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Abstract. Given a quasi-projective complex variety X and a projective variety ¥, one may endow
the set of morphisms, Mor(X, Y), from X to Y with the natural structure of a topological space.We
introduce a convenient technique (namely, the notion of a functor on the category of ‘smooth
curves’) for studying these function complexes and for forming continuous pairings of such. Build-
ing on this technique, we establish several results, including (1) the existence of cap and join prod-
uct pairings in topological cycle theory; (2) the agreement of cup product and intersection product
for topological cycle theory; (3) the agreement of the motivic cohomology cup product with
morphic cohomology cup product; and (4) the Whitney sum formula for the Chern classes
in morphic cohomology of vector bundles.
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At first glance, imposing a topology on the set Mor(X, Y) of morphisms between two
complex algebraic varieties seems unnatural. Nevertheless, just such a construction
applied to the set of morphisms from X to certain Chow varieties of cycles in pro-
jective space leads to the ‘morphic cohomology’ of X as introduced in [FL-1]. In
this paper, we show that, in general, the ‘topology of bounded convergence’
(introduced in [FL-2]) on Mor(X, Y) has a natural algebraic description arising from
the enriched structure on Mor(X, Y) as a contravariant functor on the category of
smooth curves. This functorial interpretation leads to a convenient formulation
of the technique of demonstrating ‘uniqueness of specialization’ introduced in [F-1]
for the construction of continuous algebraic maps. We use this new technique to
establish the continuity of various constructions and pairings involving the ‘function
spaces’ Mor(X, Y)", where X and Y are complex (but not necessarily projective)
varieties.

More generally, we introduce the notion of a ‘proper, constructible presentation’
of a functor (cf. Definition 2.1), a property which provides a natural topological
realization of a contravariant functor on smooth curves. This point of view
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facilitates (cf. Theorem 2.6) a careful proof of the continuity of the slant product
pairing of [FL-1] and the cap product pairing relating Lawson homology and
morphic cohomology which plays a central role in [F-3]. Indeed, our techniques
provide, not merely a pairing on the level of homology groups, but pairings (in
the derived category) of the presheaves of chain complexes used to define Lawson
homology and morphic cohomology. Similarly, the join product of cycles in pro-
jective spaces determines a cup product in morphic cohomology as first recognized
in [FL-1]. We provide a definition of this product at the level of presheaves of chain
complexes on an arbitrary complex quasi-projective variety (Proposition 3.3). As
we make explicit in (4.1.1), there is a natural map of presheaves of chain complexes
from those complexes which define motivic cohomology to those which define
morphic cohomology. In Theorem 4.4, we show that this natural map commutes
with products. On a smooth variety X, we show cup product corresponds to the
intersection product of cycles under duality — that is, we refine the intersection prod-
uct of [F-G] to be a pairing of presheaves of chain complexes on X compatible with
our cup product.

In verifying in [F3] that suitably enriched versions of Lawson homology and
morphic cohomology satisfy the axioms of Bloch—Ogus [B-O], the first author intro-
duced a cap product whose continuity was not evident. One of the motivations of the
present paper is a careful proof of continuity of cap product, set in a more general
context. Moreover, the formulation of cup product presented here in terms of a
pairing of complexes of sheaves also permitted the verification in [F3] of the stronger
result that this ‘topological cycle theory’ satisfies the stronger axioms of H. Gillet
[G].

In the final section of this paper, we apply our improved understanding of products
to show in Theorem 5.4 that the geometric construction of [FL-1; 10] does indeed
determine Chern class maps on Ky(X) for a quasi-projective variety X and that these
Chern classes satisfy the expected Whitney sum formula.

Throughout this paper, all varieties considered will be quasi-projective varieties
(by which we mean reduced, locally closed subschemes of projective space) over
a base field of characteristic 0 (usually the complex field C). We shall frequently
consider Chow varieties associated to projective varieties. If ¥ c PV is a projective
variety provided with a given closed embedding in some projective space PV, then
C,qY denotes the Chow variety whose rational points are the effective r-cycles
on Y of degree d. We shall consider the Chow monoid C,Y = ]_[d>0 C.qY of all
effective r-cycles on Y, a monoid whose isomorphism type is independent of the
projective embedding Y c PV (cf. [B]).

1. Continuous Algebraic Maps

One is naturally led to consider continuous algebraic maps to Chow varieties when
one is confronted with their construction in terms of elimination theory rather than
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as a representable functor. Indeed, as we see in Example 1.3, Chow varieties have a
natural functorial description in terms of functors on smooth curves. A simple obser-
vation which motivates the consideration of such functors is the fact that a con-
tinuous algebraic map X — Y between quasi-projective varieties is equivalent to
a natural transformation of associated contravariant functors Morgl(—,X) —
Mor S 1(—, Y) (see Proposition 1.1).

The usefulness of this functorial point of view is that the construction of pairings
of functors is often straightforward. In conjunction with the topological realization
considered in the next section, our functorial point of view will provide a good for-
malism for proving the continuity of various pairings.

Eventually, we will be working over the complex numbers, but in this section we
work over an arbitrary field K of characteristic 0 and we consider varieties defined
over K. Recall that a continuous algebraic map f: X — Y is a closed subvariety
I'r C X x Y with the property that pry : I'y — X is finite and bijective on geometric
points — or, equivalently, that pry is a universal homeomorphism (cf. [VI; 3.2.4]). We
say that pry is a bicontinuous morphism. We further recall that a variety X admits a
natural normalization X — X (defined locally by taking integral closures in the total
ring of quotients of X), and that this normalization factors as X — X" — X, where
X" is the weak normalization of X (cf. [A-B]). The variety X" has the property that
X" — X is bicontinuous and is universal among varieties mapping bicontinuously
to X. (The weak normalization X" coincides with the semi-normalization of X since
K has characteristic zero — see [S].) Thus, a continuous algebraic map of algebraic
varieties X — Y is equivalent to a morphism X" — Y. We say a variety X is weakly
normal if it is equal to its weak normalization, in which case every continuous
algebraic map from X to Y is a morphism of varieties.

We proceed to formalize a technique introduced in [F1] to construct continuous
algebraic maps. Let (Sm/K) . denote the category of smooth affine schemes over
Spec K which are essentially of finite type, connected, and have Krull dimension
at most 1. That is, every object of (Sm/K) . is the scheme associated to a ring
A where 4 has Krull dimension one and is the localization of a finitely generated
smooth, integral K-algebra R. In scheme-theoretic language, we observe that
any C e (Sm/K) c is a filtered limit of smooth varieties of finite type over K
(possibly of dimension more that 1) such that the transition maps in the system
are open immersions. A typical example of an object of (Sm/K)_, is

of codimension one subvarieties, and Oy.,, ., denotes semi-localization at these
points. If C € (Sm/K) .| and X is a quasi-projective variety over K, then we define
Mor(C, X) to be the set of morphisms of schemes over Spec K from C to X and
we write Mor S 1(—, X) : (Sm/K) . ;—>(Sets) for the functor so defined.
Intuitively, we think of (Sm/K) . as consisting of all curves and the motivation
for its introduction is that a continuous algebraic map on a variety is uniquely
determined by its value on all curves. More precisely, we have the following

key result.
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PROPOSITION 1.1. For any field K of characteristic 0, a continuous algebraic map
f:X — Y between quasi-projective varieties over K is equivalent to a natural
transformation of contravariant functors

O : Mor S 1(—, X)— Mor = 1(—, Y): (Sm/K) | —> (Sets).

Proof. Assume given such a natural transformation ®;. Then ®, immediately
determines a rational map from X to Y; namely, given a generic point
1 :Spec F — X, we send 57 to ®y(n) : Spec F — Y. Let Y C Y be a projective closure
and let Iy C X x Y be the graph of this rational map, so that I’y is the closed
subvariety whose irreducible components have generic points (1, ®r(n)):
SpecF — X x Y C X x Y. It suffices to verify that for any finitely generated field
extension L of K and any map y:SpecL—1,, 7 is of the form
@Poy, ®r(poy)):SpecL — X x Y where p: X x Y — X is the projection map.

We argue by induction on the codimension of y(Spec L) € I's. For codimension 0,
all maps y are of the given form by construction. Assume we have verified that
all maps y:SpecL — I'y are of the given form if y(SpecL) has codimension
< s, and consider y : Spec L — I'y with y(Spec L) € I'y of codimension s 4+ 1. Choose
a non-constant map g: C — I'y defined over Spec L from a smooth, connected,
affine curve C € (Sm/K) . to I'y with the property that some L-rational point
¢:Spec L — C maps to y. By induction, the generic point v: Spec E — C of C
satisfies the condition that gov:SpecE — Iy is the map (pogov,®s(pogov)),
which by the naturality of @, is equal to the map (p o g, ®/(p 0 g)) o v. Thus, we con-
clude that g: C - TI'y C X x Y is of the form (po g, @r(p o g)). Naturality of @
now implies that y = (pogoc, ®s(p o g) o c) equals (y, (). O

Proposition 1.1 motivates the following definition.

DEFINITION 1.2. Let K be a field of characteristic 0. We define Mor <! to be the
category of contravariant functors F : (Sm/K) .| — (Sets). For F,G € Mor =S,
we write Mor(F, G) for the set of natural transformations from F to G. If X is
a scheme over K, we also let X denote the functor on (Sm/K) . sending C to
Homg(C, X).

We provide Mor(F,G) with the structure of a contravariant functor from
(Sm/K) . to (Sets), written using the calligraphic Mor(F,G), by defining
Mor(F, G)(C) = Mor(C x F, G).

If X and Y are schemes over K, then in light of Proposition 1.1 the functor
Mor(X, Y) may be identified with the functor on (Sm/K) ., which sends C to
Mor(X x C, Y).

Observe that Mor(F, G) is an internal Hom-object for the category Mor < ' for
any H: (Sm/K) .| — (Sets) we have

Mor(H, Mor(F, G)) = Mor(H x F, G).

https://doi.org/10.1023/A:1002464407035 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002464407035

FUNCTION SPACES AND CONTINUOUS ALGEBRAIC PAIRINGS FOR VARIETIES 73

First of all, a natural transformation { : H - Mor(F, G) determines H(C) —
Mor(F, G)(C) — Homse)(F(C), G(C)) natural with respect to C. Conversely, a
natural transformation ¢ : H x F — G determines for each C the map H(C) —
Mor(C x F, G) associated to the pairing natural with respect to C’ determined
by ¢, H(C) x Homg(C’, C) = Homs..)(F(C"), G(C')). We readily verify that these
constructions are mutually inverse.

EXAMPLE 1.3. Let Y c P be a quasi-projective variety and consider the functor
C,Y:(Sm/K) .| — (Sets) which associates to C € (Sm/K) | the monoid of effec-
tive cycles in C x Y which are flat (equivalently, dominant) over C of relative
dimension r. The map (C,Y)(C) — (C,Y)(C’) associated to a morphism C' — C
is given by pullback of cycles (which is well-defined in light of the flatness condition).

When Y is projective, the functor C, Y is represented by the disjoint union of Chow
varieties | [; C; 4(Y), where C, 4(Y) parameterizes effective r-cycles of degree d on Y.
Each C, 47 is a projective variety defined over K, and, as shown in [F1], the Chow
monoid C, Y =[], ¢ Cr.4(Y) is independent of the embedding ¥ C PV in the sense
that two different embeddings yield monoids which are related by a continuous
algebraic map whose graph projects to each via a bicontinuous morphism. We recall
that a map from any normal variety X to C,Y is equivalent to an effective cycle on
X x Y equidimensional over X of relative dimension r, so that, in particular,
the functor C,Y is given as Mor(—,C,Y).

If Y is merely quasi-projective with some chosen projective closure ¥ C Y, the
functor C,Y is a ‘quotient’ of the representable functor C,Y. Specifically, for any
Ce(Sm/K) ., we can realize (C,Y)(C) as the quotient of the monoid
Mor(C,C,Y) by the submonoid Mor(C,C,Y,,), where Y, =Y \ Y.

