�� :

SpecF ! X � Y � X � Y . It suf¢ces to verify that for any ¢nitely generated ¢eld
extension L of K and any map g : SpecL! Gf , g is of the form
�p � g;Ff �p � g�� : SpecL! X � Y where p : X � Y ! X is the projection map.

We argue by induction on the codimension of g�SpecL� 2 Gf . For codimension 0,
all maps g are of the given form by construction. Assume we have veri¢ed that
all maps g : SpecL! Gf are of the given form if g�SpecL� has codimension
W s, and consider g : SpecL! Gf with g�SpecL� 2 Gf of codimension s� 1. Choose
a non-constant map g : C ! Gf de¢ned over SpecL from a smooth, connected,
af¢ne curve C 2 �Sm=K�W 1 to Gf with the property that some L-rational point
c : SpecL! C maps to g. By induction, the generic point n : SpecE ! C of C
satis¢es the condition that g � n : SpecE ! Gf is the map �p � g � n;Ff �p � g � n��,
which by the naturality of Ff is equal to the map �p � g;Ff �p � g�� � n. Thus, we con-
clude that g : C ! Gf � X � Y is of the form �p � g;Ff �p � g��. Naturality of Ff

now implies that g � �p � g � c;Ff �p � g� � c� equals �g;Ff �g��. &

Proposition 1.1 motivates the following de¢nition.

DEFINITION 1.2. Let K be a ¢eld of characteristic 0. We de¢neMorW 1 to be the
category of contravariant functors F : �Sm=K�W 1! �Sets�. For F ;G 2 MorW 1,
we write Mor�F ;G� for the set of natural transformations from F to G. If X is
a scheme over K , we also let X denote the functor on �Sm=K�W 1 sending C to
HomK �C;X �.

We provide Mor�F ;G� with the structure of a contravariant functor from
�Sm=K�W 1 to �Sets�, written using the calligraphic Mor�F ;G�, by de¢ning
Mor�F ;G��C� �Mor�C � F ;G�.

If X and Y are schemes over K , then in light of Proposition 1.1 the functor
Mor�X ;Y � may be identi¢ed with the functor on �Sm=K�W 1 which sends C to
Mor�X � C;Y �.

Observe thatMor�F ;G� is an internal Hom-object for the categoryMorW 1 ^ for
any H : �Sm=K�W 1! �Sets� we have

Mor�H;Mor�F ;G�� �Mor�H � F ;G�:
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First of all, a natural transformation c : H !Mor�F ;G� determines H�C� !
Mor�F ;G��C� ! Hom�Sets��F �C�;G�C�� natural with respect to C. Conversely, a
natural transformation f : H � F ! G determines for each C the map H�C� !
Mor�C � F ;G� associated to the pairing natural with respect to C0 determined
by f, H�C� �HomK �C0;C� ! Hom�Sets��F �C0�;G�C0��. We readily verify that these
constructions are mutually inverse.

EXAMPLE 1.3. Let Y � PN be a quasi-projective variety and consider the functor
CrY : �Sm=K�W 1! �Sets� which associates to C 2 �Sm=K�W 1 the monoid of effec-
tive cycles in C � Y which are £at (equivalently, dominant) over C of relative
dimension r. The map �CrY ��C� ! �CrY ��C0� associated to a morphism C0 ! C
is given by pullback of cycles (which is well-de¢ned in light of the £atness condition).

WhenY is projective, the functor CrY is represented by the disjoint union of Chow
varieties

`
d Cr;d �Y �, whereCr;d�Y � parameterizes effective r-cycles of degree d on Y .

Each Cr;dY is a projective variety de¢ned over K , and, as shown in [F1], the Chow
monoid CrY �

`
dX 0 Cr;d�Y � is independent of the embedding Y � PN in the sense

that two different embeddings yield monoids which are related by a continuous
algebraic map whose graph projects to each via a bicontinuous morphism. We recall
that a map from any normal variety X to CrY is equivalent to an effective cycle on
X � Y equidimensional over X of relative dimension r, so that, in particular,
the functor CrY is given as Mor�ÿ; CrY �.

If Y is merely quasi-projective with some chosen projective closure Y � Y , the
functor CrY is a `quotient' of the representable functor CrY . Speci¢cally, for any
C 2 �Sm=K�W 1, we can realize �CrY ��C� as the quotient of the monoid
Mor�C; CrY � by the submonoid Mor�C; CrY1�, where Y1 � Y n Y .

The following proposition veri¢es the functoriality of the associationY 7! CrY for
Y projective. This functoriality is a reformulation of the naturality of proper
push-forward of cycles.

PROPOSITION 1.4. Let X, Y be projective varieties. For any rX 0, there is a natural
transformationMor�X ;Y � ÿ!Mor�CrX ; CrY �:

Proof. We may replace X by its weak normalization, since bothMor�X ;Y � and
CrX are unaffected by this substitution, so that every continuous algebraic map will
be a morphism of varieties.

For C 2 �Sm=K�W 1, consider an element f : C � X ! Y of Mor�X ;Y ��C�. We
proceed to de¢ne a natural transformation C � CrX ÿ!

f� CrY : �Sm=K�W 1!
�Sets�: For any C 0 2 �Sm=K�W 1 and any g � �g1; g2� : C0 ! C � CrX let Zg denote
the effective cycle on C 0 � X associated to g2, so that Zg equidimensional of relative
dimension r over C0. Consider the proper map

f � g � �1C0 ; f � � �1C0 ; g1; 1X � : C0 � X ! C 0 � C � X ! C0 � Y

and de¢ne f��g� to be � f � g���Zg�, an effective cycle on C0 � Y equidimensional of
relative dimension r over C0.
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To verify that f� is a natural transformation, we consider some h : C 0 ! C 0 in
�Sm=K�W 1. The fact that following diagram consists of Cartesian squares

C00 � X ÿÿÿÿÿÿ! C00 � C � X ÿÿÿÿÿÿ! C 00 � Y

h�1

????y
????yh�1�1

????yh�1
C0 � X ÿÿÿÿÿÿ! C0 � C � X ÿÿÿÿÿÿ! C 0 � Y

together with the commutativity of push-forward and pull-back implies that h�

applied to �f � g���Zg� 2Mor�C0; CsY � equals �f � g0���Zg0 � 2Mor�C0; CsY �, where
g0 � g � h as required by functoriality.

To complete the proof, we must verify the functoriality with respect toC of f 7! f�.
Consider k : ~C ! C 2 �Sm=K�W 1 and f : C � X ! Y . To prove functoriality, we
must show that �f � k�� � f� � �k; 1� : ~C � CrX ! CrY : Observe that f� :

C � CsX ! CsY sends a geometric point �c;Z� of C � CrX to �fjc�X ���Z�, whereas
�f � k�� sends a geometric point �~c;Z� of ~C � CsX to ��f � k; 1�j~c�X ���Z�. Hence,
�f � k�� and f� � �k; 1� agree on geometric points and thus are equal. &

We next present a proof of the well-de¢nedness of the trace map introduced
in [FL-1; 7.1] which is more formal and perhaps clearer than the original
proof.

PROPOSITION 1.5. Let Y be a projective variety. For any C 2 �Sm=K� and any
morphism f : C ! Cs�CrY �, let Zf � SZi be the associated effective cycle on
C � CrY equidimensional of relative dimension s over C and let pi : Zi ! C denote
the projection maps of the irreducible components of Z. For each i, let ~Zi be the effec-
tive cycle on Zi � Y associated to Zi ! C � CrY ! CrY; thus ~Zi is equidimensional
of relative dimension r over Zi. De¢ne tr�f � � S�pi � 1��� ~Zi�, an effective cycle on
C � Y equidimensional of relative dimension r� s over C. Then sending f to tr�f �
determines a continuous algebraic map tr : Cs�CrY � ! Cr�sY :

Proof. It suf¢ces to verify the functoriality of the construction f 7! tr�f � with
respect to maps g : C0 ! C 2 �Sm=K�W 1. Observe that tr�f � 2Mor�C; Cr�sY � is sent
via g to the cycle associated to the pull-back S�1� pi��� ~Zi� �C C 0, since tr�f � is £at
over C. Similarly, the effective cycle Zf �g on C 0 � CrY is the cycle associated to
the pull-back of Zf via g. Thus, the required equality tr�f � g� � g��tr�f �� follows
from the commutativity of push-forward (along proper maps) and pull-back (along
£at maps). &

The following proposition, in conjunction with the topological realization dis-
cussed in the next section, justi¢es the cap pairing considered in [FL-1; 7.2]. This
cap product plays a central role in [F3].
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PROPOSITION 1.6. Let X be a quasi-projective variety and let Y be a projective
variety. Then sending a pair �f ;Z� with Z an irreducible s-cycle on X to the graph
of the composition Z! X ! CrY determines a `cap product' pairing
Mor�X ; CrY � � CsX ! Cr�s�X � Y � for any r; sX 0.

Proof. We may replace X with its weak normalization without loss of generality.
For C 2 �Sm=K�W 1, we de¢ne a map C :Mor�X ; CrY ��C� � �CsX ��C� ÿ!
Cr�s�X � Y ��C� by sending �f : C � X ! CrY ;W � to the graph of the composite
map W ! C � X ! CrY , where W is a closed, integral subscheme of C � X that
is £at over C. We regard this graph, which is naturally a cycle in W � Y , as being
a cycle in C � X � Y . We extend C linearly, so that C is de¢ned on all cycles.
Observe that C sends �f ;W � to an element of Cr�s�X � Y ��C� since the cycle con-
structed is clearly dominate over C.

To verify functoriality of C with respect to C, we begin by choosing a projective
closure X � X . Given f : C � X ÿ!CrY , g : Cÿ!CsX (where g is associated to
the W considered above), observe that f determines f 0 : C � X ÿ!Cr�X � Y �. (One
sends the cycleZ onC � X � Y determined by f to the push-forward by the diagonal
map to a cycle on C � X � X � Y .) Choose a projective closure C � X � C � X so
that f 0 extends to f : C � X ! Cr�X � Y � and the projection C � X ! X extends
to C � X ! X . Observe that g : Cÿ!CsX determines g0 : C ! Cs�C � X �. (One
sends the cycle W on C � X £at over C to the push-forward by the diagonal
map to a cycle on C � C � X .) We choose a lifting ~g : Cÿ!Cs�C � X � of g0. Then
the pair �f ; ~g� determines the map C�f ; g� : Cÿ!Cs�C � X � ! Cs�Cr�X � Y �� !
Cr�s�X � Y � ! Cr�s�X � Y �; where the ¢rst map is ~g, the second is induced by f
using Proposition 1.4, the third is the trace map of Proposition 1.5, and the fourth
is the de¢ning projection. One readily veri¢es that the graph of C�f ; g� is precisely
C�f ;W � by checking this equality at the generic point of C, and, in particular,
the map C�f ; g� is independent of the choices made.

Assume given h : C0 ! C 2 �Sm=K�W 1 as well as �f ; g�. Provided one chooses
C0 � X to map to C � X and chooses �g � h�� � ~g � h, one sees immediately that
C�f ; g� � h � C�f � �h� 1�; g � h� as required for functoriality. &

In subsequent sections, we shall require the continuity and associativity of com-
position, which is implied by the next proposition together with the topological
realization functor of the next section.

PROPOSITION 1.7. Let X, Y, W be quasi-projective varieties over K. Composition
of morphisms determines a pairing of functors

Mor�X ;Y � �Mor�Y ;W � ÿ!Mor�X ;W �

which is associative in the evident sense.
Similarly, if X is a quasi-projective variety, Y and W are projective varieties, then

composition together with the trace map of Proposition 1.5 determines a bilinear
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pairing

Mor�X ; CrY � �Mor�Y ; CsW � !Mor�X ; Cr�sW �
which is associative in the evident sense.

Proof. The ¢rst pairing is given by sending f : C � X ! Y , g : C � Y !W to
g � �1C; f � : C � X !W for any C 2 �Sm=K�W 1. This is clearly natural in C.

