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A CHARACTERIZATION OF THE TITS' SIMPLE 
GROUP 

DAVID PARROTT 

In [6], J. Tits has shown that the Ree group 2FA(2) is not simple but possesses 
a simple s u b g r o u p ^ of index 2. In this paper we prove the following theorem: 

THEOREM. Let G be a finite group of even order and let z be an involution con
tained in G. Suppose H = CG(z) has the following properties: 

(i) J = 02(H) has order 29 and is of class at least 3. 
(ii) H/J is isomorphic to the Frobenius group of order 20. 

(iii) If P is a Sylow 5-subgroup of H, then Cj(P) Ç Z(J). 
Then G = H • 0(G) or G =S~, the simple group of Tits, as defined in [6]. 

For the remainder of the paper, G will denote a finite group which satisfies 
the hypotheses of the theorem as well as G 9e H • 0(G). Thus Glauberman's 
theorem [1] can be applied to G and we have that (z) is not weakly closed in H 
(with respect to G). The other notation is standard (see [2], for example). 

Acknowledgement. The proof of Lemma 4 is due to the referee. His proof 
greatly shortened that of the author. 

1. Some propert ies of H. In the notation of the theorem we prove: 

LEMMA 1. We have that d(J) = 3, Z(J) = Z(H) = (2), and a Sylow 2-sub-
group T of H is a Sylow 2-subgroup of G. Finally, E = J' = Z2(J) = $(J) is 
elementary of order 32. 

Proof. Since Cj(P) ç; Z(J) and cl(J) ^ 3, P cannot act trivially on / or J', 
so \J: $ ( J ) | ^ 16 and \J' : J' C\ Z{J)\ ^ 16. As |J | = 29 we must have 
$ ( / ) = / ' and \Z(J) r\J'\ = 2(or alternatively 

\J: $ ( / ) ! = \J':J'nZ(J)\ = 16). 

Further, as Z(J) is P-invariant and cl(J) ^ 3, Z(J) ÇI J' whence Z(J) = (z) 
is of order 2 and cl (/) = 3 . P u t £ = / ' a n d note thatEisabel ian (as£ ; = (J')f 

and cl(J) = 3). I t follows that E is elementary abelian for \E\ = 32 and 
E = <*> X [P, E] = CE(P) X [P, JE]. We note that E = Z2(J) as Z2(J) < H 
and (z) = U(J) = [/, J'] as L3(J) < H. 

If T is a Sylow 2-subgroup of H, clearly Z(T) = (z). But then (z) < NG(T) 
so NG(T) Q H. It follows immediately from Sylow's theorem that T is a 
Sylow 2-subgroup of G. 
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Throughout this paper we need some properties of the linear group GL(5, 2). 

Properties of GL(5, 2). (1) |GL(5, 2)| = 210 • 32 • 5 • 7 • 31. 
(2) GL(5, 2) is a non-abelian simple group. 
(3) An involution in GL(5, 2) has centralizer of order 29 • 3 or 210 • 3 • 7. In 

the latter case, the centralizer is a faithful splitting extension of an elementary 
group of order 16 by the holomorph of an elementary group of order 8 (see 
[3]). 

(4) If r is an element of order 3 in GL(5, 2), either CG(r) = (T) X A5 or 
CG{T) ~ (r) X PSL(2, 7). Further, a Sylow 3-normalizer is a faithful exten
sion of an elementary abelian group of order 9 by D8-the dihedral group of 
order 8 (see [3]). 

From properties ( l)-(4) and Sylow's theorem we also have: 
(5) A Sylow 5-centralizer is cyclic of order 15 and a Sylow 5-normalizer 

has order 3 - 4 - 5 . 
(6) A Sylow 7-normalizer is the direct product of a non-abelian group of 

order 6 and a Frobenius group of order 21. 
(7) A Sylow 31-normalizer is a Frobenius group of order 5 - 3 1 . 

LEMMA 2. We have NG(E) = H and z is conjugate {in G) to an involution in 
H - E. 

Proof. Since CG(E) = CH{E) < H, CG(E) = E and therefore NG(E)/E is 
isomorphic to a subgroup of GL(5, 2). If t is any involution in E — (z), t has 
either 10 or 20 conjugates in H, whence z has 1, 11, 21, or 31 conjugates in 
NG(E). Under the assumption NG(E) D H, we have \NG(E)/E\ = 26 • 5 • 11, 
26 • 3 • 5 • 7, or 26 • 5 • 31. As GL(5, 2) does not possess subgroups of any of 
these orders (this is easily seen by using properties ( l)-(7) above) we there
fore have NG(E) = H. 

Suppose z is not conjugate (in G) to any involution in H — E. Then z ~Gt 
for some involution t 6 E — (z) by Glauberman's theorem. It follows that E 
is the normal closure of (z) in CG(t) (as H ~G CG(t)). This clearly contradicts 
NG(E) = H. 

We now list some properties of the group J which can be derived from 
Lemma 1. 