The following proposition verifies the functoriality of the association Y i— C, Y for
Y projective. This functoriality is a reformulation of the naturality of proper
push-forward of cycles.

PROPOSITION 1.4. Let X, Y be projective varieties. For anyr = 0, there is a natural
transformation Mor(X, Y)— Mor(C,X,C,Y).

Proof. We may replace X by its weak normalization, since both Mor(X, Y) and
C,X are unaffected by this substitution, so that every continuous algebraic map will
be a morphism of varieties.

For C € (Sm/K) ., consider an element /' : C x X — onf Mor(X, Y)(C). We
proceed to define a natural transformation C x C,X — C,Y : (Sm/K) .| —
(Sets). For any C' € (Sm/K) | and any g = (g1,82) : (' = C x C, X let Z, denote
the effective cycle on C' x X associated to g», so that Z, equidimensional of relative
dimension r over C’. Consider the proper map

frg=lc, oo, g, lx): CxX—>CxCxX—>CxY

and define f.(g) to be (f * g),(Z,), an effective cycle on C' x Y equidimensional of
relative dimension r over C'.
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To verify that f, is a natural transformation, we consider some /: C’ — C’ in
(Sm/K) . The fact that following diagram consists of Cartesian squares

C"xX — ("xCxX — (C"xY

IZXI[ Jhxlxl lvhxl

CCxX — (xCxX ——— (CxY

together with the commutativity of push-forward and pull-back implies that 4*
applied to (f * g),(Z,) € Mor(C',C,Y) equals (f xg').(Zy) € Mor(C’,C,Y), where
g = goh as required by functoriality.

To complete the proof, we must verify the functoriality with respect to C of f 1— f.
Consider k: C — C € (Sm/K) <y and f: C x X — Y. To prove functoriality, we
must show that (fok),=f.o(k,1): CxCX—CY. Observe that fe
C x C;X — C,Y sends a geometric point (¢, Z) of C x C,X to (fiexx).(Z), whereas
(f o k), sends a geometric point (¢, Z) of C xCX to ((f ok, Dizxx)«(Z). Hence,
(f o k), and f o (k, 1) agree on geometric points and thus are equal. O

We next present a proof of the well-definedness of the trace map introduced
in [FL-1; 7.1] which is more formal and perhaps clearer than the original
proof.

PROPOSITION 1.5. Let Y be a projective variety. For any C € (Sm/K) and any
morphism f: C — CiC,Y), let Z; =%XZ; be the associated effective cycle on
C x C, Y equidimensional of relative dimension s over C and let p; : Z; — C denote
the projection maps of the irreducible components of Z. For each i, let Z; be the effec-
tive cycle on Z; x Y associatedto Z; - C x C,Y — C, Y, thus Z;is equidimensional
of relative dimension r over Z;. Define tr(f) = Z(p; X 1)*(Zi), an effective cycle on
C x Y equidimensional of relative dimension r + s over C. Then sending f to tr(f)
determines a continuous algebraic map tr : C(C,Y) — CrysY.

Proof. It suffices to verify the functoriality of the construction f1— tr(f) with
respect tomaps g : C' — C € (Sm/K) . ;. Observe that tr(f) € Mor(C, 1Y) is sent
via g to the cycle associated to the pull-back X(1 x p,-)*(Z) x ¢ C', since tr(f) is flat
over C. Similarly, the effective cycle Z;,, on C’' x C,Y is the cycle associated to
the pull-back of Z; via g. Thus, the required equality r(f o g) = g*(¢tr(f)) follows
from the commutativity of push-forward (along proper maps) and pull-back (along
flat maps). O

The following proposition, in conjunction with the topological realization dis-

cussed in the next section, justifies the cap pairing considered in [FL-1; 7.2]. This
cap product plays a central role in [F3].
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PROPOSITION 1.6. Let X be a quasi-projective variety and let Y be a projective
variety. Then sending a pair (f, Z) with Z an irreducible s-cycle on X to the graph
of the composition Z — X — C,Y determines a ‘cap product’ pairing
Mor(X,C,Y) x CsX — Crps(X x Y) for any r,s = 0.

Proof. We may replace X with its weak normalization without loss of generality.

For Ce(Sm/K) |, we define a map ¥: Mor(X,C, Y)C) x (C;X)(C) —
Cris(X x Y)(C) by sending (f : C x X — C, Y, W) to the graph of the composite
map W — C x X — C, Y, where W is a closed, integral subscheme of C x X that
is flat over C. We regard this graph, which is naturally a cycle in W x Y, as being
acycle in C x X x Y. We extend W linearly, so that ¥ is defined on all cycles.
Observe that W sends (f, W) to an element of C,. (X x Y)(C) since the cycle con-
structed is clearly dominate over C.

To verify functoriality of W with respect to C, we begin by choosing a projective
closure X ¢ X. Given f : C x X — (.Y, g: C— C,X (where g is associated to
the W considered above), observe that f determines /' : C x X — C.(X x Y). (One
sends the cycle Z on C x X x Y determined by f to the push-forward by the diagonal
map to a cycle on C x X x X x Y.) Choose a projective closure C x X C C x X so
that /7 extends to f : C x X — C.(X x Y) and the projection C x X — X extends
to C x X — X. Observe that g: C — C,X determines g’ : C — C4(C x X). (One
sends the cycle W on C x X flat over C to the push-forward by the diagonal
map to a cycle on C x C x X.) We choose a lifting g : C — C(C x X) of g’. Then
the pair (f,2) determines the map W(f,g): C — Ci(C x X) = C(C,(X x Y)) >
Crys(X x Y) = Coii(X x Y), where the first map is g, the second is induced by f
using Proposition 1.4, the third is the trace map of Proposition 1.5, and the fourth
is the defining projection. One readily verifies that the graph of W(f, g) is precisely
Y(f, W) by checking this equality at the generic point of C, and, in particular,
the map ¥(f, g) is independent of the choices made.

Assume given h: C' — C e (Sm/K) .| as well as (f, g). Provided one chooses
C’' x X to map to C x X and chooses (goh)” = goh, one seces immediately that
Y(f,g)oh=Y(f o(h x1),goh) as required for functoriality. O

In subsequent sections, we shall require the continuity and associativity of com-
position, which is implied by the next proposition together with the topological
realization functor of the next section.

PROPOSITION 1.7. Let X, Y, W be quasi-projective varieties over K. Composition
of morphisms determines a pairing of functors

Mor(X, Y) x Mor(Y, W)— Mor(X, W)

which is associative in the evident sense.
Similarly, if X is a quasi-projective variety, Y and W are projective varieties, then
composition together with the trace map of Proposition 1.5 determines a bilinear
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pairing
Mor(X,C.Y) x Mor(Y,C;W) — Mor(X,Cri ;W)

which is associative in the evident sense.
Proof. The first pairing is given by sending f : Cx X — Y, g: Cx Y — W to
go(le,f): Cx X — W for any C e (Sm/K) .. This is clearly natural in C.
The second pairing is the composition of maps given by applying Proposition 1.4,
the first pairing, and the trace map of Proposition 1.5:

Mor(X,C,Y) x Mor(Y,CsW) - Mor(X,C,Y) x Mor(C,Y,C.(C;W))
— Mor(C, X, C.(CsW)) — Mor(X, Cryi s W). O

2. Topological Realization for K = C

Every complex variety admits a realization as a topological space and every
morphism of complex varieties induces a continuous map on the associated spaces.
The goal of this section is to generalize this simple concept in two ways. Namely,
we wish to replace ‘varieties’ with ‘constructible sets modulo proper equivalence
relations’ (see Definition 2.1) and also to replace ‘morphisms’ with ‘natural
transformations of the associated functors on (Sm/K) .. The precise statement
is Theorem 2.3. This generalized notion of topological realization, together with
the results of Section 1, allows us to establish the continuity of various maps arising
in the study of Lawson homology and morphic cohomology.

Many of the functors on (Sm/K) | introduced in Section 1 admit a kind of pres-
entation in terms of algebro-geometric information. The following definition pro-
vides the formal notion which covers all of the cases arising in this paper.

DEFINITION 2.1. Consider the data Y = | [, Y4, a disjoint union of projective var-
ieties over SpecK; £ = | [, E4, where each E; is a constructible algebraic subset of
Y4; a ‘proper equivalence relation’ R = R N (£*?), where R C Y2 is a closed equiv-
alence relation such that R = RN (£ x ))). Then we say (), &, R) is a proper, con-
structible presentation of a functor F:(Sm/K) | — (Sets) if F is the functor
given by sending C e (Sm/K) | to Mor(C, £)/Mor(C, R) (where, in general, if
E is a constructible subset of variety Y, we define Mor(X, E) to be the set of those
morphisms from X to Y whose set theoretic images land in E).

As seen in Example 1.3, given a quasi-projective variety Y, the functor C, Y admits
a proper, constructible presentation. The following proposition implies that
Mor(X, Y) does as well.

PROPOSITION 2.2. Let X, Y be quasi-projective varieties over Spec K, X" the weak
normalization of X, and assume X" C X", Y C Y are projective closures. Then
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Mor(X, Y): (Sm/K) o — (Sets) admits a proper, constructible presentation
(é(yw x Y), E0.1(X", Y), R) defined as follows: é(yw x Y) is the Chow variety of
effective cycles in X' x Y which have dimension equal to the dimension of X"
(locally); Eo (X", Y) C Ca(X" x Y) is the constructible subset of those cycles whose
restrictionto X" x Y are graphs of morphisms from X" to Y and R is the equivalence
relation associated to the diagonal action of é’(Xc‘; x Y), the subset of those cycles
supported on X2 x Y, on (C(X" x Y)*?, where X =X" — X".

Furthermore, when X and Y are both projective varieties, this presentation of
Mor(X, Y) realizes Mor(X, Y) as the functor associated to an inductive limit of
quasi-projective varieties.

Proof. To simplify notation, we replace X with its weak normalization and omit
the superscript w everywhere.

The constructibility of the subset £ (X, ¥) C C(X x Y) can be verified by using
the incidence correspondence Z(X,Y) C C(X x Y) x X x Y consisting of those
triples (Z, x, y) with the property that (x, y) lies in the support of the cycle Z.
For consider the natural map p: Z(X,Y) - C(X x Y) x X. Let BC Z(X,Y) be
the constructible set of points (Z, x, y) such that x € X and (Z, x, y) lies in a fiber
of p consisting of more than one point, i.e. a fiber of dimension more than 0 or
of degree more than 1. Then &y (X, Y) is the complement of the projection of B
to C(X x Y).

Observe that the image of the diagonal action of C‘(XOO x Y) (which is a
proper map between disjoint unions of projective varieties) CX x Y)x
C(Xs x Y)? — C(X x Y)*?is aclosed equivalence relation R on C(X x Y) which
satisfies the property R=RNE&E(X, Y)> =RN(En1(X, Y)x C(X x Y)). To
verify that Mor(X, Y) =&y (X, Y)/R: (Sm/K) .| — (Sets), observe that an
element of & 1(X, Y)(C) is a cycle 7 in C x X x Y satisfying the condition that
v is equidimensional over C and that y N (C x X x Y) is the graph of a morphism
from C x X to Y. Here, we are using (a) a rational map with domain C x X is
the graph of a morphism if and only if for each geometric point ¢ x x € C x X there
is a unique geometric point of the form (¢, x, y) in its graph; and (b) the pull-back of y
over C to ¢ has restriction to {¢} x X x Y the graph of the map from X x {c} to ¥
given by the image of ¢ in & 1(X, Y) C 6’(7 x Y) since y is flat over C. Thus, there
is an evident map &y (X, Y)(C) — Mor(X, Y)(C) obtained by restriction of cycles
to C x X x Y. This map is surjective, since we may lift elements in the target
set by taking closures of cycles. (Such closures must remain equidimensional over
C since they will dominate C which is one-dimensional and smooth.) Finally,
two elements y and )’ of &£.(Y)(X)(C) are sent to the same element under this
map if and only if their restrictions to C x X x Y coincide — that is, if and only
ify+6 =19 + ¢ for some §, §’ contained in C x X, x Y and equi-dimensional over
C. In other words, two elements are sent to the same element under this map if only
only if their images are the graphs of the same morphism from C x X to Y.

