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Abstract. To a symmetric, relatively ample line bundle on anAbelian scheme one can associate a
linear combination ofthe determinantbundle and the relative canonicalbundle, which is a torsion
element in the Picardgroup ofthebase.We improve theboundon theorderofthis element foundby
Faltings and Chai. In particular, we obtain an optimal boundwhen the degree of the linebundle d
is oddandthe setofresidue characteristics ofthebase doesnot intersect the setofprimespdividing
d, such that p � ÿ1 mod�4� and pW 2gÿ 1, where g is the relative dimension of the Abelian
scheme. Also, we show that in some cases these torsion elements generate the entire torsion
subgroup in the Picard group of the corresponding moduli stack.
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Let L be a relatively ample line bundle on an Abelian scheme p : A! S, trivialized
along the zero section. Assume that L is symmetric, i.e. �ÿ1��AL ' L. We denote
by fL : A! Â the corresponding self-dual homomorphism (where Â is the dual
Abelian scheme). Let d � rkp�L, so that d2 is the degree of fL. Then Faltings
and Chai proved in [4], I, 5.1 the following equality in Pic�S�:

8 � d3 � det�p�L� � ÿ4 � d4 � oA

where we denote by oA the restriction of the relative canonical bundle oA=S to the
zero section. In other words, the element

D�L� :� 2 � det�p�L� � d � oA

of Pic�S� is annihilated by 4d3. It is known from the transformation theory of
theta-functions (see [10]) that this result is sharp for principal polarizations (d � 1).
In the case of analytic families of complex Abelian varieties A. Kouvidakis showed
in [7] using theta functions that if the type of polarization is �d1; . . . ; dg� with
d1j . . . jdg then 4 � D�L� � 0 except when 3jdg and dgÿ1 6� 0 mod�3�. In the latter case
he proved that 12 � D�L� � 0. This suggests that one can try to eliminate the factor
d3 in general situation. We prove that one can do this outside certain set of prime
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divisors of d. In particular, we explain the appearance of factor 3 above algebraically
(see Theorem 1.1). Here are the precise statements.

THEOREM 0.1 Let L be a symmetric, relatively ample line bundle over an Abelian
scheme A=S of relative dimension g, trivialized along the zero section. Then

(1) 2n2 � d 0 � D�L� � 0; where d 0 � Q pnp is the product of powers of primes p dividing
d such that p � ÿ1 mod�4� and pW max�2gÿ 1; 3�; np � 1 if p 6� 3 and
�2g� 1=3� < p < 2gÿ 1, np � 2 if p � 2gÿ 1 6� 3, otherwise np � vp�d�;
n2 � 2� 3v2�d�.

(2) There exists an integer N�g� > 0 depending only on g, such that N�g� � D�L� � 0:

We can get sharper bounds under some restrictions on the residue characteristics
of S. For every Abelian group K and a prime number p we denote by K �p� the
subgroup of elements of K annihilated by some power of p. Note that when p is
not among the residue characteristics of S we can de¢ne the p-type of polarization
as the type � pn1 ; . . . ; png� of the ¢nite symplectic group K�L��p�, where
K�L� � ker�fL : A! Â�. Here n1 W � � � W ng are locally constant functions
on S.

THEOREM 0.2. Let p be an odd prime number, D�L��p� 2 Pic�S��p� be the p-primary
component of D�L�. Let S� 1=p � � S be the open subscheme where p is invertible. Then
D�L��p�jS� 1p � � 0 in Pic�S� 1p �� unless p � 3 and the 3-type of the polarization over S� 13 � is
�1; . . . ; 1; 3k�, k > 0. In the latter case one has 3 � D�L��3�jS� 13 � � 0 in Pic�S� 13 ��.

Remarks. (1) In fact, the equalities of Theorems 0.1 and 0.2 can be realized by
canonical (i.e. compatible with arbitrary base changes) isomorphisms of line
bundles. More precisely, let Xg;d be the moduli stack over Spec�Z� classifying data
�A;L� as above. Since the construction of D�L� commutes with arbitrary base chan-
ges, we can consider D�L� as an element of the Picard group Pic�Xg;d �. Now we claim
that the equality of Theorem 0.1 holds in Pic�Xg;d� while the equality of Theorem 0.2
holds in Pic�Xg;d � �1=p� ��. This follows from the fact that there exists a PGLN-torsoreXg;d over Xg;d which is represented by a scheme. Indeed, eXg;d is obtained by adding
a basis of p��L3� (considered up to constant) to the above data �A;L�. Then the
representing scheme can be constructed as in [17] using Hilbert schemes. Now it
suf¢ces to prove the triviality of the induced PGLN-equivariant line bundle oneXg;d . Applying Theorem 0.1 (resp. Theorem 0.2) to eXg;d we get some trivialization
of this line bundle. However, as PGLN has no non-trivial characters this
trivialization is automatically compatible with PGLN -action.

(2) These results can be extended to line bundles Lwhich are not necessarily ample,
but are non-degenerate, i.e. such that the corresponding homomorphism fL : A! Â
is an isogeny. In this case there is a locally constant function i�L� on S such that
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Rip��L� � 0 for i 6� i�L� and Ri�L�p�L is locally-free of rank d. One has by de¢nition
det p�L :� �ÿ1�i�L� det�Ri�L�p�L�. Also we should replace d by �ÿ1�i�L�d when de¢ning
D�L�:

D�L� :� 2 � det p�L� �ÿ1�i�L� � d � oA:

Then our argument goes through for such L. Note especially that in Section 2 we rely
heavily on the fact that the function n 7! det p�Ln has ¢nite degree. However, this is
true for any line bundle ö see Lemma 2.1.

(3) When d is even one can consider an element D0�L� � det p�L� �d=2� � oA in
Pic�S� such that D�L� � 2 � D0�L�. Kouvidakis proved in [7] that for a totally sym-
metric line bundle L one always has 3 � D0�L� � 0 if gX 3 and the characteristic
is zero (furthermore, D0�L� � 0 if the 3-polarization type is not �1; . . . ; 1; 3k�,
k > 0). It would be nice to extend this result to the case of positive characteristics.
So far, we only can control the behavior of these elements under isogeny of odd
degree (see remark after Theorem 1.2). Also, in the principally polarized case (i.e.
when d � 1) one still has D0�L2n� � 0 for gX 3 and any scheme S whose residue
characteristics are prime to 2. This follows from the fact that the ¢bers of the relevant
stacks over Spec�Z� 12 �� are smooth and irreducible (compare with the proof of
Theorem 5.6).

The following corollary describes the cases when we get an optimal result.

COROLLARY 0.3. Assume that d is odd and that every prime p dividing d, such that
p � ÿ1 mod�4� and pW max�2gÿ 1; 3�, is not among residue characteristics of S.
Then one has 4 � D�L� � 0 unless the 3-type of the polarization is �1; . . . ; 1; 3k�,
k > 0. In the latter case one has 12 � D�L� � 0:

