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Abstract. Starting from a sheaf of associative algebras over a scheme we show that its deformation
theory isdescribed by cohomol ogies of acanonical object, called the cotangent complex, inthederived
category of sheaves of bi-modules over this sheaf of algebras. The passage from deformations to
cohomology isbased on considering asitewhich isnaturally constructed out of our sheaf of algebras.
It turns out that on the one hand, cohomology of certain sheaves on this site control deformations,
and on the other hand, they can be rewritten in terms of the category of sheaves of bi-modules.
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0. Introduction

0.1. In the present paper we continue the study of deformation theory of algebras
using the approach of [Ga]. We will extend the main results of [Ga] to the glob-
al case. Namely, we pose and solve the following problem: what cohomological
machinery controls deformations of a sheaf of algebras over a scheme? This ques-
tion has aready been studied by many authors [I11], [GeSch], [Schl].

0.2. Let first A be an associative algebra over aring. Consider the category of all
algebrasover A, letuscall it C'(A). Onecan observethat every question concerning
the deformation theory of A can be formulated in terms of this category.

Our first step will beto apply alinearization procedureto C'(A), in other words
we will endow it with a Grothendieck topology and then we will consider sheaves
of abelian groups on it. It will turn out that deformations of A are controlled
by cohomologies of certain sheaves on this site. Cohomologies arise naturally as
classes attached to torsors and gerbes. All thiswas donein [Ga].

When A is no longer an algebra over a ring but rather a quasi-coherent sheaf
of algebras over a scheme X, the definition of C'(A) must be modified in order
to take into account possible localization with respect to X, since the appropriate
cohomology theory would incorporate algebra cohomol ogy of A and scheme coho-
mology of X . Inthiscaseinstead of working with thewhole category of sheaveson
our site, we single out a subcategory which we call the category of quasi-coherent
sheaves. This category will have properties similar to those of the category of
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guasi-coherent sheaves of A-bimodules among all sheaves of A-bimodules and it
will be more manageable.

The second step will be to find a connection between the category of sheaveson
C(A) and the category of quasi-coherent sheaves of A-bimodules on our scheme
X. This connection will be described by two mutually adjoint functors, which
would enable us to rewrite the conomology groups that control deformations of A
in terms of cohomologies of some canonical object 7*( A) of the derived category
of quasi-coherent sheaves of A-bimodules. The object 7°*(A) will be called the
cotangent complex of A. Another approach to the construction of the cotangent
complex in aslightly different situation was used by Illusie [Ill].

0.3. Let us now describe the contents of the paper.

In Section 1 we present a brief exposition of some well known facts and results
from the theory of sites. For a more detailed discussion the reader is referred to
[Ar], [Gr]. In the remaining sections we will freely operate with the machinery of
sheaves, cohomologies, direct and inverse images; therefore the reader is advised
to look through this section in order to become familiar with the notation.

In Section 2 we definethe site C'x (A) aong withits variantsfor affine schemes.
Weintroduce also the appropriate categories of sheavesand functors between them.
The central results are

(1) Theorem 2.3.3 with its corollaries, that insure that the category Sh?¢(A) is
well defined

(2) Theorem 2.5 that saysthat cohomologies of quasi-coherent sheaves computed
inside the quasi-coherent category and inside the category of all sheavesgive
the same answers.

In Section 3 we introduce functors & and £ that establish connection between
the category Sh?“(X') and the category A,.-mod. Let us remark that it would be
possible to work with the category of all sheaves on Cx (A) without introducing
guasi-coherent sheavesexplicitly. We, neverthel ess, decided to do that, sinceto our
mind, introducing this category and basic functors that are connected to it reflects
the nature of the things and clarifies the exposition.

Finally, Section 4 is devoted to deformation theory. Theorem 4.2 describes how
to pass from deformations to cohomology of sheaves on C'x (A) via torsors and
gerbes, and in 4.3 we trandate the assertions of this theorem to the language of
cohomology of quasi-coherent sheaves of A-bimodules.

0.4. Theresultsof the present paper can be easily generalized to the case of algebras
over an arbitrary operad (cf. [Ga]). We opted for treating the case of associative
algebras only in order to simplify the exposition. One can aso develop a similar
theory for operad co-algebras.
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0.5. In recent years there have been a lot of interest in deformation theory. We
have to mention the works [Ge-Sch 1,2], [Mal, [Ma-St], [St], [Fo]. Our approach
is close to that of [IIl]. Let us also point out that one of the central ideas of the
present paper: to resolve an algebra A by free algebras (at least locally) goes back
to Quillen and to Grothendieck [Qu].

1. Preliminarieson Grothendieck topologies

1.0. In this section we will review certain notions from the theory of sites. Proofs
will be given mostly in cases when our exposition differs from the standard one.

1.1. Let C be a category possessing fiber products. A Grothendieck topology (cf.
[Gr]) on it (or a structure of a site) is a collection of morphisms that are called
covering maps if it satisfies the following three conditions:

(1) Any isomorphism is acovering.

(2) If p:U — V andv: V — W arecoverings, then their compositiono¢: U —
W isacovering too.

(3) If p:U — V isacovering and if a: V3 — V isan arbitrary morphism, then
the base change map ¢1: U ‘>; V1 — Vi isacovering.

1.1.1. EXAMPLES

1. For any category C' there existsthe minimal Grothendieck topology: the only
coverings are isomorphisms. This site will be denoted by (C, min).

2. Let Set be the category of sets. We introduce the structure of a site on it by
declaring surjections to be the covering maps.

3. Let Set’ bethe category opposite to Set. We introduce a Grothendieck topol -
ogy by declaring ¢: X — Y to be a covering if the corresponding map of sets
Y — X isaninjection.

4. Constructions similar to the above ones can be carried out when the category
Setisreplaced by an abelian category, in particular, by the category Ab, the category
of abelian groups.

5. Let X be atopologica space. Let C(X) be the category whose objects are
finite digoint unions of open subspacesof X .

Hom(U, V) o maps from U to V' compatible with the embedding to X.

A map ¢ € Hom(U, V') isacoveringif it is surjective.

6. Let acite C have afina object X, and let X be any other object of C'. We
can define anew cite C'y whose underlying category is the category of ‘ objects of
C over X, with morphisms being compatible with projectionsto X. A morphism
¢ in Cx isdeclared to be acoveringif itisacoveringin C.
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1.1.2. Let ¢y and C> be two sites. A functor F' between the underlying categories
is said to be a functor between sites if the following holds:

(1) F maps coveringsto coverings.

(2) If A, B, D arethree objectsin C1 with A, B mapping to D, then the canonical
map F(A x B) — F(A) x F(B)isacoveringin Cy.
D F(D)

We say that afunctor F' between two sitesis strict if it preserves fiber products,
i.e.if themapin (2) is an isomorphism.

1.2. DEFINITION. A sheaf of sets (resp. of abelian groups) onasite C isafunctor
S between the sites C and Set® (resp. Ab°), the latter considered with the topology
specified in the Example 3 above.

M orphisms between sheaves are by definition natural transformations between
such functors.

DEFINITION. A presheaf of sets on C' (resp. of abelian groups) is sheaf on C'
when the latter is considered with the minimal topology.