Finally, if X and Y are both projective varieties, then we take X = X and Y = Y.
The constructible subset B defined above is actually closed in this case. Thus,
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&0.1(X, Y), which is the complement of the image of B under a proper map, is open in
é’(X x Y). The equivalence relation R is clearly trivial in this case, and so
Mor(X, Y) is represented by the ind-variety &£ 1(X, Y) = le &0.1(X, Y),, where
&0.1(X, Y), in the quasi-projective variety consisting of those cygles in&1(X, Y), of
degree at most n. O

We now restrict our attention to complex varieties. For a complex quasi-projective
algebraic variety X, we write X" for the set X(C) of C points of X provided with its
topology as an analytic space. If (£, V, R) is a proper, constructible representation of
a functor F as in Definition 2.1, we write £ for the subspace of }** consisting of
points £(C) c Y(C) and we let (£/R)* denote the space consisting of points
E(C)/R(C) provided with the quotient topology given by the surjective map
EM" — (E/R)™. Observe that the set of points of (£/R)™ is simply F(C).

Thus, any functor admitting a proper, constructible presentation has a topological
presentation. The following theorem shows that a natural transformation of such
functors induces, as one would hope, a continuous map on the associated spaces.
This result is particularly useful for establishing the continuity of various pairings,
as well as showing the well-definedness of the topology associated to various con-
structions, which arise in Lawson homology and morphic cohomology. For example,
if X a normal, quasi-projective variety and Y projective, then the topology on
Mor(X, C,Y) as given in [F2] is described by a somewhat different proper, con-
structible presentation than that given by Proposition 2.2. Theorem 2.3 assures
us that these different presentations determine the same topology.

THEOREM 2.3. Let F, F' : (Sm/C) . | — (Sets) be contravariant functors provided
with proper, constructible presentations (Y,E,R), (V,E,R). Then a natural
transformation W : F — F' induces a continuous map y*" : (£/R)™" — (£'/R)™.
Proof. Observe that if S C X is a constructible subset of a projective variety X,
then S has a canonical expression as a union of irreducible constructible subsets
S = UpSp, where  runs through those (Zariski) points of X which lie in § and which
satisfy the condition that they do not lie in the closure of any point ' # fwith ' € S.
Thus, Sp equals S N Xp, where X C X is the closed subvariety with generic point f.
Clearly, if R is a proper equivalent relation on S C X, then (S/R)" =
(LI Sp)/R™)*" where each Sy C X and R™ is the equivalence relation determined
by R. Thus, we may assume that each Y; and each Y}, are irreducible and that each
E; C Y4 and each E, C Y}, are dense.
_ For each generic point 7, : Speck(y) — £ of &, choose some generic point
¥(n,) : Speck(y) — £ satistying y op(n,) = q(¥(n,)), where p:&—F and
q: & — F' are the natural quotient maps. Let I', C V) x ) denote the irreducible

https://doi.org/10.1023/A:1002464407035 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002464407035

FUNCTION SPACES AND CONTINUOUS ALGEBRAIC PAIRINGS FOR VARIETIES 79

subvariety with generic point

(n,, ¥(n,)) : Speck(y) — &, x 51/}(,,7) — Y, x yl/]/w_;),
and let I'y C Y x )’ denote the union I'y = U, r,.

To prove that y induces a continuous map ", it suffices to prove that the
restriction of I’ C Y x Ve to £ x Y has image in (§/R)™ x (¥'/R)™ which
maps bijectively to (£/R)*" and is contained in (£/R)*" x (£'/R)*". (For in this case,
the bijective map must be a homeomorphism, since it is a proper map between
Hausdorff spaces.) For this, it suffices to prove that for any point (i, {) € I';, such
that y lies in £, we have o p(y) = g({). (Here, V' /ﬁ/ :(Sm/C) .| — (Sets) is defined
as the evident quotient functor of )’ with projectiong : Y — V'/R.) We proceed by
induction on the codimension of y € £ (i.e. the maximum over all irreducible com-
ponents S of £ containing y of the codimension of ¥ in S). By construction, the
required equality is valid for all y of codimension O (i.e., for generic points). Assume
that the equality is valid for all points of codimension < sandlet (x, y) € I'y be such
that x: Speck(x) — £ is a point of codimension s+ 1. Let gc: C— 1Ty be a
non-constant map from a smooth curve C defined over k(x) with some k(x)-rational
point ¢ € C mapping to (x, y). Let Y(pr o gc)” be any lifting of y(priogc) to a
map from C to ). Letting y : Speck(y) — C denote the generic point of C, observe
that by hypothesis, gy (pri o gc)™ 0 7) = q((pri o gc o 7)) = q(prz 0 gc 0 7). In other
words, the map (Y(priogc) ,praoge): C—> Y x YV sends the generic point of
C into R. It thus sends ¢ into R as well, and so g(Y(priogc) oc)=
q(prp o gc o ¢), which, by the naturality of W, implies that o p(x) =q(x), as
desired. O

It follows from [FL-1; 1.4] that if X and Y are projective varieties, then the set
Mor(X, Y) of morphisms from X to Y has the natural structure of a quasi-projective
variety. Taking the analytic topology of this quasi-projective variety gives us a
‘natural’ topology on Mor(X, Y). For X not necessarily projective, Mor(X, Y) is
no longer a variety but the ‘analytic’ topology on Mor(X, Y) does have a concrete
description as recalled in the following proposition.

PROPOSITION 2.4 ([FL-2; A.3]). Let X be a weakly normal quasi-projective variety,
X C X aprojective closure, and Y a projective variety. Then the following topologies
on Mor(X, Y) are equivalent:

(a) Identification of Mor(X,Y) with (E1(X,Y)/R™, where (C(X x Y),
E01(X, Y), R) is the proper, constructible presentation of Proposition 2.2.

(b) The topology of convergence with bounded degree: a sequence {f;} of morphisms
converges if and only if this sequence converges in Hom,, (X", Y*") provided with
the compact open topology and there exists some upper bound for the degrees of the
closures in X x Y of the graphs of f;, We let Mor(X, Y)™ denote the resulting
topological space.
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We include the following result which indicates that Mor(X, Y) has a ‘good’
topology — i.e., has the homotopy type of CW complex. The reader should note
that [F2; 1.5] erroneously claims that spaces such as Mor(X, Y)* admit the struc-
ture of CW complexes. We give in Proposition 2.5 a slightly weakened (but
functionally equivalent) version of this claim, together with a proof.

PROPOSITION 2.5. Let X be a quasi-projective variety and Y a projective variety.
Then Mor(X, Y)™ has the homotopy type of a CW complex.

Proof. We may assume X is weakly normal. Choose a projective closure X C X
and use the notations of Proposition 2.2. Additionally, let S, denote the subset
of C(X x Y) consisting of cycles of degree n which lie in & ;(X, Y). Further, let
R, denote the subset of S, consisting of cycles with a non-trivial component at
infinity, i.e. cycles in the image of the map [],., C~'k(XOO x Y) x S,_x — S, given
by addition of cycles. Then R, C S, is a closed subset (in the Zariski topology)
of the constructible subset S,. Finally, define £, to be the constructible subset of
E0.1(X, Y) consisting of cycles whose intersection with X' x Y have closures of degree
at most n.

There is an evident push-out square

R,,xé’(Xoox Y) — Snx@(Xoox Y)

l l (2.5.1)

En-1 — En

with vertical arrows given by addition of cycles. Note also that the monoid
C(Xx x Y) acts on the square (2.5.1). If we mod out by this monoid action, we
obtain another push-out square

R, —— §,

l l (2.5.2)

anl — an

where X, = (S',,/é’(XOo x Y).

Note that R, C S, is a closed immersion of constructible subsets of some pro-
jective space PV. By [H] PV admits a semi-algebraic triangulation so that S,
and R, are each unions of open simplices. Now form the barycentric subdivision
of this triangulation and define S/, R, to be the so-called ‘cores’ — namely, S, is
the union of all closed simplices of the barycentric subdivision contained entirely
in S,, and R, is defined similarly. Observe there is an evident straight-line
deformation retract of S, C R, onto S, C R,, and that S, C R, is a cellular
extension.
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Suppose, by induction on n, we have constructed a homotopy equivalence
X,—1 — Y,_1, where Y,_; has the structure of a CW complex. Define f : R, —
Y,_: to be the composition R, = R,—R, — X,_| — Y, and define Y, so that

Rn E— Sn

7| l

Y1 — Y,

is a pushout square. Since R, C S, is an NDR subspace and f is homotopic to the
composition R, - X,_; — Y,_;, we have by [L-W; IV.2.3] that there is a homotopy

equivalence X, — Y, causing the triangle

/Yn—l E— Xn

l l

Yn—l m— Yn
to commute. Finally, define Y, so that

R, — S,

l l

Yn,1 e Yn

is a pushout square. The deformation retract of R, C S, onto R, C S, induces a
deformation retract of ¥, onto Y,. Hence, there is a homotopy equivalence
X, — Y, compatible with the homotopy equivalence X,_; — Y,_;.

Finally, the space Mor(X, Y)" is the direct limit of the X,’s, which maps via a
homotopy equivalence to the direct limit of the Y,’s. Since each map Y, — ¥,
is a cellular extension, the proof is complete. O

In light of Theorem 2.3, each of the natural transformations of Propositions 1.4, 1.5,
1.6, and 1.7 (since they are natural transformations of functors admitting proper,
constructible presentations) induces a continuous map between the associated
topological spaces. We record in the following theorem a specific case of this con-
tinuity, since it is used extensively in [F3].

THEOREM 2.6. Let X be a quasi-projective variety, Y a projective variety, and
s, r = 0 integers. Then the pairing of Proposition 1.6 induces a continuous pairing
Mor(X,C. )" x (C;X)" — (Cris(X x Y))™.

Proof. The functors Mor(X, Y), C,X, and C,, (X x Y)admit proper, constructible
presentations by Example 1.3 and Proposition 2.2. The pairing is induced by a natu-
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ral transformation of functors by Proposition 1.6. Thus, continuity is a consequence
of Theorem 2.3. O

We conclude this section with the following explicit description of the set of con-
nected components of Mor(X, Y)™.

PROPOSITION 2.7. For a quasi-projective varieties X and Y, the set mpMor(X, Y)*
is the quotient of the set Mor(X, Y) by the equivalence relation generated by declaring
two continuous algebraic maps f and g to be equivalent if there is a smooth, connected
curve C (of finite type over C) with closed points ¢, d and a continuous algebraic map
h: X x C— Y such that f = hly,, and g = hlya.

Proof. In fact, we will describe the set of connected components of (£/R)™,
whenever (), &, R) is a proper, constructible presentation of a contravariant
functor £/R : (Sm/C) .| — (Sets). This applies to Mor(X, Y) by Proposition 2.2.
We claim two points x, y in (£/R)™" lie in the same component if and only if there
is a sequence of smooth, connected curves Cy,..., C,, morphisms g;: C; — €&,
and points ¢;, ¢; € C; such that go(co) = x, gu(c,) =y, and (gi(c)), gi+1(ci+1)) € R
for 0 <i<n.

To establish the claim, first observe that the existence of such a sequence of curves
shows that x and y lie in the same component of (£/R)™".

For the converse, observe that we may assume each E; C Yy is dense. In fact, we
may assume each E; is connected, for whenever we have E; = E; [ | E, we can
replace Yy with Y, [] Y%, where Yj, Y are the closures in Y, of E, E. Let 4
denote the indexing set for the connected Y’s and E’s. We readily verify in this case
that no(£/R)™ is naturally identified with the set of equivalence classes of 4 for
the equivalence relation generated by pairs (a, ') € 4*? with the property that there
exists some t € E,, t' € E, with (¢,¢) € R. It therefore suffices to show for any fixed
o € A that given any two points x, y € E,, we can connect x and y by a sequence
of curves mapping to E,.