Besides the idea of Faltings and Chai, the crucial step in the proof of these
theorems is the relation between determinant bundles of L and a�L where a is
an isogeny of Abelian schemes, worked out in Section 1. Essentially this boils down
to computation of norms of symmetric line bundles with cube structures over ¢nite
£at subgroups in Abelian schemes. Theorem 0.1 is proved in Sections 2 and 3, while
Theorem 0.2 is proved in Section 4. In Section 5 we calculate elements D�L� in
the case g � 1 and describe some linear relations between D�Ln� for different n
in higher dimensions. In particular, we prove that for d � 1 and gX 2 one has
the following relation D�Ln� � ngÿ1 � D�L� for any odd n. Also following Mumford's
approach we determine the torsion subgroup in the Picard group of the moduli stackeA�g � 12 � of principally polarized Abelian varieties with even symmetric theta divisor
(localized outside characterstic 2) for gX 3. Recall that the divisor (and the corre-
sponding line bundle) is called even or odd depending on the parity of its multiplicity
at zero. It turns out that the torsion subgroup in Pic�eA�g � 12 �� is cyclic of order 4, hence
it is generated by our element D�L�.
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NOTATION. Throughout this paper S denotes the base scheme and for any scheme
over S we denote by p its projection to S (hoping that this will not lead to confusion).
For any morphism of schemes f we denote by f�, f � and f ! the corresponding stan-
dard functors between derived categories of quasi-coherent sheaves (e.g. f� denotes
the right derived functor of the push-forward functor). For a vector bundle V
of rank r we denote detV �Vr�V �. This de¢nition can be naturally extended to
complexes (see [2]). For all Abelian schemes over S we denote by e the zero section.
For an Abelian scheme A (resp. morphism of Abelian schemes f ) we denote by
Â (resp. f̂ ) the dual Abelian scheme (resp. dual morphism). Also for every integer
n we denote by �n�A : A! A the multiplication by n on A, and by An � A its kernel.
For every line bundle L on A we denote by fL : A! Â the corresponding morphism
of Abelian schemes (see [12]). For a ¢nite £at group scheme H=S we denote by jHj its
order which is a locally constant function on S, so for an integer k the condition
jHj > kmeans that the order ofH is greater than k over every connected component
of S. We mostly use additive notation for the group law in the Picard group.

1. The Behavior Under Isogenies

In this section we study the relation between D�L� and D�a�L� where a : A! B is an
isogeny of Abelian schemes, L is a relatively ample, symmetric, line bundle on B
trivialized along the zero section. Let d � rk p�L. The main result of this section
is the following theorem.

THEOREM 1.1. (1) One has gcd�12; deg�a�� � �D�a�L� ÿ deg�a� � D�L�� � 0: (2) If
deg�a� is odd, then det p��a�L� � deg�a� � det p�L� d � det p�Oker a � z where
gcd�3; deg�a�� � z � 0.

More precisely, these equalities in Pic�S� are realized by canonical isomorphisms of
line bundles, compatible with arbitrary base changes.

Remark. In the case d � 1 this follows from the result of Moret-Bailly in [9], VIII,
1.1.3. When d is even the second equality of the theorem can be rewritten as

gcd�3; deg�a�� � �D0�a�L� ÿ deg�a� � D0�L�� � 0;

where D0�L� :� det p�L� d2 � oA.

Outside of characteristic 3 we can improve Theorem 1.1 for some isogenies of
degree divisible by 3.

THEOREM 1.2. Assume that 3 is not among residue characteristics of S and that d is
relatively prime to 3. Assume that 3k � ker�a� � 0, that K�a�L��3� is annihilated by
1
3 � jK�a�L��3�j

1
2, and that jK�a�L��3�=�ker�a� � 3K�a�L��3��j > 3. Then one has a canoni-
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cal isomorphism of line bundles on S realizing the equality D�a�L� � deg�a� � D�L� in
Pic�S�.

Remark.When d is even the similar relation holds for elementsD0��� instead ofD���.

COROLLARY 1.3. Let L be an ample symmetric line bundle on an Abelian scheme
A=S, trivialized along the zero section. Then for any odd integer n > 0 which is
not divisible by 3 one has D�Ln2 � � n2g � D�L�: Also one has D�L4��3� � 4g � D�L��3�and
D�L9��2� � 9g � D�L��2�:

Furthermore, if g > 1 and 3 is prime to d � rk p�L and to the residue characteristics
of S then D�L9� � 9g � D�L�:

We are going to use the relative Fourier^Mukai transform, so let us brie£y recall
some of its properties. For details the reader should consult [11] and [8]. The
Fourier^Mukai transform is the functor

FA � FA=S : Db�A� ! Db�Â� : X 7!p�2�p�1X 
 P�;

whereP is the (normalized) relative Poincarë bundle onA�S Â. It is compatible with
arbitrary base changes and satis¢es the following fundamental property:

F Â � FA ' �ÿidA����� 
 p�oÿ1A �ÿg�

where g is the relative dimension of p. Because of this the relative canonical bundles
of A and Â often appear when working with the Fourier^Mukai transform so it
is useful to know that there is a canonical isomorphism oÂ ' oA (see [8], 1.1.3).

Also for any homomorphism f : A! B of Abelian schemes over S one has the
following canonical isomorphisms

FB � f� ' f̂ � � FA; �1:1�

FA � f ! ' f̂� � FB: �1:2�

The particular case of (1.1) is the isomorphism e� � FA ' p�; where e : S! A is the
zero section, p : A! S is the projection.

The following lemma will be used in the proof of Theorem 1.2.

LEMMA 1.4. For any relatively ample line bundle L on B trivialized along the zero
section one has a canonical isomorphism f�LFB�L� ' p�p�L
 Lÿ1:

Proof. Making the base change fL : B! B̂ of the projection p2 : B � B̂! B̂ we
can write

f�LFB�L� ' f�Lp2�� p�1L
 P� ' p2�� p�1L
 �idB;fL��P�
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where in the latter expression p2 denotes the projection of the product B �S B on the
second factor. But we have an isomorphism

m�L ' p�1L
 p�2L
 �idB;fL��P

since a trivialization of L along the zero section is equivalent to a cube structure on it
(see [1]). Hence,

f�LFB�L� ' p2�� p�2Lÿ1 
 m�L� ' Lÿ1 
 p2�m��L� ' Lÿ1 
 p�p�L

as required. &

Proof of Theorem 1.1. Applying (1.2) to the isogeny a : A! B we obtain
FA�a!L� ' â�FB�L�: Restricting this isomorphism to the zero section we obtain

p��a!L� ' e�FA�a!L� ' p��FB�L�jH �;

where H � ker�â� � B̂. Taking the determinant of this isomorphism we get

det p��a!L� � det p��FB�L�jH �:

Using the fact that a!L ' a�L
 oA=S 
 oÿ1B=S we can rewrite the left-hand side as
follows:

det p��a!L� � det p��a�L� � n � d � oa ;

where oa � oA ÿ oB, n � deg a.
Recall (see e.g. [2]) that for any vector bundle E of rank r on H one has

det p��E� � r � det p�OH �NH=S�det E� �1:3�

where NH=S : Pic�H� ! Pic�S� is the corresponding norm homomorphism.
Consider the line bundle M � detFB�L� 
 p��det p�L�ÿ1 on B̂. Then M has a

canonical trivialization along the zero section. Furthermore, since the Fourier trans-
form commutes with �ÿ1��, we have an isomorphism �ÿ1��B̂M 'M compatible with
the symmetry structure on L. Applying Equation (1.3) to E � FB�L�jH , we get

det p��FB�L�jH � � d � det p�OH �NH=S�p� det p�L�MjH �
� d � det p�OH � n � det p�L�NH=S�MjH�:

Hence,

det p��a�L� � n � d � oa � n � det p�L�NH=S�MjH � � d � det p�OH : �1:4�

This implies that

D�a�L� ÿ n � D�L� � 2 �NH=S�MjH � � 2 � d � det p�OH ÿ n � d � oa:
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Recall that one has the canonical isomorphism �p�OH �_ ' oH 
 p�OH , where
oH � �p�OĤ �H is the line bundle of (relative) invariant measures on H. Passing
to determinants we get 2 detp�OH � ÿn � oH : Hence,

D�a�L� ÿ n � D�L� � 2 �NH=S�MjH � ÿ n � d � oH ÿ n � d � oa � 2 �NH=S�MjH �;

sinceoH ' oâ ' oÿ1a . Also using that ker�a� is Cartier dual toH we deduce from (14)
the following equality

det p��a�L� � n � det p�L� d � det p�Oker a � z

where z � NH=S�MjH �. It remains to show that gcd�24; 2n� �NH=S�MjH � � 0 and that
gcd�3; n� �NH=S�MjH � � 0 if deg�a� is odd. To this end let us decompose H into a
product of two group schemesH ' H 0 �S H 00 such that the order of H 0 is odd, while
the order of H 00 is a power of 2. Then the cube structure on M induces the
decomposition of MjH into the external tensor product of MjH 0 and MjH 00 . Hence,
we obtain