It is an easy exercise to verify that the above definition of a sheaf coincides
with the traditional one. From now on, by a sheaf we will mean a sheaf of abelian
groups. It will be left to the reader to make appropriate modifications for sheaves
of sets. Note, that a sheaf of abelian groups is the same as a group-like object in
the category of sheaves of sets.

The category of sheaves will be denoted by Sh(C). This category possesses a
natural additive structure and is in fact an abelian category. If S’ is a sheaf, and if
X € C,S(X) will be denoted by I'( X, S) and will be called the set of sections
of Sover X. Themap I'(X, S) — I'(Y,S) foramap Y — X will be called the
restriction map.

1.3. Let F: Cy — C> be afunctor between sites. We have then the natural functor
(called direct image) F,: Sh(C>) — Sh(C4). Thisfunctor is always left exact.
The functor F, has a left adjoint (called the inverse image): F*: Sh(Cy) —
Sh(Cs). Thefunctor F'* is always right exact.
The following standard facts are often used in the theory of sheaves:

PROPOSITION

(1) The functor F, is right exact if for any covering Z — F(X) there exists
a covering 8:Y — X, endowed with a map «: F'(Y') — Z such that the
composition F'(Y) — Z — F(X) coincideswith F'(3).

(2) Thefunctor F** isleft exact if the functor F isstrictin the senseof 1.1.2.
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(3) Assumethat F isstrict. Thenthefunctor F'* isfaithful if for anya: Y — X and
B:Z — F(Y) such that the composition Z — F(Y) — F(X) isa covering,
« IS a covering too.

1.3.1. EXAMPLES

1. Let Forget: (C, min) — C be the canonica functor of sites. The above
constructions yield the embedding functor from sheavesto presheaves and its left
adjoint, which is called the functor of associating a sheaf to apresheaf. It isagood
exercise to describe the associated sheaf explicitly.

2. Let pt be the category of one abject and one morphism. If C is a site, for
any X € C we have afunctor ptx:pt — C, that sends the unique object of pt to
X. We have the canonical constant sheaf Z on pt. Let by definition Z x = pt% (%).
This sheaf will be called the constant sheaf corresponding to X. By definition we
have: Hom(Z x, S) = I'(X, S) functorially with respectto S € Sh(C).

Analogous construction producesal so asheaf Const  inthe category of sheaves
of sets. A sheaf of setsis called representableif it is of the form Consty for some
X.

3. Let F: C1 — C5 beafunctor between sitesand let X € C;. Then

F.(ZX) >~ ZF(X)

4. Recall the situation of 1.1.1 Example 6. We have the natural embedding
functor i: Cx — C anditsright adjoint Cart: Y — Y x X. Note, that the functors
X

0
ie and Cart® are canonically isomorphic. We denote this functor by S — S|Cx
and call it the functor of restriction of a sheaf to C'x. By definition, for Y € Cx
wehaveI'(Y, S|Cx) ~ I'(Y, S).
If now X — X isacovering, the functor S — S|C isexact and faithful.

1.4. Cohomology of sheaves. Along with the abelian category Sh(C') one consid-
ersalso the corresponding derived categories D(Sh(C)), D1 (Sh(C)), D~ (Sh(C))
and D°(Sh(C)). It can be shown [Ar], [Gr] that the category Sh(C') has enough
injective objects. In particular, any left exact functor admitsaright derived functor.
If X € C, R'T'(X, S) will bedenoted by H*(X, S).

1.5. Torsorsand Gerbes

1.5.0. Let now our category possessafinal object Xo andlet S beasheaf of abelian
groups. H(S) will denote H(Xo, S) ~ R'I'(Xo, S).

1.5.1. Before defining torsors and gerbes in the sheaf-theoretic context we need to
recall several definitions.

Let I' be an abelian group and let T act on a set 7. We say that 7 is a torsor
over ' if this action is simply transitive. Torsors over a given group form arigid
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monoidal category (cf. [DM]) under 7, ® 12 — 71 X 12/I" with the anti-diagonal
action of T".

Let now O be amonoidal category and let M be an arbitrary category. We say
that O actson M if weare given

(1) A functor Action:O x M — M.
(2) A natural transformation between the two functors O x O x M — M

OxOxMAiion»OxM

Action

Action

OxM M

such that the obvious ‘ pentagon’ identity is satisfied.

We say that M is agerbe bound by O, if for any X € M thefunctor O — M
givenby A — Action(A x X)) isan equivalence of categories.

If O isagroupoid andif M isagerbe bound by O, then M isaso agroupoid
and mo(M ) isatorsor over mp(O).

1.5.2. A sheaf of sets T is called atorsor over S if

(1) S viewed as a group-like object in the category of sheaves of sets acts on the
objectY,i.e.if forevery X € C,T'(X, S) actsonI'(X, T) inaway compatible
with restrictions.

(2) Forevery X € C,I'(X, T) isatorsor over I'( X, S), whenever the former is
nonempty.

(3) For some covering X of Xo, theset I'( X, T) is nonempty.

Let Torsc(.S) denote the category of torsors over S. From 1.5.1 we deduce that
it isagroupoid and that it possesses a structure of arigid monoidal category.

LEMMA. The group mo(Torsc(S)) is canonically isomorphic to H1(S).

Proof. In fact, we claim more: Consider the category Extc(Zx,, S), whose
objects are short exact sequences0 — S — £ — Z x, — 0 and whose morphisms
are maps between such sequences that induce identity maps on the ends.

We claim, that this category is canonically equivalent to Torsq(.S).

Indeed, for any such extension0 — S — E — Zx, — 0 we associate a torsor
T by setting for every X over X

I'(X,7T) =splittings: Z ~T'(X,Zx,) — I'(X, E).

Thisfunctor is easily seen to be an equivalence of (monoidal) categories and
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mo(EXt(Zx,, S)) ~ Ext}(Zx,, S) ~ R*Hom(Z x,, S)
~ RT'(Xo, 9)) ~ H(S). O

1.5.3. Weare heading towards the definition of gerbes, but first we need to recollect
the notion of a stack.

Let C be a site with a final object X,. Suppose that for each X € C we
are given a category G(X), for each map oY — X we are given a functor
Go:G(X) = G(Y) and for each compositionof maps«a: Y — X and3: Z — Y,
we are given anatural transformation G, o G3 = G0, SUch that al the data are
compatible with respect to two-fold compositions.

Remark. Functors G,:G(X) — G(Y) for a:Y — X will be called the
restriction functors and will be often denotedas s € G(X) — s|Y € G(Y).

Such acollection of categoriesand of functorsis called apresheaf of categories.
It is said to be a sheaf of categories (or a stack) if moreover the following two
axioms are satisfied:

(1) Let X € C, and let us consider the category Cx asin 1.1.1 Example 6. Let
also s1, s2 be two objects of G(X'). We can consider the presheaf of sets on
Cx

YooY - X) € Cx — HoM(G,(s1), Gals2)).

We require that this presheaf is asheaf for each X € C.