Since E, is connected, it must contain points of W N Z for any two irreducible
components Z, W of Y, (for otherwise we would have E,=(E,NZ)]]
(E, N W)). Thus, it suffices to join together any two points on E,NZ C Z, for
any irreducible component Z of Y,. In other words, we may assume Y, is irreducible.
In this case, E, contains a dense, irreducible Zariski open subset V, of Y,,. Letv € V,
be a chosen closed point. Since Y, is an irreducible complex variety, there are smooth
curves C, D with closed points ¢, ¢ € C,d,d € D,andmapsf : C — Y,,g: D — Y,
so that f(¢)=x, f(¢)=v, g(d)=v, g(d)=y. Finally, restrict f, g to C' =
Cnf~YE,), D'=Dng (E,). Since each of C’, D' contain open subsets of C,D
(namely, the inverse images of the open subset V, C Y,), both C" and D" are con-
nected, smooth curves mapping to E, and they connect the points x and y together
as desired. ]
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3. Construction of Pairings

In this section, we build on the foundation of the earlier sections to define a ‘join
pairing’ (which is essentially cup product) for morphic cohomology and for its
closely related variation, topological cycle cohomology. In fact, the join pairing
is defined for the objects in the derived category of presheaves on Sch/C (the cat-
egory of quasi-projective complex varieties) which represent these cohomology
theories, so that the pairing is natural in a very strong sense. This naturality is needed
to establish the main result of the next section (compatibility of the join pairing with
the cup product of motivic cohomology — see Corollary 4.5) and also to prove the
main result of Section 5 (the Whitney sum formula for Chern classes in morphic
cohomology — see Theorem 5.4). We also introduce various related pairings and,
in particular, show that the join pairing of morphic cohomology and the intersection
pairing of Lawson cohomology coincide, for a smooth variety X, under Poincare
duality. Here as well, this correspondence is obtained on the level of the representing
objects in the derived category of presheaves on X.

We begin with a description of the objects used to define morphic cohomology and
topological cycle cohomology. For any complex, projective variety Y, the Abelian
monoid structure on C, Y provides the singular complex Sing Mor(X, C,Y)" associ-
ated to the space Mor(X, C,Y)" with the structure of a simplicial Abelian monoid.
We let Mor(X,C,Y)” = N([Sing Mor(X,C,Y)"]") denote the normalized chain
complex associated to the simplicial Abelian group [Sing Mor(X, C, Y)™]" obtained
by level-wise group completion. Following [F3], we define the chain complex
M(X,a) = cone {Mor(X, CoP™ 1Y — Mor(X, CoP)"}[—24] and view M(—,a)
as a presheaf on Sc//C. Both the morphic cohomology and the topological cycle
cohomology of X (of weight a) are determined using the complex of presheaves
M(—,a) restricted to X (see below). In this definition, we have viewed
P*~! ¢ P as the hyperplane obtained as the zero locus of the last coordinate func-
tion T, of P* = Proj C[Ty,..., T,]. On the other hand, the homotopy class of
Mor(X, CoP™ ™ - Mor(X,CoP*)™ is independent of this choice of linear
embedding of P“~! in view of the transitivity of the action of the connected group
PGL,,1(C) on the linear hyperplanes of P". Thus, the isomorphism class of
Mor(X, CoIP")” — M(X, a)[2a] in the derived category of presheaves is independent
of the choice of linear hyperplane P! c P“.

Observe that M(X, a) is a chain complex of torsion free Abelian groups since for
all k>0 and all singular k-simplices « : Afop — Mor(X, CoP)" if some positive
integer multiple of o lies in Mor(X,CoP* )™ then « itself lies in
Mor(X, CoP*" 1 Thus, derived tensor products involving M(X, a) can be rep-
resented by ordinary tensor products.

We recall the join pairing # : C,P" x C;P" — Crpspt P *! defined by sending an
irreducible subvariety ¥ C P" of dimension r given by homogeneous equations
{(F{(Ty, ..., T,):i€l}and an irreducible subvariety W C P" of dimension s given
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by homogeneous equations {G;(S, ..., S,):j € J} to the irreducible subvariety of
Y#W c P™™ ! of dimension r + s + 1 given by the union of these two sets of homo-
geneous equations viewed as equations in the m+n+2 variables
To, ..., Ty, So, ..., T,. Geometrically, we view P, P" linearly embedded with dis-
joint images in P! and define Y#W as the union of lines in P"™*! from points
on Y to points on W.

PROPOSITION 3.1. The join map P* x P? — €, i P“**! determines a bilinear join
pairing # : Co(P?) x Co(P?) — C{(P“™**Y) which induces a pairing in the derived
category of presheaves on Sch/C

#:M(—,a)éné/\/l(—,b)—>/\/l(—,a+b). (3.1.1)

Proof. Composition with the bilinear join pairing CoP* x CoP? — ¢, P****! deter-
mines the bilinear pairing of topological monoids

MOI'(X, C(]Pa)an X MOI'(X, C()Pb)an — MOI'(X, Cl PaerJrl)an.

(This pairing sends (f, g) to f#yg : X — C;P""*! whose value on x € X equals the
join of f(x) and g(x).) Thus, join determines a pairing of chain complexes natural
in X:

#: Mor(X, CoPY)” ® Mor(X, CoP?)™ — Mor(X, C; Py~ (3.1.2)

We recall that the algebraic proof of the Lawson suspension theorem given in [F1]
and modified slightly in [F-V] determines a natural transformation for any projective
variety Y and any r >0 ¥ :C,1(2Y) x Al — Crr1(2 Y)<? sending an effective
r-cycle Z on Y and a point ¢ € Altoa pair of effective r-cycles (¥ (Z), ¥, (Z)) such
that Y (Z) — Y (Z) = Z and for ¢ # 0 both ¢ (Z) and y;, (Z) lie in the image of
the suspension map X:C, Y — C,.1(ZY). As essentially observed in the proof of
[FL-1; 3.3], this determines a natural transformation Mor(X,C,.(XY))x
A — Mor(X, C.11(2Y))*?> whose induced map Mor(X, G (2Y))” @ A[l] —
Mor(X,C,1(2Y))” is a deformation retraction of the suspension map
Mor(X,C.Y)” — Mor(X,C,1(XY))". In particular, the suspension maps

T Mor(X, C,P")Y" = Mor(X, C,P")~ (3.1.3)

are quasi-isomorphisms, for all ¢, n, and r. By composing the pairing (3.1.2) with the
inverse of ¥ : Mor(X, CoP*™?) =5 Mor(X, C;P****!) we obtain a natural (in the
derived category) bilinear pairing

Mor(X, CoPY)™ x Mor(X, CoP?)™ — Mor(X, CoP*t?)~. (3.1.4)
Recall that P” can be viewed as SP*(P'), the nth symmetric product of P'. From this

point of view, there is a natural map Coy4(P") = SP/(P") — COd ”)(Pj) for any
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0 <j<n. As shown in [FL-1; 2.10], these maps determine a quasi-isomor-
phism

Mor(X, CoP"Y™ —> éM(X, 2. (3.1.5)

J=0

This splitting is natural with respect to X and satisfies

(i) the composition Mor(X, ColY)” — Mor(X, CoP")™ — M())[2/] is the natural
projection to the cone; and

(ii) the composition of Mor(X, ColP")” — Mor(X, CoP")™ — M()[2]] is trivial for
i <j and any linear embedding P’ P".

We re-write the bilinear map (3.1.4) as

a b a+b
P M. i2i] x P MX. )2 — @ M(X. k)[2k]. (3.1.6)
i=0 j=0 k=0

To prove the proposition it suffices to verify that the composition of the summand
inclusion of M(X, i)[2i] x M(X, j)[2/], followed by (3.1.6), followed by the factor
projection to M(X, a+ b)[2a + 2b] is trivial whenever i+ < a+ b. This follows
from the observation that such a summand inclusion into Mor(X, CoP?)™ x
Mor(X,CoP?)™ factors through the natural inclusion of Mor(X, CoP’)™ x
Mor(X,Co’)", so that the further composition with the join map to
Mor(X, CoP“)™ factors through Mor(X, CoP™)™. O

Using the suspension quasi-isomorphism (3.1.3), we readily conclude that the
pairing of Proposition 3.1 is also induced by the bilinear join pairing
#:CP" x CP" — Crpyrt P whenever m —r=a, n—s = b.

For any variety X, we let Xz,, denote the small Zariski site whose objects are
Zariski open subsets of X. If P is a presheaf on Sch/C, we write Pz,, for the associ-
ated Zariski sheaf on the big Zariski site (Sch/C)z,,. If P is a presheaf on Xz,
(or a presheaf on Sci/C implicitly viewed as a presheaf on Xz, by restriction), then
we write Pz, also for the associated Zariski sheaf on Xz,..

PROPOSITION 3.2. For any quasi-projective variety X, the join pairing induces an
internal product pairing in the derived category of presheaves on Xz,

#: M(—,a) éM(—,b)—)M(—,a+b) (3.2.1)

which is associative in the appropriate sense.
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Similarly, for any quasi-projective varieties X, Y, the join pairing induces an exter-
nal product pairing in the derived category of presheaves on (X x Y)z,,

#:priM(—,a) (H§> pryM(—,b)— M(—,a+b) (3.2.2)

which is associative in the appropriate sense.

Proof. The internal product pairing (3.2.1) is obtained from (3.1.1) by simply
restricting the presheaves to Xza..

The bilinear join pairing (3.1.2) admits an external analogue

#: Mor(X,CoP*)™ @ Mor(Y,CoP?)™ — Mor(X x Y,C Py~ (3.2.3)

sending (f, g) to f#g : X x Y — C; P! whose value on (x, y) equals f(x)#g(»). As
argued in the proof of Proposition 3.1, this leads to a pairing in the derived category
of complexes of Abelian groups

MX,a) @ M(Y,b)— M(X x Y,a+b)

natural with respect to X and Y. Thus, pairing (3.2.2) follows from the observation
that there exist canonical maps

priyM(—, a)y > M(—, @) xxy, pryM(—, D)y = M(=,b)xxy-

The asserted associativity follows easily from the following three facts:
(a) The associativity of the join product — that is, the commutativity of the square

CoP? x CoP? x CoP¢ —— P« ¢ P¢

l l

C()Pa x Cl Pb-‘rl‘-‘rl C2P0+b+£‘+2

for all a,b,c >0,
(b) the naturality of the suspension isomorphism (3.1.3), and
(c) the naturality of the splitting (3.1.6). O

We recall that ‘morphic cohomology’ of a normal quasi-projective variety X is
defined by L*H"(X) = ma;_n(Mor(X, CoP*)"/Mor(X, CoP*~')*) which is naturally
isomorphic to H'(M(X, s)) (cf. [FL-1],[F2]). Here, the superscript 4+ denotes taking
naive group completion of the given topological Abelian monoid. This definition
was modified in [F3], yielding ‘topological cycle cohomology’ defined as
H'(X,s) = HY, (X, M(—, 5)z,.)- As shown in [F3; 5.7], the canonical map

H*(M(X, 5)) —H*(X, s) (3.3.0)

is an isomorphism whenever X is smooth.
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PROPOSITION 3.3. For any quasi-projective variety X, there is a commutative
square

HY(M(X. 1) @ HI(M(X,5) —— H"™"(M(X.r+5))

crH™ (X, r) @ H'(X, s) LN H™(X, r +5)

whose top pairing is the ‘cup product’ pairing of [ FL-1], whose vertical maps are the
canonical maps (3.3.0), and whose bottom pairing is induced by the internal product
pairing (3.2.1).

