A CHARACTERIZATION OF THE TITS' SIMPLE GROUP

DAVID PARROTT

In [6], J. Tits has shown that the Ree group ${ }^{2} F_{4}(2)$ is not simple but possesses a simple subgroup \mathscr{T} of index 2 . In this paper we prove the following theorem:

Theorem. Let G be a finite group of even order and let z be an involution contained in G. Suppose $H=C_{G}(z)$ has the following properties:
(i) $J=O_{2}(H)$ has order 2^{9} and is of class at least 3 .
(ii) H / J is isomorphic to the Frobenius group of order 20.
(iii) If P is a Sylow 5-subgroup of H, then $C_{J}(P) \subseteq Z(J)$.

Then $G=H \cdot O(G)$ or $G \cong \mathscr{T}$, the simple group of Tits, as defined in [6].
For the remainder of the paper, G will denote a finite group which satisfies the hypotheses of the theorem as well as $G \neq H \cdot O(G)$. Thus Glauberman's theorem [1] can be applied to G and we have that $\langle z\rangle$ is not weakly closed in H (with respect to G). The other notation is standard (see [2], for example).

Acknowledgement. The proof of Lemma 4 is due to the referee. His proof greatly shortened that of the author.

1. Some properties of H. In the notation of the theorem we prove:

Lemma 1. We have that $\mathrm{cl}(J)=3, Z(J)=Z(H)=\langle z\rangle$, and a Sylow 2-subgroup T of H is a Sylow 2-subgroup of G. Finally, $E=J^{\prime}=Z_{2}(J)=\Phi(J)$ is elementary of order 32 .

Proof. Since $C_{J}(P) \subseteq Z(J)$ and $\mathrm{cl}(J) \geqq 3, P$ cannot act trivially on J or J^{\prime}, so $|J: \Phi(J)| \geqq 16$ and $\left|J^{\prime}: J^{\prime} \cap Z(J)\right| \geqq 16$. As $|J|=2^{9}$ we must have $\Phi(J)=J^{\prime}$ and $\left|Z(J) \cap J^{\prime}\right|=2$ (or alternatively

$$
\left.|J: \Phi(J)|=\left|J^{\prime}: J^{\prime} \cap Z(J)\right|=16\right)
$$

Further, as $Z(J)$ is P-invariant and $\mathrm{cl}(J) \geqq 3, Z(J) \subseteq J^{\prime}$ whence $Z(J)=\langle z\rangle$ is of order 2 and $\mathrm{cl}(J)=3$. Put $E=J^{\prime}$ and note that E is abelian (as $E^{\prime}=\left(J^{\prime}\right)^{\prime}$ and $\operatorname{cl}(J)=3)$. It follows that E is elementary abelian for $|E|=32$ and $E=\langle z\rangle \times[P, E]=C_{E}(P) \times[P, E]$. We note that $E=Z_{2}(J)$ as $Z_{2}(J) \triangleleft H$ and $\langle z\rangle=L_{3}(J)=\left[J, J^{\prime}\right]$ as $L_{3}(J) \triangleleft H$.

If T is a Sylow 2 -subgroup of H, clearly $Z(T)=\langle z\rangle$. But then $\langle z\rangle \triangleleft N_{G}(T)$ so $N_{G}(T) \subseteq H$. It follows immediately from Sylow's theorem that T is a Sylow 2-subgroup of G.

[^0]Throughout this paper we need some properties of the linear group GL $(5,2)$.
Properties of $\operatorname{GL}(5,2)$. (1) $|\operatorname{GL}(5,2)|=2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$.
(2) $\mathrm{GL}(5,2)$ is a non-abelian simple group.
(3) An involution in GL $(5,2)$ has centralizer of order $2^{9} \cdot 3$ or $2^{10} \cdot 3 \cdot 7$. In the latter case, the centralizer is a faithful splitting extension of an elementary group of order 16 by the holomorph of an elementary group of order 8 (see [3]).
(4) If τ is an element of order 3 in $\operatorname{GL}(5,2)$, either $C_{G}(\tau) \cong\langle\tau\rangle \times A_{5}$ or $C_{G}(\tau) \cong\langle\tau\rangle \times \operatorname{PSL}(2,7)$. Further, a Sylow 3-normalizer is a faithful extension of an elementary abelian group of order 9 by D_{8}-the dihedral group of order 8 (see [3]).