NH=S�MjH � � jH 00j �NH 0=S�MjH 0 � � jH 0j �NH 00=S�MjH 00 �:

Recall that since M has a cube structure and �ÿ1��M 'M, it follows that
�n��M 'Mn2 for any n. Now the multiplication by 3 is an automorphism of H 00,
hence

NH 00=S�MjH 00 � � NH 00=S��3��B̂MjH 00 � � NH 00=S�M9jH 00 � � 9 �NH 00=S�MjH 00 �:

Thus, 8 �NH 00=S�MjH 00 � � 0. Similarly, using the multiplication by 2 we obtain

NH 0=S�MjH 0 � � NH 0=S��2��B̂MjH 0 � � NH 0=S�M4jH 0 � � 4 �NH 0=S�MjH 0 �;

hence 3 �NH 0=S�MjH 0 � � 0. It remains to note that

2 �NH=S�MjH � � NH=S�MjH � �NH=S��ÿ1��B̂MjH �
� NH=S��M 
 �ÿ1��B̂M�jH � � NH=S��idB̂;fM��PjH �

due to an isomorphism M 
 �ÿ1��B̂M ' �idB̂;fM��P. In particular, since H is
annihilated by n it follows that

2n �NH=S�MjH� � 0: &

LEMMA 1.5. Let B be an Abelian scheme over S, where 3 is prime to the residue
characteristics of S, L be an ample line bundle on B trivialized along the zero section,
H � B3 be a ¢nite £at subgroup. Assume that H is isotropic with respect to the sym-
plectic form eL

3
on K�L3� and that jHj > 3. Then there is a canonical isomorphism

of NH=S�LjH � with the trivial line bundle on S.
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Proof. Without loss of generality we can assume that L is symmetric. Indeed, using
the isomorphism NH=S��ÿ1��BLjH � ' NH=S�LjH � and the cube structure on L one can
see that NH=S�LjH � is annihilated by some power of 3. Hence, it suf¢ces to prove
the assertion for L
 �ÿ1��BL instead of L.

Next we notice that the Gm-torsor L3jH is symmetric and has a structure of com-
mutative group extension. Since the order of H is odd this implies that L3jH has
a unique trivialization compatible with the symmetry and with the group
structure.

Let us consider the ¢nite ëtale covering c : S0 ! S corresponding to a choice of a
non-trivial point s 2 H. The degree of this covering is prime to 3, so it suf¢ces
to prove the triviality of NH=S�LjH � after making the corresponding base change.
Thus, we can assume that we have a non-trivial S-point s : S! H. To compute
NH=S�L� we decompose the projection H ! S into the composition H ! H ! S
where H � H=hsi, hsi � H is the cyclic subgroup in H generated by s. Now we
claim that

NH=H�L� ' p��s�L2� �1:5�

where p is the projection to S. Indeed, to give an isomorphism of line bundles onH is
the same as to give an isomorphism of their pull-backs to H compatible with the
action of hsi � H. Note that we have an isomorphism of symmetric line bundles
trivialized at zero

L
 t�sL
 t�ÿsL
 Lÿ2s ' L3: �1:6�

We have a unique symmetric lifting of H to the Mumford group of a line bundle on
each side. These liftings induce the symmetric action of H on both sides. By
uniqueness the isomorphism (1.6) is compatible with the action of H on each side.
Therefore, combining (1.6) with the trivialization of L3jH we get an H-equivariant
trivialization of the left-hand side restricted to H. In particular, this trivialization
is compatible with the symmetric action of the subgroup hsi ' Z3, hence, it descends
to an isomorphism (1.5) on H. But s�L is annihilated by 3 in Pic�S� and the degree of
the projection p : H ! S is divisible by 3 (here we use the assumption that jHj > 3).
Thus, we obtain

NH=S�L� � NH=SNH=H �L� � NH=S�p�s�L2� � 0

as required. &

Proof of Theorem 1.2. Let H � B3k be the preimage of ker�â� � B̂3k under the
isomorphism fLjB3k

: B3k ! B̂3k . As the proof of Theorem 1.1 shows we only have
to check the triviality of the norm of M restricted to ker�â�. Since f�LM ' Lÿd

by Lemma 1.4, this is equivalent to proving the triviality of NH=S�LjH �. Consider
the subgroup K � aÿ1�H� � A. Then K � A32k and the de¢nition of H implies that
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K � K�a�L��3�. Also since d is prime to 3, it follows that ker�a� is a maximal isotropic
subgroup in K . Now we claim that after making an ëtale base change of degree prime
to 3 we can ¢nd a ¢nite £at subgroup K1 � K containing ker�a�, with the following
two properties:

(1) K is annihilated by 3 � jK1= ker�a�j,
(2) the quotient K=K1 is annihilated by 3 and has order > 3.

Indeed, since jK=ker�a�j � jK j12, all we need is to ¢nd K1 such that
ker�a� � 3K � K1 � K and jK=K1j � 9. To get such K1 we just make an ëtale cover-
ing of S (of degree prime to 3) corresponding to a choice of a subgroup of index
9 in K=�ker�a� � 3K�.

Let us denote K 01 � K1= ker�a� � H � B and H 0 � K=K1 � H=K 01. Consider the
isogeny f : B! B0 � B=K 01 and let L0 be a line bundle on B0 de¢ned by

L0 � NB=B0 �L� 
 p�NK 01=S�LjK 01�
ÿ1:

Then L0 is trivialized along the zero section and we have

NH=S�LjH � � NH 0=S�NB=B0LjH 0 � � NH 0=S�L0jH 0 � � jH 0j �NK 01=S�LjK 01�:

The latter term is trivial, since NK 01=S�LjK 01� is annihilated by 3 (see the proof of
Theorem 1.1). Thus, it remains to prove the triviality of NH 0=S�L0jH 0 �. Since
jH 0j > 3 we can apply Lemma 1.5 to L0 and H 0 provided that H 0 is isotropic with
respect to the standard symplectic form on K�L03�. This is equivalent to asking that
H is isotropic in K�� f �L0�3�. But the symplectic structure on the latter group is deter-
mined by the the polarization associated with � f �L0�3 (see [12]). Now since
f �NB=B0 �L� is algebraically equivalent to Ldeg� f � we obtain that K�� f �L0�3� �
K�L3 deg� f �� as symplectic groups. Now H � K�L3 deg� f �� is isotropic iff
K � aÿ1�H� � K�a�L3 deg� f �� is isotropic. But K � K�a�L�, so this follows from
the fact that K is annihilated by 3 deg� f � � 3 � jK 01j by assumption. &

2. The Method of Faltings and Chai

In this section we start proving Theorem 0.1.
Fix an odd prime number p. Following the proof of Faltings and Chai we con-

sider the homomorphism fp : Z! Pic�S�� p�, such that fp�n� is the p-primary
component of D�Ln�. This is a `polynomial' function in n, which means that
difp � 0 for some i where d is the difference operator: df�n� � f�n� 1� ÿ f�n�.
As was noticed in [4] this can be seen by embedding A into the product of projective
bundles P�p�La� �S P�p�Lb� for relatively prime a and b (see Lemma 2.1 below for
a more precise result). This implies immediately that the image of fp belongs to
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some ¢nitely generated subgroup of Pic�S�� p� and that fp�n� pN� � fp�n� for suf-
¢ciently large N. By Serre duality one has fp�1� � �ÿ1�g � fp�ÿ1� � 0, where g is
the relative dimension of A=S. Thus, if we ¢nd an integer k � ÿ1 mod � pN� such
that fp�k� � kg � fp�1� this would imply that D�L�� p� � 0. This is always possible when
p � 1 mod�4�. Indeed, we claim that if p > 3 then fp�m2n� � m2gfp�n� for all n and
m 6� 0. This follows immediately from Theorem 1.1 applied to the isogeny
�m�A : A! A and the line bundle Ln (we don't have to worry about the factor
12 since we only consider p-primary component of the equality of Lemma 2.1
and p > 3). If p � 1 mod�4� then we can ¢nd k � m2 � ÿ1 mod�4�, so we are done.
Hence, we can assume that p � ÿ1 mod�4�. In this case one can always ¢nd some
integers n and m such that n2 �m2 � ÿ1 mod� pN �. Now let us consider the isogeny
a : A2! A2 given by the matrix �n�A �m�A

�ÿm�A �n�A

� �
. Then it is easy to see that

a��LbL� ' LkbLk where k � n2 �m2. Note that possibly changing initial n and m
we can achieve that k is prime to 3. Applying Theorem 1.1 we ¢nd that

4 � D�LkbLk� � 4 � k2gD�LbL�:

Hence, d � fp�k� � d � kg � fp�1�. As we noticed above this implies that d � D�L��p� � 0.
This ¢nishes the ¢rst step in the proof of Theorem 0.1.