(a) Fo r j e / - £ , \CE(j)\ = 16 since LZ(J) = [J, J'] = (z). 
(b) If j is an involution in J — E, Î51((j» •£)) = (z) s o that not all cosets 

of £ in J contain involutions. 
(c) If J Z) Ji D J2 D Jz D E is any (maximal) chain of subgroups from 

J to £ , then Z(Jt), J/ C E and \Z(Jt)\ = 2*'+1 (i = 1, 2, 3). Further, we have 
\Ji\ ^ 8. (This last fact may be proved by noting that we may choose 
a,i 6 J — £ , i = 1, . . . , 4, so that J i = (E, ai, a2, a3), &4 = #ip> and 
/ = (a^i = 1, . . . , 4), where (p) = P . Also {z, [a*, a j | for suitable i,j} is a 
basis for J' = E. Now if J / = (2, /) is of order 4, I C ^ O I ^ 27, i = 1, 2, 3 
whence |Cj(a4)| ^ 27. It follows that 2,2, [#i, a j , [a2,

 a J , [a3, a4] are not 
linearly independent which contradicts J1 = E.) 
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(d) F o r j € J - E, 25 ^ \Cj(j)\ ^ 26, while for e£ E - (z), \Cj(e)\ = 28. 
(If \Cj(j)\ = 27> c ^ ( i ) * £ i s maximal in J and | (Cj(j) • P ) ' | ^ 4, contrary to 
(c) above.) 

The factor group H/E. Let x G NH(P) so that (x, 2) is a Sylow 2-subgroup of 
N(P) (recall that CH(P) = P X <«> and note that x4 = 1 or z). Put P = <£> 
with px = £2 and put P 0 = [P, P] which is NH(P)-invariant of order 16. The 
structure of H/E is uniquely determined and can be described in the following 
way: 

Identify J/E with the additive group of GF(16); then the action of p on 
J/E is given by scalar multiplication by an element f of order 5 in the multi
plicative group of GF(16) and the action of x on J/E corresponds to the 
Galois automorphism of GF(16). 

Clearly x fixes the coset Ea corresponding to 1 = f5 in GF(16), while x2 

fixes the cosets Eb corresponding to f + f_1 and Eab which corresponds to 
1 + f + f-1 = f2 + ?3 a s w e U a s ^ a - Note that Ea has 5 conjugates in H 
while P& has 10 conjugates. 

Put P = (/, x), A = (a, E) and B = (a, b, E); then T is a Sylow 2-subgroup 
of # (and hence of G), , 4 /P = Z ( P / P ) = CJ/E(x),<mdB/E = Z(Qi(P) /£) = 

Cj/E\% )• 

P/ze Centralizer of an involution in E — (z). As NH(P) • £ / (z) = H/E, the 
action of NH{P)/(z) on P 0 = [P, E] is exactly the same as the action of H/J 
on J/E. Choose t Ç P 0 so that £ has precisely 5 conjugates under the action of 
NH(P) and hence / has 10 conjugates in H (as t~jtz). Thus |CW(0| = 
\CT(t)\ = 210. As C r ( 0 is maximal in P, putting Cj(t) = P we must have 
D/E = $ ( P / P ) H J/E. Clearly P C D and we denote Z(B) = (z, t, v) by Z. 
It follows that |Cr(iO| = \CH(v)\ = 29 (as Z < P and Z(P) = <*, 2». 

Further, there are precisely two classes of involutions in E — (z) in H with 
representatives £, zr, while if u £ P — Z then CT(u) C P. 

Finally, if P has basis w, u, v, t, z we describe the action of x on E by: 

*~ i 1 1 I 

V V 
PAe case when there are involutions in H — P. If fe is an involution in H — J, 

by a lemma due to Suzuki (see [2, p. 105 and p. 328]) k inverts an element of 
order 5. By Sylow's theorem, k is conjugate to an involution in NH(P), and 
hence to an involution y £ (x, z) — (z). Hence as (x, z) — (z) contains two 
involutions (under this assumption), any involution in H — J is conjugate to 
either y or yz in H. 
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Now CE(y) = Z has order 8 and CJ/E(y) has order 4, whence T — J con
tains precisely 32 involutions. Thus either y ~Hyz and |C^(y)| = |CV(;y)| = 26 

or y nuH yz and |CH(y)| = \CT(y)\ = 27. 
The notation we have used above will remain fixed for the rest of the paper. 

LEMMA 3. There are involutions in J — E. 

Proof. We prove the lemma by way of contradiction. Thus by Lemma 2 we 
may assume z~Gy, y (as above) an involution in T — J. Now 
X = toi(CT(y)) — (y) X Z has order 16 and so E is the only elementary 
abelian subgroup of order 32 in T. This implies that z is not conjugate to any 
involution in E — (z) in G (as NG(E) = H by Lemma 2). 

As z~Gy, CT(y) = CH{y) is not a Sylow 2-subgroup of CG(y), whence 
NG(CT(y)) D NT(CT(y)) by Sylow's theorem. Since X char CT(y), 
NG(X) D NT(X) = NH(X). From E C NT(X), it follows that y has at 
least 4 conjugates in NT(X) and so y has 4 or 8 conjugates in NG(X). 