From properties (1)-(4) and Sylow's theorem we also have:
(5) A Sylow 5 -centralizer is cyclic of order 15 and a Sylow 5 -normalizer has order $3 \cdot 4 \cdot 5$.
(6) A Sylow 7 -normalizer is the direct product of a non-abelian group of order 6 and a Frobenius group of order 21.
(7) A Sylow 31-normalizer is a Frobenius group of order $5 \cdot 31$.

Lemma 2. We have $N_{G}(E)=H$ and z is conjugate (in G) to an involution in $H-E$.

Proof. Since $C_{G}(E)=C_{H}(E) \triangleleft H, C_{G}(E)=E$ and therefore $N_{G}(E) / E$ is isomorphic to a subgroup of GL $(5,2)$. If t is any involution in $E-\langle z\rangle, t$ has either 10 or 20 conjugates in H, whence z has $1,11,21$, or 31 conjugates in $N_{G}(E)$. Under the assumption $N_{G}(E) \supset H$, we have $\left|N_{G}(E) / E\right|=2^{6} \cdot 5 \cdot 11$, $2^{6} \cdot 3 \cdot 5 \cdot 7$, or $2^{6} \cdot 5 \cdot 31$. As GL $(5,2)$ does not possess subgroups of any of these orders (this is easily seen by using properties (1)-(7) above) we therefore have $N_{G}(E)=H$.

Suppose z is not conjugate (in G) to any involution in $H-E$. Then $z \sim_{G} t$ for some involution $t \in E-\langle z\rangle$ by Glauberman's theorem. It follows that E is the normal closure of $\langle z\rangle$ in $C_{G}(t)$ (as $H \sim_{G} C_{G}(t)$). This clearly contradicts $N_{G}(E)=H$.

We now list some properties of the group J which can be derived from Lemma 1.
(a) For $j \in J-E,\left|C_{E}(j)\right|=16$ since $L_{3}(J)=\left[J, J^{\prime}\right]=\langle z\rangle$.
(b) If j is an involution in $J-E, \mho^{1}(\langle j, E\rangle)=\langle z\rangle$ so that not all cosets of E in J contain involutions.
(c) If $J \supset J_{1} \supset J_{2} \supset J_{3} \supset E$ is any (maximal) chain of subgroups from J to E, then $Z\left(J_{i}\right), J_{i}{ }^{\prime} \subset E$ and $\left|Z\left(J_{i}\right)\right|=2^{i+1}(i=1,2,3)$. Further, we have $\left|J_{1}{ }^{\prime}\right| \geqq 8$. (This last fact may be proved by noting that we may choose $a_{i} \in J-E, \quad i=1, \ldots, 4$, so that $J_{1}=\left\langle E, a_{1}, a_{2}, a_{3}\right\rangle, a_{4}=a_{1}{ }^{p}$, and $J=\left\langle a_{i} \mid i=1, \ldots, 4\right\rangle$, where $\langle p\rangle=P$. Also $\left\{z,\left[a_{i}, a_{j}\right] \mid\right.$ for suitable $\left.i, j\right\}$ is a basis for $J^{\prime}=E$. Now if $J_{1}{ }^{\prime}=\langle z, t\rangle$ is of order $4,\left|C_{J_{1}}\left(a_{i}\right)\right| \geqq 2^{7}, i=1,2,3$ whence $\left|C_{J}\left(a_{4}\right)\right| \geqq 2^{7}$. It follows that $z, t,\left[a_{1}, a_{4}\right],\left[a_{2}, a_{4}\right],\left[a_{3}, a_{4}\right]$ are not linearly independent which contradicts $J^{\prime}=E$.)
(d) For $j \in J-E, 2^{5} \leqq\left|C_{J}(j)\right| \leqq 2^{6}$, while for $e \in E-\langle z\rangle,\left|C_{J}(e)\right|=2^{8}$. (If $\left|C_{J}(j)\right|=2^{7}, C_{J}(j) \cdot E$ is maximal in J and $\left|\left(C_{J}(j) \cdot E\right)^{\prime}\right| \leqq 4$, contrary to (c) above.)

