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Type II Spectral Flow and the Eta Invariant
Jerome Kaminker and Vicumpriya Perera

Abstract. The relative eta invariant of Atiyah-Patodi-Singer will be shown to be expressible in terms of the
notion of Type I and Type II spectral flow.

1 Introduction

In this note we will show that the continuous part of the relative eta invariant of Atiyah-
Patodi-Singer can be expressed as the Type II spectral flow of a loop of self-adjoint Fred-
holm operators in a II∞ factor.

This is accomplished in two steps. The first is to use the data required to construct the
relative eta invariant to obtain a loop of self-adjoint Fredholm operators in a II∞ factor.
The second is to use index theory to show that the homotopy class of this loop in π1(Fsa

II ) ∼=
R is equal to the relative eta invariant. We make use of results of A. Carey and J. Phillips to
accomplish this.

2 Type II Spectral Flow

We review the notion of spectral flow relative to a Type II∞ factor introduced by Vic Perera
in [11]. Let M be a II∞ factor with trace τ . The Breuer compacts in M is the norm
closed two sided ideal, KM, generated by the operators of finite trace. An operator in M

is Breuer Fredholm if it has a two sided inverse modulo KM. For such an operator the
projections onto its kernel and kernel of its adjoint have finite trace, but, as opposed to
ordinary (or Type I) Fredholm operators, its range may not be closed. Let Fsa

II denote the
self-adjoint Breuer Fredholm operators in M. This space has three components. Two of
them are contractible, while the third is a classifying space for K−1(X; R), in the sense that
[X,Fsa

II ] ∼= K−1(X; R) [3]. It follows from this that π1(Fsa
II ) ∼= R. Thus, if αt is a loop based

at the identity operator in Fsa
II , then its homotopy class corresponds to a real number via

the above isomorphism. One defines the Type II spectral flow of such a loop αt to be this
real number,

s fII (αt ) = [αt ] ∈ π1(Fsa
II ) ∼= R.

We note that this is a natural generalization of the usual notion of spectral flow. Indeed,
if one has a loop of self-adjoint elliptic differential operators on a closed manifold then
the spectral flow of the loop, as defined by Atiyah and Lustig in [2], can be obtained as
follows. Let f (x) = x/

√
1 + x2. Then f (Dt ) is a loop of self-adjoint Fredholm operators.

Its homotopy class defines an element of π1(Fsa ) ∼= Z. The integer it defines agrees with the
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more geometric notion presented in [2]. The definition of spectral flow for the unbounded
family Dt is equal to the homotopy class of the loop [ f (Dt )] ∈ π1(Fsa

I ) ∼= R (cf. [4], [1],
[12], [13]).

3 The Type II∞ Factor

In this section we will describe how one constructs the II∞ factor, M, and certain loops in
F∞II which will lead to the connection between Type II spectral flow and the eta invariant.
We start with the following data. Let M be a closed smooth odd-dimensional Riemannian
manifold. Let α : π1(M) → Un be a unitary representation of its fundamental group and
let Pα denote the associated flat, principle Un bundle. There exists an integer k so that
the bundle Pkα is trivial and we fix a trivialization θ : Pkα → M × Unk. For now, we will
suppress the notation involving k and simply assume that the bundle Pα is trivial, although
k will play a role later.

The total space of the flat principle bundle, Pα = M̃ ×α Un, can be identified with
M ×Un via the trivialization θ. This induces a horizontal foliation, which will be denoted
Fα, of M ×Un and whose leaves are quotients of the images of M̃ ×Un. One can associate
a C∗-algebra and a von Neumann algebra to Fα. For the C∗-algebra one takes the reduced
algebra of Connes, C∗(Fα). For the von Neumann algebra, W∗(Fα) we will take the weak
closure of C∗(Fα) in its regular representation. In fact, we will actually have to consider
variants of these constructions which take into account a vector bundle E on M × Un.
For this one completes the smooth convolution algebra C∞c

(
G, s∗(E) ⊗ r∗(E)

)
, where G

is the holonomy groupoid. Its regular representation is on the Hilbert space of sections
H = L2

(
G, r∗(E)

)
. The von Neumann algebra obtained as the weak closure of C∗(Fα, E)

is isomorphic to W∗(Fα). Indeed, it follows from [10] that C∗(Fα) ∼= C∗(Fα, E).
The type of the von Neumann algebra, W∗(Fα), depends on the representation α. If the

image of α : π1(M) → Un is infinite, then W∗(Fα) is a Type II∞ algebra. If, in addition,
the image of α is dense, it is a II∞ factor [15]. We will concentrate on this case.