Now let us prove that D�L�� p� � 0 for pX 2g� 1, p 6� 3. The only new ingredient
we need is the following lemma. Let us say that a function f : Z! G, where G
is an Abelian group, has degree W l if dl�1f � 0 where df�n� � f�n� 1� ÿ f�n�.

LEMMA 2.1. Let p : X ! S be a smooth projective morphism of pure dimension g, L
be a line bundle on X. Then the function f : Z! Pic�S� de¢ned by f �n� � det p��Ln�
has degree W g� 1.

Proof. This follows from Elkik's construction (based on ideas of Deligne in [2]), see
[3], IV.1.3. &

Applying this Lemma to our Abelian scheme A=S and the line bundle L on it we
deduce that fp has degree W g� 1. Now the vanishing of D�L�� p� for pX 2g� 1,
p 6� 3, is implied by the following Lemma.

LEMMA 2.2. Let p be a prime number, such that pX 2g� 1, p 6� 3, f : Z! Z=pkZ
be a function of degree W g� 1, such that f�n� pN � � f�n� for suf¢ciently large
N. Assume that f�m2n� � m2g � f�n� for all n and m. Then f�n� � ng � f�1� for
all n.

Proof. Replacing f by f�n� ÿ ng � f�1� we can assume that f�1� � 0. In this case
the assertion of Lemma is that f � 0. An easy induction in k shows that it suf¢ces
to prove this for k � 1. Then we can ¢nd a polynomial f0�x� 2 Z=pZ�x� of degree
W pÿ 1 such that f0�n� � f�n� for n � 0; 1; . . . ; pÿ 1. Since f is the function of
degree W pÿ 1, it is determined uniquely by the set of its p consequtive values.
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The same is true for f0 considered as a function Z! Z=pZ. It follows that
f0�n� � f�n� for all n, in particular, f�n� depends only on n mod� p�. Let us ¢x a
non-quadratic residue a modulo p. We know that f�n� � 0 if n is a square modulo
p, and that f�n� � aÿg � ng � f�a� if n is not a square modulo p. Hence, for some
l 2 Z=pZ we have f�n� � l � ng � �1ÿ n

pÿ1
2 � for all n. Now if l 6� 0 then the right-hand

side is given by a polynomial of degree g� �pÿ 1=2�W pÿ 1. Therefore, we actually
have an identity of polynomials in Z=pZ�x� which implies that
deg�f� � g� �pÿ 1=2�. But this contradicts to deg�f�W g� 1, hence, l � 0 as
required. &

Remark. The fact that the element D�L� 2 Pic�S� has ¢nite order is proved in [4]
along the same lines. One should consider the function f0 : Z! Pic�S�=Pic�S�tors
where Pic�S�tors is the torsion subgroup of Pic�S�, such that f0�n� � D�Ln�
mod Pic�S�tors. Then f0 is a function of ¢nite degree, hence, its image is a ¢nitely
generated free group. Then the identity f0�n2� � n2g � f0�1� for in¢nitely many n
implies that f0�n� � ng � f0�1� for all n. Applying this to n � ÿ1 and using Serre duality
as above we deduce that f0 � 0. At last, the bound on the 2-primary torsion of D�L� is
obtained by considering the isogeny A4! A4 given by a 4� 4 matrix of
multiplication by a quaternion n�m � i � p � j � q � k such that n2 �m2 � p2�
q2 � ÿ1�N� for suf¢ciently divisible N (see [4]).

3. Some Arithmetics

Let f : Z! Z=pkZ be a map, gX 1 be an integer. Let us say that f is g-special, if f
has degree W g� 1 and f�m2n� � m2g � f�n� for all n andm. In particular, since f has
¢nite degree it factors through Z=pNZ for suf¢ciently large N. In this terminology
Lemma 2.2 says that for p > 3, gW �pÿ 1=2� any g-special map has form
f�n� � ng � f�1�. In this section we'll study g-special maps for other values of g.
Our main result is the following theorem, which combined with results of the pre-
vious section implies the ¢rst part of Theorem 0.1, except for the fact that
D�L��p� is annihilated by p2 if p � 2gÿ 1. The latter statement will be proved together
with the second half of Theorem 0.1 in the end of this section.

THEOREM 3.1. If p > 3 and g < �3pÿ 1=2�, g 6� �p� 1=2�, then for any g-special
map f : Z! Z=pkZ one has p � f�n� � p � ng � f�1�.

We will use the condition that the degree off is W g� 1 in the following form. Let
us consider the generating function F �t� �PnX 0 f�n�tn 2 Z=pkZ��t��: Then the con-
dition deg�f�W g� 1 implies that F �t� � �tÿ 1�g�2 � P�t�, where P�t� 2 Z=pkZ�t�
is a polynomial in t. In particular, if f�n� pN � � f�n� for all n then
F �t� � Qf�t� � �1ÿ t p

N �ÿ1, where Qf�t� �
PpNÿ1

n�0 f�n�. Thus, Qf�t� � �tÿ 1�g�2 is
divisible by t p

N ÿ 1 in Z=pkZ�t�.

DETERMINANT BUNDLES FOR ABELIAN SCHEMES 231

https://doi.org/10.1023/A:1001896315311 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001896315311


We are particularly interested in the case k � 1. In this case we obtain thatQf�t� is
divisible by �tÿ 1�pNÿgÿ2. Let us denote

Sr�t� �
Xpÿ1
n�0

nr � tn 2 Z=pZ�t�

for rX 0 (in case r � 0 our convention is that 00 � 1). Note that for r > 0 one has
Sr�t� � Sr�pÿ1�t�. For every polynomial Q 2 Z=pZ�t� we denote by v�tÿ1��Q� the
maximal power of �tÿ 1� dividing Q.

LEMMA 3.2. One has v�tÿ1��Sr�t�� � pÿ 1ÿ r for 0W rW pÿ 1.
Proof. For r � 0 we have an identity S0�t� � �tÿ 1�pÿ1 which follows from the

congruence pÿ1
i

ÿ � � �ÿ1�i mod� p�. Now the identity Sr�1�t� � t � �d=dt�Sr�t� and
an easy induction show that

Sr�t� � �ÿ1�r � r! � tr � �tÿ 1�pÿ1ÿr mod��tÿ 1�pÿr�

for 0W rW pÿ 1. &

The ¢rst step in the proof of Theorem 3.1 is the following Lemma.