The factor group H / E. Let $x \in N_{H}(P)$ so that $\langle x, z\rangle$ is a Sylow 2-subgroup of $N(P)$ (recall that $C_{H}(P)=P \times\langle z\rangle$ and note that $x^{4}=1$ or z). Put $P=\langle p\rangle$ with $p^{x}=p^{2}$ and put $E_{0}=[P, E]$ which is $N_{H}(P)$-invariant of order 16. The structure of H / E is uniquely determined and can be described in the following way:

Identify J / E with the additive group of $\mathrm{GF}(16)$; then the action of p on J / E is given by scalar multiplication by an element ζ of order 5 in the multiplicative group of $\mathrm{GF}(16)$ and the action of x on J / E corresponds to the Galois automorphism of GF (16).

Clearly x fixes the coset $E a$ corresponding to $1=\zeta^{5}$ in GF (16), while x^{2} fixes the cosets $E b$ corresponding to $\zeta+\zeta^{-1}$ and $E a b$ which corresponds to $1+\zeta+\zeta^{-1}=\zeta^{2}+\zeta^{3}$ as well as $E a$. Note that $E a$ has 5 conjugates in H while $E b$ has 10 conjugates.

Put $T=\langle J, x\rangle, A=\langle a, E\rangle$ and $B=\langle a, b, E\rangle$; then T is a Sylow 2 -subgroup of H (and hence of $G), A / E=Z(T / E)=C_{J / E}(x)$, and $B / E=Z\left(\Omega_{1}(T) / E\right)=$ $C_{J / E}\left(x^{2}\right)$.

The Centralizer of an involution in $E-\langle z\rangle$. As $N_{H}(P) \cdot E /\langle z\rangle \cong H / E$, the action of $N_{H}(P) /\langle z\rangle$ on $E_{0}=[P, E]$ is exactly the same as the action of H / J on J / E. Choose $t \in E_{0}$ so that t has precisely 5 conjugates under the action of $N_{H}(P)$ and hence t has 10 conjugates in H (as $t \sim_{J} t z$. Thus $\left|C_{H}(t)\right|=$ $\left|C_{T}(t)\right|=2^{10}$. As $C_{T}(t)$ is maximal in T, putting $C_{J}(t)=D$ we must have $D / E=\Phi(T / E) \cap J / E$. Clearly $B \subset D$ and we denote $Z(B)=\langle z, t, v\rangle$ by Z. It follows that $\left|C_{T}(v)\right|=\left|C_{H}(v)\right|=2^{9}($ as $Z \triangleleft T$ and $Z(D)=\langle t, z\rangle)$.

Further, there are precisely two classes of involutions in $E-\langle z\rangle$ in H with representatives t, v; while if $u \in E-Z$ then $C_{T}(u) \subset J$.

Finally, if E has basis w, u, v, t, z we describe the action of x on E by:

The case when there are involutions in $H-J$. If k is an involution in $H-J$, by a lemma due to Suzuki (see [2, p. 105 and p. 328]) k inverts an element of order 5. By Sylow's theorem, k is conjugate to an involution in $N_{H}(P)$, and hence to an involution $y \in\langle x, z\rangle-\langle z\rangle$. Hence as $\langle x, z\rangle-\langle z\rangle$ contains two involutions (under this assumption), any involution in $H-J$ is conjugate to either y or $y z$ in H.

Now $C_{E}(y)=Z$ has order 8 and $C_{J / E}(y)$ has order 4 , whence $T-J$ contains precisely 32 involutions. Thus either $y \sim_{H} y z$ and $\left|C_{H}(y)\right|=\left|C_{T}(y)\right|=2^{6}$ or $y x_{H} y z$ and $\left|C_{H}(y)\right|=\left|C_{T}(y)\right|=2^{7}$.