The second pairing is the composition of maps given by applying Proposition 1.4,
the ¢rst pairing, and the trace map of Proposition 1.5:

Mor�X ; CrY � �Mor�Y ; CsW � !Mor�X ; CrY � �Mor�CrY ; Cr�CsW ��
!Mor�CrX ; Cr�CsW �� !Mor�X ; Cr�sW �: &

2. Topological Realization for K � C

Every complex variety admits a realization as a topological space and every
morphism of complex varieties induces a continuous map on the associated spaces.
The goal of this section is to generalize this simple concept in two ways. Namely,
we wish to replace `varieties' with `constructible sets modulo proper equivalence
relations' (see De¢nition 2.1) and also to replace `morphisms' with `natural
transformations of the associated functors on �Sm=K�W 1.' The precise statement
is Theorem 2.3. This generalized notion of topological realization, together with
the results of Section 1, allows us to establish the continuity of various maps arising
in the study of Lawson homology and morphic cohomology.

Many of the functors on �Sm=K�W 1 introduced in Section 1 admit a kind of pres-
entation in terms of algebro-geometric information. The following de¢nition pro-
vides the formal notion which covers all of the cases arising in this paper.

DEFINITION 2.1. Consider the data Y � `d Yd , a disjoint union of projective var-
ieties over SpecK ; E �`d Ed , where each Ed is a constructible algebraic subset of
Yd ; a `proper equivalence relation' R � R \ �E�2�, where R � Y�2 is a closed equiv-
alence relation such that R � R \ �E � Y�. Then we say �Y; E;R� is a proper, con-
structible presentation of a functor F : �Sm=K�W 1! �Sets� if F is the functor
given by sending C 2 �Sm=K�W 1 to Mor�C; E�=Mor�C;R� (where, in general, if
E is a constructible subset of variety Y , we de¢ne Mor�X ;E� to be the set of those
morphisms from X to Y whose set theoretic images land in E).

As seen in Example 1.3, given a quasi-projective varietyY , the functor CrY admits
a proper, constructible presentation. The following proposition implies that
Mor�X ;Y � does as well.

PROPOSITION 2.2. Let X, Y be quasi-projective varieties over SpecK, Xw the weak
normalization of X, and assume Xw � X

w
, Y � Y are projective closures. Then
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Mor�X ;Y � : �Sm=K�W 1! �Sets� admits a proper, constructible presentation
� ~C�Xw � Y �; E0;1�Xw;Y �;R� de¢ned as follows: ~C�Xw � Y � is the Chow variety of
effective cycles in Xw � Y which have dimension equal to the dimension of Xw

(locally); E0;1�Xw;Y � � Cd�Xw � Y � is the constructible subset of those cycles whose
restriction to Xw � Y are graphs of morphisms from Xw to Y; and R is the equivalence
relation associated to the diagonal action of ~C�Xw

1 � Y �, the subset of those cycles
supported on Xw

1 � Y, on � ~C�Xw � Y ��2, where Xw
1 � X

w ÿ Xw.
Furthermore, when X and Y are both projective varieties, this presentation of
Mor�X ;Y � realizes Mor�X ;Y � as the functor associated to an inductive limit of
quasi-projective varieties.

Proof. To simplify notation, we replace X with its weak normalization and omit
the superscript w everywhere.

The constructibility of the subset E0;1�X ;Y � � ~C�X � Y � can be veri¢ed by using
the incidence correspondence I�X ;Y � � ~C�X � Y � � X � Y consisting of those
triples �Z; x; y� with the property that �x; y� lies in the support of the cycle Z.
For consider the natural map r : I�X ;Y � ! ~C�X � Y � � X . Let B � I�X ;Y � be
the constructible set of points �Z; x; y� such that x 2 X and �Z; x; y� lies in a ¢ber
of r consisting of more than one point, i.e. a ¢ber of dimension more than 0 or
of degree more than 1. Then E0;1�X ;Y � is the complement of the projection of B
to ~C�X � Y �.

Observe that the image of the diagonal action of ~C�X1 � Y � (which is a
proper map between disjoint unions of projective varieties) ~C�X � Y ��
~C�X1 � Y ��2ÿ! ~C�X � Y ��2 is a closed equivalence relationR on ~C�X � Y �which
satis¢es the property R � R \ E0;1�X ;Y ��2 � R \ �E0;1�X ;Y � � ~C�X � Y ��: To
verify that Mor�X ;Y � � E0;1�X ;Y �=R : �Sm=K�W 1 ! �Sets�; observe that an
element of E0;1�X ;Y ��C� is a cycle g in C � X � Y satisfying the condition that
g is equidimensional over C and that g \ �C � X � Y � is the graph of a morphism
from C � X to Y . Here, we are using (a) a rational map with domain C � X is
the graph of a morphism if and only if for each geometric point c� x 2 C � X there
is a unique geometric point of the form �c; x; y� in its graph; and (b) the pull-back of g
over C to c has restriction to fcg � X � Y the graph of the map from X � fcg to Y
given by the image of c in E0;1�X ;Y � � ~C�X � Y � since g is £at over C. Thus, there
is an evident map E0;1�X ;Y ��C� ÿ!Mor�X ;Y ��C� obtained by restriction of cycles
to C � X � Y . This map is surjective, since we may lift elements in the target
set by taking closures of cycles. (Such closures must remain equidimensional over
C since they will dominate C which is one-dimensional and smooth.) Finally,
two elements g and g0 of Er�Y ��X ��C� are sent to the same element under this
map if and only if their restrictions to C � X � Y coincide ^ that is, if and only
if g� d � g0 � d0 for some d, d0 contained in C � X1 � Y and equi-dimensional over
C. In other words, two elements are sent to the same element under this map if only
only if their images are the graphs of the same morphism from C � X to Y .

Finally, if X and Y are both projective varieties, then we take X � X and Y � Y .
The constructible subset B de¢ned above is actually closed in this case. Thus,
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E0;1�X ;Y �, which is the complement of the image of B under a proper map, is open in
~C�X � Y �. The equivalence relation R is clearly trivial in this case, and so
Mor�X ;Y � is represented by the ind-variety E0;1�X ;Y � � lim!n

E0;1�X ;Y �n, where
E0;1�X ;Y �n in the quasi-projective variety consisting of those cycles in E0;1�X ;Y �n of
degree at most n. &

We now restrict our attention to complex varieties. For a complex quasi-projective
algebraic variety X , we write Xan for the set X �C� ofC points of X provided with its
topology as an analytic space. If �E;Y;R� is a proper, constructible representation of
a functor F as in De¢nition 2.1, we write Ean for the subspace of Yan consisting of
points E�C� � Y�C� and we let �E=R�an denote the space consisting of points
E�C�=R�C� provided with the quotient topology given by the surjective map
Eanÿ!�E=R�an. Observe that the set of points of �E=R�an is simply F �C�.

Thus, any functor admitting a proper, constructible presentation has a topological
presentation. The following theorem shows that a natural transformation of such
functors induces, as one would hope, a continuous map on the associated spaces.
This result is particularly useful for establishing the continuity of various pairings,
as well as showing the well-de¢nedness of the topology associated to various con-
structions, which arise in Lawson homology and morphic cohomology. For example,
if X a normal, quasi-projective variety and Y projective, then the topology on
Mor�X ;CrY � as given in [F2] is described by a somewhat different proper, con-
structible presentation than that given by Proposition 2.2. Theorem 2.3 assures
us that these different presentations determine the same topology.

THEOREM 2.3. Let F ;F 0 : �Sm=C�W 1! �Sets� be contravariant functors provided
with proper, constructible presentations �Y; E;R�, �Y0; E0;R0�. Then a natural
transformation c : F ! F 0 induces a continuous map can : �E=R�an! �E0=R0�an:

Proof. Observe that if S � X is a constructible subset of a projective variety X ,
then S has a canonical expression as a union of irreducible constructible subsets
S � [bSb, where b runs through those (Zariski) points of X which lie in S and which
satisfy the condition that they do not lie in the closure of any point b0 6� bwith b0 2 S.
Thus, Sb equals S \ Xb, where Xb � X is the closed subvariety with generic point b.
Clearly, if R is a proper equivalent relation on S � X , then �S=R�an �
��`Sb�=R��an where each Sb � Xb and R� is the equivalence relation determined
by R. Thus, we may assume that each Yd and each Y 0d are irreducible and that each
Ed � Yd and each E 0d � Y 0d are dense.

For each generic point Zg : Spec k�g� ! E of E, choose some generic point
~c�Zg� : Spec k�g� ! E0 satisfying c � p�Zg� � q� ~c�Zg��, where p : E ! F and
q : E0 ! F 0 are the natural quotient maps. Let Gg � Y � Y0 denote the irreducible
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subvariety with generic point

�Zg; ~C�Zg�� : Spec k�g� ! Eg � E0~c�Zg� ! Yg � Y0~c�Zg�;

and let Gc � Y � Y0 denote the union Gc �
S

g Gg:

To prove that c induces a continuous map can, it suf¢ces to prove that the
restriction of Gan

c � Yan � Y0an to Ean � Y0an has image in �E=R�an � �Y 0=R0�an which
maps bijectively to �E=R�an and is contained in �E=R�an � �E0=R0�an. (For in this case,
the bijective map must be a homeomorphism, since it is a proper map between
Hausdorff spaces.) For this, it suf¢ces to prove that for any point �w; z� 2 Gc such
that w lies in E, we have c � p�w� � q�z�: (Here, Y0=R0 : �Sm=C�W 1 ! �Sets� is de¢ned
as the evident quotient functor of Y0 with projection q : Y0 ! Y0=R0.) We proceed by
induction on the codimension of w 2 E (i.e. the maximum over all irreducible com-
ponents S of E containing w of the codimension of w in S). By construction, the
required equality is valid for all w of codimension 0 (i.e., for generic points). Assume
that the equality is valid for all points of codimension W s and let �x; y� 2 Gc be such
that x : Spec k�x� ! E is a point of codimension s� 1. Let gC : C ! Gc be a
non-constant map from a smooth curve C de¢ned over k�x� with some k�x�-rational
point c 2 C mapping to �x; y�. Let c�pr1 � gC�� be any lifting of c�pr1 � gC� to a
map from C to Y0. Letting g : Spec k�g� ! C denote the generic point of C, observe
that by hypothesis, q c�pr1 � gC�� � g� � � q c�pr1 � gC � g�� � � q�pr2 � gC � g�: In other
words, the map �c�pr1 � gC��; pr2 � gC� : Cÿ!Y0 � Y0 sends the generic point of
C into R

0. It thus sends c into R
0 as well, and so q c�pr1 � gC�� � c� � �

q�pr2 � gC � c�; which, by the naturality of c, implies that c � p�x� � q�x�, as
desired. &

It follows from [FL-1; 1.4] that if X and Y are projective varieties, then the set
Mor�X ;Y � of morphisms from X to Y has the natural structure of a quasi-projective
variety. Taking the analytic topology of this quasi-projective variety gives us a
`natural' topology on Mor�X ;Y �. For X not necessarily projective, Mor�X ;Y � is
no longer a variety but the `analytic' topology on Mor�X ;Y � does have a concrete
description as recalled in the following proposition.

PROPOSITION 2.4 ([FL-2; A.3]).Let X be a weakly normal quasi-projective variety,
X � X a projective closure, and Y a projective variety. Then the following topologies
on Mor�X ;Y � are equivalent:

(a) Identi¢cation of Mor�X ;Y � with �E0;1�X ;Y �=R�an, where � ~C�X � Y �;
E0;1�X ;Y �;R� is the proper, constructible presentation of Proposition 2.2.

(b) The topology of convergence with bounded degree: a sequence f fig of morphisms
converges if and only if this sequence converges in Homcont�Xan;Yan� provided with
the compact open topology and there exists some upper bound for the degrees of the
closures in X � Y of the graphs of fi. We let Mor�X ;Y �an denote the resulting
topological space.
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We include the following result which indicates that Mor�X ;Y �an has a `good'
topology ^ i.e., has the homotopy type of CW complex. The reader should note
that [F2; 1.5] erroneously claims that spaces such asMor�X ;Y �an admit the struc-
ture of CW complexes. We give in Proposition 2.5 a slightly weakened (but
functionally equivalent) version of this claim, together with a proof.

PROPOSITION 2.5. Let X be a quasi-projective variety and Y a projective variety.
ThenMor�X ;Y �an has the homotopy type of a CW complex.

Proof. We may assume X is weakly normal. Choose a projective closure X � X
and use the notations of Proposition 2.2. Additionally, let Sn denote the subset
of ~C�X � Y � consisting of cycles of degree n which lie in E0;1�X ;Y �. Further, let
Rn denote the subset of Sn consisting of cycles with a non-trivial component at
in¢nity, i.e. cycles in the image of the map

`
k>0

~Ck�X1 � Y � � Snÿk ! Sn given
by addition of cycles. Then Rn � Sn is a closed subset (in the Zariski topology)
of the constructible subset Sn. Finally, de¢ne En to be the constructible subset of
E0;1�X ;Y � consisting of cycles whose intersection withX � Y have closures of degree
at most n.