In the latter case z has 9 conjugates in NG(X) (as z is not conjugate to any 
involution in E — (z)). This implies that {e : e £ Z — (z)} <\ NG(X). Hence 
Z = ({e : e e Z - (z)}) <3 NG(X) and (z) < NQ(X), which is a contradiction. 
Therefore 2 has 5 conjugates in NQ(X); i.e., |iVG(X) : NT(X)\ = 5. Because ;y 
has only 4 conjugates in NT(X), NT(X) = (B, x) and \NT(X) : C r (X) | = 8 
for x e NT(X) - CT(X). However, this yields \N0(X) : CG(X)\ = 5-8 = 
23 • 5 which contradicts the structure of As = GL(4, 2). The lemma is proved. 

From the remarks above, either the coset Ea or the coset Eb contains 
involutions, but not both. 

LEMMA 4. There are involutions in the coset Ea (or, alternatively, Eb does not 
contain involutions). 

Proof. Suppose Eb contains involutions. We use the same notation as above; 
that is, J IE is identified with the additive group of GF(16) and f is an element 
of order 5 in the multiplicative group of GF(16). Then Eb <-» f + f_1 so that 
the cosets Eaf <-• 1 + f * (i = 1,2, 3, 4) also contain involutions. (The conju
gates of Eb in H are the cosets which correspond to fl + fj (0 ^ I < j ^ 4).) 
Further, Eataj «-> f * + f j so the coset Eataj also contains an involution. By 
(b), E(a,i,a,j)/{z) is elementary; that is, [a*, a j 6 (z). Thus we may choose 
âj G £a^ ( j = 1, 2, 3, 4) such that [â;-, a J = 1 for any fixed i (i = 1, 2, 3, or 4). 
This is clearly a contradiction as af £ Cj(âi, â2, â3, â4) = Cj(J) = Z(7) = (2). 

2. The fusion of involutions in G. As Ea contains involutions, we take a 
to be an involution. Put F = (a) X C#(a) so that .F is elementary of order 32. 
Clearly F <\ T (as A < T) and CG(F) = CT(F) = 7<\ We show by way of 
contradiction that NG(F) 3 7\ 

Suppose NG(F) = T; we will show that z is not conjugate to any involution 
in T — (z) in G which will contradict Glauberman's Theorem. First consider 
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the case that z is not conjugate to any involution in / — (z) in G. Then there 
are involutions in T — J and we may assume z~Gy. Put X = tii(CT(y)) 
and W = 02(NG(X)). If X = Z X (;y), then we get a contradiction in exactly 
the same way as in Lemma 3. Hence X is elementary of order 32 and y must 
have 8 or 16 conjugates in NT(X) (as yaE ^TyE and X covers A/E). Note 
that NG(X) D NT(X) as z ~ G y and N0(X)/CG(X) is isomorphic to a sub
group of GL(5, 2). From the structure of T, it follows that CT(X) = X or 
\CT(X) : X\ = 2 (in this latter case, CT(X) covers B/E). If 3/ has 16 conju
gates in NT(X), z has 17 conjugates in NG(X) which contradicts the order of 
GL(5, 2). Thus z has 9 conjugates in NQ(X), whence \NG(X) : tf r p 0 | = 9 
and \NG(X)\ = 210 • 32. Now from property (3) (of GL(5, 2)) it follows that 
\W:C0(X)\= 24, so \W\ = 29 or 210. As W Ç 7\ s G Z(W). However from 
the structure of T we see that |Z(W)| ^ 4. This implies that z has at most 3 
conjugates in NG(X), which is a contradiction. 

Next consider the case when z is conjugate to an involution in J — E, but 
not conjugate to an involution in E — (z). Without loss of generality we may 
suppose z~Ga. Put S = CT(a) = CH(a), and note that NG(S) D NT(S) = 
NH(S) and that a has at most 16 conjugates in T (i.e., |C r (a ) | ^ 27, so by (d), 
27 ^ |C r (a ) | ^ 28). 

We claim that Z(S) = (z, £, a). If 5 covers T / J this follows immediately 
from CE(x) = (z, t). (Note that as 5 covers (J,y)/J in any case and 
|Cj(a)| ^ 27, Z{S) 2 (z,t,a).) In the other possibility we must have 
F (Z J n S, and hence 2 £ S'. By assumption 2 is not conjugate to any 
involution in E — (z) which implies S/S P\ E is non-abelian. This forces 
Z(S) = <M,a>. 

It now follows immediately that NG(Z(S))/CG(Z(S)) = S3, the symmetric 
group on 3 letters. Clearly 5 = CG(Z(S)) and E • 5 is a Sylow 2-subgroup of 
NG(S). As 3||iV(y(Qi(5))|, i7 cannot be maximal in Î2i(5), and hence 
|fii(5) : F\ = 4. Thus |5 | = 28 and in particular 5 covers T/J. A simple 
computation shows that S' = (z, t, a,v) C.®i(S). By another computation 
we see that for w G E - F, [w, Qi(5)] C S'. 