(2) Let 1Y — X be a covering. Consider the category of descent data on Y
with respect to X, whose objects are pairs s € G(Y) and an isomorphism
Gp.(s) — Gp,(s), where p1,p> are the two projections fromY xY to Y,

such that the above isomorphism satisfies the obvious cocycle co)r(]dition on
thethree-fold fiber product of Y withitself over X. Morphismsinthiscategory
are defined to be maps s1 — s> compatible with isomorphisms between their
pull-backsonY x Y. We have the obviousfunctor from G (X) to this category

X
of descent data. We require that this functor is an equivalence of categories.

EXAMPLES
1. Consider the presheaf of categories G(X) := Cy.

LEMMA. This presheaf of categoriesis a stack if and only if

(1) For every X € C,Y € Cyx, the presheaf on Cx givenby Z € Cx —
Homc, (Z,Y) is a sheaf.

(2) For every sheaf of sets S on C'x the fact that for some Y € Cx covering
X, S|Cy isrepresentableimplies that S is representable as well.
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The proof follows directly from the definitions.
All the sitesin this paper will satisfy the conditions of the above Lemma.

2. If Sisashesf of groups, wecandefineG(X) = Torse, (S|Cx ) (torsorsover
S|Cx inthe category C'x). This presheaf of categoriesis always astack, which we
denote by Torsg.

1.5.4. Gerbes. Let onceagain C beasitewith afinal object Xo and let S be asheaf
of abelian groups. Let G be a stack on C' endowed with the following additional
structure:

(1) Each G(X) isacted on by the monoidal category Torsc, (S|Cx).

(2) For each a: Y — X we are given a natural transformation between two
functors Torsg, (S|Cx) x G(X) — G(Y)

G, o Actiony — Actiony o (Torsg, X Gq),

which is compatible with the natural transformations of 1.5.1(2) and with
composition of restrictions.

Supposethat for each X € C, G(X) isagerbe over Torsc, (S|Cx) and that there
exists a covering X of Xy such that G(X) is nonempty. We say then that G isa
gerbebound by S.

Functors between gerbes bound by a sheaf of abelian groups S and natural
transformations between such functors are defined in a natural fashion.

Remark. Let S be a sheaf of abelian groups and let G be a stack such that
if s1,s2 € G(X), there exists a covering Y of X such that the pull-backs of s1
and sz on G(Y') become isomorphic. Then G is a gerbe bound by S if for every
X,s € G(X),Aut(s) isisomorphicto I'(X, S) functorially in X andin s.

EXAMPLES

1. Let S bein Sh(C). A basic example of agerbe bound by S isthe stack Torsg
of 1.5.3 (Example 2) above.

It is an easy observation that a gerbe G is equivalent to Torsg if and only if
G(Xo) is nonempty.

2. Let S — S, be amap of sheaves of abelian groups. If G is a gerbe bound
by S1, we can construct an induced gerbe G’ bound by S5.

3. (cf. [D-lI], [BB]) Let 0 - S — Ko — K1 — Zx, — 0 be an exact
sequence of sheaves on C. Let K* denote the 2-complex Ko — K;j. To this
2-complex we can associate a gerbe G(K*) bound by S in a canonical way by

https://doi.org/10.1023/A:1000129507602 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000129507602

GROTHENDIECK TOPOLOGIES AND DEFORMATION THEORY 11 329

setting: G(K*)(X) = the category of extensionsO — K1|Cx — E - Zx — 0
of sheavesover C'x endowed with a map of complexes

0 0 Ko|Cx E Zx 0
id id
0 S Ko|CX —_— K1|CX Zx 0

It is easy to verify that G(K*) definedin thisway isindeed agerbe. Thefollowing
assertion follows from the definitions:

LEMMA
mo(G(K*)(X)) = Homp(sh(oy ) (Zx[=1], K*|Cx).

If now a: K* — K'* isaquasi-isomorphism of 2-complexes, we get a canoni-
cal functor between the corresponding gerbes G(K*) and G(K'*). Thismeansthat
the operation of assigning a gerbe to a 2-complex is well defined on the derived
category D(Sh(C)).

1.5.5. Thefollowing proposition is not difficult to prove:

PROPOSITION. The assignment K* — G(K*) establishes a one-to-one cor-
respondence between the set isomorphism classes of objects K* in D(Sh(C))
with nontrivial cohomologies only in degrees 0 and 1, such that H°(K*) ~ S,
HY(K*) ~ 7, and the set of equivalence classes of gerbes G bound by S.

In particular, since the set of isomorphism classes of 2-complexes of the above
typein the derived category is Ext?(Z x,, S) ~ H?(S), to any gerbe G bound by S
we can associate awell defined classin H2(S) that vanishesif and only if G/(Xo)
of this gerbe is nonempty.

2. Thesite C'x(A)

2.0. Asit has been explained in the introduction, our bridge between deformations
and cohomology is based on considering sheaves on the site C'x (A) which we
are about to define. Throughout this paper, by a scheme we will mean a separated
scheme. It is not difficult, however, to generalize al our results to the case of an
arbitrary scheme.

If f:X — Y isamorphism of schemes, f. and f,s, will denote the usual
inverse and direct image functors on the categories of quasi-coherent sheaves of
O(X) and O(Y) modules.
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Remark. For an affine scheme we will usually make no distinction between a
quasi-coherent sheaf and its global sections.

2.1. Let X be aschemeand let Zarx denote the Zariski site of X', whose objects
are digoint finite unions of open subsets of X and whose morphisms are maps of
schemes over X. A morphismin Zarx isacovering if it is surjective. Let A bea
guasi-coherent sheaf of associative algebrason X .

2.1.1. DEFINITION of Cx (A).

Objects: triples (U, By, ¢), with U € Zarx, By is a quasi-coherent sheaf of
associative algebras on U and ¢: By — A|U is a map of sheaves of associative
algebras. Here A|U istherestriction of A on U. When no confusion can be made,
wewill omit ¢.

Morphisms: Hom((V, Dv), (U, By)) is a set of pairs (j,«), where j €
Homza . (V,U) and «: Dy — By |V (restriction by means of ).

The category C'x (A) iseasily seen to have fiber products.

Topology: (j,«): (V,Dy) — (B, By) is said to be a covering map if j isa
coveringin Zary, and if « is an epimorphism.

Sometimes when no confusion can be made we will write A instead of I'( X, A)
for X being an affine scheme.

2.1.2. Variant. When X is an affine scheme X = Spec(R), the site C'x (A) will
be often denoted by C(A) to emphasize the difference between C'F"(A) and
C9(A):

DEFINITION of C94(A)

Objects: R-algebras B with amap to A.
Morphisms: Algebra homomorphisms commuting with structure mapsto A.
Topology: Covering maps are defined to be just epimorphisms of algebras.

2.1.3. Shx (A) will denote the category of sheaves of abelian groupsover Cx(A).
For X affine, X = Spec(R), this category will aso be denoted by Sh"(A),
whereas Shg'(d(A) will denote the category of sheaves of abelian groups over
C9(A).

EXAMPLE 1. Let (U, By) € C'$"(A). According to 1.3.1(2) we can consider the
shedf Z (7 g,y € ShiF" (A).