There is an evident push-out square

Rn � ~C�X1 � Y � ÿÿÿ! Sn � ~C�X1 � Y �??y ??y
Enÿ1 ÿÿÿ! En

�2:5:1�

with vertical arrows given by addition of cycles. Note also that the monoid
~C�X1 � Y � acts on the square (2.5.1). If we mod out by this monoid action, we
obtain another push-out square

Rn ÿÿÿ! Sn??y ??y
Xnÿ1 ÿÿÿ! Xn;

�2:5:2�

where Xn � En= ~C�X1 � Y �.
Note that Rn � Sn is a closed immersion of constructible subsets of some pro-

jective space PN . By [H] PN admits a semi-algebraic triangulation so that Sn

and Rn are each unions of open simplices. Now form the barycentric subdivision
of this triangulation and de¢ne S0n, R

0
n to be the so-called `cores' ^ namely, S0n is

the union of all closed simplices of the barycentric subdivision contained entirely
in Sn, and R0n is de¢ned similarly. Observe there is an evident straight-line
deformation retract of Sn � Rn onto S0n � R0n, and that S0n � R0n is a cellular
extension.
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Suppose, by induction on n, we have constructed a homotopy equivalence
Xnÿ1! Ynÿ1, where Ynÿ1 has the structure of a CW complex. De¢ne f : Rn!
Ynÿ1 to be the composition Rn !! R0n,!Rn ! Xnÿ1! Ynÿ1 and de¢ne ~Yn so that

Rn ÿÿÿ! Sn

f
??y ??y

Ynÿ1 ÿÿÿ! ~Yn

is a pushout square. Since Rn � Sn is an NDR subspace and f is homotopic to the
composition Rn! Xnÿ1! Ynÿ1, we have by [L-W; IV.2.3] that there is a homotopy
equivalence Xn ! ~Yn causing the triangle

Xnÿ1 ÿÿÿ! Xn??y ??y
Ynÿ1 ÿÿÿ! ~Yn

to commute. Finally, de¢ne Yn so that

R
0
n ÿÿÿ! S

0
n??y ??y

Ynÿ1 ÿÿÿ! Yn

is a pushout square. The deformation retract of Rn � Sn onto R0n � S0n induces a
deformation retract of ~Yn onto Yn. Hence, there is a homotopy equivalence
Xn! Yn compatible with the homotopy equivalence Xnÿ1! Ynÿ1.

Finally, the spaceMor�X ;Y �an is the direct limit of the Xn's, which maps via a
homotopy equivalence to the direct limit of the Yn's. Since each map Ynÿ1! Yn

is a cellular extension, the proof is complete. &

In light of Theorem 2.3, each of the natural transformations of Propositions 1.4, 1.5,
1.6, and 1.7 (since they are natural transformations of functors admitting proper,
constructible presentations) induces a continuous map between the associated
topological spaces. We record in the following theorem a speci¢c case of this con-
tinuity, since it is used extensively in [F3].

THEOREM 2.6. Let X be a quasi-projective variety, Y a projective variety, and
s; rX 0 integers. Then the pairing of Proposition 1.6 induces a continuous pairing
Mor�X ; CrY �an � �CsX �anÿ!�Cr�s�X � Y ��an:

Proof. The functors Mor�X ;Y �, CsX , and Cr�s�X � Y � admit proper, constructible
presentations by Example 1.3 and Proposition 2.2. The pairing is induced by a natu-

FUNCTION SPACES AND CONTINUOUS ALGEBRAIC PAIRINGS FOR VARIETIES 81

https://doi.org/10.1023/A:1002464407035 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002464407035


ral transformation of functors by Proposition 1.6. Thus, continuity is a consequence
of Theorem 2.3. &

We conclude this section with the following explicit description of the set of con-
nected components of Mor�X ;Y �an.

PROPOSITION 2.7. For a quasi-projective varieties X and Y, the set p0Mor�X ;Y �an
is the quotient of the setMor�X ;Y � by the equivalence relation generated by declaring
two continuous algebraic maps f and g to be equivalent if there is a smooth, connected
curve C (of ¢nite type overC) with closed points c, d and a continuous algebraic map
h : X � Cÿ!Y such that f � hjX�fcg and g � hjX�fdg.

Proof. In fact, we will describe the set of connected components of �E=R�an,
whenever �Y; E;R� is a proper, constructible presentation of a contravariant
functor E=R : �Sm=C�W 1 ! �Sets�. This applies toMor�X ;Y � by Proposition 2.2.
We claim two points x, y in �E=R�an lie in the same component if and only if there
is a sequence of smooth, connected curves C0; . . . ;Cn, morphisms gi : Ci ! E,
and points ci; c0i 2 Ci such that g0�c0� � x, gn�c0n� � y, and �gi�c0i�; gi�1�ci�1�� 2 R
for 0W i < n.

To establish the claim, ¢rst observe that the existence of such a sequence of curves
shows that x and y lie in the same component of �E=R�an.

For the converse, observe that we may assume each Ed � Yd is dense. In fact, we
may assume each Ed is connected, for whenever we have Ed � E 0d

`
E 00d , we can

replace Yd with Y 0d
`

Y 00d , where Y 0d , Y 00d are the closures in Yd of E 0d , E
00
d . Let A

denote the indexing set for the connected Y 's and E's. We readily verify in this case
that p0�E=R�an is naturally identi¢ed with the set of equivalence classes of A for
the equivalence relation generated by pairs �a; a0� 2 A�2 with the property that there
exists some t 2 Ea, t0 2 Ea0 with �t; t0� 2 R. It therefore suf¢ces to show for any ¢xed
a 2 A that given any two points x; y 2 Ea, we can connect x and y by a sequence
of curves mapping to Ea.

Since Ea is connected, it must contain points of W \ Z for any two irreducible
components Z, W of Ya (for otherwise we would have Ea � �Ea \ Z�

`
�Ea \W �). Thus, it suf¢ces to join together any two points on Ea \ Z � Z, for
any irreducible componentZ of Ya. In other words, we may assume Ya is irreducible.
In this case, Ea contains a dense, irreducible Zariski open subset Va of Ya. Let v 2 Va

be a chosen closed point. SinceYa is an irreducible complex variety, there are smooth
curves C,Dwith closed points c; c0 2 C, d; d 0 2 D, and maps f : C ! Ya, g : D! Ya

so that f �c� � x, f �c0� � v, g�d� � v, g�d 0� � y. Finally, restrict f , g to C 0 �
C \ f ÿ1�Ea�, D0 � D \ gÿ1�Ea�. Since each of C0, D0 contain open subsets of C,D
(namely, the inverse images of the open subset Va � Ya), both C0 and D0 are con-
nected, smooth curves mapping to Ea and they connect the points x and y together
as desired. &
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3. Construction of Pairings

In this section, we build on the foundation of the earlier sections to de¢ne a `join
pairing' (which is essentially cup product) for morphic cohomology and for its
closely related variation, topological cycle cohomology. In fact, the join pairing
is de¢ned for the objects in the derived category of presheaves on Sch=C (the cat-
egory of quasi-projective complex varieties) which represent these cohomology
theories, so that the pairing is natural in a very strong sense. This naturality is needed
to establish the main result of the next section (compatibility of the join pairing with
the cup product of motivic cohomology ^ see Corollary 4.5) and also to prove the
main result of Section 5 (the Whitney sum formula for Chern classes in morphic
cohomology ^ see Theorem 5.4). We also introduce various related pairings and,
in particular, show that the join pairing of morphic cohomology and the intersection
pairing of Lawson cohomology coincide, for a smooth variety X , under Poincare
duality. Here as well, this correspondence is obtained on the level of the representing
objects in the derived category of presheaves on X .

We begin with a description of the objects used to de¢ne morphic cohomology and
topological cycle cohomology. For any complex, projective variety Y , the Abelian
monoid structure on CrY provides the singular complex SingMor�X ; CrY �an associ-
ated to the spaceMor�X ; CrY �an with the structure of a simplicial Abelian monoid.
We let Mor�X ; CrY �� � N��SingMor�X ; CrY �an��� denote the normalized chain
complex associated to the simplicial Abelian group �SingMor�X ; CrY �an�� obtained
by level-wise group completion. Following [F3], we de¢ne the chain complex
M�X ; a� � cone Mor�X ; C0Paÿ1�� ÿ!Mor�X ; C0Pa��� 	�ÿ2a� and view M�ÿ; a�
as a presheaf on Sch=C. Both the morphic cohomology and the topological cycle
cohomology of X (of weight a) are determined using the complex of presheaves
M�ÿ; a� restricted to X (see below). In this de¢nition, we have viewed
Paÿ1 � Pa as the hyperplane obtained as the zero locus of the last coordinate func-
tion Ta of Pa � Proj C�T0; . . . ;Ta�. On the other hand, the homotopy class of
Mor�X ; C0Paÿ1�an! Mor�X ; C0Pa�an is independent of this choice of linear
embedding of Paÿ1 in view of the transitivity of the action of the connected group
PGLn�1�C� on the linear hyperplanes of Pn. Thus, the isomorphism class of
Mor�X ; C0Pa�� !M�X ; a��2a� in the derived category of presheaves is independent
of the choice of linear hyperplane Paÿ1 � Pa.

Observe thatM�X ; a� is a chain complex of torsion free Abelian groups since for
all kX 0 and all singular k-simplices a : Dk

top !Mor�X ; C0Pa�an if some positive
integer multiple of a lies in Mor�X ; C0Paÿ1�an then a itself lies in
Mor�X ; C0Paÿ1�an. Thus, derived tensor products involving M�X ; a� can be rep-
resented by ordinary tensor products.

We recall the join pairing # : CrPm � CsPn! Cr�s�1Pm�n�1 de¢ned by sending an
irreducible subvariety Y � Pm of dimension r given by homogeneous equations
fFi�T0; . . . ;Tm� : i 2 Ig and an irreducible subvariety W � Pn of dimension s given
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by homogeneous equations fGj�S0; . . . ;Sn� : j 2 Jg to the irreducible subvariety of
Y#W � Pm�n�1 of dimension r� s� 1 given by the union of these two sets of homo-
geneous equations viewed as equations in the m� n� 2 variables
T0; . . . ;Tm;S0; . . . ;Tn. Geometrically, we view Pm, Pn linearly embedded with dis-
joint images in Pm�n�1 and de¢ne Y#W as the union of lines in Pm�n�1 from points
on Y to points on W .