LEMMA 3.3. Let f : Z! Z=pZ be a g-special map. If p > 3 and
�pÿ 1=2� < g < 2pÿ 1 then

f�n� � l � ng � m � ngÿpÿ1
2 mod�p�

for some constants l; m 2 Z=pZ.
Proof. It is easy to see that for any l and m the map

n 7! l � ng � m � ngÿpÿ1
2 mod� p�

is g-special. Hence, if we write

f�n� � l � ng � m � ngÿpÿ1
2 � f0�n�

for some l and m then f0 will also be a g-special map. Choosing l and m appropriately
we can achieve that f0�1� � f0�a� � 0 for some a which is a not a square modulo p.
Replacing f by f0 we can assume that this condition holds for f. Since
f�n� p� � f�n� for every n 6� 0 mod� p� (this follows from g-speciality and the fact
that �n� p�nÿ1 is a square in Z=pNZ) we deduce that f�n� � 0 for all
n 6� 0 mod�p�. On the other hand, f�p2n� � p2gf�n� � 0, hence the only non-trivial
values of f are f� pn� for n 6� 0 mod� p�. If degf < p, then this implies immediately
that f � 0, so we can assume that gX pÿ 1. For all n 6� 0 mod� p� we have
f� pn� p2� � �1� p � nÿ1�g � f� pn� � f� pn�. In particular, f depends only on
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p mod� p2� and

Qf�t� �
Xp2ÿ1
n�0

f�n�tn �
Xpÿ1
n�1

f�pn�tpn:

Now n 7!f� pn� is a p-special map depending only on n mod� p�. Hence,

f� pn� � a � ng � b � ngÿpÿ1
2

for some a; b 2 Z=pZ. Therefore,

Qf�t� � a � Sg�tp� � b � Sgÿpÿ1
2
�tp�:

As we have seen above the fact that deg fW g� 1 implies that v�tÿ1��Qf�X p2ÿ
gÿ 2. Now we claim that for all g such that pÿ 1W gW 2�pÿ 1� the valuations
of Sg�tp� and Sgÿpÿ1

2
�tp� at �tÿ 1� are less than p2 ÿ gÿ 2. This would imply that

a � b � 0, hence f � 0 as required. To prove our claim let us apply Lemma 3.2
to compute v�tÿ1�Sg and v�tÿ1�Sgÿpÿ1

2
. For g � pÿ 1 we get v�tÿ1�Sg � 0, while for

pÿ 1 < gW 2�pÿ 1� we have v�tÿ1�Sg�tp� � p � �2�pÿ 1� ÿ g� < p2 ÿ gÿ 2. Similarly,
for pÿ 1W gW �3�pÿ 1�=2� we get v�tÿ1�Sgÿpÿ1

2
�tp� � p � �pÿ 1ÿ g� �pÿ 1=2�� <

p2 ÿ gÿ 2, while for �3�pÿ 1�=2� < gW 2�pÿ 1� we have v�tÿ1�Sgÿpÿ1
2
�tp� �

p � �2�pÿ 1� ÿ g� �pÿ 1=2��. Thus, to ¢nish the proof we need the inequality

p � 5�pÿ 1�
2
ÿ g

� �
< p2 ÿ gÿ 2

in this case, but when p > 3 it follows from g > �3�pÿ 1�=2�. &

Remark. In fact, for p > 3 one can prove that the conclusion of the previous lemma
remains true when g belongs to one of the following intervals of integers:
�2p; 52 �pÿ 1��, ��5p� 1=2�; 3�pÿ 1��, �3p; 72 �pÿ 1��, ��7p� 1=2�; 4�pÿ 1��, etc. (for
given p the set of such g is ¢nite).

Next step is to consider g-special maps depending only on n mod�p2�.

LEMMA 3.4. Let f : Z! Z=p2Z be a g-special map such that f�n� p2� � f�n� for
all n. Assume that p > 3 and �p� 1=2� < g < �3pÿ 1=2�. Then

p � f�n� � p � ng � f�1�

for all n.
Proof. Replacing f by fÿ ng � f�1� we can assume that f�1� � 0. In this case we

need to show that f � 0 mod�p�. Applying Lemma 3.3 to f mod� p� we obtain

f�n� � c � �ng ÿ ngÿ
pÿ1
2 � � p � c�n� �3:1�
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for some constant c 2 Z=p2Z and some map c : Z! Z=pZ. Now for every
n 6� 0 mod�p� we have

f�n� p� ÿ f�n� � �1� p � nÿ1�g � f�n� ÿ f�n� � p � g � nÿ1 � f�n�
� p � c � g � �ng ÿ 1ÿ ngÿ

p�1
2 �:

On the other hand, subtracting Equation (3.1) for n from that for n� p we get

f�n� p� ÿ f�n� � p � c � �g � ngÿ1 ÿ gÿ pÿ 1
2

� �
� ngÿp�1

2 � � p � �c�n� p� ÿ c�n��:

It follows that

c�n� p� ÿ c�n� � ÿc � pÿ 1
2
� ngÿp�1

2 � c
2
� ngÿp�1

2 :

Hence, for every m one has

c�n� p �m� � c�n� � c
2
�m � ngÿp�1

2 �3:2�

provided that n 6� 0mod�p�.
Also we claim that

c� p � n� � l � ng � m � ngÿpÿ1
2 �3:3�

for some l; m 2 Z=pZ. Indeed, since g > �p� 1=2� equation (3.1) shows that
f� p � n� � p � c� p � n�. Hence, the map n 7!c� p � n� is g-special and the assertion
follows from Lemma 3.3.

Now (3.1) shows that c depends only on n mod� p2� and has degree W g� 1.
Hence, the corresponding polynomial Qc�t� �

Pp2ÿ1
n�0 c�n�tn is divisible by

�tÿ 1�p2ÿgÿ2. Using (3.2) and (3.3) we can write

Qc�t� �
Xpÿ1
n�1

Xpÿ1
m�0

c�n� p �m�tn�p�m �
Xpÿ1
n�1

c�p � n�

�
Xpÿ1
n�1

c�n�tn
 !

� S0�tp� � c
2
� Sgÿp�1

2
�t� � S1�tp� � l � Sg�tp� � m � Sgÿpÿ1

2
�tp�:

In the case gW pÿ 2 we have p2 ÿ gÿ 2X p2 ÿ p, hence, v�tÿ1�Qc X p2 ÿ p. To prove
that c � 0 in this case it is suf¢cient to check that v�g� :� v�tÿ1�Sgÿp�1

2
�t��

v�tÿ1�S1�tp� < p2 ÿ p and that v�g� differs from v�tÿ1�Sg�tp� and v�tÿ1�Sgÿpÿ1
2
�tp�. One

can check using Lemma 3.2 that this is indeed the case. When gX pÿ 1 we can
omit the ¢rst term in the above expression for Qc�t� when considering
Qc�t� mod�tÿ 1�p2ÿgÿ2. Hence, to deduce that c � 0 one should check using Lemma
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3.2 that v�g� < p2 ÿ gÿ 2 and v�g� differs from the valuations of two other terms. We
omit the details of this simple computation. &

Proof of Theorem 3.1. The case gW �pÿ 1=2� follows from Lemma 2.2 so we only
consider g > �p� 1=2�. Also as usual we can assume that f�1� � 0. An easy induction
in k shows that it suf¢ces to consider the case k � 2. In the latter case we have
f� p2 � n� � 0 for all n and f�n� p2� � f�n� for n 6� 0 mod� p�. According to Lemma
3.3 we can write

f�n� � c � �ng ÿ ngÿ
pÿ1
2 � � p � c�n�

for some constant c 2 Z=p2Z and some map c : Z! Z=pZ. In particular,
f� p � n� � p � c� p � n� and n 7!c� p � n� is a g-special map. Now Lemma 3.3 implies
that c�p � �n� p�� � c� p � n�, hence f� p � n� p2� � f� p � n�. Therefore, f�n� depends
only on n mod� p2� and we can apply Lemma 3.4 to ¢nish the proof. &

Now we turn to the proof of the second half of Theorem 0.1. Note that for any
prime p the function fp : n 7!D�Ln��p� satis¢es the following property:

fp�m2� � m2g � fp�1�

for allm such thatm 6� 0 mod� p�. Indeed, changingm bym� pN if necessary we may
assume that m is odd and is prime to 3, hence this follows from Theorem 1.1.