EXAMPLE 2. A similar construction can be carried out in the case of an affine
scheme X = Spec(R) for CQ9(A). For a projective R-module V, let Free(V)
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denote the free associative algebra built on V. If now Free(V) € C%9(A), the
sheaf Zreqv7) iS @ projective object of Sh%4(X). Thisis because every covering of
Free(V') admits a section.

2.1.4. LEMMA. The presheaf of categoriesover C'x (A) givenby G((U, By)) =
Cy(By) isastack.

Proof. Observe first of al, that Cy(By) ~ Cx (A)(U, By @d by 1.5.3(1) we
must check that the following two conditions are verified:

(1) Forevery (U, By) € Cx(A), the presheaf of setson C'x (A) given by
(V. Dv) € Cx(A) — Homg, (1) ((V, Dv), (U, Br)),

isin fact a sheaf.
(2) If S isasheaf of setson Cx(A) becomes representable after restriction to
some (U, Byr) € Cx (A) covering (X, A), then it is representable.

Thefirst point is obvious. In order to treat the second one, let us decomposethe
map (U, By) — (A, X') asacomposition

(U,By) = (U, AlU) — (X, A),

and it becomes sufficient to treat separately the casewhen X isaffinewithU = X
and the case when By ~ A|U. In both cases, the assertion is straightforward. O

2.2 Let f:Y — X be amorphism of schemes. Let us be given quasi-coherent
sheaves of algebras A on X and A’ on Y. Assume also be given a map of sheaves
of algebras¢: A’ — f.¥,(A). We say thenthat (f, ¢) isamap from the pair (Y, A")
to the pair (X, A).

2.2.1. We have afunctor denoted ( f, ¢) or just f

Cx(A) = Cy(A"): (U,By) goesto (U x Y, fi.(B) x (A'|UxY)).
X fis(AlU) X

us

Thisfunctor is strict if f isflat.

In the case when both X and Y are affine schemes, we have also the functor
C%9(A) — CY9(A"). Having said this, we possess the following collection of
functors between categories of sheaveson X andonY'.

(1) feo:Shy(A’") — Shx(A).

(2) Theleft adjoint of f,: f*: Shx(A) — Shy(A’). By 1.3, this functor is exact
if fisflat and is moreover faithful if Y — X isontoand A’ — £}, (A) is
epimorphic.

(3) (for X and Y affine) f,: Shd(A’) — ShQ9(A). This functor is exact if A’ —

+-(A) isan isomorphism, by 1.3(1).
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(4) (adsofor X and Y affine) Theleft adjoint of the previous functor, denoted by
f*. Thisfunctor isalso exact if f isflat and is moreover faithful if Y — X is
ontoand A" — [} .(A) isepimorphic, by 1.3.

2.3. Our next goal will be to define a certain subcategory Sh%;(A) in Shx (A)
which we will call the category of quasi-coherent sheaves. The category Sh%’(A)
will have properties anal ogousto those of the category of quasi-coherent sheaves of
O(X)-modulesinside the category of all sheavesof O (X )-modules over ascheme
X . It will turn out that for an affine scheme, the category of quasi-coherent sheaves
is equivalent to Sh39(A).

2.3.1. Let X bean affine scheme. We havethe natural inclusion functor C$9(A4) —
C¥'(A):B — (X, B). In this case there is the direct image functor denoted
(new — old): Shi®¥(A4) — Sh39(4) given by

(B, (new — old)(S)) = T((X, B), S),

and the left adjoint of (new — old), denoted by (old — new).
The functor (old — new) is exact and the functor (new — old) is left exact.
R*(new — old) will denote the right derived functor of (new — old).

2.3.2. Letnow f beamap (Y, A’) — (X, A) with X and Y affine.

LEMMA

(1) Thefunctors £, o (new — old) and (new — old) o f,: Shi®"(A’) — ShQd(A)
are canonically isomorphic.

(2) The same for the functors (old — new) o f* and f*® o (old — new) from
ShQd(A) to Shiev(A').

Proof. To prove the first statement it suffices to observe that each of the two
functors identifies with the direct image functor corresponding to compositions:

CYY(A) — C¥¥(A) — CPY(A) and CRU(A) — CPU(A') — CPV(A') that
are naturally isomorphic.

The second statement follows from the first one by adjunction. O

2.3.3. We will now describe the functor (old — new) more explicitly. The next
result can be considered as an analog of Serre’'s Lemma.

THEOREM. Let X be an affine scheme. Then the adjunction mor phism of functors
Idshgl(d(A) — (new — old) o (old — new) is an isomorphism.

Proof of the Theorem.
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Step 1. Let X be an affine scheme and consider a full subcategory C"(A) 4
of C'¥"(A) formed by pairs (U, By) with U affine. This subcategory carries
a natural (induced) Grothendieck topology. Let emb be the embedding functor
emb: OV (A) 4 — CFV(A). By definition, thisis a functor between sitesin the
senseof 1.1.2.

The following lemmais easy to prove.

LEMMA. The functor emb,: Sh(C"(A)) — Sh(CP"(A) ) is an equivalence
of categories. In particular

emb, o emb® ~ |d and emb® o emb, ~ Id.

Step 2. Let us start now with asheaf S € Sh39(A) and consider the following
presheaf 5" on C(A) 4-
For j: (U, By) — (X, A) we set

L((U, By),S") = T((U, Bu), j*(5))-

We claim that this presheaf isin fact a sheaf.

Let j: (U, By) — (X, A) beacovering, and let j;: (U;, By;) — (X, A) denote
the map of thes 4 1-fold fiber product of (U, Byy) withitself over (X, A) to (X, A).

Without restricting generality it suffices to check that the complex

0—I'((X,4),5") = T'((U,Bv),S') = I'((U1, Bu1), ),

isexact at first two places.
Since the functor of taking sections is left exact, it is enough to prove the
following lemma

LEMMA. The canonical complex (called the Cech complex of S with respect to
(Ua BU))

0— 8 = jo.jo" (S) = j1.1(S) = J2.33(S) — -+,
iS exact.

Proof of the Lemma.

Sep 1. Assumefirst, that the map (X, A) — (U, By) admits a section. In this
case our complex is exact since we can write down an explicit homotopy operator.
Sep 2. Inthegeneral case, by 2.2.1(4), it isenough to provethat our complex is
exact after applying thefunctor ;*. However, when wedo that, the complex obtainis
the Cech complex of j*(.S) over (U, By) with respectto (U1, By1). Therefore, we
find ourselvesin the situation of Step 1, sincethe projection (Uz, By1) — (U, By)
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admits a section. O

Step 3. We claim now, that the sheaf S’ constructed aboveisin fact canonically
isomorphic to emb, (new — old)(.S). For this we must establish an isomorphism

HomSh(C;(aN(A)aﬁ)(S’, emb,(M)) — Hom%%d(A)(S7 (new — old)(M)),

forany M € ShY(A). But thisis clear from from the construction of S’.
Inorder tofinishthe proof of thetheoremit remainsto observethat (new — old)o
emb®(S’) ~ S, by definition. O

2.3.4. Let us now present several corollaries of the above theorem.

COROLLARY 1. Assume X tobeaffine. Thefunctor (old — new) realizesSh29(A)
asafull Abelian subcategory of Sh'$"(A) stable under extensions.