Proof. Both pairings are induced by the pairing (3.1.2). The cup product in
morphic cohomology was obtained from (3.1.2) by passing to homotopy groups,
observing that the pairing on homotopy groups commutes with the operations
on morphic cohomology induced by the operations introduced in [F-M], and then
annihilating those classes in the image of the ‘h-operation’. As verified in the proof
of [FL-1; 5.2], this is precisely the effect (on cohomology) of the projection map
Mor(X, PY)” — M(X, a)[2a] used to define the pairing (3.1.2). O

For a projective variety Y, define C,(¥)™ to be N([SingC.(Y)]") — that is, the
normalized chain complex of Abelian groups associated to the degree-wise group
completed singular simplicial set associated to the topological monoid C,(Y). If
X is a quasi-projective variety, choose a projective closure X ¢ X and let
Xoo =X — X. Define C(X)~ to be the chain complex of Abelian groups
C(X)™ = cone{C,(Xs)™ — C,(X)™}. We extend this definition to obtain a presheaf
of chain complexes on Xz, as follows. For U C X a Zariski open subset, let
Us =X — U. Define L(U, r) to be L(U,r) = cone{C(Us)™ — C,(X)~}[2r]. Since
Vo D Uy if VC U, L(—, r) is naturally a presheaf on Xz,,. As shown in [F3; 3.2],
the presheaf £(—, r) determines Lawson homology:

LH,(X) = H™(L(X, ) > HY" (X, L(—, 7).

For X of pure dimension d and Y projective, the natural transformation
Mor(X,C.Y) — Crq(X x Y) sending a continuous algebraic map to its graph
defines a continuous map D : Mor(X,C, Y)" — C1a(X x Y) called the ‘duality
map’.  This extends to the map of presheaves on Xz,
D: M(—,s)-2s] — L(—,d — s)[2d —2s] or, equivalently, to the map
D: M(—,s)— L(—,d —s)[2d]. If X, Y are both smooth, then the main results
of [FL-2], [F2] assert that the map D : Mor(X,C,Y)” — Crrq(X x Y)™ is a quasi-
isomorphism. In particular, for X smooth of pure dimension d, this duality
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isomorphism has the form:
D: M(—,s) =L(—, d — s)[2d], (3.4.0)

where we have implicitly used the homotopy invariance of Lawson homology (i.e.
flat pull-back determines a quasi-isomorphism C;j(X)™ — Cj11(X x Ah™).

PROPOSITION 3.4. Let X, Y be quasi-projective varieties of pure dimension d, e
respectively. Then the external product pairing (3.2.2) is compatible via duality
isomorphisms with the pairing in homology given by external product of cycles.
Namely, the following square commutes in the derived category of presheaves on
X x Yzar.'

L
PrM(=. 1) @ priyM(—, ) BN M(=, r+5)

D®Dl lp

prvL(—, d—r)[2d] éprﬁ,ﬁ(—, e—s)[2e] SN L(—, d+e—r—s)[2(d+e)].

In particular, taking cohomology of the complexes of global sections on X x Y, we
conclude the following commutative square of pairings

. . # L
L'H/(X) ® L'H/(Y) — L'HHY(X x Y)

Dl lp

LdfrH2d7i(X)®L973'H267j(Y) — LdJrefrszZdJrZefifj(X X Y)

Proof. Let W C P" x P* x P"™*! denote the ‘graph’ of the join pairing of degree
one zero-cycles: a point in W consists of triples (x, y, ) such that r € P! lies
on the line joining x € P with y € P*, where P’, P* are embedded in P"***! into
the first r+1 and last s+ 1 coordinates, respectively. Then the projection
n: W — P’ x P’ is the projection of the projectivization of the rank 2 bundle
prizO(1) @ prisO(1)  over P" x P'. Moreover, the join pairing CoP’x
CoP* — P! can be factored as the composition CoP" x CoP’ -
W L ¢ Pt where p: W — PPt s the projection.

We employ the following commutative diagrams natural with respect to maps
U — Uin Xza, V' — Vin Yz,
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Mor(U, CoP") x Mor(V, CoIP’) ———  Cy(U x P") x C(V x P¥)

Mor(U x V, Co(P" x P?)) ———  Cue(UxV x P x P

* JV *
+

Mor(U x V, C1 W) —_— Ciier1(U X V x W)
Mor(U x V, C; Pt —  Cirer1(U X Vv ox Pristh
{ %

Mor(U x V, CoP'™*) ——  CuUx V x P™)

where the horizontal maps are given by taking the graph of a continuous algebraic
map. The construction of the pairing of (3.2.2) is induced by the left vertical maps
as in the proof of Proposition 3.1.

External product on cycles is given by the composition

Cor(UY" ® Coys(V) = Ca(U x P'Y" @ Co(V x P*Y" = CarolU x V x P" x P*)

followed by the projection Cyiro(U x V x P x P*)” — Cyper_s(U x V)™ right
inverse to flat pull-back. Thus, to prove the proposition, it suffices to observe
the composition of

P 0T Ciaro(U X V x P x P¥) = Cypor1(U x V x W)

= Carert(U x V x Pt

with flat pull-back Cyie_, (U X V) = Cyre(U x V x P x P*) is again flat pull-
back. O

As established in [F-G], intersection of cycles on a smooth variety X of pure
dimension d determines an intersection product pairing (in the derived category)

0 Ci(X)" ®Cy(X)" —> Crpsa(X)". (3.5.0)

One aspect of the following theorem is the (implicit) statement that this intersection
pairing is sufficiently natural to determine a pairing on the level of presheaves
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on Xz,:. The central point is that it provides a refinement (at the level of presheaves
of chain complexes rather than simply cohomology groups) of [FL-2; 4.7],[F2; 4.8]
establishing that for a smooth variety the duality map converts cup product in
morphic cohomology to intersection product in Lawson homology.

THEOREM 3.5. Let X be a smooth scheme of pure dimension d. Then the internal
product pairing X of (3.2.1) and the intersection product pairing e of (3.5.0) are
compatible via duality isomorphisms. Namely, the following diagram commutes in
the derived category of presheaves on Xzy;.

M(=. 1) & M(=.s) s M(=.r+9)
| E
Lo d—PRd)® L= d —)2d] ——> L(—d—r— s)2d]

where D is the duality isomorphism.

Proof. The pairing (3.5.0) is constructed using the external product pairing on
cycles and a Gysin map A' (well defined up to quasi-isomorphism) associated to
the regular closed embedding A : X — X*2. By Proposition 3.4, it suffices to show
that this Gysin map fits in a square commutative in the derived category of pre-
sheaves on Xz,;:

*

A*(M(~, $)) — M(—,9)

Dl lp (3.5.1)

AY(L(=.2d — 2d]) ——s  L(—.d - 9)d]

In view of the naturality (in the derived category of presheaves on X7z,.) of the
projection map L(— x P°,j) — L(—, ), it suffices to choose a representative map
of chain complexes for (Ay x 1) : Cog(U x U x P*)™ — Cq(U x P*)™ natural with
respect to U € Xz, so that the following diagram of presheaves determines a com-
mutative square in the derived category of presheaves on Xz,,:

A*

Mor((=)?, Co(P))” ———  Mor(—, Co(P*)~
Dl lp (3.5.2)

(Ax1)
Cu((=)Fx P ——  Ca(— x P

For simplicity of notation and consistency with [F-G], we consider the more gen-
eral case of a regular closed embedding iy : W — Y of codimension c. Then i,
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is constructed using the technique of deformation to the normal cone, so that a dia-
gram of the following form is considered (cf. [Fu; 5.1]):

J
NpY ——> OpY «—— Y xA!

l l l

{0} —— P —— Al

where 7 : Ny Y — Y is the normal bundle of iy : W — Y. Following [F-G; 3.4] (see
also [F-G; 3.3]), we define

iy =@) " 08 1 C(Y) = CG(NwY) = Coo(W)™

where ¢: Y =Y x {1} C QY and ¢ is defined as a lifting of ¢, :C(Y) —
C(OwY)" determined by a choice of null-homotopy for the composition
ot CY) = C(OwY) = C(Y x AN

We choose our null-homotopy to be parameterized by P!

h:CY x P' = C(Y x PY/CAY x {oo}) = C(Y x A,

and defined by sending (Z, 1) € C,Y x P'to Z x {t} € C(Y x P")/C.(Y x {o0}). This
homotopy gives us a homotopy in the category of complexes of presheaves on Yz,

h:Cl(=)" ®Co(P)” — C(— x A1)~ (3.5.3)

which determines &, : C,(—)” — C.(Nnw)—)" whose composition with the inverse
(in the derived category) of flat pull-back 7n* : C,_.(—=)" = C(N—nw)—)" gives us
our functorial (on Yz,,) representation of 7.

Let Z C Y be anirreducible r-cycle on Y and consider the following commutative
diagram with Cartesian squares

PCwrzZ®1) —— QwnzZ «—— ZxA'

| l l

P(NwY®1) ——> OpY <«—— Y xA!

where CynzZ is the normal cone of WNZ C Z and P(CwnzZ @ 1) is the associated
projective completion of C [Fu; App.B]. If Z meets W properly, then P(CpyrzZ & 1)
meets the 0-section of P(Ny Y @ 1) properly and their ‘classical’ intersection W e Z
(defined in terms of intersection multiplicities of the components of their inter-
section) is equal to i, (Z) (cf. [Fu; 7.1]).

To verify the commutativity of (3.5.2), we let C.(Y; W) CC,Y denote the
submonoid of those effective r-cycles on Y which meet W properly (i.e., in
codimension ¢). Then the composition of C,.(Y; W) c C,Y with the homotopy /A
admits a natural lifting H : C,(Y; W) x P! — C,(Qw Y) given once again by sending
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(Z, t)to Z x {t} for t # oo and sending (Z, o0) to P(CynzZ) (i.e. this is deformation
to the normal cone of cycles meeting W properly).

We now revert to our initial notation in which W — Y as above becomes
X xP*— X*2xP°. Observe that the image of the duality map
Mor(X*2, CoIP*) — Cog(X*? x P¥) lies in Cog(X*? x P*; A x P*) so that H gives
us a specific lifting of the homotopy 4 when restricted to Mor(X*?, CoP*). The
naturality of this construction with respect to Zariski open subsets U C X implies
that H determines a specific lifting

H : Mor((—=)*%, Co(P*)™ x Co(PY)™ = Cos(Q_nw—)"

of i of (3.5.3). Consequently, we conclude that H, & give the same map (in the derived
category) Mor((—=)*2, Co(P*))™ — C(N(wn-)—)" . Since the two composition of the
square (3.5.2) are obtained from these maps by composing with the quasi-inverse
of n*, and since composition of A with the quasi-inverse of 7* represents intersection
with the diagonal, the commutativity of (3.5.2) in the derived category has been
proved. O

We recall from [F3] the presheaves My (—, a) on Xz, which determine topological
cycle cohomology of X of weight a with supports on the closed subvariety W C X.
Namely, for any Zariski open subset U C X we define

My (=, a)(U) = cone{ M(U, a) > M(UN X — W), a)}[-1].
The next proposition states the evident analogue in this context of Proposition 3.2.

PROPOSITION 3.6. Let W C X, Q C Y be closed embeddings of quasi-projective
varieties. Then the pairings of (3.1) and (3.2) determine pairings

4 My(=, @) & My(—, b)—> My(—, a+b), (3.6.1)

L
#:pryMp(—, a) ® priMo(—, b) — Myo(—,a+b) (3.6.2)

in the derived category of presheaves on Xz, and (X x Y)z,., respectively.
Proof. Using the distinguished triangle

My (—,a+b) > M(—,a+b) > M(—N(X — W),a+b)
— My (—,a+b)[1],
we obtain pairings of the form (3.6.1) and (3.6.2), but do not in this way establish that
these pairings are uniquely defined (in the derived category). For this, it suffices to

observe that the pairings of (3.1.2) are natural when viewed in the category of chain
complexes (not the coarser derived category) and thereby induce pairings on cone
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complexes
cone{ Mor(—, CoP*)” - Mor(—NX — W,CoP*)"}
Eé) cone{/\/lor(—, CoP?)™ = Mor(— N (X — W), COP”)”}
N cone{./\/lor(—, C, Py 5 Mor(—nX — W, CIP’“'[’“)”}.