Let D : C∞(E)→ C∞(E) denote a first order, essentially self-adjoint, elliptic differential
operator on M. For example, if we assume M is odd dimensional, then the Dirac operator
is a possible choice for D. One can apply the suspension process of [7], [6] which lifts D to
a leafwise elliptic operator, Dα : L2(M ×Un, Ẽ) → L2(M ×Un, Ẽ) on M ×Un, where Ẽ is
the bundle on M ×Un obtained from E in the natural way [8].

Proposition 3.1 The operator Dα defines an unbounded self-adjoint operator on the Hilbert
space H. It is affiliated to the von Neumann algebra W∗(Fα) and it has a parametrix modulo
the Breuer ideal B ⊂ W∗(Fα). Moreover, Dα(I + Dα

2)−
1
2 is an element of Fsa

II and has a
parametrix modulo p-summable operators, for a suitable p.

Proof This follows from the results in [7], [6], [8].

Let φ : M × Un → Uk be a continuous unitary valued function. Then 1 ⊗ φ defines
an automorphism of the bundle Ẽ ⊗ εk. All the previous constructions extend to the case
where Ẽ is replaced by Ẽ ⊗ εk. Define Dφα by the formula

Dφα = (1⊗ φ)∗(Dα ⊗ 1)(1⊗ φ),(3.1)
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where the operators are acting on the bundle Ẽ ⊗ εk. Since Dα ⊗ 1 and Dφα have the same
principle symbol there is a unique homotopy class of paths between them. We take the
straight line path,

Dt = (1− t)Dα + tDφα = Dα + (1− t)(1⊗ φ)∗[Dα, 1⊗ φ],(3.2)

and convert it to a path of bounded operators using the following result of Phillips and
Carey [13], [5].

Proposition 3.2 The map α(t) = Dt (1 + Dt
2)−

1
2 defines a continuous path in Fsa

II .

We want to make this into a loop, so consider the operator (1 ⊗ φ). It is an element
of the unitary group of W∗(Fα) which is path connected. Let β(t) be a path of unitaries
from (1 ⊗ φ) to I. The required loop is obtained by following the path Dt by the path
β(t)∗(Dα ⊗ 1)β(t). We will denote this loop by λ(Dφ, α, θ). It is easy to see that the
homotopy class [λ(Dφ, α, θ)] ∈ π1(Fsa

II ) depends only on the data (D, α, θ, φ) and does
not depend on the other choices made in its construction.

Now, suppose we have the data D and (α, θ). We may associate a loop of self-adjoint
Type II Fredholms to this by taking for φ the projection φ = pr1 : M × Un → Un. This
depends on the trivialization θ so we denote the corresponding element of π1(Fsa

II ) by
λ(D, α, θ). Using the fact that π1(Fsa

II ) ∼= R we will define the resulting real number to
be the Type II spectral flow associated to our data,

s fII (D, α, θ) = [λ(Dα, θ)] ∈ π1(Fsa
II ) ∼= R.(3.3)

Remark 3.3 There is a classifying space for data such as (α, θ). Let U δn denote the unitary
group with the discrete topology and let BUδn → BUn be the induced map on classifying
spaces. Let BUn be the homotopy fiber. Then there is a one-one correspondence between
homotopy classes of maps M → BUn and homotopy classes of pairs (α, θ) [6]. Indeed,
there is a pairing

χ : K1(M)× [M,BUn]→ π1(Fsa
II ),(3.4)

which, upon fixing the operator D, yields a map

χD : [M,BUn]→ π1(Fsa
II )(3.5)

which is given by χD

(
[(α, θ)]

)
= [λ(D, α, θ)].

4 Type II Spectral Flow and the Eta Invariant

In this section we will relate Type II spectral flow and the relative eta invariant. Recall
that what we are calling the “relative eta invariant” is the difference of ξ invariants for
an operator D and the same operator twisted by a flat bundle. It was studied in [2] and
expressed topologically via the Flat Bundle index theorem. To be more specific, to a self-
adjoint operator D and a unitary representation α : π1(M) → Un, Atiyah-Patodi-Singer
associate an element in R/Z via the formula

η(D, α) = ξ(D⊗ Eα)− ξ(D⊗ εn) ∈ R/Z(4.1)
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where

ξ(D) =
1

2

(
η(D) + dim ker(D)

)
,(4.2)

Eα is the flat vector bundle defined by α, and η(D) is the eta invariant. On the other hand,
if one chooses an integer k so that the bundle classified by kα is trivial, and then fixes a
trivialization of that bundle θ, then in the previous section we have defined a real number
s fII (D, α, θ). Our goal is to establish a relation between these invariants.