PROPOSITION 3.5. Let f : Z! Z=pkZ be a function of degree W g� 1, such that
f �m2� � m2g � f �1� for all m such that m 6� 0 mod� p�. Then there exists an integer
n� p; g� depending only on p and g such that pn�p;g� � � f �n� ÿ ng � f �1�� � 0 for all n.

Proof. First of all, replacing f by �g� 1�! � f we can assume that

f �n� ÿ ng � f �1� � a0 � n � a1 � . . .� ng�1 � ag�1

for some ai 2 Z=pkZ. Let n0; . . . ; ng�1 be the ¢rst g� 2 positive integers of the form
m2 with m 6� 0 mod� p�. Then f �ni� ÿ ngi � f �1� � 0 by assumption, hence every
coef¢cient ai is annihilated by the Vandermonde determinant D�n0; . . . ; ng�1� �Q

i<j�nj ÿ ni�. It follows that we can take n� p; g� to be vp��g� 1�!�
D�n0; . . . ; ng�1��. &

The proof of the second part of Theorem 0.1 follows immediately from this
proposition: we can take N�g� � QpW 2gÿ1 p

n�p;g�. To complete the proof of Theorem
0.1 it remains to prove the statement concerning the prime p � 2gÿ 1. This is
the content of the following lemma.
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LEMMA 3.6. Let p > 3 be a prime, f : Z! Z=pkZ be a g-special map where
g � �p� 1=2�. Then p2 � � f �n� ÿ ng � f �1�� � 0.

Proof. Since g� 1 < p, we have

f �n� ÿ ng � f �1� � a0 � n � a1 � . . .� ng�1 � ag�1
for some ai 2 Z=pkZ. Let n0 � 0, n1; . . . ; ng�1 be the ¢rst g� 1 positive integers of the
form m2 with m 6� 0 mod� p�. Then f �ni� ÿ ngi � f �1� � 0 for all i � 0; . . . ; g� 1 by
g-speciality, therefore every coef¢cient ai is annihilated by the Vandermonde deter-
minant D � D�n0; . . . ; ng�1� �

Q
i<j�nj ÿ ni�. Since g� 1 � �pÿ 1=2� � 2, it follows

that vp�D� � 2, hence the assertion. &

4. Eliminating of Primes Not Dividing Characteristic

In the case when an odd prime p is not among residue characteristics of the base we
can evaluate D�L��p� over S� 1p � using the following result.

THEOREM 4.1. Let L be a symmetric, relatively ample line bundle over an Abelian
scheme A=S trivialized along the zero section. Let p be an odd prime number which
is not equal to any of residue characteristics of S. Then there exists a ¢nite £at base
change c : S0 ! S of degree prime to p, an isogeny of Abelian S0-schemes
a : A0 ! B, where A0 is obtained from A by this base change, such that deg�a� is
the power of p, and a symmetric line bundle M on B together with a symmetric
isomorphism a�M ' L0 (where L0 is obtained from L by the base change), such that
degfM is prime to p.

Let us deduce Theorem 0.2 from this. Choose a base change c : S0 ! S as in
Theorem 4.1. Since Pic�S�� p� ! Pic�S0�� p� is injective and the construction of
det p� commutes with this base change we can work with A0 instead of A. It remains
to apply Theorem 1.1 to isogeny a and Theorem 0.1 to M to deduce that
D�L0�� p� � 0 if p 6� 3. In the case p � 3 by the same argument we always have
3 � D�L0��3� � 0. Now if the 3-type of the polarization is different from
�1; . . . ; 1; 3k�, then one can see easily from the construction of the isogeny a below
that the conditions of Theorem 1.2 are satis¢ed for a and M. Hence, the triviality
of D�L0��3� in this case.

Proof of Theorem 4.1. We can assume that the base S is connected. Let
K � K�L�� p� be the p-primary component of the ¢nite £at group scheme K�L� over
S. Then K is ëtale over S (since p is not among residue characteristics of S) and
fL induces a skew-symmetric isomorphism K ' K̂ . The ¢ber of K over a geometric
point of S is a discrete group of the form �Z=pn1Z�2 � . . .� �Z=pnkZ�2 where the
factors �Z=pniZ�2 are orthogonal to each other with respect to a symplectic form,
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Z=pniZ� f0g � �Z=pniZ�2 is a Lagrangian subgroup for every i. Since S is connected
the collection n1; . . . ; nk doesn't depend on a point. Let n be the maximum of
n1; . . . ; nk, so that n is the minimal number such that pn � K � 0. Now let us construct
a canonical isotropic subgroup I0 � K , ëtale over S, such that K0 � I?0 =I0 is
annihilated by p. If n � 1 we can take I0 � 0 so let's assume that nX 2. Then
pnÿ1 � K is an isotropic subgroup in K so we can consider the reduction
K � �pnÿ1 � K�?=�pnÿ1 � K� with its induced symplectic form. By induction we
may assume that we already found an isotropic subgroup I0 � K 0 such that
�I0�?=I0 is a p-group. Now take I0 to be the preimage of I0 in K .

Our base change c : S0 ! S will be the ¢nite £at covering corresponding to a
choice of a Lagrangian subgroup in K0. One can construct such a covering in
the following way. Let p2r be the order of K0. Start with a subscheme eS in
K0 �S . . .�S K0 (2r times) corresponding to symplectic bases in K0. Then eS! S
is a Sp2r�Z=pZ�-torsor. Now let P � Sp2r�Z=pZ� be the subgroup preserving the
standard r-dimensional Lagrangian subgroup in �Z=pZ�2r, then we can take
S0 � PneS. The degree of the covering S0 ! S is equal to the number of Lagrangian
subgroups in �Z=pZ�2r which is easily seen to be equal to

Qr
i�1�pi � 1� (¢rst compute

the number of isotropic £ags and then divide by the number of £ags in
�Z=pZ�r), which is prime to p.

Let �A0;L0;K 0; I 00;K 00� be the data obtained from �A;L;K; I0;K0� by the base
change S0 ! S. Then by construction we have a Lagrangian subgroup I � K 00.
Taking its preimage by the morphism �I 00�?=I 00! K 00 we obtain a Lagrangian
subgroup I � K 0. It remains to prove that L0 descends to a symmetric bundle on
B � A0=I . To this end note that theGm-torsor L0jI has a structure of the commutative
group extension. Since the order of I is odd there exists a unique trivialization of L0jI
as a group extension which is compatible with the symmetry �ÿ1��L0 ' L0. This
trivialization gives a symmetric lifting of I to the Mumford group of L0 as
required. &

5. Complements

5.1. CASE OF ELLIPTIC CURVES

Let us evaluate determinant bundles in the case g � 1. It is known (see, e.g., [13]) that
in characteristics 6� 2; 3 the Picard group of the moduli stack of elliptic curves (with
one ¢xed point) is Z=12Z and as generator one can take the line bundle o on this
moduli stack that associates to every family of elliptic curves p : E ! S the relative
canonical bundle oE 2 Pic�S�. If S is connected then any symmetric line bundle
L on E, trivialized along the zero section, is either isomorphic to Ld �e� :�
O�d � e� 
 od

E=S where e : S! E is the zero section, or to Ld�Z� :� O��d ÿ 1��
e� Z� 
 odÿ1

E=S where Z : S! E is an everywhere non-trivial point of order 2. Note
that these line bundles are trivialized along the zero section, since e�O�e� ' oÿ1E .
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PROPOSITION 5.1. One has

det p��Ld�e�� � d�d ÿ 1�
2

� 1
� �

� oE ; det p��Ld�Z�� � d�d ÿ 1�
2

� oE :

In particular,

D�Ld �e�� � �d2 � 2� � oE; D�Ld �Z�� � d2 � oE :

Furthermore, these equalities are represented by canonical isomorphisms of line
bundles.