PROPOSITION 3.1. The join map Pa �Pbÿ!C1;1Pa�b�1 determines a bilinear join
pairing # : C0�Pa� � C0�Pb� ÿ!C1�Pa�b�1� which induces a pairing in the derived
category of presheaves on Sch=C

# :M�ÿ; a� 
L M�ÿ; b� ÿ!M�ÿ; a� b�: �3:1:1�

Proof. Composition with the bilinear join pairing C0Pa � C0Pb! C1Pa�b�1 deter-
mines the bilinear pairing of topological monoids

Mor�X ; C0Pa�an �Mor�X ; C0Pb�an!Mor�X ; C1Pa�b�1�an:
(This pairing sends �f ; g� to f #Xg : X ! C1Pm�n�1 whose value on x 2 X equals the
join of f �x� and g�x�.) Thus, join determines a pairing of chain complexes natural
in X :

# :Mor�X ; C0Pa�� 
Mor�X ; C0Pb�� !Mor�X ; C1Pa�b�1��: �3:1:2�
We recall that the algebraic proof of the Lawson suspension theorem given in [F1]
and modi¢ed slightly in [F-V] determines a natural transformation for any projective
variety Y and any rX 0 C : Cr�1�SY � �A1ÿ!Cr�1�SY ��2 sending an effective
r-cycle Z on Y and a point t 2 A1 to a pair of effective r-cycles �c�t �Z�;cÿt �Z�� such
that c�0 �Z� ÿ cÿ0 �Z� � Z and for t 6� 0 both c�t �Z� and cÿt �Z� lie in the image of
the suspension map S : CrY ! Cr�1�SY �. As essentially observed in the proof of
[FL-1; 3.3], this determines a natural transformation Mor�X ; Cr�1�SY ���
A1ÿ!Mor�X ; Cr�1�SY ���2 whose induced map Mor�X ; Cr�1�SY ��� 
 D�1� ÿ!
Mor�X ; Cr�1�SY ��� is a deformation retraction of the suspension map
Mor�X ; CrY �� ÿ!Mor�X ; Cr�1�SY ���. In particular, the suspension maps

St :Mor�X ; CrPn��ÿ!� Mor�X ; CrPn�t�� �3:1:3�
are quasi-isomorphisms, for all t, n, and r. By composing the pairing (3.1.2) with the
inverse of S :Mor�X ; C0Pa�b� ÿ!� Mor�X ; C1Pa�b�1� we obtain a natural (in the
derived category) bilinear pairing

Mor�X ; C0Pa�� �Mor�X ; C0Pb�� !Mor�X ; C0Pa�b��: �3:1:4�
Recall thatPn can be viewed as SPn�P1�, the nth symmetric product ofP1. From this
point of view, there is a natural map C0;d�Pn� � SPd �Pn� ! C

0;d n
j

ÿ ��Pj� for any
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0 < jW n. As shown in [FL-1; 2.10], these maps determine a quasi-isomor-
phism

Mor�X ; C0Pn�� ÿ!'
Mn
j�0
M�X ; j��2j�: �3:1:5�

This splitting is natural with respect to X and satis¢es

(i) the composition Mor�X ; C0Pj�� !Mor�X ; C0Pn�� !M�j��2j� is the natural
projection to the cone; and

(ii) the composition ofMor�X ; C0Pi�� !Mor�X ; C0Pn�� !M�j��2j� is trivial for
i < j and any linear embedding Pi,!Pn.

We re-write the bilinear map (3.1.4) as

Ma
i�0
M�X ; i��2i� �

Mb
j�0
M�X ; j��2j� ÿ!

Ma�b
k�0
M�X ; k��2k�: �3:1:6�

To prove the proposition it suf¢ces to verify that the composition of the summand
inclusion of M�X ; i��2i� �M�X ; j��2j�, followed by (3.1.6), followed by the factor
projection to M�X ; a� b��2a� 2b� is trivial whenever i � j < a� b. This follows
from the observation that such a summand inclusion into Mor�X ; C0Pa���
Mor�X ; C0Pb�� factors through the natural inclusion of Mor�X ; C0Pi���
Mor�X ; C0Pj��, so that the further composition with the join map to
Mor�X ; C0Pa�b�� factors through Mor�X ; C0Pi�j��. &

Using the suspension quasi-isomorphism (3.1.3), we readily conclude that the
pairing of Proposition 3.1 is also induced by the bilinear join pairing
# : CrPm � CsPn! Cr�s�1Pm�n�1 whenever mÿ r � a, nÿ s � b.

For any variety X , we let XZar denote the small Zariski site whose objects are
Zariski open subsets of X . If P is a presheaf on Sch=C, we write PZar for the associ-
ated Zariski sheaf on the big Zariski site �Sch=C�Zar. If P is a presheaf on XZar

(or a presheaf on Sch=C implicitly viewed as a presheaf on XZar by restriction), then
we write PZar also for the associated Zariski sheaf on XZar.

PROPOSITION 3.2. For any quasi-projective variety X, the join pairing induces an
internal product pairing in the derived category of presheaves on XZar

# :M�ÿ; a� 
L M�ÿ; b� ÿ!M�ÿ; a� b� �3:2:1�

which is associative in the appropriate sense.
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Similarly, for any quasi-projective varieties X, Y, the join pairing induces an exter-
nal product pairing in the derived category of presheaves on �X � Y �Zar

# : pr�XM�ÿ; a� 

L
pr�YM�ÿ; b�ÿ!M�ÿ; a� b� �3:2:2�

which is associative in the appropriate sense.
Proof. The internal product pairing (3.2.1) is obtained from (3.1.1) by simply

restricting the presheaves to XZar.
The bilinear join pairing (3.1.2) admits an external analogue

# :Mor�X ; C0Pa�� 
Mor�Y ; C0Pb�� !Mor�X � Y ; C1Pa�b�1�� �3:2:3�
sending �f ; g� to f#g : X � Y ! C1Pm�n�1 whose value on �x; y� equals f �x�#g�y�. As
argued in the proof of Proposition 3.1, this leads to a pairing in the derived category
of complexes of Abelian groups

M�X ; a� 
M�Y ; b� ÿ!M�X � Y ; a� b�
natural with respect to X and Y . Thus, pairing (3.2.2) follows from the observation
that there exist canonical maps

pr�XM�ÿ; a�jX !M�ÿ; a�jX�Y ; pr�YM�ÿ; b�jY !M�ÿ; b�jX�Y :

The asserted associativity follows easily from the following three facts:
(a) The associativity of the join product ^ that is, the commutativity of the square

C0Pa � C0Pb � C0Pc ÿÿÿ! C1Pa�b�1 � C0Pc??y ??y
C0Pa � C1Pb�c�1 ÿÿÿ! C2Pa�b�c�2

for all a; b; cX 0,
(b) the naturality of the suspension isomorphism (3.1.3), and
(c) the naturality of the splitting (3.1.6). &

We recall that `morphic cohomology' of a normal quasi-projective variety X is
de¢ned by LsHn�X � � p2sÿn�Mor�X ; C0Ps��=Mor�X ; C0Psÿ1��� which is naturally
isomorphic to Hn�M�X ; s�� (cf. [FL-1],[F2]). Here, the superscript � denotes taking
naive group completion of the given topological Abelian monoid. This de¢nition
was modi¢ed in [F3], yielding `topological cycle cohomology' de¢ned as
Hn�X ; s� � Hn

Zar�X ;M�ÿ; s�Zar�: As shown in [F3; 5.7], the canonical map

H��M�X ; s�� ÿ!H��X ; s� �3:3:0�
is an isomorphism whenever X is smooth.
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PROPOSITION 3.3. For any quasi-projective variety X, there is a commutative
square

[
Hm�M�X ; r�� 
Hn�M�X ; s�� ÿÿÿ! Hm�n�M�X ; r� s��??y ??y

crHm�X ; r� 
 Hn�X ; s� ÿÿÿ!: Hm�n�X ; r� s�

whose top pairing is the `cup product' pairing of [FL-1], whose vertical maps are the
canonical maps (3.3.0), and whose bottom pairing is induced by the internal product
pairing (3.2.1).

Proof. Both pairings are induced by the pairing (3.1.2). The cup product in
morphic cohomology was obtained from (3.1.2) by passing to homotopy groups,
observing that the pairing on homotopy groups commutes with the operations
on morphic cohomology induced by the operations introduced in [F-M], and then
annihilating those classes in the image of the `h-operation'. As veri¢ed in the proof
of [FL-1; 5.2], this is precisely the effect (on cohomology) of the projection map
Mor�X ;Pa�� !M�X ; a��2a� used to de¢ne the pairing (3.1.2). &

For a projective variety Y , de¢ne Cr�Y �� to be N �SingCr�Y ���
ÿ �

^ that is, the
normalized chain complex of Abelian groups associated to the degree-wise group
completed singular simplicial set associated to the topological monoid Cr�Y �. If
X is a quasi-projective variety, choose a projective closure X � X and let
X1 � X ÿ X . De¢ne Cr�X �� to be the chain complex of Abelian groups
Cr�X �� � cone Cr�X1�� ! Cr�X ��

� 	
: We extend this de¢nition to obtain a presheaf

of chain complexes on XZar as follows. For U � X a Zariski open subset, let
U1 � X ÿU . De¢ne L�U; r� to be L�U; r� � cone Cr�U1�� ! Cr�X ��

� 	�2r�: Since
V1 � U1 if V � U , L�ÿ; r� is naturally a presheaf on XZar. As shown in [F3; 3.2],
the presheaf L�ÿ; r� determines Lawson homology:

LrHn�X � � Hÿn�L�X ; r�� ÿ!� HÿnXZar
�X ;L�ÿ; r��:

For X of pure dimension d and Y projective, the natural transformation
Mor�X ; CrY � ! Cr�d�X � Y � sending a continuous algebraic map to its graph
de¢nes a continuous map D :Mor�X ; CrY �an! Cr�d�X � Y �an called the `duality
map'. This extends to the map of presheaves on XZar

D :M�ÿ; s��ÿ2s� ÿ!L�ÿ; d ÿ s��2d ÿ 2s� or, equivalently, to the map
D :M�ÿ; s� ÿ!L�ÿ; d ÿ s��2d�: If X ;Y are both smooth, then the main results
of [FL-2], [F2] assert that the map D :Mor�X ; CrY �� ! Cr�d�X � Y �� is a quasi-
isomorphism. In particular, for X smooth of pure dimension d, this duality
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isomorphism has the form:

D :M�ÿ; s� ÿ!� L�ÿ; d ÿ s��2d�; �3:4:0�

where we have implicitly used the homotopy invariance of Lawson homology (i.e.
£at pull-back determines a quasi-isomorphism Cj�X �� ! Cj�1�X �A1��).

PROPOSITION 3.4. Let X, Y be quasi-projective varieties of pure dimension d, e
respectively. Then the external product pairing (3.2.2) is compatible via duality
isomorphisms with the pairing in homology given by external product of cycles.
Namely, the following square commutes in the derived category of presheaves on
X � YZar:

pr�XM�ÿ; r� 

L
pr�YM�ÿ; s� ÿ:ÿÿ! M�ÿ; r� s�

D
D
??y ??yD

pr�XL�ÿ; dÿr��2d� 

L
pr�YL�ÿ; eÿs��2e� ÿ

�ÿÿÿ! L�ÿ; d�eÿrÿs��2�d�e��:

In particular, taking cohomology of the complexes of global sections on X � Y, we
conclude the following commutative square of pairings

LrHi�X � 
 LsHj�Y � ÿ:ÿÿ! Lr�sHi�j�X � Y �
D
??y ??yD

�
LdÿrH2dÿi�X � 
 LeÿsH2eÿj�Y � ÿÿÿÿ! Ld�eÿrÿsH2d�2eÿiÿj�X � Y �:

Proof. Let W � Pr �Ps �Pr�s�1 denote the `graph' of the join pairing of degree
one zero-cycles: a point in W consists of triples �x; y; t� such that t 2 Pr�s�1 lies
on the line joining x 2 Pr with y 2 Ps, where Pr, Ps are embedded in Pr�s�1 into
the ¢rst r� 1 and last s� 1 coordinates, respectively. Then the projection
p : W ! Pr �Ps is the projection of the projectivization of the rank 2 bundle
pr�PrO�1� 
 pr�PsO�1� over Pr �Ps. Moreover, the join pairing C0Pr�
C0Ps ! C1Pr�s�1 can be factored as the composition C0Pr � C0Ps ÿ!p

�

C1W ÿ!
p� C1Pr�s�1 where p : W ! Pr�s�1 is the projection.

We employ the following commutative diagrams natural with respect to maps
U 0 ! U in XZar, V 0 ! V in YZar:
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Mor�U;C0Pr� �Mor�V ;C0Ps� ÿÿÿÿÿ! Cd�U �Pr� � Ce�V �Ps�

�

????y
????y�

Mor�U � V ;C0�Pr �Ps�� ÿÿÿÿÿ! Cd�e�U � V �Pr �Ps�

p�

????y
????yp�

Mor�U � V ;C1W � ÿÿÿÿÿ! Cd�e�1�U � V �W �

p�

????y
????yp�

Mor�U � V ;C1Pr�s�1� ÿÿÿÿÿ! Cd�e�1�U � V �Pr�s�1�

S

x????
x????S

Mor�U � V ;C0Pr�s� ÿÿÿÿÿ! Cd�e�U � V �Pr�s�

where the horizontal maps are given by taking the graph of a continuous algebraic
map. The construction of the pairing of (3.2.2) is induced by the left vertical maps
as in the proof of Proposition 3.1.