By Suzuki's lemma, w inverts a Sylow 3-subgroup Q of NG(S). It follows 
immediately that Q stabilizes the chain 5 D 12i(5) D 5 ' (as |5 : fii(5)| = 2). 
Hence Q centralizes S and in particular Q Ç1 CG(z) = H which is impossible. 

Under the assumption NG(F) = T, we must have either z ~G t or z ~G v. 
In the first case, put C = CT(t) and note that C covers T/J. Thus we have 
EH FQC while (C/E)' = B/E whence E n F çz Q^C) Q A. 

From Z(C) = (t, z) and / ^ G z it follows immediately that NG((t, z))/C == S3 
((clearly C = C * ^ , * » ) . If O^C) CA, we must have Oi(C') = E n F. 
But CG(E n F) = A so in any case 4̂ < NG((t, z)). However, 

(z) = A' char ,4 < iVG«*,z» 

which immediately gives a contradiction. 
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Finally we suppose z~Gv and put V = CV(fl). From Z{V) — (z,v) we 
have as above, NG(V)/V 9Ë 53. A computation shows (V/E)' = (h, E)/E for 
some h G B — A. If F ' is non-abelian, (F ' ) ' = (2) which is impossible. How
ever from V is abelian it follows that ^(V) = (k) <\ NG(V) for some 
involution k, which is also impossible. We have proved: 

LEMMA 5. The normalizer N = NG(F) of F in G properly contains T. 

Put K = 02(N) and recall that CG(F) = F. We have N/F is isomorphic 
to a subgroup of GL(5, 2) and \N/F\ = 26 • n, where 1 < n S 31, n odd. 

Using properties ( l)-(7) above, Sylow's theorem, and the transfer theorem, 
we see that \02(N/F)\ ^ 24 unless n = 3 • 7, in which case \02(N(F))\ ^ 23. 
In the latter case, if \K\ = 28, \Z(K)\ S 8. Clearly z £ Z(K) so z has at most 7 
conjugates in iV, contradicting n = 21 = |iV : T\ = \N : Cjy(z)|. 

Therefore we have |X| ^ 29, whence |Z(i£)| ^ 4. As z G Z(X), s has at 
most 3 conjugates in N. It follows immediately that n = 3, |Z(i£)| = 4, and 
N/K ~ Sz. Further, the structure of T shows that Z(K) = (t,z); i.e., 
K = CT(t). If there are no involutions in T — J, 12i(i£) = A which implies 
(z) < N. Thus T — J contains involutions. The structure of T shows 12i(i£) = 
(B,y) (of index4ini£) andsoZ(S2i(i£)) = Z = (z, t, v). It follows immediately 
that a Sylow 3-subgroup Q of N centralizes v (note that all involutions in 
Z — (t, z) are conjugate in K). We have: 

LEMMA 6. If N = iVG(f) and X = 02(iV), *Ae» N/K ^ S8. 7w//^r, r - J 
possesses involutions, z ~Gt, but z n^G v as 3\\CG(y)\. 

Put U = Qi(K) = C0(Z) and note that CZ(Q) = (v). We claim that 
CF(Q) = (*>)• I1 not, |CV(<2)| = 8, and so there exists an involution e G E 
with e G CF(Q) — (v). As C^(e) £ C/(e), it follows immediately that 
CVW = ^4- However Cv{e) is Ç-invariant whence Q normalizes A' — {z)y 

which is a contradiction. 
Since N/U is isomorphic to a subgroup of GL(3, 2), we have N/U ~ S*. 

An easy computation shows that K' = (b, F) (where b £ B — A and b is of 
order 4). From \K' : F| = 2 we have without loss that b G Cu(Q). Thus 
b2 = v and CK{Q) = (6) is cyclic of order 4. 

The involution ^ G (F C\ E) — Z has centralizer CN{u) of order 28 

(CN(u) = Cj(u) = CV(w)) whence w has 24 conjugates in iV. All involutions 
in F — Z are therefore conjugate to «/ in G (for E C\ F — Z must contain 
involutions conjugate to */ in H). This means that all involutions in J — E, 
and all involutions in F — (t, z), are conjugate to v in G. 

In [7, F has precisely three (non identity) cosets which contain involutions: 
Fw, Fy, and Fywb where w G E — F (as above). Clearly Q permutes these 
three cosets. (Remark. Fywb contains involutions rather than Fyb because 
CT(y) covers (F, b)/F as bf G CT(w) (for s o m e / G f ) ; thus v G O 1 ^ , F » 
whereas W^w, F)) = (z), ^((y, F)) = (t) and (t, z) < N.) The coset Fw 
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contains 16 involutions, 8 of which are conjugate to z in G (as they are conju
gate to t in H) and 8 of which are conjugate to v (in H). It follows therefore 
that y ooç^z. Without loss we take z ~Gy (whence v ~Gyz) and note that 
\CT(y)\ = 2^. 

LEMMA 8. The group G has precisely two conjugate classes of involutions with 
representatives z and v. 