Repeating the argument in the proof of Proposition 3.1, we conclude as in the proof
of Proposition 3.2 that these pairings determine pairings of the form (3.6.1) and
(3.6.2) as required. O

We recall from [F3; 5.6] that the duality isomorphism (3.4.0) has an extension to
the context of cohomology of supports. Namely, if X is a quasi-projective variety
provided with a closed embedding i: X C M in a smooth variety M of pure
dimension m, then the duality map is a quasi-isomorphism of presheaves on Mz,;:

D: Mx(—, s)[2s] >~ i, L(—, m — 5)[2m — 2s].

We conclude this section with the following proposition asserting that external prod-
uct of cycles in Lawson homology can be reinterpreted as join product in
cohomology with supports. The proof is a merely a repetition of the proof of Prop-
osition 3.4 applied to cone complexes as in the proof of Proposition 3.6.

PROPOSITION 3.7. Let X, Y be quasi-projective varieties. Choose closed
embeddings X C M, Y C N of X, Y in smooth varieties M, N of dimension m, n,
respectively. Then the pairing in Lawson homology induced by external product
of cycles on X and Y can be obtained from the pairing (3.6.2) as explained in

the following commutative diagram of presheaves on X x Y:

#
p);uMX(_!r)@p}ﬂVMY(_!S) e MXXY(_ar+S)

D®Dlz :lo

Piix. L(—, m—r)2m] ® pyiy, L(—,n— 5)[2n] SN ixs vy« L(—,m+n—r—s)[2m+ 2n]

4. Compatibility with Motivic Products

In this section, we describe a morphism from the motivic cohomology of a smooth,
complex variety to its morphic cohomology. We then establish that this map is com-
patible with the cup product in motivic cohomology and the join product in morphic
cohomology. Considering hypercohomology with respect to the cdh topology on
non-smooth varieties, one could verify this compatibility more generally provided
that one modified the definition of topological cycle cohomology to incorporate
cdh descent (as is done with motivic cohomology).
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For smooth varieties X and Y, let zequi(Y, r)(X) denote the free Abelian group on
the collection of closed, integral subschemes of X x Y that are equidimensional
of relative dimension r over X. Then z.q.i(Y, r)(X) is a contravariant functor in
X. It is also covariant in Y for proper morphisms and contravariant in Y for flat
morphisms (cf. [F-V1 2.1]). When Y is a projective variety, we can describe
Zequi(Y,7)(X) as the naive group completion of the Abelian monoid
Hom(X,C,Y), where C, Y is the Chow variety parameterizing dimension r effective
cycles on Y [F1; 1.4].

To obtain a chain complex from the functor z.qu(Y,r)(—), we introduce the
standard cosimplicial variety A°®, which is given in degree d by
A? = Spec Clxy, ..., x4]/ (xo + . .. + x4 — 1) and which is equipped with the familiar
face and degeneracy maps. We then consider the simplicial Abelian group
Zequi(P", )X X A®) = d1— zequi(P", )(X x AY). By an abuse of notation, we also
use Zequi(P", r)(X x A®) to refer to the associated normalized chain complex of this
simplicial Abelian group.

For a smooth variety X, we define a chain complex of Abelian groups Z(X, n) by
the formula

Z(X, ) = Zequi(A", 0)(X x A*)[—2n]. (4.0.1)

The following proposition justifies our consideration of the chain complex Z(X, n)
rather than a complex of sheaves as in [F-V].

PROPOSITION 4.1. If X is a smooth variety, then the motivic cohomology groups of
X (as defined in [F-V; 9.2] and which are written H (X, 7Z(n))) satisfy
H (X, Z(n)) = HY(Z(X, n)). Similarly, the topological cycle cohomology groups
of a smooth variety X satisfy HY(X,n) = HI(M(X, n)).

Proof. The first assertion follows from [F-V; 8.1] and second follows from [F3; 5.7]
(cf. (4.3.0)). O

Observe that there is a natural sequence

Zequi(Pn_1 , 0)(X X A.) — Zequi(an 0)(X X A.) — Zequi(Anv 0)(X X A.)
of simplicial Abelian groups. By [F-V; 5.11, 8.1], this sequence induces a dis-
tinguished triangle in the derived category of Abelian groups (after taking the associ-
ated normalized chain complexes) provided that X is smooth. Thus, we have the
isomorphism

HY, (X, Z(n)) = HI™>" (cone{zequi(P"”, 0)(X x A®) —> zequi(P", 0)(X x A®)}).
For X a smooth variety, we introduce the chain complex

Malg(Xv I’l)

» @.1.1)
= conefzequi(P"™, 0)(X X A®) —> zequi(P", 0)(X x A*)}[-2n].
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The above results combine to show that for X smooth the chain complexes Z(X, n)
and M,(X,n) are quasi-isomorphic under a natural map M,(X,n) =
Z(X,n). We persist in using two notations to refer to essentially the same object
since the cup product operation is more directly defined using Z(X, n), whereas
the complex M, (X,n) is more easily compared with the complex defining
topological cycle cohomology and admits a naturally defined join product.

In order to construct a map from the motivic cohomology groups of X to the
topological cycle cohomology groups of X, we consider the map of simplicial sets
p: Hom(X x A®,C,Y)—> Sing Mor(X, C,Y)"defined as follows, for any r >0
and projective variety Y. Given an element f of Hom(X x A", C,Y), there is an
induced mapf (A" — Mor(X, C, Y)™ defined by passing to the associated ana-
lytic spaces and applying adjointness. The map ]7 is induced by the natural
transformation of functors on (Sm/C) _ | with proper, constructible representations
which sends g : C — A" to f o (g x id¢), and thus f is continuous by Theorem 2.3.

Upon restricting the domain of / to Afop C (A")™, where Ay, is the subspace of
real points having non-negative coordinates in (A")"', we obtain the continuous
map p,(f) : Af,, —> Mor(X, C,Y)". The construction of p,(f) is clearly compatible
with the simplicial structures so that we obtain a map of simplicial sets p as desired.

In particular, taking Y to be P" and setting r=0, we have the map
Hom(X x A®, ColP") — Sing Mor(X, CoIP")*". Passing to the category of chain com-
plexes and using the naturality of the construction with respect to the inclusion
P"~'<>P", we obtain the map

Ma(X, 1) — M(X, n). (4.1.2)

We now proceed to define a join pairing for motivic cohomology. The join pairing
will serve as an intermediary for the purposes of comparing the join product in
topological cycle cohomology with the cup product in motivic cohomology (whose
definition is recalled below). In fact, the definition of the join pairing for motivic
cohomology is parallel to the definition of the join pairing for topological cycle
cohomology. Namely, let W C P" x P x P""*! be the join correspondence
and define the join pairing

# 1 Zequi(P", (X)) ® zequi(P", $)(X) — zequi(P”erH, r+s+ 1)(X)
to the composition of the maps
Zequi(an r)(X)®Zequi(Pm» S)(X) _X> Zequi(P” X Pm’ r+ S)(X)
—1> Zequi(Wv r+s-+ 1)(X) E) Zequi(PnerJrlv r+s+ 1)(X),
which is natural in X. For any ¢ and k, let

xk : Zequi(Ptv X x A.) - Zequi(PHkv q+ k)X x A.)
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be the map induced by the pairing

#: Zequi(Pr’ P(—)® Zequi(Pl67lv k—1)(-)— Zequi(PlJrk’ q+k)(-)

by fixing the element [P*~'] in zequi(Pk_l,k — 1)(—). It follows from [F-V; 8.3] that
the map =¥ is a quasi-isomorphism. Therefore, in the derived category of Abelian
groups, we may form the pairing

Zequil P, 0)(X X A%) ® Zequi(P", 0)(X x A*) —> zequi( P, 0)(X x A®)  (4.2.0)

by composing with the quasi-inverse of X!.

PROPOSITION 4.2. The pairing (4.2.0) induces a pairing natural in the smooth
variety X

L
#: Malg(X’ m) ® Malg(Xv ”) — Malg(X, m—+ /’l)

Proof. The construction from the proof of Proposition 3.1 carries over directly
into this purely algebraic setting to produce a direct sum decomposition

Zequi( P, 0)(X x A%) = D) Muy(X. (21,
i=0

As before, it remains to show that the composition of maps

Zequi(Piv 0)(X xA*)® Zequi(P/v 0)(X x A*)
— Zequi(P™, 0)(X x A®) —> Muo(X, n + m)[2m + 2n]

is zero for i +j < m + n. This follows as in the proof of Proposition 3.1, since the
map

Zequi(H, 0)(X x A®) — Muo(X, m + n)[2m + 2n]

is homotopic to zero for any hyperplane H of P, O
The construction of the join pairing in motivic cohomology leads immediately to
the following compatibility with the join pairing in topological cycle cohomology.

PROPOSITION 4.3. For any smooth variety X, the square

L #
Malg(Xa m) ® Malg(X’ }’l) — Malg(X, m—+ n)

l l

1L
M, m) @ MX. 1) ——s  MX,m+n)

commutes in the derived category of Abelian groups.
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Proof. The proposition follows directly from the observation that the diagram of
Abelian monoids

#
Hom(X x A?, CoP™) x Hom(X x A, CyP") — Hom(X x A4, ¢, Pl

l l

#
,Mor(X, CoP"™)x Hom(A?_, Mor(X,CoP™)) —— Hom(A?Y , Mor(X,C,P"t1y)

top top”’

Hom(AY

top
commutes. O

Let us recall the definition of the cup product in motivic cohomology. Observe that
there is a pairing x : Zequi(A”, 0)(X) ® Zequi(A”, 0)(X) — Zequi( A", 0)(X), natural
in X, defined by sending a pair of generators (V, W) to the cycle associated to
V xxy W [F-V; 8]. By naturality in X, this pairing extends to a map
U: Z(X,m) ® Z(X,n) — Z(X, m+ n). As verified in [W; 4.5], the pairing U coin-
cides with the cup product on the motivic cohomology groups of X as given in [V2].

In light of Proposition 4.3, the map from the motivic cohomology of X to its
topological cycle cohomology will be proven to be compatible with the motivic
cup product and the topological join product provided we can establish that the
motivic join product coincides with cup product. The key ingredient in establishing
the compatibility of join and cup product is the observation that after pulling back
along the natural surjection A \ {0} - P’, the join product coincides with
cartesian product. This observation motivates the proof of the following theorem.

THEOREM 4.4. For any smooth variety X, the diagram

L #
Malg(Xs n® Malg(Xv m) ——> Malg(Xv n+m)

| |

L
(X, QX , m) . ZX.n+m)

commutes in the derived category of Abelian groups.
Proof. We will show that the diagram

#
Zequi( P, (X x A%) @ Zequi(P", 00X x A%)  ——  zequi(P""" "1, (X x A*)

l l

Zequi(Am» 0)(X xA*)® Zequi(Anv 0)(X x A®) Zequi(Am+n+la DX x A®)
Zequil A", 0)(X x A®) s ZequiATT DX x A%)

commutes up to homotopy, where = is projection on the first n 4+ m coordinates of

https://doi.org/10.1023/A:1002464407035 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002464407035

98 ERIC M. FRIEDLANDER AND MARK E. WALKER

A" This will suffice to prove the theorem since 7* is a quasi-isomorphism by
[F-V; 8.3].

Rather than pull back along the surjections A \ {0} — P’ to re-interpret the join
product, we use Gpx A' ¢ A\ {0} instead (where G = A'\{0}). Let
pi: Gy x A — P! be the map sending (xg, X1,...,X;) to [xo:x:...:x;] and
q:Gm x A" x G x A" — P! the map sending (xo, ..., Xn, Vo - .., Vm) tO
[X0:... X0 :¥0:...: ym]. As suggested before, the diagram of Abelian groups

#
Zequi(Pn’ 0)(X)® Zequi(Pm» 0)(X) — Zequi(P’Hm*—] , DX)

P ®17’;7J q*l
#

Zequi(Gm x A", DX) ® Zequi(Gm x A", DY) —— Zequi(Gm x A" x Gy x A", 2)(X)
(4.4.1)

commutes and is natural in X.