External product on cycles is given by the composition

Cdÿr�U�� 
 Ceÿs�V ��!Cd�U �Pr�� 
 Ce�V �Ps��!Cd�e�U � V �Pr �Ps��

followed by the projection Cd�e�U � V �Pr �Ps�� ! Cd�eÿrÿs�U � V �� right
inverse to £at pull-back. Thus, to prove the proposition, it suf¢ces to observe
the composition of

p� � p� : Cd�e�U � V �Pr �Ps� ! Cd�e�1�U � V �W �
! Cd�e�1�U � V �Pr�s�1�

with £at pull-back Cd�eÿrÿs�U � V � ! Cd�e�U � V �Pr �Ps� is again £at pull-
back. &

As established in [F-G], intersection of cycles on a smooth variety X of pure
dimension d determines an intersection product pairing (in the derived category)

� : Cr�X �� 
 Cs�X �� ÿ!Cr�sÿd�X ��: �3:5:0�
One aspect of the following theorem is the (implicit) statement that this intersection
pairing is suf¢ciently natural to determine a pairing on the level of presheaves
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on XZar. The central point is that it provides a re¢nement (at the level of presheaves
of chain complexes rather than simply cohomology groups) of [FL-2; 4.7],[F2; 4.8]
establishing that for a smooth variety the duality map converts cup product in
morphic cohomology to intersection product in Lawson homology.

THEOREM 3.5. Let X be a smooth scheme of pure dimension d. Then the internal
product pairing X of (3.2.1) and the intersection product pairing � of (3.5.0) are
compatible via duality isomorphisms. Namely, the following diagram commutes in
the derived category of presheaves on XZar:

M�ÿ; r� 
L M�ÿ; s� ÿ:ÿÿ! M�ÿ; r� s�

D
??y ??yD

L�ÿ; d ÿ r��2d� 
L L�ÿ; d ÿ s��2d� ÿ�ÿÿÿ! L�ÿ; d ÿ rÿ s��2d�

where D is the duality isomorphism.
Proof. The pairing (3.5.0) is constructed using the external product pairing on

cycles and a Gysin map D! (well de¢ned up to quasi-isomorphism) associated to
the regular closed embedding D : X ! X�2. By Proposition 3.4, it suf¢ces to show
that this Gysin map ¢ts in a square commutative in the derived category of pre-
sheaves on XZar:

D�

D��M�ÿ; s�� ÿÿÿÿ! M�ÿ; s�

D
??y ??yD

D!

D��L�ÿ; 2d ÿ s��2d�� ÿÿÿÿ! L�ÿ; d ÿ s��d�

�3:5:1�

In view of the naturality (in the derived category of presheaves on XZar) of the
projection map L�ÿ �Ps; j� ! L�ÿ; j�, it suf¢ces to choose a representative map
of chain complexes for �DU � 1�! : C2d�U �U �Ps�� ! Cd�U �Ps�� natural with
respect to U 2 XZar so that the following diagram of presheaves determines a com-
mutative square in the derived category of presheaves on XZar:

D�

Mor��ÿ��2; C0�Ps��� ÿÿÿÿ! Mor�ÿ; C0�Ps���

D
??y ??yD

�D�1�!
C2d��ÿ��2 �Ps�� ÿÿÿÿ! Cd�ÿ �Ps��

�3:5:2�

For simplicity of notation and consistency with [F-G], we consider the more gen-
eral case of a regular closed embedding iW : W ! Y of codimension c. Then i!W
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is constructed using the technique of deformation to the normal cone, so that a dia-
gram of the following form is considered (cf. [Fu; 5.1]):

j

NWY ÿÿÿÿ! QWY  ÿÿÿÿ Y �A1??y ??y ??y
f1g ÿÿÿÿ! P1  ÿÿÿÿ A1

where p : NWY ! Y is the normal bundle of iW : W ! Y . Following [F-G; 3.4] (see
also [F-G; 3.3]), we de¢ne

i!W � �p��ÿ1 � ~e� : Cr�Y �� ! Cr�NWY �� ! Crÿc�W ��

where e : Y � Y � f1g � QWY and ~e is de¢ned as a lifting of e� : Cr�Y �� !
Cr�QWY �� determined by a choice of null-homotopy for the composition
j� � e� : Cr�Y �� ! Cr�QWY �� ! Cr�Y �A1��.

We choose our null-homotopy to be parameterized by P1

h : CrY �P1! Cr�Y �P1�=Cr�Y � f1g� � Cr�Y �A1�;
and de¢ned by sending �Z; t� 2 CrY �P1 to Z � ftg 2 Cr�Y �P1�=Cr�Y � f1g�. This
homotopy gives us a homotopy in the category of complexes of presheaves on YZar

~h : Cr�ÿ�� 
 C0�P1�� ÿ!Cr�ÿ �A1�� �3:5:3�
which determines ~e� : Cr�ÿ�� ! Cr�N�ÿ\W �ÿ�� whose composition with the inverse
(in the derived category) of £at pull-back p� : Crÿc�ÿ�� ! Cr�N�ÿ\W �ÿ�� gives us
our functorial (on YZar) representation of i!W .

Let Z � Y be an irreducible r-cycle on Y and consider the following commutative
diagram with Cartesian squares

P�CW\ZZ 
 1� ÿÿÿÿ! QW\ZZ  ÿÿÿÿ Z �A1??y ??y ??y
P�NWY 
 1� ÿÿÿÿ! QWY  ÿÿÿÿ Y �A1

where CW\ZZ is the normal cone ofW \ Z � Z andP�CW\ZZ � 1� is the associated
projective completion of C [Fu; App.B]. If Z meetsW properly, thenP�CW\ZZ � 1�
meets the 0-section of P�NWY � 1� properly and their `classical' intersectionW � Z
(de¢ned in terms of intersection multiplicities of the components of their inter-
section) is equal to i!W �Z� (cf. [Fu; 7.1]).

To verify the commutativity of (3.5.2), we let Cr�Y ;W � � CrY denote the
submonoid of those effective r-cycles on Y which meet W properly (i.e., in
codimension c). Then the composition of Cr�Y ;W � � CrY with the homotopy h
admits a natural liftingH : Cr�Y ;W � �P1! Cr�QWY � given once again by sending
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�Z; t� to Z � ftg for t 6� 1 and sending �Z;1� to P�CW\ZZ� (i.e. this is deformation
to the normal cone of cycles meeting W properly).

We now revert to our initial notation in which W ! Y as above becomes
X �Ps ! X�2 �Ps. Observe that the image of the duality map
Mor�X�2; C0Ps� ! C2d�X�2 �Ps� lies in C2d�X�2 �Ps;D�Ps� so that H gives
us a speci¢c lifting of the homotopy h when restricted to Mor�X�2; C0Ps�. The
naturality of this construction with respect to Zariski open subsets U � X implies
that H determines a speci¢c lifting

~H :Mor��ÿ��2; C0�Ps��� � C0�P1�� ! C2d�Qÿ\Wÿ��

of ~h of (3.5.3). Consequently, we conclude that ~H; ~e give the same map (in the derived
category)Mor��ÿ��2; C0�Ps��� ! Cr�N�W\ÿ�ÿ��. Since the two composition of the
square (3.5.2) are obtained from these maps by composing with the quasi-inverse
of p�, and since composition of ~H with the quasi-inverse of p� represents intersection
with the diagonal, the commutativity of (3.5.2) in the derived category has been
proved. &

We recall from [F3] the presheavesMW �ÿ; a� onXZar which determine topological
cycle cohomology of X of weight a with supports on the closed subvariety W � X .
Namely, for any Zariski open subset U � X we de¢ne

MW �ÿ; a��U� � cone M�U; a� !M�U \ �X ÿW �; a�� 	�ÿ1�:
The next proposition states the evident analogue in this context of Proposition 3.2.

PROPOSITION 3.6. Let W � X, Q � Y be closed embeddings of quasi-projective
varieties. Then the pairings of (3.1) and (3.2) determine pairings

# :MW �ÿ; a� 

L MW �ÿ; b� ÿ!MW �ÿ; a� b�; �3:6:1�

# : pr�XMW �ÿ; a� 

L
pr�YMQ�ÿ; b� ÿ!MW�Q�ÿ; a� b� �3:6:2�

in the derived category of presheaves on XZar and �X � Y �Zar, respectively.
Proof. Using the distinguished triangle

MW �ÿ;a� b� !M�ÿ; a� b� !M�ÿ \ �X ÿW �; a� b�
!MW �ÿ; a� b��1�;

we obtain pairings of the form (3.6.1) and (3.6.2), but do not in this way establish that
these pairings are uniquely de¢ned (in the derived category). For this, it suf¢ces to
observe that the pairings of (3.1.2) are natural when viewed in the category of chain
complexes (not the coarser derived category) and thereby induce pairings on cone
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complexes

cone Mor�ÿ; C0Pa�� !Mor�ÿ \ X ÿW ; C0Pa��� 	

L cone Mor�ÿ; C0Pb�� !Mor�ÿ \ �X ÿW �; C0Pb��

n o
! cone Mor�ÿ; CaPa�b�1�� !Mor�ÿ \ X ÿW ; C1Pa�b�1��

n o
:

Repeating the argument in the proof of Proposition 3.1, we conclude as in the proof
of Proposition 3.2 that these pairings determine pairings of the form (3.6.1) and
(3.6.2) as required. &

We recall from [F3; 5.6] that the duality isomorphism (3.4.0) has an extension to
the context of cohomology of supports. Namely, if X is a quasi-projective variety
provided with a closed embedding i : X �M in a smooth variety M of pure
dimension m, then the duality map is a quasi-isomorphism of presheaves on MZar:

D :MX �ÿ; s��2s� ' i�L�ÿ;mÿ s��2mÿ 2s�:
We conclude this section with the following proposition asserting that external prod-
uct of cycles in Lawson homology can be reinterpreted as join product in
cohomology with supports. The proof is a merely a repetition of the proof of Prop-
osition 3.4 applied to cone complexes as in the proof of Proposition 3.6.

PROPOSITION 3.7. Let X, Y be quasi-projective varieties. Choose closed
embeddings X �M, Y � N of X, Y in smooth varieties M, N of dimension m, n,
respectively. Then the pairing in Lawson homology induced by external product
of cycles on X and Y can be obtained from the pairing (3.6.2) as explained in
the following commutative diagram of presheaves on X � Y:

p�MMX �ÿ; r� 
 p�NMY �ÿ; s� ÿ:ÿÿ! MX�Y �ÿ; r� s�

D
D
??y' '

??yD
�

p�MiX�L�ÿ;mÿr��2m� 
 p�NiY�L�ÿ;nÿ s��2n� ÿÿÿÿ! iX�Y�L�ÿ;m�nÿrÿs��2m� 2n�

4. Compatibility with Motivic Products

In this section, we describe a morphism from the motivic cohomology of a smooth,
complex variety to its morphic cohomology. We then establish that this map is com-
patible with the cup product in motivic cohomology and the join product in morphic
cohomology. Considering hypercohomology with respect to the cdh topology on
non-smooth varieties, one could verify this compatibility more generally provided
that one modi¢ed the de¢nition of topological cycle cohomology to incorporate
cdh descent (as is done with motivic cohomology).
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For smooth varieties X and Y , let zequi�Y ; r��X � denote the free Abelian group on
the collection of closed, integral subschemes of X � Y that are equidimensional
of relative dimension r over X . Then zequi�Y ; r��X � is a contravariant functor in
X . It is also covariant in Y for proper morphisms and contravariant in Y for £at
morphisms (cf. [F-Vl 2.1]). When Y is a projective variety, we can describe
zequi�Y ; r��X � as the naive group completion of the Abelian monoid
Hom�X ; CrY �, where CrY is the Chow variety parameterizing dimension r effective
cycles on Y [F1; 1.4].

To obtain a chain complex from the functor zequi�Y ; r��ÿ�, we introduce the
standard cosimplicial variety D�, which is given in degree d by
Dd � SpecC�x0; . . . ; xd �= �x0 � . . .� xd ÿ 1� and which is equipped with the familiar
face and degeneracy maps. We then consider the simplicial Abelian group
zequi�Pn; r��X � D�� � d 7! zequi�Pn; r��X � Dd�: By an abuse of notation, we also
use zequi�Pn; r��X � D�� to refer to the associated normalized chain complex of this
simplicial Abelian group.

For a smooth variety X , we de¢ne a chain complex of Abelian groups Z�X ; n� by
the formula

Z�X ; n� � zequi�An; 0��X � D���ÿ2n�: �4:0:1�
The following proposition justi¢es our consideration of the chain complex Z�X ; n�
rather than a complex of sheaves as in [F-V].