3. Generators and relations for N and H. We recall that 
E = (z, t, v, u, w), F = {z, t, v, u, a), T = (x, J), and (x) X (z) is a Sylow 
2-subgroup of NH(P). Further 

(1) x4 = [x, t] = 1, [x, v] = t, [x, u] = v, [x, w] = u. 

From these relations we derive \y, v] = 1, [y,u] = t and \y, w] = v. Without 
loss we take [b,w] = 1 so 

(2) [b, w] = 1, [a, w] = [b, u] = z. 

As u ^^Ara it follows that iC^Oz)! = |CV(a)| = 27. Also Cj(a) = F and so 
Cr(ûO covers T/J. As C^(&) is Q-invariant and w G CK(b)> CK(b) covers U/F; 
but x G C r(6) so CJS:(6) = Cv{b). Let d be an involution in J — D (i.e., 
d £ T — K) ; by Suzuki's result, d inverts an element of odd order in N so 
we may assume d G NN(Q) by Sylow's theorem. However, as d~Ha, 
Cj{d) = (d) X C,(d) whence d G CN(b). As d G i M < 6 » = NN(CK(Q))t we 
have 

(3) [d, 6] = 62 = », [d, *] = z. 

Note that |Cy(6)| = 26 so that &£ possesses two classes of elements of order 
4 in T with representatives b and 6w. As x ~N c* for some c* £ D — B, 
\CE(x)\ = 8 whence CT(x) covers A/E and |Cr(x)| = 25. Further, as 
(c*y~Hv, 
(4) x2 = 3/3. 

Since (z, [a, &]) = (b, F)' char(6, F) <\ N, [a, b] must be either t or tz. 
Replacing a by au if necessary, we take 

(5) [a, 6] = t. 

Choose q G Q so that sff = /. Now [w, ô] = z and [a, 6] = t so wff = ae for 
some e G Z. Put xff_1 = c*; then as [x, Z] = <*>, [c*, Z] = <s). We see that 
c* G £> — B. Thus [c*, w] G (s) yields [x, ae] G (0 so [x, a] = 1 or t. In either 
case 

(6) b, «] = i. 

Next we choose w, u more exactly. Namely, replacing w by wt if necessary, 

(7) [d, w] = 1 
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and replacing u by ut and hence w by wv (so that (1) still holds), 

(8) [d, u] = 1. 

We now choose c € £ > -- B so that 

(9) [c, u] = [c, w] = 1 

and clearly 

(10) [c, t] = 1, [c, v] = z 

Using (1) we see that [c, x] £ ab E, [d, x] Ç abc E, and the cosets aE, dE, 
abcdE, cbEy and dbE contain involutions. Further, the conjugates of t in H 
are found easily by noticing that CE{d) contains precisely three involutions 
conjugate to z in G. The conjugates of t in H are: t, tz, wt, wtz, wut, wutz, wvt, 
wvtz, wuv, wuvz. 

Since (a, d) is dihedral of order 8, [a, d] 6 (u, v, z) = CE({a, d)). From (2) 
and (3), replacing a by at if necessary, either 

(11) [a, d] = u 

or 

(110 [a,d] = uv. 

Case 1: Relation (11) holds. Using (11), (1), [a, x] Ç (/), [d, x] G abc E, and 
(5), we deduce that [a, c] lies in the coset vt(z). We can replace c by oe> if need 
be to get 

(12) [a, c] = vt. 

As c2 £ E — F and c2 ~Hv, c2 Ç w(^, z). From [c, 3;] Ç aE, (1), and (6), 
it follows that c2 Ç wu(z). We choose 

(13) c2 = wu 

since we may replace c by a; if necessary. Now cdE contains involutions so we 
assume (cd)2 = 1 as c so far is chosen only up to a factor in {u, t, z) and 
[d, t] = 2. We have 

(14) [c, d] = wu. 

A simple calculation yields [b, c] = uv or uvz, so by our remark above and as 
[b, u] = z we may choose 

(15) [6, c] = uv 

Case 2: relation (IV) holds. As above, we may choose c in the appropriate 
way to get: 

(12') [a, c] = » 

(13') c2 = w 

(14') [c, <q = w 

https://doi.org/10.4153/CJM-1972-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-063-0


680 DAVID PARROTT 

and 

(15') [b, c] = ut. 

In Case 2 we now replace j by f for any j Ç J and write J' for / . Then the 
isomorphism <r \ J —> J' given by 

a (a) = a', a(b) = a'b't', a(c) = c7, <r(d) = c'à'u' 

shows that Cases 1 and 2 give isomorphic groups for / . From now on we assume 
we are in Case 1; i.e., relations (1)—(15) hold. Next we choose 

(16) [a,x] = 1; 

for, if [a, x] = t (we know [a, x] € (t)) and if we put a' = av and d = cw, we 
see that a', b, d', d satisfy (1)—(15) and [a', x] = 1. 