The notation we have used above will remain fixed for the rest of the paper.
Lemma 3. There are involutions in $J-E$.
Proof. We prove the lemma by way of contradiction. Thus by Lemma 2 we may assume $z \sim_{G} y, y$ (as above) an involution in $T-J$. Now $X=\Omega_{1}\left(C_{T}(y)\right)=\langle y\rangle \times Z$ has order 16 and so E is the only elementary abelian subgroup of order 32 in T. This implies that z is not conjugate to any involution in $E-\langle z\rangle$ in G (as $N_{G}(E)=H$ by Lemma 2).

As $z \sim_{G} y, C_{T}(y)=C_{H}(y)$ is not a Sylow 2-subgroup of $C_{G}(y)$, whence $N_{G}\left(C_{T}(y)\right) \supset N_{T}\left(C_{T}(y)\right)$ by Sylow's theorem. Since X char $C_{T}(y)$, $N_{G}(X) \supset N_{T}(X)=N_{H}(X)$. From $E \subseteq N_{T}(X)$, it follows that y has at least 4 conjugates in $N_{T}(X)$ and so y has 4 or 8 conjugates in $N_{G}(X)$.

In the latter case z has 9 conjugates in $N_{G}(X)$ (as z is not conjugate to any involution in $E-\langle z\rangle)$. This implies that $\{e: e \in Z-\langle z\rangle\} \triangleleft N_{G}(X)$. Hence $Z=\langle\{e: e \in Z-\langle z\rangle\}\rangle \triangleleft N_{G}(X)$ and $\langle z\rangle \triangleleft N_{G}(X)$, which is a contradiction. Therefore z has 5 conjugates in $N_{G}(X)$;i.e., $\left|N_{G}(X): N_{T}(X)\right|=5$. Because y has only 4 conjugates in $N_{T}(X), N_{T}(X)=\langle B, x\rangle$ and $\left|N_{T}(X): C_{T}(X)\right|=8$ for $x \in N_{T}(X)-C_{T}(X)$. However, this yields $\left|N_{G}(X): C_{G}(X)\right|=5 \cdot 8=$ $2^{3} \cdot 5$ which contradicts the structure of $A_{8} \cong \mathrm{GL}(4,2)$. The lemma is proved.

From the remarks above, either the coset $E a$ or the coset $E b$ contains involutions, but not both.

Lemma 4. There are involutions in the coset Ea (or, alternatively, Eb does not contain involutions).

Proof. Suppose $E b$ contains involutions. We use the same notation as above; that is, J / E is identified with the additive group of GF (16) and ζ is an element of order 5 in the multiplicative group of GF (16). Then $E b \leftrightarrow \zeta+\zeta^{-1}$ so that the cosets $E a_{i} \leftrightarrow 1+\zeta^{i}(i=1,2,3,4)$ also contain involutions. (The conjugates of $E b$ in H are the cosets which correspond to $\zeta^{l}+\zeta^{j}(0 \leqq l<j \leqq 4)$.) Further, $E a_{i} a_{j} \leftrightarrow \zeta^{i}+\zeta^{j}$ so the coset $E a_{i} a_{j}$ also contains an involution. By (b), $E\left\langle a_{i}, a_{j}\right\rangle /\langle z\rangle$ is elementary; that is, $\left[a_{i}, a_{j}\right] \in\langle z\rangle$. Thus we may choose $\bar{a}_{j} \in E a_{j}(j=1,2,3,4)$ such that $\left[\bar{a}_{j}, a_{i}\right]=1$ for any fixed $i(i=1,2,3$, or 4$)$. This is clearly a contradiction as $a_{i} \in C_{J}\left\langle\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}, \bar{a}_{4}\right\rangle=C_{J}(J)=Z(J)=\langle z\rangle$.
2. The fusion of involutions in G. As $E a$ contains involutions, we take a to be an involution. Put $F=\langle a\rangle \times C_{E}(a)$ so that F is elementary of order 32 . Clearly $F \triangleleft T$ (as $A \triangleleft T$) and $C_{G}(F)=C_{T}(F)=F$. We show by way of contradiction that $N_{G}(F) \supset T$.