PROPOSITION 4.1. If X is a smooth variety, then the motivic cohomology groups of
X (as de¢ned in [F-V; 9.2] and which are written H

q
M�X ;Z�n��� satisfy

H
q
M�X ;Z�n�� � Hq�Z�X ; n��: Similarly, the topological cycle cohomology groups

of a smooth variety X satisfy Hq�X ; n� � Hq�M�X ; n��:
Proof. The ¢rst assertion follows from [F-V; 8.1] and second follows from [F3; 5.7]

(cf. (4.3.0)). &

Observe that there is a natural sequence

zequi�Pnÿ1; 0��X � D�� ÿ! zequi�Pn; 0��X � D�� ÿ! zequi�An; 0��X � D��
of simplicial Abelian groups. By [F-V; 5.11, 8.1], this sequence induces a dis-
tinguished triangle in the derived category of Abelian groups (after taking the associ-
ated normalized chain complexes) provided that X is smooth. Thus, we have the
isomorphism

H
q
M�X ;Z�n�� � Hqÿ2n cone zequi�Pnÿ1; 0��X � D�� ÿ! zequi�Pn; 0��X � D��� 	ÿ �

:

For X a smooth variety, we introduce the chain complex

Malg�X ; n�
� cone zequi�Pnÿ1; 0��X � D�� ÿ! zequi�Pn; 0��X � D��� 	�ÿ2n�: �4:1:1�
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The above results combine to show that for X smooth the chain complexes Z�X ; n�
and Malg�X ; n� are quasi-isomorphic under a natural map Malg�X ; n� ÿ!�
Z�X ; n�: We persist in using two notations to refer to essentially the same object
since the cup product operation is more directly de¢ned using Z�X ; n�, whereas
the complex Malg�X ; n� is more easily compared with the complex de¢ning
topological cycle cohomology and admits a naturally de¢ned join product.

In order to construct a map from the motivic cohomology groups of X to the
topological cycle cohomology groups of X , we consider the map of simplicial sets
r : Hom�X � D�; CrY � ÿ!SingMor�X ; CrY �ande¢ned as follows, for any rX 0
and projective variety Y . Given an element f of Hom�X � Dn; CrY �, there is an
induced map ~f : �Dn�anÿ!Mor�X ; CrY �an de¢ned by passing to the associated ana-
lytic spaces and applying adjointness. The map ~f is induced by the natural
transformation of functors on �Sm=C�W 1 with proper, constructible representations
which sends g : C ! Dn to f � �g� idC�, and thus ~f is continuous by Theorem 2.3.

Upon restricting the domain of ~f to Dn
top � �Dn�an, where Dn

top is the subspace of
real points having non-negative coordinates in �Dn�an, we obtain the continuous
map rn�f � : Dn

topÿ!Mor�X ; CrY �an: The construction of rn�f � is clearly compatible
with the simplicial structures so that we obtain a map of simplicial sets r as desired.

In particular, taking Y to be Pn and setting r � 0, we have the map
Hom�X � D�; C0Pn� ÿ!SingMor�X ; C0Pn�an: Passing to the category of chain com-
plexes and using the naturality of the construction with respect to the inclusion
Pnÿ1,!Pn, we obtain the map

Malg�X ; n� ÿ!M�X ; n�: �4:1:2�

We now proceed to de¢ne a join pairing for motivic cohomology. The join pairing
will serve as an intermediary for the purposes of comparing the join product in
topological cycle cohomology with the cup product in motivic cohomology (whose
de¢nition is recalled below). In fact, the de¢nition of the join pairing for motivic
cohomology is parallel to the de¢nition of the join pairing for topological cycle
cohomology. Namely, let W � Pn �Pm �Pn�m�1 be the join correspondence
and de¢ne the join pairing

# : zequi�Pn; r��X � 
 zequi�Pn; s��X � ÿ! zequi�Pn�m�1; r� s� 1��X �

to the composition of the maps

zequi�Pn; r��X �
zequi�Pm; s��X � ÿ!� zequi�Pn �Pm; r� s��X �

ÿ!p
�
1 zequi�W ; r� s� 1��X � ÿ!p2� zequi�Pn�m�1; r� s� 1��X �;

which is natural in X . For any t and k, let

Sk : zequi�Pt; q��X � D�� ÿ! zequi�Pt�k; q� k��X � D��
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be the map induced by the pairing

# : zequi�Pt; q��ÿ� 
 zequi�Pkÿ1; kÿ 1��ÿ�ÿ! zequi�Pt�k; q� k��ÿ�
by ¢xing the element �Pkÿ1� in zequi�Pkÿ1; kÿ 1��ÿ�. It follows from [F-V; 8.3] that
the map Sk is a quasi-isomorphism. Therefore, in the derived category of Abelian
groups, we may form the pairing

zequi�Pm; 0��X � D�� 
 zequi�Pn; 0��X � D�� ÿ! zequi�Pm�n; 0��X � D�� �4:2:0�
by composing with the quasi-inverse of S1.

PROPOSITION 4.2. The pairing (4.2.0) induces a pairing natural in the smooth
variety X

# :Malg�X ;m� 

L Malg�X ; n� ÿ!Malg�X ;m� n�:

Proof. The construction from the proof of Proposition 3.1 carries over directly
into this purely algebraic setting to produce a direct sum decomposition

zequi�Pt; 0��X � D�� �
Mt

i�0
Malg�X ; i��2i�:

As before, it remains to show that the composition of maps

zequi�Pi; 0��X � D�� 
 zequi�Pj; 0��X � D��
ÿ! zequi�Pi�j; 0��X � D�� ÿ!Malg�X ; n�m��2m� 2n�

is zero for i � j < m� n. This follows as in the proof of Proposition 3.1, since the
map

zequi�H; 0��X � D�� ÿ!Malg�X ;m� n��2m� 2n�
is homotopic to zero for any hyperplane H of Pn�m. &

The construction of the join pairing in motivic cohomology leads immediately to
the following compatibility with the join pairing in topological cycle cohomology.

PROPOSITION 4.3. For any smooth variety X, the square

Malg�X ;m� 

L Malg�X ; n� ÿ

:ÿÿ! Malg�X ;m� n�??y ??y
M�X ;m� 
L M�X ; n� ÿ:ÿÿ! M�X ;m� n�

commutes in the derived category of Abelian groups.
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Proof. The proposition follows directly from the observation that the diagram of
Abelian monoids

Hom�X � Dd ; C0Pm� �Hom�X � Dd ; C0Pn� ÿÿÿ!
:

Hom�X � Dd ; C1Pm�n�1�??y ??y
Hom�Dd

top;Mor�X ; C0Pm���Hom�Dd
top;Mor�X ;C0Pm�� ÿÿÿ!

:

Hom�Dd
top;Mor�X ;C1Pm�n�1��

commutes. &

Let us recall the de¢nition of the cup product in motivic cohomology. Observe that
there is a pairing � : zequi�Am; 0��X � 
 zequi�An; 0��X � ÿ! zequi�Am�n; 0��X �; natural
in X , de¢ned by sending a pair of generators �V ;W � to the cycle associated to
V �X W [F-V; 8]. By naturality in X , this pairing extends to a map
[ : Z�X ;m� 
Z�X ; n� ÿ!Z�X ;m� n�: As veri¢ed in [W; 4.5], the pairing [ coin-
cides with the cup product on the motivic cohomology groups of X as given in [V2].

In light of Proposition 4.3, the map from the motivic cohomology of X to its
topological cycle cohomology will be proven to be compatible with the motivic
cup product and the topological join product provided we can establish that the
motivic join product coincides with cup product. The key ingredient in establishing
the compatibility of join and cup product is the observation that after pulling back
along the natural surjection Ai�1 n f0g ! Pi, the join product coincides with
cartesian product. This observation motivates the proof of the following theorem.

THEOREM 4.4. For any smooth variety X, the diagram

Malg�X ; n�

LMalg�X ;m� ÿÿÿ!

:

Malg�X ; n�m�

�
??y �

??y
Z�X ; n�
LZ�X ;m� ÿÿÿ![ Z�X ; n�m�

commutes in the derived category of Abelian groups.
Proof. We will show that the diagram

zequi�Pm; 0��X � D�� 
 zequi�Pn; 0��X � D�� ÿÿÿ!
:

zequi�Pn�m�1; 1��X � D��??y ??y
zequi�Am; 0��X � D�� 
 zequi�An; 0��X � D�� zequi�Am�n�1; 1��X � D��

�
??y �

??y
zequi�Am�n; 0��X � D�� ÿÿÿ!p� zequi�Am�n�1; 1��X � D��

commutes up to homotopy, where p is projection on the ¢rst n�m coordinates of
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An�m�1. This will suf¢ce to prove the theorem since p� is a quasi-isomorphism by
[F-V; 8.3].

Rather than pull back along the surjectionsAi�1 n f0g ! Pi to re-interpret the join
product, we use Gm �A1 � Ai�1 n f0g instead (where Gm � A1 n f0g). Let
pi : Gm �Ai ! Pi be the map sending �x0; x1; . . . ; xi� to �x0 : x1 : . . . : xi� and
q : Gm �An �Gm �Amÿ! Pn�m�1 the map sending �x0; . . . ; xn; y0; . . . ; ym� to
�x0 : . . . : xn : y0 : . . . : ym�. As suggested before, the diagram of Abelian groups

zequi�Pn; 0��X � 
 zequi�Pm; 0��X � ÿÿÿ!
:

zequi�Pn�m�1; 1��X �

p�n
p�m

????y q�

????y
zequi�Gm �An; 1��X � 
 zequi�Gm �Am; 1��X � ÿÿÿ!

:

zequi�Gm �An �Gm �Am; 2� �X �
�4:4:1�

commutes and is natural in X .
De¢ne bi : Gm �Ai ÿ!Ai by bi�l; a1; . . . ; ai� � �lÿ1a1; . . . ; lÿ1ai�. Then observe

that the map pi factors as bi followed by the standard inclusion of Ai into Pi

and the map q factors as bn � idGm�Am followed by the standard inclusion of
An �Gm �Am into Pn�m�1.

We claim that for any variety Y and integer r, the map

p� : zequi�Y ; r��X � D�� ÿ! zequi�Y �Gm; r� 1��X � D�� �4:4:2�
is a split injection in the derived category of Abelian groups. To see this, observe
that by homotopy invariance, the map p� : zequi�Y ; r��X � D�� ÿ! zequi�Y �A1;

r� 1��X � D�� is a weak equivalence [F-V; 8.3]. Further, from [F-V; 5.11] there
is a distinguished triangle

zequi�Y�f0g; r� 1��X � D�� ÿ! zequi�Y �A1; r� 1��X � D�� ÿ!
zequi�Y �Gm; r� 1��X � D�� ÿ! zequi�Y � f0g��X � D���1�;

and thus it suf¢ces to show that the map

zequi�Y � f0g; r� 1��X � D�� ÿ! zequi�Y �A1; r� 1��X � D�� �4:4:3�
is homotopic to the zero map (for then the triangle splits by basic properties of the
derived category). It follows from [F-V; 8.3] that

zequi�Y � f0g; r� 1��X � D�� ÿ! zequi�Y �P1; r� 1��X � D��
ÿ!i
�

zequi�Y �A1; r� 1��X � D��
is part of a distinguished triangle, where i : A1 � P1 is the open complement of any
rational point of P1. In particular, the composite map zequi�Y � f0g; r� 1�
�X � D�� ÿ! zequi�Y �A1; r� 1��X � D��; which coincides with the map (4.4.3),
is zero.
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Since (4.4.2) is a split injection, we conclude that b�i : zequi�Ai; 0��X � D�� ÿ!
zequi�Gm �Ai; 1��X � D�� is also a split injection, since bi differs from the projection
map by an automorphism. Thus b�n 
 b�m and �bn � inc�� are split injections as well,
where inc : Gm �Amÿ!Am�1 is the evident inclusion. Therefore, to show that
the top square in the diagram

zequi�Pn; 0� 
 zequi�Pm; 0� ÿÿÿ!
:

zequi�Pn�m; 1�??y ??y
p���

zequi�An; 0� 
 zequi�Am; 0� ÿÿÿÿ! zequi�An �Am�1; 1�

b�n
b�m
??y �bn�inc��

??y
zequi�Gm �An; 1� 
 zequi�Gm �Am; 1� ÿÿÿ!� zequi�Gm �An �Gm �Am; 2�

commutes in the derived category, it suf¢ces to establish the commutativity of the
outer square. (Here, we have omitted `�X � D��' everywhere to simplify the
notation.) But the outer square is precisely the commutative diagram (4.4.1). &

The commutative diagram of chain complexes in Theorem 4.4 has the following
immediate consequence for the cohomology of these chain complexes.