Taking q (E Q as above (i.e., zff = 0» w e have wff = yf and ya = ybwf, 
f,f d F (because [w, F] = z and [y, F] = t). It now follows (from b 6 CN(q), 
(1), (2), (4), and (5)) that [y,b] = 1. Hence (;yM2 = 1 and [y,d] = bwfi 
for some/i G (u, z) by (3). Replacing y by y/ (and then x by xz/) if necessary, 
we may assume / i 6 (z>). Suppose / i = v\ then putting d' = dw and a' = at, 
a', b, c, df satisfy (1)-(16) and [y, d'] = 1. We may choose / i = 1: 

(17) [y, d] = 6w. 

Next we see that [b, x] 6 a(J, z) because of (1) and \y,b] — 1. We may 
replace x by xu (and then y by 3/1/) if necessary, to choose [b, x] 6 a(t), and 
then repeat the argument used above to choose 

(18) [b,x] = a (with [b,y] = 1). 

A computation, using the relations above, yields [c, y] = atz5, 8 = 0, 1. 
However, ydxd = yatz m~> G yat so [c,y] = atz. Two further computations 
enable us to determine [x, c] uniquely and [x, d] up to a factor of z. Thus 
replacing x by xt if necessary, we have 

(19) [y, c] = atz, [x, c] = abuv, [x, d] = abcuv. 

We have now given all relations between the generators x, a, b, c, d of T. 

Generators and relations for H. If X is a subset of G, put I(X) equal to the 
subset of all involutions of X. An easy computation yields 

\{ji\i e HT - j)}\ = 8 

for any j Ç I (J -A). 
Let r 6 7( i ï - r ) with r~Hy and (a£) r = dE. Note that i f = (T, r). 

We have C^(r) = (z,u,wvt), CJ/E(r) = (dc, ad)E/E, and (ry)5 = 1. Let 7\ 
denote the Sylow 2-subgroup of if which contains r. If (;yr)2 = cr, then 
Tff = 7\, Fff = Fi = (cd, tv, w, u, z), and of course 3/* = r. Thus /r = ze/wt; or 
wuvz, so replacing r by an appropriate involution in rcdE if necessary, 

(20) r2 = (ry)5 = 1 , tr = ze/m. 
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Further, vr = uv or uvz so we may choose r (as r can be replaced by an 
involution in racE if need be) to get 

(21) vr = uv, 

and so 

(22) uT = u,wr = vtz. 

By the remark above, \{al\i Ç / ( 7 \ — / )} | = 8 and so 

{ a ^ Ç / O T ! - J)} = { d / l / e CFl(d) = <«;,«,*>} or = {dvf\f£ CFl(d)}. 

These two possibilities yield isomorphic groups H = (T, r) (in fact under 
the correspondence in § 6, this isomorphism is given by the outer automor
phism induced by the element u?> £ 2F4(2)-^"in Tits' notation [6].) 

We take the first possibility; i.e., ar = df for some/ £ (w, u, z). Put (ob)* = 
adh where h G (z, v, u, wt) so that adh £ Cj(r) (because yc = r). This forces 
/ € (u, z) and h £ v(z, u, wvt); i.e., ar = duaz& (a, 0 = 0, 1). However, we may 
replace r by rvtw if necessary, to have ar = J^a (a = 0, 1) and thus dr = aua. 
It follows immediately that cr = aZawa and a computation shows 
&r = deb (vt)awa+1zy (a, y = 0, 1). Replacing r by r^ if need be, we choose 
7 = 0. Thus we have the following possible two sets of relations between r 
and / : 

(23) If a = 1, then ar = du, dT = au, cT = edau, br = debvt; 

(23') if a = 0, then aT = d, dT = a, cr = cda, bT = debv. 

If the elements of (J, r) satisfy (23') put / = J', r = r', and 7 = / for any 
j £ / . Then X : (/, r) —> (/ ' , r') given by 

A (a) = aV*V, \(b) = &'/V, X(c) = e'w'z', \{d) = ^ V , X(r) = r' 

is an isomorphism. As usual we suppose (23) holds from now on. 
Finally, a simple but tedious computation shows 

(ryrx~lrx)j {x~1rxryr) = j 

for each j £ {a, b, c, d}. As J = (a,b,e,d) and CG(J) = (z), this implies 
ryrx^rx G (s). Thus r^r = x~Vxs or x~Vx. However, 3/ ̂ # r but y n^H y% so 
ryr = x~lrx, or 

(24) rxr = (^r)2x. 

Generators and relations j or N. Let s £ I(N — T) with (^.F)s = T^T7. Note 
that N = <r, 5), and put T2 = <$,£>. Since |{y'|i 6 / ( r - i£)}| = 8, it 
follows that all involutions in wF conjugate to y in G are conjugate to y under 
I(T2 — K). Without loss therefore we take ys = wuvz. Hence ts = [y, F]s = 
[wuvz, F] = z and (vt)s = [y, wuvz\s = ztf; i.e., z;s = »te. 

https://doi.org/10.4153/CJM-1972-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-063-0


682 DAVID PARROTT 

As x2 = yz, xs = caef for some ef £ CE(ca) = (w, u, t, z). From (18) and 
(1) we have y ~Nyaz so (yaz)s G wt(v, s), whence as £ «(u, s). If xs = cae' 
with g' G (u, t, z), then [xs, a] = vt = [x, as] implies as = uv or WAS. But 
1 = [x, a]s = [cae',uv] = z, which is a contradiction. Therefore xs = cawe, 
e Ç (u, t, z), and as = u or wz. 