The approach used in [2] to study η(D, α) starts by breaking it into two parts. One
component, which we will denote s fI (D, kα, θ), is defined in terms of the Type I spectral
flow of a loop λI (D, α, θ) of self-adjoint Fredholm operators defined as follows. Consider
the operator D : C∞(E) → C∞(E). As above, we twist it by the flat bundle defined by
α and use the trivialization θ to represent this operator and the operator D ⊗ 1 on the
same Hilbert space. One then forms a loop, λI (D, α, θ), as before, but in this case it is
in the usual self-adjoint Fredholm operators on a separable Hilbert space. Thus, we have
[λI (D, α, θ)] ∈ π1(Fsa

I ) ∼= Z. We then define

s fI (D, kα, θ) =
1

k
[λI (D, kα, θ)] ∈ Q/Z,(4.3)

where the bar means projecting to a coset in Q/Z.
The second component was defined by first constructing an element v ∈ K1(TM; R)

in the following way. Let Tch(kα, θ) ∈ H∗(M,R) be the transgressed Chern character
associated to the trivialized flat bundle, and let v = ch−1

(
Tch(kα, θ)

)
∈ K1(M,R). Let

[σ(D)] ∈ K1(TM,R) be the symbol class of the operator D. Consider the class v·[σ(D)] ∈
K0(TM,R). The desired number is the index of this class as an element of R. It is this
second component which will be interpreted as Type II spectral flow.

Recall that the Flat Bundle Index Theorem states that the sum of these components when
projected into R/Z is equal to η(D, α) = ξ(D⊗ Eα)− ξ(D⊗ εn). The main result of this
section is the following.

Theorem 4.1 One has

η(D, α) =
1

k

(
s fI (D, kα, θ) + s fII (D, kα, θ)

)
∈ R/Z.(4.4)

Proof It suffices to show that the second component described above is equal to Type II
spectral flow. It follows from Proposition 3.1 that the operator Dα defines a pre-Breuer-
Fredholm module in the sense of Carey and Phillips [5]. We may form the loop Dt =
λ(D, α, θ)(t) and consider the associated path of bounded operators, f (Dt ), where f (x) =
x/
√

1 + x2. The Type II spectral flow associated to that loop can be expressed as the index
of a certain Toeplitz operator. To do this, one needs to perturb the original pre-Fredholm
module to a genuine Fredholm module. This can always be done, and the resulting pro-
jection in this case is the positive spectral projection, P, for the leafwise self-adjoint elliptic
operator Dα. The Toeplitz operator we will consider, Tφ, is that obtained by compressing
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multiplication by 1⊗ φ to the range of P. The index theory for such operators was studied
in [7], [6] where it was shown the its index is given by the following topological formula,

IndexII (Tφ) = 〈Tch(α, θ) ∪ Φ−1ch
(
σ(D)

)
∪ µ, [M ×Un]〉,(4.5)

where µ is the Poincaré dual of the Ruelle-Sullivan current. From this it follows easily that
4.5 is equal to

〈Tch(α, θ) ∪ Φ−1ch
(
σ(D)

)
, [M]〉.

But by [2, p. 324] this is equal to Index
(
v · [σ(D)]

)
. This completes the proof.

Remark 4.2 There is a related paper by S. Hurder, [9], in which a notion of Type II spec-
tral flow arises which appears to be quite different from the one used in this paper. We
have chosen to use the general and abstract definition of Type II spectral flow as developed
in [11]. It follows from the results of the present paper, along with the work in [9] and [14],
that the two notions agree. Indeed, Hurder shows that his definition of Type II spectral flow
agrees with the real valued index of a leafwise Toeplitz operator, while we observe that ours
agrees with that same index.

References
[1] M. F. Atiyah and I. M. Singer, Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci.

Publ. Math. 37(1969), 305–326.
[2] M. F. Atiyah, I. M. Singer and V. K. Patodi, Spectral asymmetry and Riemannian geometry, III. Math. Proc.

Camb. Phil. Soc. 79(1976), 71–99.
[3] D. Basu, A classifying space for K1(X; R). Integral Equations Operator Theory 31(1998), 287–298.
[4] B. Boos-Bavnbek and K. P. Wojciechowski, Elliptic boundary problems for Dirac operators. Birkhäuser, 1993.
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