COROLLARY 4.5. For X smooth, there is a natural graded ring homomorphismM
r

H�M�X ;Z�r�� ÿ!
M
r

H��X ; r�

where the product on the left is the cup product operation of motivic cohomology and
the product on the right is the join product operation of topological cycle cohomology.

5. Whitney Sum Formula

The main result of this section will be that the operation of join of cycles is com-
patible with the direct sum decomposition ofMor�X ; CrPn�� introduced in (3.1.5)
(and recalled below). This is a slightly subtle point, whose proof turns out to be
rather delicate. The reader should bear in mind that every though we have de¢ned
the join pairing M�X ; r� 
L M�Y ; s� ÿ!M�X ; r� s� as being induced under the
natural surjection from the pairing

# :Mor�X ; C0Pr�� �Mor�X ; C0Ps�� ÿ!Mor�X ; C1Pr�s�1��;

it does not follow a priori that this latter pairing respects the grading given by the
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direct sum decomposition

Mor�X ; CkPn�� �
Mnÿk
i�0
M�X ; i��2i�:

However, this is indeed the case, as shown by Theorem 5.3.
We then use Theorem 5.3 to establish that the Chern classes of vector bundles

generated by their global sections taking values in morphic cohomology (or
topological cycle cohomology), which were ¢rst introduced in [FL-1], satisfy
the familiar Whitney sum formula. The settles a question left open in [FL-1;
10].

Since we will use it often, we observe here the following consequence of our results
from Sections 1 and 2. For projective varieties X and Y , it follows from Proposition
1.7 and Theorem 2.3 that an element f of Mor�X ; CrY � determines a natural
transformation of functors from Sch=C to topological spaces f� :

Mor�ÿ; CsX �anÿ!Mor�ÿ; Cr�sY �an; for any s. Moreover, two such maps f1 and
f2 lying in the same component of the spaceMor�X ; CrY �an de¢ne homotopy equiv-
alent maps f1� � f2� :Mor�Z; CsX �anÿ!Mor�Z; Cr�sY �an for all quasi-projective
Z. In fact, choosing a path inMor�X ; CrY �an from f1 to f2 determines a homotopy
from f1� to f2� which is natural in Z; thus f1� and f2� de¢ne the same map
f1� � f2� :Mor�ÿ; CsX �� ÿ!Mor�ÿ; Cr�sY �� in the derived category of presheaves
on Sch=C.

We shall need to formalize the splitting ofMor�X ; CrPn�� introduced in (3.1.5).
Let rn;i : Pnÿ!C0Pi denote the map sending a point P1 � . . . � Pn of SPn

�P1� � Pn to
P

k1<...<ki Pk1 � . . . � Pki . Then for any X , Mor�X ; CrPn��ÿ!� Ln
i�0

M�X ; i��2i�; where the map to the ith summand is the composition of the map
induced by rn;i, rn;i� :Mor�X ; CrPn�� ÿ!Mor�X ; CrPi��; with the natural
split surjectionMor�X ; CrPi�� ÿ!M�X ; i��2i�: This construction is clearly natural
in X .

For any integers r and s and projective varieties X and Y , we de¢ne the `external
product' map CrX � CsY ÿ!� Cr�s�X � Y � by sending a pair of integral closed
subschemes �Z;W � to Z �W and then extending by linearity. We use the same
notation for the induced map Mor�ÿ; CrX �an 
Mor�ÿ; CsY �an ÿ!� Mor�ÿ; Cr�s
�X � Y ��an of presheaves of topological spaces on Sch=C.

We use the notation rn;i � rm;j to refer to the composition Pn�
Pmÿ!C0Pi � C0Pj ÿ!C0�Pi �Pj�; where the ¢rst map is what one might more
accurately write as rn;i � rm;j and the second is given by the evident bilinear trace
map.

We will need the following simple result.
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LEMMA 5.1. The diagram of presheaves on Sch=C

Mor�ÿ; CrPn�� 
L Mor�ÿ; CsPm�� ÿÿÿ!� Mor�ÿ; Cr�s�Pn �Pm���

rn;i
rm;j
??y rn;i�rm;j

??y
Mor�ÿ; Cr;Pi�� 
L Mor�ÿ; CsPj�� ÿÿÿ!� Mor�ÿ; Cr�s�Pi �Pj���

commutes.
Proof. Observe that it suf¢ces to check that the diagram of spaces

Mor�X ; CrPn�an �Mor�X ; CsPm�an ÿÿÿ!� Mor�X ; Cr�s�Pn �Pm��an

rn;i�rm;j
??y rn;i�rm;j

??y
Mor�X ; CrPi�an �Mor�X ; CsPj�an ÿÿÿ!� Mor�X ; Cr�s�Pi �Pj��an

commutes, for any X . By Proposition 1.7, it suf¢ces to check that the diagram

CrPn � CsPm ÿÿÿ!� Cr�s�Pn �Pm�

rn;i�rm;j
??y rn;i�rm;j

??y
CrPi � CsPj ÿÿÿ!� Cr�s�Pi �Pj�

�5:1:1�

commutes. Observe that the map rl;k : Pl ÿ!C0Pk has `graph' Gl;k � Pl �Pk which
is ¢nite and £at over Pl (via the map p1) and proper overPk (via the map p2), so that
the map rl;k� : CrPl ÿ!CrPk is well de¢ned by the formula V 7!p2�p�1�V �: The com-
mutativity of �5:1:1� follows from the fact that taking external products of cycles
commutes with the proper pushforward and £at pullback of cycles (cf. [Fu; 1.10]).&

The following proposition provides the key technique that will be used to prove the
main result (Theorem 5.3) of this section.

PROPOSITION 5.2. For any smooth variety X, there are natural isomorphism

H0 cone Mor�X ; CrPtÿ1�� ÿ!Mor�X ; CrPt��� 	ÿ �
� p0�Mor�X ; Cr�sPt�an=Mor�X ; Cr�sPtÿ1�an��
� Atÿr�X �;

where An�X � is the group of codimension n cycles modulo algebraic equivalence. This
isomorphism is induced by sending f : X ÿ!CrPt to the class of the intersection
of its graph Gf � X �Pt with X � fPg for a general point P 2 Pt. Moreover, two
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morphisms f ; g : X ÿ!CrPt de¢ne the same map

Mor�ÿ; CsX �� ÿ! cone Mor�ÿ; Cr�sPtÿ1�� ÿ!Mor�ÿ; Cr�sPt��� 	
in the derived category for all s if and only if the classes of f and g coincide in Atÿr�X �.

Proof. The ¢rst isomorphism follows from [Fl-2; C4], while the second is a conse-
quence of duality for smooth, projective varieties [FL-2; 5.2].

If f and g determine the same class inAtÿr�X �, then for suitable choices of elements
h1; h2 2 Mor�X ; CrPtÿ1�an, we have that f � h1 and g� h1 lie in the same component
of Mor�X ; CrPt�an (cf. [F2; 7.1]). As indicated previously, Proposition 1.7 tells us
that f � h1 and g� h2 de¢ne the same morphism

�f � h1�� � �g� h2�� :Mor�ÿ; CsX �� ÿ!Mor�ÿ; Cr�sPt��

in the derived category. Since �f ÿ g�� differs from 0 � �f � h1�� ÿ �g� h2�� by a
morphism that factors thoughMor�ÿ; Cr�sPtÿ1��, it follows that we have the desired
equality

f� � g� :Mor�ÿ; CsX �� ÿ! cone Mor�ÿ; Cr�sPtÿ1�� ÿ!Mor�ÿ; Cr�sPt��� 	
:

Conversely, if f� � g�, then applying these morphisms to the `identity' map in
Mor�X ; C0X ��, we see immediately that f and g determine the same class in
Atÿr�X �. &

The following theorem asserts that the join product is compatible with the natural
direct sum decomposition of Mor�X ; C0Pn��.

THEOREM 5.3. For any quasi-projective variety X, the operation of linear join on
Mor�X ; C0Pn�� is graded in the sense that the diagram

Mor�X ; C0Pn�� 
LMor�X ; C0Pm�� ÿÿÿ!
:

Mor�X ; C1Pn�m�1��

�
??y �

??y
Ln

i�0M�X ; i��2i� 

Lm

j�0M�X ; j��2j� ÿÿÿ!
S: Lm

k�0M�X ; k��2k�

commutes in the derived category.
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Proof. It will suf¢ce to establish that the diagram

Mor�ÿ; CrPn��
LMor�ÿ; CsPm�� ÿÿÿ!
:

Mor�ÿ; Cr�s�1Pm�n�1��

rn;i

L
rm;j

??y rm�n�1;k�1

??y
L

i�j�kMor�ÿ; CrPi��
LMor�ÿ;CsPj �� Mor�ÿ; Cr�s�1Pk�1��

S:
??y ??y

Mor�ÿ; Cr�s�1Pk�1�� ÿÿÿÿ! Mor�ÿ;Cr�s�1Pk�1��=Mor�ÿ;Cr�s�1Pk��
�5:3:1�

commutes in the derived category of presheaves. (Actually, we need to know the
commutativity of this diagram just for the case r � s � 0, but we prove the more
general assertion since it is no more dif¢cult.)

Recall that the join operation factors as

Mor�ÿ; CrPi�� 
Mor�ÿ; CsPj�� ÿ!� Mor�ÿ; Cr�s�Pi �Pj���

ÿ!# Mor�ÿ; Cr�s�1Pi�j�1��;

where the second map (which we also call `join') is induced by the pairing of
Proposition 1.7

Mor�X ; Cr�s�Pi �Pj�� �Mor�Pi �Pj; C1Pi�j�1� ÿ!Mor�X ; Cr�s�1Pi�j�1�

by ¢xing the element ofMor�Pi �Pj; C1Pi�j�1� which sends a pair of points to the
line they span inPi�j�1. The commutative diagram of Lemma 5.1 allows us to replace
the upper left arrow of (5.3.1) with the map

Mor�ÿ; Cr�Pn �Pm��� ÿ!rn;i�rm;j M
i�j�k
Mor�ÿ; Cr�Pi �Pj���;

so that to establish the commutativity of diagram (5.3.1), we need to show the dia-
gram
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Mor�ÿ; Cr�s�Pn �Pm��� ÿÿÿ!
:

Mor�ÿ; Cr�s�1Pm�n�1��

rn;i�rm;j
??y rn�m�1;k�1

??yL
i�j�kMor�ÿ; Cr�s�Pi �Pj ��� Mor�ÿ; Cr�s�1Pk�1��

S�:
??y ??y

Mor�ÿ; Cr�s�1Pk�1�� ÿÿÿÿ! Mor�ÿ;Cr�s�1Pk�1��=Mor�ÿ;Cr�s�1Pk��
�5:3:2�

commutes in the derived category.
Let us consider ¢rst the composition

Mor�ÿ; Cr�s�Pn �Pm��� ÿ!# Mor�ÿ; Cr�s�1Pm�n�1��

ÿ!rm�n�1;k�1Mor�ÿ; Cr�s�1Pk�1��:
The associativity condition of Proposition 1.7 implies that this composition is
induced by the composition of the maps Pn �Pm ÿ!# C1Pn�m�1 ÿ!C1�r� C1Pk�1: (By
C1�r� we mean the evident map associated to r � rm�n�1;k�1; that is, the map
obtained by pairing r with the identity on C1Pn�m�1 in the pairing of Proposition
1.7.) Let us write this composition as f.