Suppose $N_{G}(F)=T$; we will show that z is not conjugate to any involution in $T-\langle z\rangle$ in G which will contradict Glauberman's Theorem. First consider
the case that z is not conjugate to any involution in $J-\langle z\rangle$ in G. Then there are involutions in $T-J$ and we may assume $z \sim_{G} y$. Put $X=\Omega_{1}\left(C_{T}(y)\right)$ and $W=O_{2}\left(N_{G}(X)\right)$. If $X=Z \times\langle y\rangle$, then we get a contradiction in exactly the same way as in Lemma 3. Hence X is elementary of order 32 and y must have 8 or 16 conjugates in $N_{T}(X)$ (as $y a E \sim_{T} y E$ and X covers A / E). Note that $N_{G}(X) \supset N_{T}(X)$ as $z \sim_{G} y$ and $N_{G}(X) / C_{G}(X)$ is isomorphic to a subgroup of $\operatorname{GL}(5,2)$. From the structure of T, it follows that $C_{T}(X)=X$ or $\left|C_{T}(X): X\right|=2$ (in this latter case, $C_{T}(X)$ covers $\left.B / E\right)$. If y has 16 conjugates in $N_{T}(X), z$ has 17 conjugates in $N_{G}(X)$ which contradicts the order of GL $(5,2)$. Thus z has 9 conjugates in $N_{G}(X)$, whence $\left|N_{G}(X): N_{T}(X)\right|=9$ and $\left|N_{G}(X)\right|=2^{10} \cdot 3^{2}$. Now from property (3) (of GL $(5,2)$) it follows that $\left|W: C_{G}(X)\right|=2^{4}$, so $|W|=2^{9}$ or 2^{10}. As $W \subseteq T, z \in Z(W)$. However from the structure of T we see that $|Z(W)| \leqq 4$. This implies that z has at most 3 conjugates in $N_{G}(X)$, which is a contradiction.

Next consider the case when z is conjugate to an involution in $J-E$, but not conjugate to an involution in $E-\langle z\rangle$. Without loss of generality we may suppose $z \sim_{G} a$. Put $S=C_{T}(a)=C_{H}(a)$, and note that $N_{G}(S) \supset N_{T}(S)=$ $N_{H}(S)$ and that a has at most 16 conjugates in T (i.e., $\left|C_{T}(a)\right| \geqq 2^{7}$, so by (d), $\left.2^{7} \leqq\left|C_{T}(a)\right| \leqq 2^{8}\right)$.

We claim that $Z(S)=\langle z, t, a\rangle$. If S covers T / J this follows immediately from $C_{E}(x)=\langle z, t\rangle$. (Note that as S covers $\langle J, y\rangle / J$ in any case and $\left.\left|C_{J}(a)\right| \leqq 2^{7}, \quad Z(S) \supseteq\langle z, t, a\rangle.\right)$ In the other possibility we must have $F \subset J \cap S$, and hence $z \in S^{\prime}$. By assumption z is not conjugate to any involution in $E-\langle z\rangle$ which implies $S / S \cap E$ is non-abelian. This forces $Z(S)=\langle z, t, a\rangle$.

It now follows immediately that $N_{G}(Z(S)) / C_{G}(Z(S)) \cong S_{3}$, the symmetric group on 3 letters. Clearly $S=C_{G}(Z(S))$ and $E \cdot S$ is a Sylow 2-subgroup of $N_{G}(S)$. As $3 \| N_{G}\left(\Omega_{1}(S)\right) \mid, F$ cannot be maximal in $\Omega_{1}(S)$, and hence $\left|\Omega_{1}(S): F\right|=4$. Thus $|S|=2^{8}$ and in particular S covers T / J. A simple computation shows that $S^{\prime}=\langle z, t, a, v\rangle \subset \Omega_{1}(S)$. By another computation we see that for $w \in E-F,\left[w, \Omega_{1}(S)\right] \subseteq S^{\prime}$.