If m is an element of order 4 in K — U, then m2 has precisely 16 roots in K, 
8 in each of the cosets mF and m~1F. Further, these roots are precisely the set 
{m\ (mr1)*, M 0 \ (m-lkY\i 6 I(N - K) C\ CN(m2) and <jfe> = Z((i,K))}. 
This means we may choose 5 more exactly so that xs = caw or cawtz (note that 
above we showed xs £ c -1/7 = cwF ^ cF). 

In the former case, xs = caw, using (18), (19), and the possibilities above, 
as = uz and &s = bauvt. However, a further computation shows (bauvt)s = 
i/z F^ 6, which is clearly a contradiction. Thus xs = cawtz, and from (18) and 
(19) we have: 

(25) ts = z, vs = Ate, 3>s = wwuz, ws = yavz, 

as = u bs = bauvz, cs = xyauvt, xs = cawtz. 

Finally we compute x(sd)3 to be xt whence (sd)3 = vz. Our final relation is 
then 

(26) (sdvz)* = 1. 

4. Determination of the second centralizer. 

LEMMA 8. We have CG(v) = CN(v), an extension of a 2-group of order 28 by S3. 

Proof. Put C = CG(v), V = CN(y), and U = 02(V) and recall that 
U = (F} y} w, b) and V = U- Q(d) with V/U^ 58. 

We note that as (z, v) = Z(T H F), it follows that r H F = (U, d) is a 
Sylow 2-subgroup of C. Also if {z, t) normalizes a subgroup 0 of odd order of 
C then 0 = 1. For, s G 02(CG(/)) H 02(Co(te)) (by the structure of i f ) , 
whence (C0(t), C0(tz)) Q C0(z) = 1, which immediately implies 0 = 1 . 

We have Cv(d) = 5 is elementary of order 32 and S ~H F so that 
NC(S) = NV(S). On the other hand for any involution l £ U, \Cv(l)\ = 27. 
Thus if d ~c h a Sylow 2-subgroup of Cc(d) would contain S properly, whence 
NC(S) D NV(S). This is not the case so d is not conjugate to any involution 
in U. Thompson's transfer lemma [5, p. 411] yields that C has a subgroup M 
of index 2, and in fact we may assume d (? M. 

Clearly U is then a Sylow 2-subgroup of M and we claim Z = Z(U) is 
weakly closed in U with respect to M. For, if z ~M I with / Ç [/ — Z, then 
28 | |CM(0|. However, C ^ / ) ' = (z), (t), or <te) and obviously CM(z) = CM(*) = 
CM itz) = £/. Therefore a Sylow 2-subgroup of CM(/) has order 26 which means 
z ^M l- Thus, as (z/) < if, Z is weakly closed in [/; i.e., M is 2-normal. Gain's 
transfer theorem [2, p. 256] implies that M has a subgroup X of index 2 with 

https://doi.org/10.4153/CJM-1972-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-063-0


TITS ' SIMPLE GROUP 683 

H I ; i.e., X H U = (F, bw, by). Hence Y = X C\ U is a Sylow 2-subgroup 
of X, Qi (F) = F, and CF(Q) = (v). 

Next we make two remarks: 
(i) (s, £) is characteristic in any 2-subgroup of X containing it (in F, z has 

precisely 3 G-conjugates), and Nx((z, t)) = YQ; 
(ii) if k e F - Z, then NY((k, v)) = CY(k) = F, while if k G F - F, then 

N_Y((k,v)) = CV(fe) = <*>Z. 
P u t JT = X/(v) and use the bar convention. From (i) and (ii) we have 

Cy(k) is an abelian Sylow 2-subgroup of Cx(k), k £ Y — Z. As a Sylow 
2-subgroup of Cx(k)/(k) has order a t most 8 and as z, t, tz lie in dist inct 
conjugate classes in Cx(k), the transfer theorem implies Cx(k) has a normal 
2-complement 0. If 0 denotes the inverse image of 0 in X, and 0 = (v) X Oi, 
then (z, /) C Nx(Oi) Ç Nc(Oi). By the remark a t the beginning of the proof, 
0 i = 1; i.e., Cx(k) = Cy(k). I t follows immediately t ha t F contains the 
centralizer of each of its involutions, and hence F i s disjoint from its conjugates. 

A s tandard argument (see [2, p . 302], for example) yields t h a t X has pre
cisely one class of involutions or F <3 X. T h e first possibility implies 
z(v) ~ x u(v), which is a contradiction. From F < X follows Y <\ X and then 
Z = Z(Y) <] X so X ^ NG(Z) C N. I t follows immediately t ha t C C N 
and so C = F . T h e lemma is proved. 