Proof. Considering the push-forward of the exact sequence

0!O��d ÿ 1� � e� ! O�d � e� ! e�e�O�d � e� ! 0;

we deduce that

det p�O�d � e� ÿ det p�O��d ÿ 1� � e� � ÿd � oE :

Since p�O�e� ' OS, it follows that

det p�O�d � e� � 1ÿ d�d � 1�
2

� �
oE;

hence det p�Ld�e� � ��d�d ÿ 1��=2� � 1�oE . The case of Od�Z� is considered similarly
using the exact sequence

0!O��d ÿ 1� � e� Z� ! O�d � e� Z� ! e�e�O�d � e� Z� ! 0

and the triviality of p�O�Z�. &

Note that D�Ld�e�� gives a line bundle on the moduli stack of elliptic curves A1,
while D�Ld �Z�� lives on the stack eA1 classifying elliptic curves with a non-trivial point
of order 2. Now Proposition 5.1 combined with Theorem 0.1 implies immediately
that the order of o in Pic�A1� is 12, while the order of the pull-back of o to eA1

is 4. In particular, D�L3�e�� � ÿo in Pic�A1�.

5.2. LINEAR RELATIONS BETWEEN DETERMINANT BUNDLES

Let us ¢rst consider the determinant bundles det p��Ln� on an Abelian schemeA=S of
relative dimension g � 2 or g � 3, where L is a relatively ample, symmetric line
bundle on A trivialized along the zero section.
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PROPOSITION 5.2. If g � 2 then one has

det p�Ln � 4nÿ n3

3
� det p�L� n3 ÿ n

6
� det p�L2 � n�nÿ 1��nÿ 2�

6
� d � oA;

where d � rk p�L. In particular,

D�Ln� � 4nÿ n3

3
� D�L� � n3 ÿ n

6
� D�L2�:

If g � 3, then one has

det p�Ln � 4n2 ÿ n4

3
� det p�L� n4 ÿ n2

12
� det p�L2 � n2�nÿ 1��nÿ 2�

6
� d � oA:

In particular, in this case

D�Ln� � 4n2 ÿ n4

3
� D�L� � n4 ÿ n2

12
� D�L2�:

Proof. This is easily deduced from the fact that the function f : n 7! det p�Ln has
degree W g� 1. Indeed, by Serre duality the values of this function at
n � ÿ2;ÿ1 are expressed via those for n � 1; 2. Also det p�OA � 0, hence, we know
values of f at n 2 �ÿ2; 2� and we can interpolate the rest. &

COROLLARY 5.3. If g � 2 or g � 3, then 8 � 9 � D�L� � 4 � 9 � D�L2� � 0:
Proof. This is proved by considering separately 2-primary and 3-primary parts of

D�L� and D�L2�, using the previous proposition and Theorem 1.1. &

If g � 2, gcd�d; 3� � 1 and n is odd then we also get from Proposition 5.2 that
D�Ln� � n � D�L�. If g � 3, gcd�d; 3� � 1, and the characteristic is zero then according
to Kouvidakis one has D�L2� � 0, hence in this case for odd nwe get D�Ln� � D�L�. It
would be interesting to ¢nd similar dependences between D�Ln� in higher dimensions
(see Section 5.3 for the case of even principal polarization). Recall (see Lemma 2.1)
that n 7! det p��Ln� is a function of degree W g� 1. Hence, using Serre's duality,
one can express all det p��Ln� as linear combinations of o and det p��Li� where
0W iW g

2� 1. However, we expect much more relations between D�Ln�. Here are
some examples.

(1) For gX 2 one has det p�OA � 0.
(2) Let p be a prime, p � ÿ1 mod�4�. Then for any n such that �n; p� � 1 one has

D�Ln��p� � n
p

� �
� ng � D�L��p�;

where n
p

� �
� �1 is the Legendre symbol.
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(3) Assume that gX 2. Let p be a prime such that p � ÿ1 mod�4� and pX �g� 3�=2.
Then one has D�Ln��p� 2 ZD�L��p� for all n.

(4) For odd n one has D�Ln�8��2� � ��n� 8�=n�g � D�Ln��2�. In particular, if n and d are
odd then D�Ln�8��2� � D�Ln��2�.

(1) follows from the fact that Rip�OA �
Vi R1p�OA. For the proof of (2) note that

for �n; p� � 1 Theorem 1.1 implies that D�Ln��p� � ng � D�L��p� if n is a square modulo
p, and that D�Ln��p� � �ÿn�g � D�Lÿ1��p� ifÿn is a square modulo p. But Serre's duality
implies that D�Lÿ1� � ÿ�ÿ1�g � D�L�, hence the assertion. To prove (3) note that for
pX �g� 3�=2 all the elements D�Ln��p� are linear combinations of D�Li��p� with
jij < p. It remains to apply (1) and (2). At last, (4) follows from Theorem 1.1 since
�n� 8=n� is a square modulo resp. 2k.

PROPOSITION 5.4. d � �D�L3��2� � 3g � D�L��2�� � 0.
Proof. Let us denote D�L; n� � det p��Ln� ÿ ng � det p�L. Then it is easy to see that

2D�L; n� � D�Ln� ÿ ng � D�L�; in particular, D�L; n� is a torsion element in Pic�S�.
Note also that n 7!D�L; n� is a polynomial function. Let us choose a suf¢ciently
divisible integerN > 0 such that both functions D�Ln� and D�L; n� of n areN-periodic
and are annihilated by N, andN is divisible by 6. Now let l be a prime, such that N is
not divisible by l and such that l � 3 mod�2m� where m >> 0. Then there exists a
solution �a; b� to the congruence a2 � lb2 � ÿ1 mod�N�. Consider the isogeny

a : A2! A2 given by the matrix a ÿlb
b a

� �
. Then it is easy to see that

a��LbLl� ' Lk bLlk where k � a2 � lb2. In particular, deg�a� � k2g and applying
Theorem 1.1 we obtain the equality

det p��LkbLlk� � k2g � det p��LbLl�:

Now using the equalities D�L; k� � D�L;ÿ1�, D�L; lk� � D�L;ÿl�, Serre's duality, the
fact that k � ÿ1 mod�N�, and the conditions on N one can easily deduce that

d � �D�Ll� � lg � D�L�� � 0:

It remains to take the 2-primary part of this equality and replace l by 3 in the
obtained identity (this is justi¢ed by the congruence l � 3 mod�2m� with
m >> 0). &

COROLLARY 5.5. Assume that n and d are odd. Then D�Ln��2� � ngÿ1 � D�L��2�: In
particular, if d � 1 and gX 2 then D�Ln� � ngÿ1 � D�L� for any odd n.
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Proof. Since D�Ln��2� for odd n depends only on n mod�8� the ¢rst equality follows
from the case n � 3 considered above, Serre's duality, and the vanishing of
4 � D�Ln��2� for odd n. Now the second statement follows from the fact that for
d � 1 and gX 2 one has 4 � D�Ln� � 0 for any n. &

5.3. TORSION IN THE PICARD GROUP OF MODULI

Let eAg be the moduli stack of the data �A=S;Y� where A=S is an Abelian scheme of
relative dimension g, Y � A is an effective (relative) divisor which is symmetric
and de¢nes a principal polarization of A. One can normalize the line bundle
O�Y� over the universal Abelian scheme over eAg to obtain the line bundle L which
is trivial along the zero section. In particular, we have an element
D�L� 2 Pic�eAg�. Let eA�g be the irreducible component of eAg corresponding to even
theta divisors, eA�g � 12 � be the localization of this stack over Spec�Z� 12 ��.

THEOREM 5.6. Assume that gX 3. Then the torsion subgroup in Pic�eA�g � 12 �� is
isomorphic to Z=4Z and is generated by D�L�.