Thisisaformal consequence of the Theorem.

COROLLARY 2. Let X and Y be affine and consider the canonical morphism of
functors

f* o (new — old) — (new — old) o f°,
that is given by the adjunction map of the functors f* and f,.
Then it is an isomorphism when applied to objects of Sh'$"(A) of the form
(old — new)(S) for S € ShQ9(A).
Proof of Corollary 2.

Indeed, on theleft hand sideweget f* o (new — old)(old — new)(S) ~ f*(S)
whereas on the right-hand side we get

(new — old) o f* o (old — new)(S) ~
(old — new) o (old — new) o f*(S) ~ f*(S),

and it is easy to verify, that under these identifications the above natural transfor-
mation yields the identity morphism on f*(S). O
COROLLARY 3. Let X = Spec(R) be an affine scheme.

(1) R'(new — old)(old — new)(S) = Oforany S € Sh%9(A) andforany i > 1.
(2) Thefunctor (old — new) : D(ShQ9(A)) — D(Sh{E¥(A)) if fully faithful.

Proof of Corollary 3.
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To prove the first point, we must show that if 0 - S — K3 — Ko — Oisan
exact sequence of sheavesin Sh®¥(A) with S € Sh39(A), the sequence

0— S — ((new — old)(K1)) — ((new — old)(K3)) — O,

isexact in Sh39(A).
For this it suffices to check that if B € C%9(A) is a free algebra built on
a projective R-module, the complex of sections0 — I'(B,S) — I'(B, K1) —
['(B, K2) — Oisexact.
Now, since ShQ9(A4) c Shi®(A) is stable under extensions,
Extgn 1) (Z(x,5), S) = Oimplies
Héh”Xa’V(A)((XvB)a S) ~ EXtéh”Xa’V(A)(Z(X,B)a S) =0,

and the assertion follows.
The second point readily follows from the first one. i

2.3.5. Let us summarize some of the above results into a proposition:

PROPOSITION. Let X be affine, S € Sh"(A). The following conditions are

equivalent:

(1) S € shd(4).

(2) For some pair f: (Y, A’") — (X, A) with Y affine and faithfully flat over X
and with A’ — f (A) surjective, £*(S) belongsto Sh39(A4’).

(3) For every (j: (U,Up) — (X,A)) € C¥"(A) with U affine, the canonical
map ;j* o (new — old)(S) — (new — old) o 5°(S) isan isomorphism.

The proof follows immediately from Corollaries 1, 2 of the Theorem.

2.4. We arrive now to the definition of a quasi-coherent sheaf in Shy (A).

DEFINITION. Let X befirst an affine scheme. A sheaf S € Sh'¢"(A) issaidto be
quasi-coherent if it belongsto ShQ9(A).

Let X now be an arbitrary scheme. A sheaf S € Shy(A) is said to be
quasi-coherent if for every pair (U, By) € C¥Y(A) with U affine, the restric-
tion S|(U, By) (cf.1.3.1(4)) of S to (U, By) is quasi-coherent in the sense of the
previous definition.

LEMMA

(1) Quasi-coherent sheaves form a full abelian subcategory in Shy (A), stable
under extensions. Wewill denoteit by Sh%f(A).
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(2) Let f:(Y,A") — (X, A) be amap. Then the direct image functor f, maps
Shi*(A’) to Shi(A).

(3) Letonceagain f: (Y, A’") — (X, A) beamap. Then the functor f* also maps
Shif(A) to Shif(4’).

Proof. Thefirst point follows readily from the definition and from the fact that
the analogous statement holds for X affine, by 2.3.4(1).

To prove the third point we may assume that both X and Y are affine and then
Lemma 2.3.2 implies the statement.

In order to prove the second point, as in the usual theory of schemes, it is
sufficient to check the statement in the case when both X and Y are affine.

Let (old — new)(S) € Shi®"(A’). By 2.3.5(3), we must show that for every
(7: (U, Up) — (X, A)) € C"(A) with U affine, the canonical map

j* o (new — old) o f, o (old — new)(S) —
(new — old) o j® o f, o (old — new)(S),
is an isomorphism.
Indeed, let 5" and f' denote the maps from U X Y toY andto U and we have
4% o (new — old) o f, o (old — new)(S) ~
j* o fro(new — old) o (old — new)(S) ~
J* 0 fu(S) = floj(S) =
f1 o (new — old) o (old — new) o j/*(S) ~
(new — old) o f. o j'* o (old — new) ~
(new — old) o j® o f, o (old — new),

where the above isomorphisms follow by applying Lemma 2.3.2 and Theorem
2.3.3. O

By analogy with the affine situation, wewill denotetheinclusionfunctor Shif(A) —
Shy (A) aso by (old — new). Note, however, that when X is not affine there is
no functor analogousto (new — old): Shy (A) — Sh%’(A) possessing good prop-
erties.

As before, restrictions of the functors f,, f* to the category of quasi-coherent
sheaveswill be denoted by f., f*. By definition, we have

fe © (0ld — new) ~ (old — new) o f,,
and

f*® o (old — new) ~ (old — new) o f*.
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2.4.1. EXAMPLE. Let (X, B) € Cx(A), thenZx p) € Shi{(A).
2.4.2. Thecategory Sh’7(A) has enough injective objects because every Shi7 (By/)
with U affine does (cf. [Ar], [Gr]).

2.5. We have the natural functor (old — new): D(Sh%(4)) — D(Shx(A)) that
sends D(Sh%(A4)) to the subcategory D,.Shy(A) that consists of objects of
D(Shx (A)) with quasi-coherent cohomologies.

THEOREM. The above functor induces an equivalence of categories: (old —
new): D*(Sh%(4)) — DSCShX(A).

Corollary 3 of Theorem 2.3.3 implies the assertion for X affine, aswell as the
following fact:

PROPOSITION. Let f: (Y, A') — (X, A) bea map. Then the natural map R* f, o
(old — new) — (old — new) o R* f, is an isomorphism of functors.

Proof of the Proposition.

In order to prove this statement, we may assume that both X and Y are affine.
A standard devissage shows that it is sufficient to show that if 7 € Shi*(4’) isan
injective object, R’ f, o (old — new) () = Ofori > 0.