5. Generators a n d re la t ions for 3T. In [6], T i t s gives generators and 
relations for the group 2 F 4 (2) . Using these generators and relations for 2.F4(2) 
and the method of Reidemeister-Schreier (see [4, p . 86-95]), one can derive 
the following presentation for the g r o u p e : 

Generators jor $~\ r\, r8, siy i = 1, . . . , 8. 
(In the notat ion of [6], we have: 

Si = Ui i even, 

st = U\ut i = 1, 3, 5, 

S7 = u-iu^r1, and ru r8 are as in [6].) 
Relations. 

( I ) r i 2 = r8
2 = 5i2 = 52

2 = 54
2 = 56

2 = s8
2 = 1, 53

4 = 55
4 = *7

4 = 1. 
P u t rz = Sis2sz2, rb = Sis5

2 a n d r-, = r 3 • s^s5s7. 

( I I ) [Si,S2] = [Si,Sz] = [Si,Sb] = 1. 
( I I I ) [si, s%] = r 3 ; [si, ST] = 52r3/v, [s1} s8] = si2rzsi. 

(IV) [>2, 54] = [52, 56] = 1; [52, 58] = 5456; [57, 52] = 54r5-
(V) [57, 54] = r3r5; [53, 55] = 52r3s4; [55, 54] = r3. 

(VI) (i) (rxrg)8 = 1, (ii) ( 5 ^ ) * = 1, (iii) (r8ssy = 1. 
(VII) rxs2rx = 58; ri54ri = 56; ri55ri = (5i/-i)255; 

ri53ri = (5ifi)2r7; fir8ri = 57r7. 
(VI I I ) r852r8 = 56; r854r8 = 54; r85ir8 = 57r7; r8s1r8 = 5 7

- 1 ; 
r853r8 = sns^\ r8rzr8 = r6. 
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6. Identification of G withJ^~. We consider the following correspondence: 

y <-»si X *-+ S5 

avz <-» s2 UVZ <-» SQ 

bxv <-> Sz x~lcawtz <r* s^ 

VZ <-» S4 dvz <-» ss 

r <-> Y\ s <->r8 

(It follows that 

/<-»r3, z<->r5, xbcwt<r->r7l wuvz *-> s7r7). 

Under this correspondence, using the fact that E and F are elementary and 
relations (l)-(26) of § 4, we see that all the relations of § 5 are satisfied with 
the possible exception of VI (i). 

Verification of VI (i) (i.e., we prove (rs)s = 1). By the choice of r and s, 
r ^ G 2 while s ~Gv which means rs has even order. Further, (rs)Ay(sr)A = 
ryr ^ y shows rs has order at least six. Now the structures of H and C imply 
that either (rs)s = 1 or (rs)10 = 1. Suppose (rs)10 = 1; then (rs)5 = i~Gz. 
A simple computation yields dvz £ CG(r(sr)z), whence 

s • dvz • s 6 CG(s ' r(sr)z • s) = CG((sr)*s) = CG(ir). 

Clearly r £ CG(ir) as (rs)5 = i, and so (sdvzs)r Ç CG(ir). Using relation (26) 
(i.e., sdvzs = dvzsdvz), a computation gives 

(*) (sdvzsrY = advz(sr)4zvda. 

But r 6 02(CG(ir)) as r ^<? 2 and ir ~ G u (i.e., C — U only contains involu
tions conjugate to «;), which implies (sdvzs)r lies in a Sylow 2-subgroup of 
CG(ir). This implies by equation (*) that (sr)4 is also a 2-element. However, 
as (sr)10 = (rs)10 = 1, (sr)4 is of order 5. This contradiction shows (rs)10 9e 1; 
we have proved (rs)8 = 1. 

With the verification of relation VI (i), we have proved that G possesses a 
subgroup Go = {H, N) isomorphic to a factor group of ^" , so G0 =&" as J?7"" 
is simple. It therefore remains to show that G = Go. 

At this stage, Thompson's order formula [3, p. 279] may be applied to 
determine \G\. However, the actual computation of \G\ is not necessary, for 
the formula, along with §§ 2, 3, and 4 show that \G\ is unique. Since ^"satisfies 
the assumptions of the theorem, it follows therefore that \G\ = \^~\. Thus 
\G\ = |G0| and as G0 £ G, we have shown G = Go, as required. 

This completes the proof of the theorem. 

REFERENCES 

1. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420. 
2. D. Gorenstein, Finite groups (Harper and Row, New York, 1968). 

https://doi.org/10.4153/CJM-1972-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-063-0


TITS' SIMPLE GROUP 685 

3. D. Held, The simple groups related to M24, J. Algebra IS (1969), 253-296. 
4. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory (Wiley-Interscience, 

New York, 1966). 
5. J. G. Thompson, Nonsolvable finite groups all oj whose local subgroups are solvable, Bull. 

Amer. Math. Soc. 74 (1968), 383-437. 
6. J. Tits, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329. 

Ohio State University, 
Columbus, Ohio 

https://doi.org/10.4153/CJM-1972-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-063-0