Proof. Since eA�g has smooth geometrically irreducible ¢bers over Spec�Z� 12 �� (cf.
[4], IV 7.1) it is suf¢cient to prove this statement in characteristic zero. Indeed,
it is known that the order of D�L� is precisely 4 (cf. [10]), hence it would follow that
D�L� generates the entire torsion subgroup in the Picard group of the general ¢ber
of eA�g . Now it remains to prove that if some line bundle over eA�g is trivial over
the general ¢ber then it is trivial everywhere. If eA�g were represented by a scheme
then we could apply the argument from [15], p. 103, to prove this. Since it is not,
we have to replace eA�g by a PGLN -torsor over it which is representable (see remark
1 after Theorem 0.2), apply the cited argument, and use the fact that PGLN has
no non-trivial characters.

The corresponding analytic stack is the quotient (in the sense of stacks) of the
Siegel's half-space Hg by the subgroup G1;2 � Sp2g�Z� consisting of matrices whose
reduction modulo 2 preserves the standard even quadratic form

Pg
i�1 xiyi. (cf. [9],

VIII, 3.4). It follows that the torsion in the Picard group of this stack is an Abelian
group dual to G1;2=�G1;2;G1;2� (cf. [13]). It remains to prove that the latter group
is isomorphic to Z=4Z.

As is shown in [18], Prop. 8.10, there is a normal subgroup D � G1;2 such that
G1;2=D ' Z=4Z. Furthermore, it is shown there that D is generated by the matrices
of the form A 0

0 tAÿ1

� �
where A 2 SLg�Z�, 1 B

0 1

� �
and 1 0

B 1

� �
where B is integral

symmetric g� g matrix with even diagonal (here we use the standard symplectic
basis e1; . . . ; eg; f1; . . . fg such that �ei; fj� � di; j). We claim that D � �G1;2;G1;2�.
For the proof let us introduce the relevant elementary matrices following the
notation of [6] 5.3.1. Let S2g be the set of pairs �i; j� where 1W i; jW 2g which
are not of the form �2kÿ 1; 2k� or �2k; 2kÿ 1�. Then for for every �i; j� 2 S2g we
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de¢ne an elementary matrix Eij as follows:

E2k;2l � 1 0
gk;l 1

� �
;

E2kÿ1;2lÿ1 � 1 ÿgk;l
0 1

� �
;

E2kÿ1;2l � ekl 0
0 eÿ1lk

� �
; E2l;2kÿ1 � E2kÿ1;2l

where gkl has zero �a; b�-entry unless �a; b� � �k; l� or �a; b� � �l; k�, in the latter case
�a; b�-entry is 1; ekl for k 6� l is the usual elementary matrix with units on the diagonal
and at �k; l�-entry and zeros elsewhere. Using these matrices one can say that D is
generated by E2kÿ1;l with k 6� l, E2k;2l and E2kÿ1;2lÿ1 with k 6� l, and E2

i;i for all
1W iW 2g. It remains to notice that all the matrices Eij with i 6� j belong to G1;2

and use the following relations (cf. [6] 9.2.13):

(1) �Eij;Ekl � � Eil , if � j; k� 62 S2g, j is even, and i, j, k, and l are distinct,
(2) �Eij;Eki� � E2

ii, if � j; k� 62 S2g, j is even, and i, j, and k are distinct.
&

5.4. CASE OF PRINCIPALLY POLARIZED ABELIAN SURFACES

Let A=S be a relative Abelian surface, L be a symmetric line bundle trivialized along
the zero section. Assume also that d � 1 that is L gives a principal polarization. Then
L ' O�Y� 
 p��p�L� where Y � A is theta-divisor.

PROPOSITION 5.7. Assume that S is smooth. Then one has the following equalities
in Pic�S�: det p�OY � oA; 5 � oA � d� D0�L2�; where D0�L2� � det p��L2� � 2 � oA,
d is the class of the divisor consisting of points s 2 S such that Ys is singular.

Proof. First of all, we note that det p�OY � det p�oY by Serre's duality. Now by
adjunction we have oY � OY�Y� 
 p�oA; which implies the ¢rst equality due to
triviality of det p��OA�Y�� and det p��OA�. We also deduce that

det p��o2
Y� � det p�OY�2Y� � 6 � oA:

Next, since L2 ' O�2Y� 
 p��p�L�2 we obtain that

det p�OA�2Y� � det p�L2 � 4 � oA:

The exact sequence

0!OA�Y� ! OA�2Y� ! OY�2Y� ! 0
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shows that det p�OY�2Y� � det p�OA�2Y�. Combining it with the above equalities we
get

det p��o2
Y� � det p�L2 � 10 � oA � D0�L2� � 8 � oA:

On the other hand, sinceY is a stable curve over S we have according to Mumford's
Theorem 5.10 in [15]

det p��o2
Y� � 13 � det p�oY ÿ d � 13 � oA ÿ d:

Comparing this with the previous expression for det p��o2
Y� we obtain the result. &

LetM2 be the moduli stack of stable curves of genus 2,M2 be the open substack
corresponding to smooth curves,M02 be the substack ofM2 corresponding to curves
which are either smooth or reducible. The Picard groups of these stacks can be
described as follows (see [14^16]). Pic�M2� is isomorphic to Z2 and is generated
by the classes d0, d1 and l, where d0 (resp. d1) is the class of the divisor of singular
irreducible curves (resp. reducible curves), l � det p�oC where p : C !M2 is the
universal curve, with the only relation

10 � l � d0 � 2 � d1: �5:1�

It follows that Pic�M02� is generated by l and d1 with the relation 10 � l � 2 � d1, and
Pic�M2� is generated by l with the relation 10 � l � 0. Note that the theta divisors
Ys are either smooth or reducible, so in the above situation we get a morphism
f : S!M02 and our computation shows that D0�L� � f ��5 � lÿ d1�.

COROLLARY 5.8. In the above situation D�L2n� � 0 for any n.
Proof. For n � 1 this follows from the triviality of 10 � lÿ 2 � d1 in Pic�M02�. Now

the triviality of D�L2n� in general follows from Proposition 5.2. &

Remark.Note that L2 ' Lf :� �id;f��P, where f : A! Â is the polarization cor-
responding to L. Hence, D0�L2� is the pull-back of the line bundle D0�Lf� over the
moduli stack A2. The explicit trivialization of 2 � D0�Lf� � 10 � oÿ 2 � d in the ana-
lytic situation can be found by considering the following modular form of weight
5 on Siegel half-space H2 (cf. [16])

f �Z� �
Y

a;b even

y
a
b

� �
�0;Z�

where the product is taken over all 10 even theta-characteristics. Then f de¢nes a
section of o5 vanishing precisely on the locus D � H2 corresponding to products
of elliptic curves. It is known that f is a modular form for the group Sp4�Z� with
a non-trivial character w0 : Sp4�Z� ! f�1g (such a character is unique, and is
obtained from the sign character on Sp4�Z=2Z� ' S6). Thus, f 2 gives the
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Sp4�Z�-equivariant trivialization ofo10�ÿ2D�which descends to a trivialization over
A2. This argument also shows that the element D0�Lf� � 5 � oÿ d 2 Pic�A2� is
non-trivial. In fact, it generates the torsion subgroup of Pic�A2� (cf. [5]).
Furthermore, one can show that pull-backs of D0�Lf� to either of two irreducible
components of eA2 are non-trivial. Indeed, it is suf¢cient to check that the subgroup
in Sp4�Z=2Z� ' S6 preserving a quadratic form q on �Z=2Z�4, such that
q�x� y� � q�x� � q� y� is the symplectic form, contains an odd permutation. Recall
that the identi¢cation of Sp4�Z=2Z� with S6 is obtained by considering the action
on the set of 6 odd quadratic forms q as above. Using this it is easy to compute
that the matrix E14 (see the proof of Theorem 5.6), preserving the standard even
form q0 � x1y1 � x2 y2, corresponds to the product of three transpositions. Similarly,
the matrix E11 preserves the odd form x1 y1 � x2 y2 � x22 � y22 and corresponds to a
transposition.
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