We know, that R f, o (old — new)(I) isthe sheaf associated to the presheaf

(U, Bu) = Hg, (an(F7HU), fus(Bu) — x  A|f7HU)), D).
[ (A7)

However, we know by 2.3.4(3) that
Hig (O Fis(Bo) x| AU =
Higean (U O, FialBo) x| ANFHO), 1) =0,
since I isinjective. O
Proof of the Theorem.
Since any complex is glued from its cohomologies, it sufficesto prove that for
S1, Sz € Sh¥f(A) the map
(old — new): ExtiShg(c(A)(Sl, Sp) —
ExtiShX(A)((oId — new)(S1), (old — new)(S2)),

is an isomorphism.
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Choose j: U — X to be a covering in Zarx with U affine. Choose also an
embedding j*(S2) — I where I isan injective object of Shi“(A|U)).
S — jo(I) isaninjection and let K denote the cokernel. The above proposition
implies
EXtgye (4) (S1, f(1)) = EXten, (4)(S1, fu(1)) =0,

and we have a commutative diagram for every i > 1

(old—new)

Exti i (S1,K)

St () Extgi(A)((old — new)(S1), (old — new)(K))

~ ~

(old—new)

EXtiShgf(A) (51, 52)

Extan, (4 ((0ld — new)(S1), (old — new)(S2))

The needed assertion follows by induction on 7, since for ¢ = 0,1 it is already
known (Lemma 2.4(1)). i

3. A-Bimodules and sheaveson Cx(A)

3.0. In this section we will study the connection between the category of quasi-
coherent sheaves of A-bimodules and that of quasi-coherent sheaveson Cx (A).
The material here is parallel to the one of Section 3 in [Ga]. The category of
quasi-coherent sheaves of A-bimoduleswill be denoted by A,.-mod.

3.1. Let usrecall severa definitions from [G4]. If B is a quasi-coherent sheaf of
algebras on a scheme X, we denote by Ig the sheaf of B-bimodules given by
Ip = ker(B ® B — B) (the map hereis the multiplication).

If M isaquasi-coherent sheaf of B-bimodules, wewill denoteby Qo x) (B, M)
the group Homg (I, M).

3.2. Let now X be a scheme and let A be a quasi-coherent sheaf of associative
algebrason X. We will construct alocalization functor S: A4.-mod — Sh7 (A):
Let M € Ay.-mod. Consider the presheaf (M) on Cx (A) given by
I'((U, By), $(M)) = Qo) (Bu, M|U).

The following Lemmafollows directly from the definition.

LEMMA. This presheaf isin fact a sheaf.
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3.2.1. If X is an affine scheme, similar constructions can be carried out in the
category C%9(A). In this case we denote the localization functor by 399,

LEMMA. The functors
(new — old) o & and 399 A .-mod — Sh%(A),
are canonically isomorphic.

The proof follows immediately from the definition.

3.3. Letusdescribe (M) inadlightly different way. Consider the sheaf of algebras
AdMover X, (X,Ae M) € Cx(A). Thisisagroup-like object in this category

Hom((U, By), (X, A® M)) = Q(By, M|U),

and (M) isasheaf givenby I'((U, By ), S(M))) = Hom((U, By), (X, A® M)).

In other words, (M) isagroup like object in the category of sheavesof setswith

(M) = Const aqnr, as asheaf of sets. (cf. 1.3.1(2)).

3.3.1. PROPOSITION

(1) Let f: (Y, A") — (X, A) beamapwith Y and X affine. Then the functors
9o o and  f* o 399 A, .-mod(X) — Sh3%(Y),

are canonically isomorphic.
(2) Forany X andY f: (Y, A’) — (X, A) thefunctors

Sofr, and f*o S Ag-mod(X) — Shy (Y),

are canonically isomorphic.
(3) If X isaffine the functor 3: A .-mod — Shi®(A) takes valuesin Sh39(A).
(4) Let once again X be affine. Then the functors

(old — new) o 3¢ and 3 Ag-mod —
S (X): Aye-mod(X) — Shy (X),

are canonically isomorphic.
(5) For X arbitrary the functor 3: A,.-mod — Sh4 (X)) takesvaluesin Sh%’(A).
(6) The functor $: A .-mod — Sh%’(A) is exact and faithful.

Proof of the Proposition. The first two points are immediately deduced from
the following general Lemma:

LEMMA 1. Let F: C1 — C be a functor between two sites. Let A € C1 bean
(abelian) group-like object so that the sheaf of sets Consts possesses a structure
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of a sheaf of abelian groups. Supposethat F'(A) is an (abelian) group-like object
in Cz aswell and that F: End(A) — End(F'(A)) is a homomorphism of groups.
Then F3, (Consta) =~ Constp 4.

Proof of the Lemma 1.

Remark. Here the subscript ab isto emphasize that the inverse image functor is
taken in the category of sheaves of abelian groups.

Observe first that for any S € Sh(C4),

Homgy , (cy)(Consty, S)) = {y € ['(A4,5)|n-v = n* ()} forany n € Z,

where n on the right-hand side denotes the endomorphism - Id4 € End(A).
Therefore, for each S € Sh,;,(C2) we have

Homgn,,(cy) (Consty, Fo(S)) = {y € T'(4, Fo(5))[n -y
=n*(y)}foranyn € Z ~ {y e I'(F(A),S)|n - v
=n*(7y)} forany n € Z ~ Homg, , () (Const 4y, S),

and that is what we wanted to prove. O

The third point follows from (1), (2), 3.2.1 and 2.3.5(3).

Now, (2), (3) imply (5), whereas (3), 3.2.1 and 2.3.3imply (4).

In order to prove (6) we may assume X to be affine, and the assertion follows
from the following lemma, whose proof is a straightforward verification.

LEMMA 2. Let X = Spec(R) and let V' be an R-module. Let also Freep (V) €
C%9(A) be the free associative algebra built on V. Then the functors

M — Homg(V,M) and M — I'(Freer(V),3(M)): Age-mod — Ab,
are canonically isomorphic. O

3.3.2. Let f be a map from a pair (Y, A" ~ f:(A)) to the pair (X,A). We
have then the direct image functor f,.,: A’qc—mod — Agye.-mod and the natural
transformation

Sx ofus* — f* o Qy.

PROPOSITION

(1) The above above map is an isomor phism of functors.
(2) Moreover, it induces an isomor phism of the derived functors

Sx 0 R*(fusi) = R*(f+) 0 Sy = R*(Sx © fus.),
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from De(A) € D(Age-mod) to D(ShL(A)).

Proof. Let usfirst make the following observation:

LEMMA. Let R — R’ be a homomorphism of commutative rings. Let also B be
an R-algebra, and M bea B ® R’-bimodule. Then
R

Qu(B,M) =~ Qp(BY R, M).

The first assertion follows now, since

Lemma

I'((U, By),Sx © fus«(M)) = Qow)(Bu, fus(M)|U) ~ =
Qo1 wy) (fus(Bu, MIf7HU)) = D((f7HU), fis(Bv)), f+ 0 Sy (M)).

In order to prove the second statement, it sufficesto assumethat both X and Y are
affine. In this case the functors f,s, and f, are exact (cf. 2.2.1(3)), and since the
functor J is always exact, the assertion follows. O

3.3.3. Remark. When the condition A" ~ f (A) is not satisfied, the functor of
direct image on quasi-coherent sheaves of A’-modules can still be defined but it
will be neither left exact nor right exact. Therefore, the simply minded isomorphism
3.3.2(1) will be falsein that situation. However, if one modifies the definition of
direct image in order to get a correctly defined functor in the derived category, the
aboveisomorphism in derived categories will still hold.