Define f; : Gy, x A'— A’ by pi(A,ai, ..., a)= (A ay, ..., 27 a;). Then observe
that the map p; factors as f3; followed by the standard inclusion of A" into P
and the map ¢ factors as f, x idg_xa» followed by the standard inclusion of
A" x G x A™ into P,

We claim that for any variety Y and integer r, the map

7 1 Zequi( Y, )X X A®) — Zequi(Y X G, r + 1)(X x A®) 4.4.2)

is a split injection in the derived category of Abelian groups. To see this, observe
that by homotopy invariance, the map 7" : Zequi(Y, P)(X X A®) — zequi(Y x Al
r+ 1)(X x A®) is a weak equivalence [F-V; 8.3]. Further, from [F-V; 5.11] there
is a distinguished triangle

Zequi( Y {0}, 7 + (X x A*) —> zequi( ¥ x A, r 4+ 1)(X x A®) —
Zequi(Y X G, ¥ + DX X A®*) —> zequi(Y x {OD(X x A*)[1],

and thus it suffices to show that the map
Zequi( Y x {0}, r + II(X x A®) — Zequi(Y x Al r+ DX x A% (4.4.3)

is homotopic to the zero map (for then the triangle splits by basic properties of the
derived category). It follows from [F-V; 8.3] that

Zequi( ¥ X {0}, 7 + DX x A®) —> zequi( ¥ x P!, r + 1)(X x A®)
L (Y x AL+ DX x A%)

is part of a distinguished triangle, where i : A' c P! is the open complement of any
rational point of P'. In particular, the composite map Zequi( Y x {0}, r + 1)
(X x A*) —> zequi(¥Y x A',r 4+ 1)(X x A®), which coincides with the map (4.4.3),
is zero.
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Since (4.4.2) is a split injection, we conclude that f; :zequi(Ai,O)(X x A%) —
Zequi(Gm X A’ 1) (X x A®)is also a split injection, since p; differs from the projection
map by an automorphism. Thus f; ® £, and (f, x inc)* are split injections as well,
where inc: Gy, x A" — A" is the evident inclusion. Therefore, to show that
the top square in the diagram

#
Zequi(Pn, 0)® Zequi(Pm, 0) —_— Zequi(Pn+m, 1)
Zequi(A", 0) ® Zequj(Am, 0) - Zequi(An x Aerl, 1)

/ﬁ@/ﬁ,*”l (B, xinc)* l

Zequi(Gm X A", 1) ® 2Zequi(Gm X A, 1) ——  zequi(Gm x A" x Gy x A™,2)

commutes in the derived category, it suffices to establish the commutativity of the
outer square. (Here, we have omitted ‘(X x A®) everywhere to simplify the
notation.) But the outer square is precisely the commutative diagram (4.4.1). J

The commutative diagram of chain complexes in Theorem 4.4 has the following
immediate consequence for the cohomology of these chain complexes.

COROLLARY 4.5. For X smooth, there is a natural graded ring homomorphism

P Hu X, Z() — P H (X, 1)

where the product on the left is the cup product operation of motivic cohomology and
the product on the right is the join product operation of topological cycle cohomology.

5. Whitney Sum Formula

The main result of this section will be that the operation of join of cycles is com-
patible with the direct sum decomposition of Mor(X, C,P")™ introduced in (3.1.5)
(and recalled below). This is a slightly subtle point, whose proof turns out to be
rather delicate. The reader, should bear in mind that every though we have defined
the join pairing M(X,r) ® M(Y,s)— M(X,r+s) as being induced under the
natural surjection from the pairing

#: Mor(X, C()PV)N x Mor(X, CoPY” — Mor(X, CIPI'+S+1)~’

it does not follow a priori that this latter pairing respects the grading given by the
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direct sum decomposition

n—k
Mor(X, CcP")™ = @5 M(X, D[2i].
i=0

L

However, this is indeed the case, as shown by Theorem 5.3.

We then use Theorem 5.3 to establish that the Chern classes of vector bundles
generated by their global sections taking values in morphic cohomology (or
topological cycle cohomology), which were first introduced in [FL-1], satisfy
the familiar Whitney sum formula. The settles a question left open in [FL-1;
10].

Since we will use it often, we observe here the following consequence of our results
from Sections 1 and 2. For projective varieties X and Y, it follows from Proposition
1.7 and Theorem 2.3 that an element / of Mor(X,C,Y) determines a natural
transformation of functors from Sch/C to topological spaces f; :
Mor(—, C X)) — Mor(—, C,s Y)™, for any s. Moreover, two such maps f; and
/2 lying in the same component of the space Mor(X, C,Y)" define homotopy equiv-
alent maps f1, ~ f», : Mor(Z, C,X)*"" —> Mor(Z,C,,,Y)™ for all quasi-projective
Z. In fact, choosing a path in Mor(X, C,Y)™ from fi to f> determines a homotopy
from f, to f>, which is natural in Z; thus f;, and f;, define the same map
S1. =S, s Mor(—,CsX)” —> Mor(—, C,y,Y)™ in the derived category of presheaves
on Sch/C.

We shall need to formalize the splitting of Mor(X, C,IP")” introduced in (3.1.5).
Let p,;: P"— CoP’ denote the map sending a point Py-...-P, of SP”
(PHY=P" to Y4 - 4 P ...  Pi. Then for any X, Mor(X, Py =@,
M(X, )[2i], where the map to the ith summand is the composition of the map
induced by p,,;. p,,, : Mor(X,C.P")” — Mor(X, C, Py, with the natural
split surjection Mor(X, C,P")™ — M(X, i)[2i]. This construction is clearly natural
in X.

For any integers r and s and projective varieties X and Y, we define the ‘external
product’ map C,X x C;Y —> Cris(X x Y) by sending a pair of integral closed
subschemes (Z, W) to Z x W and then extending by linearity. We use the same
notation for the induced map Mor(—, C,X)* ® Mor(—, C;Y)* N Mor(—, Cris
(X x Y))™ of presheaves of topological spaces on Sch/C.

We use the notation p,;xp,; to refer to the composition P"x
P" — CoP' x Col! — Cy(P* x P’), where the first map is what one might more
accurately write as p, ; x p,, ; and the second is given by the evident bilinear trace
map.

We will need the following simple result.
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LEMMA 5.1. The diagram of presheaves on Sch)/C

L X
Mor(—,C.P")” @ Mor(—,C,P")™ ——  Mor(—, Crps(P" x P™)~

pn.i®pm.jl Pn.iXPm\/l

L A « A A
Mor(—,C., P~ @ Mor(—,CP)™ ——  Mor(—, Crps(P' x )™

commutes.
Proof. Observe that it suffices to check that the diagram of spaces

Mor(X, G P x Mor(X, C,P")™ —Z—  Mor(X, Cruy(P" x P™)™

Pu.i Xﬂm./l Pn.i Xﬂm,/l

X

Mor(X, C.PH™ x Mor(X,C P ——  Mor(X, Crypy(PT x /)"

commutes, for any X. By Proposition 1.7, it suffices to check that the diagram

X

CP" x CP" s C(P" x P™)
””l pn,,xp,,,,l (5.1.1)

CP xCP —Zs Co (P xP)

commutes. Observe that the map p; : P! — CyP* has ¢ graph’ I';; C P’ x P* which
is finite and flat over P’ (via the map =) and proper over P¥ (via the map 7»), so that
the map p; ., : C, P! — C.P¥ is well defined by the formula V i— 7y, 7%(V). The com-
mutativity of (5.1.1) follows from the fact that taking external products of cycles
commutes with the proper pushforward and flat pullback of cycles (cf. [Fu; 1.10]).J

The following proposition provides the key technique that will be used to prove the

main result (Theorem 5.3) of this section.

PROPOSITION 5.2. For any smooth variety X, there are natural isomorphism

Hy(cone{Mor(X, ¢, P~ — Mor(X, C, P~ H
~ mo[Mor(X, Cy P ) Mor(X, Cpp P H*
= A"7"(X),
where A"(X) is the group of codimension n cycles modulo algebraic equivalence. This

isomorphism is induced by sending f : X — C,P' to the class of the intersection
of its graph Ty C X x P' with X x {P} for a general point P € P'. Moreover, two
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morphisms f,g : X — C,IP' define the same map
Mor(—, C,X)~ — cone{Mor(—, C, P 1) — Mor(—, €4, P') 7}

in the derived category for all s if and only if the classes of f and g coincide in A" (X).

Proof. The first isomorphism follows from [F1-2; C4], while the second is a conse-
quence of duality for smooth, projective varieties [FL-2; 5.2].

If / and g determine the same class in 4'~"(X), then for suitable choices of elements
hy, hy € Mor(X, C,P"™")* we have that f + h; and g + & lie in the same component
of Mor(X,C,P)™ (cf. [F2; 7.1]). As indicated previously, Proposition 1.7 tells us
that f + h; and g + &, define the same morphism

(f +h), = (g + hy), : Mor(—,CsX)™ —> Mor(—, C,y; P~

in the derived category. Since (f — g), differs from 0 = (f + /), — (g + /h2), by a
morphism that factors though Mor(—, C,,P"~!)™, it follows that we have the desired
equality

fi = g« : Mor(—, C;X)” —> cone{Mor(—, Cris PN — Mor(—, Cr+s P}

Conversely, if f, = g,, then applying these morphisms to the ‘identity’ map in
Mor(X,CoX)™, we see immediately that f and g determine the same class in
AT(X). O

The following theorem asserts that the join product is compatible with the natural
direct sum decomposition of Mor(X,CoP")™.

THEOREM 5.3. For any quasi-projective variety X, the operation of linear join on
Mor(X, ColP")™ is graded in the sense that the diagram

L #
MOI‘(X, COP”)N ® MOI’(X, COPm)N - MOI‘(X, C Pn+m+1)~

gl gl

H
Do MX, 2] ® B2y MX. )2 ——  Bimo MX. K)[24]

commutes in the derived category.
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Proof. Tt will suffice to establish that the diagram

L #
Mor(—, C,P"Y" @Mor(—, C, P~ SN Mor(—, Cpygy P
pn.iépm./l f’m+n+l,l<+ll
. L .
D Mor(—, C.P) " @Mor(—.C, P )~ Mor(—, Cpyygyy P~
Z#J/ l
Mor(—, Crys1 Pk+1)~ —  Mor(=,Crisq1 PIH—])W//Vl01'(—,Cr+x+lﬂ)k)~

(5.3.1)

commutes in the derived category of presheaves. (Actually, we need to know the
commutativity of this diagram just for the case r = s = 0, but we prove the more
general assertion since it is no more difficult.)

Recall that the join operation factors as

Mor(—, C, Py @ Mor(—, C,P)™ =5 Mor(—, Cpay(P' x PP))™

# i+jt 1~
— MOI’(—, Cl‘+s+1Pl+j+1) b

where the second map (which we also call ‘join’) is induced by the pairing of
Proposition 1.7

Mor(X, Crp (P x PP)) x Mor(P' x P/, ¢, P+ — Mor(X, Crpsp PTH

by fixing the element of Mor(P’ x P/, ¢, P™/*!) which sends a pair of points to the
line they span in P"™#*!. The commutative diagram of Lemma 5.1 allows us to replace
the upper left arrow of (5.3.1) with the map

Mor(—, C,(P" x Py~ "5 @) Mor(—, C.(P' x Py,

i+j=k

so that to establish the commutativity of diagram (5.3.1), we need to show the dia-
gram
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#
Mor(—, Crps(P" x P™)~ — Mor(=, Cppsqt P
pH.!XpW,]JV ‘)n+m+],k+|l
®i+i:kMor(_’ CrH(Pi x P/ )~ Mor(—, Cr+s+1pk+l)N
zo#l l
MOI’(_, Cr+.y+] Pk-‘rl),v B — Mor(_’cl‘+s+l Pk-'rl )N/Mor(_’cr+s+lpk)~

(5.3.2)

commutes in the derived category.
Let us consider first the composition

Mor(—, Cr+s(P" X Pm))” _#) Mor(—, C"+S+1Pm+n+1)~
Pimtn+1,k+1

25 Mor(=, Crpgp PFFY™

The associativity condition of Proposition 1.7 impl#ies that this c(o)mposition is
induced by the composition of the maps P” x P” - ¢, P"++1 24 ¢ pkt! By

Ci(p) we mean the evident map associated to p = p,, 1 441> that is, the map
obtained by pairing p with the identity on C; P"*"*! in the pairing of Proposition
1.7.) Let us write this composition as ¢.