Similarly, the associativity and bilinearity conditions of Proposition 1.7 imply that
the composition

Mor�ÿ; Cr�s�Pn �Pm��� ÿ!
M
i�j�k
Mor�ÿ; Cr�s�Pi �Pj���

ÿ!Mor�ÿ; Cr�s�1Pk�1��

is induced by the sum over all i � j � k of the maps given as the composition of

Pn �Pm ÿ!rn;i�rm;j C0�Pi �Pj� ÿ!C0�#� C1Pk�1:

Let us write this map as ci;j and write their sum as c �Pi�j�k ci;j.
To prove the theorem, it suf¢ces to show that two maps

f � C1�r� � #; c �
X
i�j�k

ci;j : Pn �Pmÿ!C1Pk�1

induce homotopic natural transformations of functors. By Proposition 5.2, this
amounts to showing f and c determine the same class in

Ak�Pn �Pm� �
M
p�q�k

Z � �Pnÿp �Pmÿq�

upon intersection of their graphs with Pn �Pm � fPg for a general point P. We will
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show in fact that both maps determine the classX
p�q�k
�Pnÿp �Pmÿq�: �5:3:3�

To compute the class of f inAk�Pn �Pm�, we begin with the observation that for any
t and s, the graph of rt;s : Ptÿ!C0Ps, which is an integral subvariety of Pt �Ps,
forms a projective bundle over Ps with ¢bers isomorphic to Ptÿs. Indeed, the ¢ber
of this graph over the point P1 � . . . � Ps 2 SPs�P1� � Ps consists of all points
Q1 � . . . �Qt of SPt�P1� � Pt such that Qji � Pi, for all i, for some choice
1W j1 < . . . < js W t, which is precisely the image of SP tÿs�P1�,!SPt�P1� under
the closed immersion given by `multiplication' with P1 � . . . � Ps. Thus, we have

graph�rt;s� \ Pt � fPgÿ � � H � Ptÿs; �5:3:4�

for a general (in fact, every) point P. In particular, the intersection of the graph of
rn�m�1;k�1 with Pn�m�1 � fPg for a general point P in Pk�1 is a general linear sub-
space of Pn�m�1 of dimension n�mÿ k.

We claim that the intersection of the graph of #, which is the subscheme
W � Pm �Pn �Pn�m�1 introduced earlier, with Pn �Pm �H for a general
dimension n�mÿ k linear subspace H pushes forward to Pn �Pm to the class
(5.3.3) in Ak�Pn �Pm�. This will show that f determines the class (5.3.3) of
Ak�Pn �Pm� since we have

graph�f� \ Pn �Pm � fPg� �
� graph�#� \ Pn �Pm � graph�rn�m�1;k�1� \Pn�m�1 � fPgÿ �� �
� graph�#� \ Pn �Pm �H� �: �5:3:5�

To establish the claim, observe that we need only show that the image under the
composition A��Pn�m�1� ÿ!p

�
2 A��W � ÿ!p1� A��Pn �Pm� of �H�, for H a linear sub-

space of dimension n�mÿ k, is the class (5.3.3). Recall from the proof of Prop-
osition 4.4 that W ÿ!Pn �Pm is the projectivized bundled associated to
O�1; 0� � O�0; 1�, and thus A��W � � A��Pn �Pm��z�=�z2 ÿ �a� b�z� a � b�; where
a � �Pnÿ1 �Pm�, b � �Pn �Pmÿ1�, and z is the canonical divisor of the projectivized
bundle. The map p�2 is a ring map and sends �Pn�m� to z. The map p1� is a
A��Pn �Pm�-module map which sends z to 1 � �Pn �Pm� and �W � to 0 (since
W ÿ!Pn �Pm has relative dimension one). The claimed equality follows for
the case k � 0 immediately. For general k, observe that p�2�Pn�mÿk� � zk�1: One
may easily verify that

zk�1 �
X

p�q�k
apbq

 !
z� constant term
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in Ak�W �. Thus, we have, for all k,

p1�p�2�H� �
X

p�q�k
�Pnÿp �Pmÿq�: �5:3:6�

As indicated in (5.3.5), it follows that f determines the class (5.3.3) in Ak�Pn �Pm�.
Recall that c is the sum

P
i�j�k ci;j . We now compute the class in Ak�Pn �Pm� of

the map ci;j � C0�#� � �rn;i � rm;j� : Pn �Pmÿ!Pk�1: Taking n � i, m � j, and
k � i � j in the equation (5.3.6) shows that the intersection of the graph of
# : Pi �Pj ÿ!Pk with Pi �Pj � fPg for a general point P 2 Pk is the class of a
point in Pi �Pj. By Equation (5.3.4), the intersection of the graph of rn;i � rm;j
with Pn � fQg �Pm � fRg for points Q 2 Pi and R 2 Pj is the class
�Pnÿi �Pmÿj�. Since we have

graph�ci;j� \ Pn �Pm � fPg� �
� graph�rn;i � rm;j� \ Pn �Pm � graph�#� \ Pi �Pj � fPgÿ �� �ÿ �
� graph�rn;i � rm;j� \ Pn �Pm � fQg � fRg� �;

it follows that ci;j has class �Pnÿi �Pmÿj� in Ak�Pn �Pm�. Consequently, c has class
(5.3.3) in Ak�Pn �Pm�, since c is the sum of the ci;j.

Since f and c determine the same class (5.3.3) in Ak�Pn �Pm�, they de¢ne the
same map in the derived category by Proposition 5.2. The theorem is therefore
proven. &

The following was suggested in [FL-1], but was not proven in that paper for lack of
a version of Theorem 5.3.

THEOREM 5.4. For any quasi-projective variety X, there are Chern class maps

cn : K0�X � ÿ!H2nM�X ; n� ÿ!H2n�X ; n�

which extend the Chern class maps of [FL-1; 10.3] for vector bundles generated by
global sections. Moreover, these Chern class maps satisfy the Whitney sum formula

cn�ÿ� �
M
i�j�n

ci�ÿ�#cj�ÿ�:

Proof. Recall that H�M�X ; �� is de¢ned in terms of the weak normalization Xw of
X and observe that there is a natural map K0�X � ! K0�Xw�. So we may assume X is
weakly normal.

Let Grasse�PN � be the Grassmannian variety of dimension eÿ 1 linear
subvarieties of PN . Then Grasse�PN� represents the functor sending X to the set
of quotient objects ON�1

X !! E (that is, isomorphism classes of surjections), where
E is a rank e vector bundle on X . Moreover, as in Proposition 2.4, the set
Mor�X ;Grasse�PN�� comes equipped with a natural topology.
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LetC : Grasse�PN � ÿ!CePN � CNÿePN be the morphism of varieties which sends
a quotient p : CN�1!! Ce to the cycle which is the projectivization of the kernel of
p. Then C determines a continuous map of topological spaces Mor�X ;
Grasse�PN��anÿ!Mor�X ; Ce�PN ��an by Theorem 2.3.

Observe that for all M, we have a commutative diagram

Grasse�PN � ÿÿÿÿ! CePN??y SM
??y

Grasse�PN�M� ÿÿÿÿ! CePN�M :

The map on the left in this diagram sends CN�1!! Ce to the composition
CN�1�M !! CN�1!! Ce (in which the ¢rst map is projection onto the ¢rst
N � 1 coordinates), and the map on the right is given by suspension. Thus we obtain
a map of direct systems

limÿ!
N

Grasse�PN � ÿ! limÿ!
N
CePN

which induces the continuous map of topological spaces

limÿ!
N
Mor�X ;Grasse�PN��an! limÿ!

N
Mor�X ; CePN �an:

Using the suspension isomorphism (3.1.3), we have canonical isomorphisms

Mor�X ; CePN �� �
Me
i�0
M�X ; i��2i�

in the derived category of Abelian groups. It follows that we obtain a natural map

Vecte�X � � limÿ!
N

poMor�X ;Grasse�PN ��anÿ!
Me
s�0

H2sM�X ; s�:

Wemay associate to a vector bundle E on X of rank ewhich is generated by its global
sections an element of Vecte�X � by choosing a surjection ON�1

X !! E, for some
N >> 0, and then taking the associated class in p0

limÿ!Mor�X ;Grasse�PN��an.
We claim the resulting class in Vecte�X � is independent of the choice made. To
see this, suppose p : ON�1

X !! E, q : OM�1
X !! E are two different choices. Then con-

sider the point in Mor�X ;Grasse�PN�M�1��an de¢ned by the surjection

ON�1�M�1
X � ON�1

X �OM�1
X !�p;q�! E:

There is a path from this point to the point given by the surjection �p; 0� (respectively,
�0; q�) de¢ned by �p; lq� (respectively, �lp; q�) for l 2 �0; 1�. Similarly, there is a path
from the point associated to �0; q� to the point associated to �q; 0�. This shows that
our two choices coincide at some stage in the direct limit de¢ning Vecte�X �. In fact,
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this argument shows that there is a natural, surjective map

IsoPgl�X � ÿ! �e Vecte�X �; �5:4:1�
where IsoPgl�X � is the set of isomorphism classes of vector bundles on X which are
generated by global sections.

De¢ne a pairing

� : Grasse�PN � �Grasse
0 �PM� ÿ!Grasse�e

0 �PN�M�1�
by sending the pair �CN�1!! Ce;CM�1!! Ce0 � to CN�1�M�1 � CN�1 �CM�1!!
Ce �Ce0 . It is easy to verify that the diagram

Grasse�PN� �Grasse
0 �PM� ÿÿÿ!� Grasse�e

0 �PN�M�1�??y ??y
CePN � Ce0PM ÿÿÿ!

:

Ce�e0PN�M�1

�5:4:2�

commutes. If we consider the space of morphisms from X to each variety in diagram
�5:4:2�, we obtain a commutative diagram of spaces. Further, the maps induced by
each arrow in diagram (5.4.2) are compatible with the maps in the direct systems
limÿ!
N
Mor�X ;Grasse�PN ��an and limÿ!

N
Mor�X ; CePN �an on the level of p0 (in fact, up

to homotopy), and thus the composite map

c � �cn� : IsoPgl�X � ÿ! ~Y
e
Vecte�X � ÿ!

M1
s�0

H2sM�X ; s� �5:4:3�

is actually a homomorphism of monoids. Here IsoPgl�X � is a monoid under direct
sum of vector bundles and

L1
s�0 H2sM�X ; s� is a monoid under the join pairing.

The notation ~Q
eVecte�X � refers to the restricted direct product, de¢ned as the subset

of the product consisting of sequences of elements ae 2 Vecte�X � such that ae
coincides with the image of the trivial bundle Oe

X for almost all e.
Set H�X � �L1s�0 H2sM�X ; s�. Then H�X � is actually a ring under the addition of

cycles and the join product. One may easily check that c0�E� �
1 2 H0M�X ; 0� � Z. Let 1�H�X ����t�� denote the subset of the set of formal power
series H�X ���t�� consisting of those power series whose coef¢cient of tn lies in
H2n�X ; n� and whose constant term is 1. Then the join operation on H�X � endows
1�H�X ����t�� with the structure of multiplicative Abelian group. The map
ct : IsoPgl�X � ÿ! 1�H���t�� de¢ned by ct�E� � 1� c1�E�t� c2�E�t2 � . . . is a map
of Abelian monoids, with target an Abelian group. It therefore extends to a map

ct : IsoPgl�X �� ÿ! 1�H�X ����t��
from the group completion of IsoPgl�X �. Observe that the target of ct is homotopy
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invariant in X , since there is for any X ;Y a natural pairing

Mor�X �A1;Y � �A1ÿ!Mor�X �A1;Y �
relating the identity to the map induced by i � pr : X �A1ÿ!X � f0g ÿ!X �A1.
Thus, ct factors though the cokernel

IsoPgl�X �A1�� ÿÿÿ!a1ÿa0
IsoPgl�X �� �5:4:4�

where ai is induced by restriction to X � fig.
We claim the cokernel of (5.4.4) is isomorphic to

K0�X �=�homotopy� � coker K0�X �A1� !a1ÿa0 K0�X �
� �

:

Say X is a subvariety of Pn. Then by using the Koszul resolution induced by the
canonical surjection On�1

Pn !!OPn �1�, one shows that every class in K0�X � is a
difference of the classes of vector bundle generated by global sections. Further,
given a short exact sequence 0ÿ!E0 ÿ!E ÿ!E0 ÿ! 0 of vector bundles on
X , let 0ÿ!E0�t� ÿ!E�t� ÿ!E00�t� ÿ! 0 be the pullback of this sequence to
X� SpecC�t� � X �A1. Now de¢ne the vector bundle ~E on X �A1 so that the
square

~E ÿÿÿÿ! E00 �t�??y �t
??y

E�t� ÿÿÿÿ! E00 �t�
is Cartesian. Then ~EjX�f0g � E0 � E00 and ~EjX�f1g � E, and so every short exact
sequence may be deformed continuously to a short exact sequence. The claim
follows.

We thus obtain the map ct : K0�X � ÿ! 1�H�X ����t��: and we de¢ne
cn : K0�X � ÿ!H2nM�X ; n� by taking the coef¢cient of tn in ct. The Whitney sum
formula is an obvious consequence of the construction. &
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