3.4. PROPOSITION-DEFINITION

(1) The functor $: Ag.-mod — Sh%(A) admits a left adjoint denoted by £:
Sh¥f(A) — Age-mod.
(2) Let f beamapfromapair (Y, A" ~ f.(A)) tothepair (X, A). Thefunctors

Lyof* and fr oLy:Sh%(X)— A} -mod(Y),
are canonically isomorphic.
Proof. For any S € Shf’(A) we must construct a quasi-coherent A-module
L(S), satisfying
Homch_mod(L(S),M) ~ HomShgg(A)(S, (M),
functorialy in M.
Assumefirst, that for agiven S, such £(S) exists. Proposition 3.3.2(1) implies

then, that for every f: (Y, fi,(A)) — (X, A), Ly (f*(S)) over (Y, fr.(A)) exists
aswell and satisfies

Ly (f7(8)) = fus 0 £(5)-
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Observe that this, on one hand, implies (2) modulo (1) and on the other hand
reduces the construction of the functor £ to the case when X is affine.

In these circumstances, every object in Sh%’(A) is a quotient of a one of the
tyPe Zfreqv)-

However, for S = Zgreqy), Lemma 2 of 3.3.1 implies that £(S) = F(V)
satisfies our requirements, where F'(V') denotesthe free A-modulebuilt on V. The
proof follows in view of the following assertion:

SUB-LEMMA. Let C7 and C, be two Abelian categories and let F: Cy — C)
be an additive left exact functor between them. Suppose that 7' admits a partially
defined | eft adjoint functor whichishowever defined on alarge collection of objects
in C> (i.e. any object in C> is a quotient of a one from this collection). Then this
left adjoint is defined on the whole of C5. O

3.4.1. Since the functor S is exact, it can be prolonged to a functor between the
corresponding derived categories: D,.(A) £ D(Age-mod) — D(Sh%(A)) which
will bea so denoted by . Our next aimisto show that the functor £ (whichisobvi-
ously right exact) can bealso derivedinto afunctor L* £: D~ (Sh; (A)) — D, (A),
which will be the left adjoint functor to 3: D,.(A) — D~ (Sh(A)). When X is
affine, the argument of 3.4 provesalso the existence of such L* L, since the sheaves
Zrreevy With V' being a projective O(X')-module form a set of projective generar
tors of Shf(A). However, in order to treat the general case an additional argument
is needed, since objects of the derived category cannot be reconstructed just from
the local information.

3.4.3. THEOREM. Let X bean arbitrary schemeand A be a quasi-coherent sheaf
of algebrason A.Then

(1) Thefunctor £ admits a left derived functor L*L: D~ (Sh¥(A)) — D,.(A).
(2) L*L satisfies
Hom(L*L(S*®), M*) ~ Hom(S*, X(M*)),
functoriallyin S* € D~ (Sh¥;(A)) andin M* € D}.(A).
(3) Let (Y,A') — (X,A) beamap such that f:Y — X isflat and such that
A" — fr (A) isanisomorphism. Then
L*Ly o f*~ f¥ o L*Lx,

asfunctors D™ (Shx (4)) — Dy, (4').

Remark 1. In (3), one can drop the assumptions that Y is flat over X and
that A" — f(A) is an isomorphism. In this case the functors f,;,: A,.-mod —
Af.-mod and f*:Sh¥’(A) — Shi}(Y") will have to be replaced by appropriate
derived functors.
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Remark 2. The category Sh%’(A) is lacking objects that would be acyclic for
the functor £. The situation here is similar to that in [Bo], [B€], when one wants
to define the direct image functor for D-modules. Asin [Bo], there are at least two
ways to overcome this difficulty: a more straightforward one is to go beyond the
category Sh%7(A4) and work with arbitrary sheaves. In this case there are enough
acyclic objects for the functor £, but the drawback of this approach is that we
will haveto rely on the equivalence of the categories D,.(A) and D(A-mod) with
guasi-coherent cohomologies as well as on Theorem 2.5. Another way is the one
described below:

Proof of the Theorem.

Sep 1. First we will present aconstruction of afunctor: L'* £: D~ (Sh%f(A4)) —

D .(A).
qunsider firstapair (Y, A’) withY isaffineand let S be a quasi-coherent sheaf
onCy (A"). Wewill construct acanonical sheaf Can'(.S') mapping surjectively onto
Swith Can'(.S) being acyclicfor thefunctor £. Namely, Can(S) = &I'(B, S)®Zp,
the sum being taken over isomorphism classes of objectsin C@'d(A’) with B afree
algebra on a projective O(Y')-module. This construction has the following two

properties:

(1) For any map of sheaves S; — S> there is a canonical map Can'(S1) —
Can’(Sg).

@) If f:(Z, fr,(A") — (Y, A") isamorphism of pairswith Y and Z affine, there
exists acanonical map f*(Can'(S)) — Can'(f*(9)).

Thusany complex S* of sheavesbounded from abovein Shi“(A’) admitsa admits
acanonical quasi-isomorphism Can(S*®) — S* by acomplex consisting of sheaves
acyclic with respect to the functor <.

Let now S* be acomplex bounded from above on X giving rise to an object of
D~ (Sh¥(A)), and choose j: U — X to be acovering in Zary with U affine. Put
A" ~ j* (A) and let dso j;: U; — X bethe i + 1-st cartesian product of U with
itself over X . All these schemes are affine since X is assumed to be separated.

For each U;, fix the canonical resolution Can(S*|U;) of S*®|U; as above.

Then for each ¢ we can form a complex £(Can(j;(S*))) of quasi-coherent
sheaves of A|U;-bimoduleson U;.

Therearei + 1 mapsfrom U, to U; _,, call thempﬁc, andforeachl <k <i+1
we have a map of complexes

Phus £(CaN(Gi_1(S%))) = L(Can(jf (S*))),
which is a quasi-isomorphism by 3.4(2), since the functor
pi' S, (AlUi—1) — S, (AU3),

is exact.
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The aternating sum of the maps p}ws* defines a complex of complexes
0 = Jus. £(CaN(*(5®))) = Jj1us. L(CaN(j1(5*)))

or, in other words, a double complex £'**(S*) in A,.-mod, whose associated
complex we denote by Ass(£'**(S°®)).

Using Lemma 2.3.3 and Proposition 3.4(2) we see that the canonical map of
complexes

L(Can(j*(5%))) — Ass(L**(S*))|U,
is a quasi-isomorphism. Thisimplies that the functor
S® — Ass(L**(S*)),

is a well-defined functor D~ (Sh{’(4)) — Dg.(A), which we denote by
L'*L(S*).

Sep 2. Let usprovenow, that thefunctor L'® £(.S*) we have constructed satisfies
the adjunction property

Hom(L'*£(S®), M*®) ~ Hom(S*®, S(M*)). (%)
For this we must construct the adjunction morphisms

S* — SoAss(L'**(S*)),
and

Ass(L'** ((M*®))) — M.
Thisisdonein the following way

by Lemma2.3.3

~

Assjji.Can(j; 5°)] AsS[ji.j; (5°)] S

by Lemma3.3.2

Assjji, SL(Can(j; 5°))]
for the first adjunction map, and
ASJiys. L(J; (F(M?)))] ~— ASS[jiys, L Can(j; (S(M?*)))]

S ASJiys, L(Can(j75%))]

by 3.4(2)

by Lenma2.3.3
~

M.