Similarly, the associativity and bilinearity conditions of Proposition 1.7 imply that
the composition

Mor(—, Cpi(P" x P™)” — @ Mor(—, Crps(P' x P))™

i+j=k
—> Mor(—, Cppgs PFH™
is induced by the sum over all i 4+j = k of the maps given as the composition of

Pn,i XPm.j ; - C
P x P R P x Py S ¢ et

Let us write this map as ;; and write their sum as y = ZH]-:,( Vi
To prove the theorem, it suffices to show that two maps

é = Ci(p) o #, Y=y, PP x P — ¢ PEY

i'tj=k

induce homotopic natural transformations of functors. By Proposition 5.2, this
amounts to showing ¢ and y determine the same class in

AP x P2 @ Z [P x P

pq=k

upon intersection of their graphs with P" x P x {P} for a general point P. We will
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show in fact that both maps determine the class

DO PTT x P, (5.3.3)

ptq=k

To compute the class of ¢ in AX(P" x P™), we begin with the observation that for any
t and s, the graph of p,  : P — CoP*, which is an integral subvariety of P’ x P*,
forms a projective bundle over P* with fibers isomorphic to P*~*. Indeed, the fiber
of this graph over the point Pje...e P, e SP(P') =~ P* consists of all points
Qie...00Q, of SP(P")=~ P’ such that Q;, = P;, for all i, for some choice
1 <ji <...<Jjs; <t which is precisely the image of SP'5(P')—SP/(P') under
the closed immersion given by ‘multiplication” with P; e ... e P;. Thus, we have

graph(p, ) N (P’ x {P}) = H = P'™, (5.3.4)

for a general (in fact, every) point P. In particular, the intersection of the graph of
Puimstisr With P15 (P} for a general point P in P*™! is a general linear sub-
space of P! of dimension n +m — k.

We claim that the intersection of the graph of #, which is the subscheme
W C P" x P" x P! introduced earlier, with P" x P" x H for a general
dimension n + m — k linear subspace H pushes forward to P" x P™ to the class
(5.3.3) in A*(P" x P™). This will show that ¢ determines the class (5.3.3) of
AF(P" x P™) since we have

graph(¢) N (P" x P x {P})

= graph(#) N [P" x P x (graph(p,ms1.441) N Pl {P})]
= graph(#) N (P" x P" x H). (5.3.5)

To establish the claim, observe that we need only show that the image under the
composition 4*(P"" 1) =, A*(W) 25 4%(P" x P™) of [H], for H a linear sub-
space of dimension n +m — k, is the class (5.3.3). Recall from the proof of Prop-
osition 4.4 that W — P" x P" is the projectivized bundled associated to
O(1,0)® 00, 1), and thus A*(W) = A*(P" x P™)[{1/(C* = (o« + B), + o - B), where
o =[P x P, p =[P" x P"""], and ¢ is the canonical divisor of the projectivized
bundle. The map n} is a ring map and sends [P"*] to {. The map m, is a
A*(P" x P"™)-module map which sends { to 1 =[P" x P"] and [W] to 0 (since
W — P" x P™ has relative dimension one). The claimed equality follows for
the case k = 0 immediately. For general k, observe that nﬁ[P"J“’”_k] =1 One
may easily verify that

gl = Z ocpﬁq>c + constant term

+q=k
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in AX(W). Thus, we have, for all k,

mumy[H = Y [P" x P (5.3.6)
pra=k

As indicated in (5.3.5), it follows that ¢ determines the class (5.3.3) in A%(P" x P™).

Recall that y is the sum 3, ., ;. We now compute the class in AK(P" x P™) of
the map W, ; = Co(#) o (p,; X p,) : P x P" — P!, Taking n=1i, m =, and
k=1i+j in the equation (5.3.6) shows that the intersection of the graph of
#: P x PP — P* with P! x P/ x {P} for a general point P € P¥ is the class of a
point in P’ x . By Equation (5.3.4), the intersection of the graph of Pri X P
with P x {0} x P" x {R} for points QelP and Rel” 1is the class
[P"~" x P"™]. Since we have

graph(y; ;) N (P" x P™ x {P})
= graph(p,; X p,, ;) N (P" x P" x [graph(#) N (P’ x P/ x {P})])
= graph(p, ; x p,, ;) N (P" x P" x {0} x {R}),

it follows that i, ; has class [P"" x P"™7]in A*(P" x P™). Consequently, y has class
(5.3.3) in AK(P" x P™), since y is the sum of the Vi)

Since ¢ and Y determine the same class (5.3.3) in AK(P" x P™), they define the
same map in the derived category by Proposition 5.2. The theorem is therefore
proven. O

The following was suggested in [FL-1], but was not proven in that paper for lack of
a version of Theorem 5.3.

THEOREM 5.4. For any quasi-projective variety X, there are Chern class maps
en  Ko(X) — H” M(X, n) — H*'(X, n)

which extend the Chern class maps of [FL-1; 10.3] for vector bundles generated by
global sections. Moreover, these Chern class maps satisfy the Whitney sum formula

(=) = @) ci(He(-).

i+j=n

Proof. Recall that H* M(X, ) is defined in terms of the weak normalization X" of
X and observe that there is a natural map Ky(X) — Ko(X"). So we may assume X is
weakly normal.

Let Grass‘(PY) be the Grassmannian variety of dimension e—1 linear
subvarieties of PV. Then Grass‘(P") represents the functor sending X to the set
of quotient objects (’)f\\,'“ —> & (that is, isomorphism classes of surjections), where
£ is a rank e vector bundle on X. Moreover, as in Proposition 2.4, the set
Mor(X, Grass‘(PY)) comes equipped with a natural topology.
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Let ¥ : Grass(PY) — C*P" = Cy_.P" be the morphism of varieties which sends
a quotient 7 : CV 1 s C° to the cycle which is the projectivization of the kernel of
n. Then ¥ determines a continuous map of topological spaces Mor(X,
Grass‘(PY))™ — Mor(X, C¢(PY))™ by Theorem 2.3.

Observe that for all M, we have a commutative diagram

Grass‘(PY)y ——  cP¥

| =]
Grass(PYN*™M) — ¢cpVtM,

The map on the left in this diagram sends CY™' — C° to the composition
CNHFM . €N+ s C¢ (in which the first map is projection onto the first
N + 1 coordinates), and the map on the right is given by suspension. Thus we obtain
a map of direct systems

lim lim
T) GI’aSSe(PN) —> T) CGPN

which induces the continuous map of topological spaces

lim lim

~ Mor(X, Grass‘(PV)™ — ~ Mor(X, C¢PVy™,

Using the suspension isomorphism (3.1.3), we have canonical isomorphisms
e
Mor(X,CPYy” = P M(X, )[2i]
i=0

in the derived category of Abelian groups. It follows that we obtain a natural map

lim

Vect (X) = ~ n,Mor(X, Grass‘(PV)™ — @ H» M(X, s).
s=0

We may associate to a vector bundle £ on X of rank e which is generated by its global
sections an element of Vect.(X) by choosing a surjection (’)frl —> &, for some
N >> 0, and then taking the associated class in mg lim, Mor(X, Grass‘(PV))™".
We claim the resulting class in Vect.(X) is independent of the choice made. To
see this, suppose p : (9%+1 > &,q: (93‘(4 +1 > & are two different choices. Then con-
sider the point in Mor(X, Grass‘(PY 1)) defined by the surjection

®.9)
Ol)\(/+1+M+l _ Ogﬂ GBO?(/[H rye

There is a path from this point to the point given by the surjection (p, 0) (respectively,
(0, ¢)) defined by (p, Ag) (respectively, (Ap, q)) for A € [0, 1]. Similarly, there is a path
from the point associated to (0, ¢) to the point associated to (g, 0). This shows that
our two choices coincide at some stage in the direct limit defining Vect.(X). In fact,
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this argument shows that there is a natural, surjective map
IsoPgi(X) — @, Vect (X), (5.4.1)

where IsoPg(X) is the set of isomorphism classes of vector bundles on X which are
generated by global sections.
Define a pairing

@ : Grass"(PN) X Grasse/(]P’M) N GraSSeJre’(PNJrMH)

by sending the pair (CN*! — C¢, CM*H 5 C¢) to CNHIFMH — CNHL g CMH!
C°e@ C°. Tt is easy to verify that the diagram

Grass‘(PY) x Grass® (P") _®, Grasse™ (PV+H1+1y

l l (5.4.2)

CePN % Ce’PM # Ce+e’PN+M+1
commutes. If we consider the space of morphisms from X to each variety in diagram
(5.4.2), we obtain a commutative diagram of spaces. Further, the maps induced by
each arrow in diagram (5.4.2) are compatible with the maps in the direct systems
lim lim

N—>Mor(X, Grass*(PY))™ and TMor(X, C*PY)* on the level of my (in fact, up
to homotopy), and thus the composite map

¢ = (cy) : 1s0Pg(X) — l;LVecte(X) — é HEM(X, s) (5.4.3)
s=0

is actually a homomorphism of monoids. Here IsoP,;(X) is a monoid under direct
sum of vector bundles and @, H*»M(X, 5) is a monoid under the join pairing.
The notation ]:[(,Vecte(X ) refers to the restricted direct product, defined as the subset
of the product consisting of sequences of elements o, € Vect,(X) such that a,
coincides with the image of the trivial bundle O for almost all e.

Set H(X) = P2, H*M(X, s5). Then H(X) is actually a ring under the addition of
cycles and the join product. One may easily check that ¢y(€)=
1 e HM(X,0) = 7. Let 1 + H(X)™[[£]] denote the subset of the set of formal power
series H(X)[[7]] consisting of those power series whose coefficient of ¢ lies in
H>"(X, n) and whose constant term is 1. Then the join operation on H(X) endows
1 +H(X)T[[]] with the structure of multiplicative Abelian group. The map
¢ IsoPg(X) —> 1 + HY[[7]] defined by ¢,(€) =1+ c1(E)t + c2(E)* + ... is a map
of Abelian monoids, with target an Abelian group. It therefore extends to a map

¢ IsoPy(X)t — 1+ H(X)[[]]

from the group completion of IsoP,;(X). Observe that the target of ¢, is homotopy
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invariant in X, since there is for any X, Y a natural pairing
Mor(X x A, Y) x A' — Mor(X x A, Y)

relating the identity to the map induced by iopr: X x A — X x {0} — X x A,
Thus, ¢, factors though the cokernel

IsoPg(X x A" 225 IsoPg(X)* (5.4.4)

where o; is induced by restriction to X x {i}.
We claim the cokernel of (5.4.4) is isomorphic to

Ky(X)/(homotopy) = coker(Ko(X X Al) e KO(X)).

Say X is a subvariety of P". Then by using the Koszul resolution induced by the
canonical surjection (9’1’;?1 — Opn(1), one shows that every class in Ky(X) is a
difference of the classes of vector bundle generated by global sections. Further,
given a short exact sequence 0 — & — & — & —> 0 of vector bundles on
X, let 0— &f]— &[] — E'[{]— 0 be the pullback of this sequence to
Xx SpecC[f] = X x A'. Now define the vector bundle £ on X x A! so that the

square

— &'

£
| |
&l —— €1

is Cartesian. Then E‘|XX{0} >~ & ®E and E‘lXx{l} >~ £, and so every short exact
sequence may be deformed continuously to a short exact sequence. The claim
follows.

We thus obtain the map ¢;: Ko(X)— 1 +H(X)T[[/]. and we define
et Ko(X) — H?" M(X, n) by taking the coefficient of 7" in ¢,. The Whitney sum
formula is an obvious consequence of the construction. O
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