ASS s us (LI(M?))] ASYivys. i us(M")]
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for the second one. It is now easy to verify, that the adjunction maps constructed
abovegiveriseto (x).
Sep 3. The adjunction property (x) established above implies that the functor

L'*£(S*) we have constructed is a derived functor of £ aswell as (3) of the The-
orem in view of Proposition 3.3.2. i

3.5. DEFINITION. Let (X, A) be as before: a scheme with a quasi-coherent
sheaf of algebras on it. We define 7*(A) to be the object of D,.(A) given by
L*L(7(X, A)).

From the fact that £ is right exact we infer that H*(T*(A)) vanishesfor ; > 0
and that HO(T*(A)) = I,.

T*(A) will be called the cotangent complex of A. If M isaquasi-coherent sheaf
of A-bimodules, we denote by H*, (M) the groups Ext!(T*(A), M).

3.5.1. EXAMPLE. Suppose that A isflat over O(X). It follows from the results
of Quillen [Qu], that T'*(A) ~ I4. Indeed, thisis true for X affine, and then we

apply 3.4.3(3).
4. Deformation theory

4.0. Thissectionisalmost aword by word repetition of [Ga)], after we adopt certain
modifications connected with the fact that we are working over a scheme.

4.1.0. For ascheme X, O;(X) will denote the sheaf O[t]/#!*1- O(X).

4.1.1. Let A be a quasi-coherent sheaf of associative algebras on X and let M
be a quasi-coherent sheaf of A-bimodules endowed with a map of A-bimodules
¢p:A— M.

Consider the category Extyg(A, M) defined as follows:

Objects: O1-algebras ext(A, M) such that ker(¢: ext(A, M) — ext(A,M)) =
im(¢: ext(A, M) — ext(A, M)) with fixed isomorphisms

ext(A, M)/t -ext(A,M) ~ A and im(t:ext(A, M) — ext(4A, M)) ~ M,
and such that under the above identifications the action of ¢
A~ ext(A, M)/t - ext(A, M) - im(t: ext(A, M) — ext(A, M)) ~ M,

coincides with ¢.

Morphisms: Maps in this category are defined to be O;-algebra homomor-
phisms that induce identity mapson M ~ im(t: ext(A, M) — ext(A, M)) and on
A~ext(A, M)/t ext(A, M).
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LEMMA. The category Extyg(A, M) above is canonically equivalent to the cate-
gory Torsc, (4)(S(M)) of S(M)-torsorson Cx (A).

Proof. Indeed, to any ext(A, M) as above, we can assign a sheaf of sets whose
sectionsover (U, By) € Cx(A) arealgebra-homomorphisms By — ext(A, M)|U
that respect the projection to A|U. This set of sections is clearly a torsor over
Qo (Bu, M|U) = D((U, By), S(M)).

The above assignment is an equivalence of categories by 2.1.4. O

4.1.2. Let us define the category Deform’(A) to have as objects quasi-coherent
sheaves of associative O, (X )-algebras A;, endowed with an isomorphism A;/A; -
t ~ A such that Tor?i(X ) (A;, O(X)) = 0. In other words, we need that

ASim(t Ay — A;) > ker(t: A; — A;).

Morphisms in this category are just O;(X)-algebras homomorphisms respecting
the identifications with A modulo ¢. This category is obviously a groupoid. It is
called the category of i-th level deformations of A.

We have natural functors Deformi+1(A) — Deform‘(A) given by reduction
modulo #*1. If A; is an object in Deform’(A), we denote by Deform’*(A4) the
category-fiber of the above functor. This category, which is obviously a groupoid
too, is called the category of prolongations of A; onto the + 1-st level.

Observe that for any object A1 € Deform’,*(A)

Alltpesomiyi(4) (Ait1) = Qo(x) (4, A).
4.2. We are now ready to state the main result of the present paper:

THEOREM

(1) The category Deform?(A) is equivalent to the category Torsg, (4)(S(A)) of
3(A)-torsorson Cx (A).

(2) To any A; € Deform‘(A) one can associate a gerbe G4, bound by (A)
on Cx(A) in such a way that G 4,((X, A)) is canonically equivalent to
Deform'; 1(A).

Remark. Observethat the first point in the statement of the Theorem is a special
cases of the second onefor i = 0.

Proof. The first point of the Theorem is a special case of Lemma 4.1.1 above
with M ~ A, ¢ = id.

We define the gerbe G 4, asfollows:

G 4, ((U, Br)) isthe groupoid of O;(U)-algebras By, 1 with an isomorphism

Buiw/t™ By ~ By ATU(Az')|U7
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suchthat ker(#+1: By, 1 — Bryjiyq) = im(t: Byip1 — Bryjiyq) and such that the
map

By ~ By 1/t By — im(t: Buiya — Buisa),

factors through A|U and gives rise to an isomorphism A|U — im(¢: By 1 —
Buii). ,

By definition, G 4, (X, A)) ~ Deform’{*(A).

Functors G 4,((U, Bv)) — Ga,((V,Dy)) for maps (V,Dy) — (U, By) are
given by restricting sheavesto V' and taking fiber products with Dy over By |V'.

We must exhibit now the action of the category Torsg, (g, )(S(A[U)) on
G.1,((U, By)).

Recall, that by 4.1.1, Torsc,, (g, ) (S(M|U)) ~ Extag(Bu, A|U).

Let ext(By, A|U) be an object of Extag(By, A|U) and we put

Action(B;;1 x ext(By, A|U)
~ ker(BHl D ext(BU7 A|U) — BU)/im(t: A— Bi1& ext(BU, A|U))

If now BY,,_, isafixed object of G 4,((U, By)), theinverse functor
G4, (U, By)) = Torse, (5, (S(A|U)),

is provided by setting for any other object B}, 11 € Ga,((U, By)) the correspond-
ing torsor to have as the set of sections over (V, Dy-) the set of O;,1(V')-algebra
homomorphisms (Bp,,,,)|(V, Dv) = (Bf,,,)|(V, Dy) that commute with the
canonical projectionsto Dy, .

In order to finish the proof, we must show that G 4, is a stack, but this follows
from 2.1.4. O

4.3. Wewill now tranglate the assertions of the above theorem into cohomological
terms.

1-st Level Deformations. The set of isomorphism classesof thegroupoid Deform*( A)
is canonically isomorphic to

EXtY(Z(x 1), S(A4)) = R* Hom, _mod (7" (4), A) = HY(A),

(cf. 1.5.2, 3.5, 4.2(1)).

Prolongation of Deformations 1. If A; isan i-th level deformation, there exists a
canonical classin H3(A) which is zero if and only if there exists a prolongation
Ajq of A;. (cf. 1.5.5, 3.5, 4.2(2)).

Prolongation of Deformations 2. Suppose that for a given i-th level deformation
A; the category Deformljil(A) has an object. Then g of this category is atorsor
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over the abelian group H (A). (cf. 1.5.1, 3.5, 4.2(2)).

4.4. EXAMPLE. Suppose now that the sheaf A isflat asasheaf of O(X)-modules.
From Example3.5.1, it followsthat deformationsof A arecontrolled by Ext*(14, A)
(Ext s being taken in the category of quasi-coherent sheaves of A-bimodules) for
i=12
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