By Suzuki's lemma, w inverts a Sylow 3 -subgroup Q of $N_{G}(S)$. It follows immediately that Q stabilizes the chain $S \supset \Omega_{1}(S) \supset S^{\prime}\left(\right.$ as $\left.\left|S: \Omega_{1}(S)\right|=2\right)$. Hence Q centralizes S and in particular $Q \subseteq C_{G}(z)=H$ which is impossible.

Under the assumption $N_{G}(F)=T$, we must have either $z \sim_{G} t$ or $z \sim_{G} v$. In the first case, put $C=C_{T}(t)$ and note that C covers T / J. Thus we have $E \cap F \subseteq C^{\prime}$ while $(C / E)^{\prime}=B / E$ whence $E \cap F \subseteq \Omega_{1}\left(C^{\prime}\right) \subseteq A$.

From $Z(C)=\langle t, z\rangle$ and $t \sim_{G} z$ it follows immediately that $N_{G}(\langle t, z\rangle) / C \cong S_{3}$ ((clearly $\left.C=C_{G}(\langle t, z\rangle)\right)$. If $\Omega_{1}\left(C^{\prime}\right) \subset A$, we must have $\Omega_{1}\left(C^{\prime}\right)=E \cap F$. But $C_{G}(E \cap F)=A$ so in any case $A \triangleleft N_{G}(\langle t, z\rangle)$. However,

$$
\langle z\rangle=A^{\prime} \operatorname{char} A \triangleleft N_{G}(\langle t, z\rangle)
$$

which immediately gives a contradiction.

Finally we suppose $z \sim_{G} v$ and put $V=C_{T}(v)$. From $Z(V)=\langle z, v\rangle$ we have as above, $N_{G}(V) / V \cong S_{3}$. A computation shows $(V / E)^{\prime}=\langle h, E\rangle / E$ for some $h \in B-A$. If V^{\prime} is non-abelian, $\left(V^{\prime}\right)^{\prime}=\langle z\rangle$ which is impossible. However from V^{\prime} is abelian it follows that $\mho^{1}\left(V^{\prime}\right)=\langle k\rangle \triangleleft N_{G}(V)$ for some involution k, which is also impossible. We have proved:

Lemma 5. The normalizer $N=N_{G}(F)$ of F in G properly contains T.
Put $K=O_{2}(N)$ and recall that $C_{G}(F)=F$. We have N / F is isomorphic to a subgroup of GL $(5,2)$ and $|N / F|=2^{6} \cdot n$, where $1<n \leqq 31, n$ odd.

Using properties (1)-(7) above, Sylow's theorem, and the transfer theorem, we see that $\left|O_{2}(N / F)\right| \geqq 2^{4}$ unless $n=3 \cdot 7$, in which case $\left|O_{2}(N(F))\right| \geqq 2^{3}$. In the latter case, if $|K|=2^{8},|Z(K)| \leqq 8$. Clearly $z \in Z(K)$ so z has at most 7 conjugates in N, contradicting $n=21=|N: T|=\left|N: C_{N}(z)\right|$.

Therefore we have $|K| \geqq 2^{9}$, whence $|Z(K)| \leqq 4$. As $z \in Z(K), z$ has at most 3 conjugates in N. It follows immediately that $n=3,|Z(K)|=4$, and $N / K \cong S_{3}$. Further, the structure of T shows that $Z(K)=\langle t, z\rangle$; i.e., $K=C_{T}(t)$. If there are no involutions in $T-J, \Omega_{1}(K)=A$ which implies $\langle z\rangle \triangleleft N$. Thus $T-J$ contains involutions. The structure of T shows $\Omega_{1}(K)=$ $\langle B, y\rangle$ (of index 4 in K) and so $Z\left(\Omega_{1}(K)\right)=Z=\langle z, t, v\rangle$. It follows immediately that a Sylow 3 -subgroup Q of N centralizes v (note that all involutions in $Z-\langle t, z\rangle$ are conjugate in $K)$. We have:

Lemma 6. If $N=N_{G}(F)$ and $K=O_{2}(N)$, then $N / K \cong S_{3}$. Further, $T-J$ possesses involutions, $z \sim_{G} t$, but $z \chi_{G} v$ as $3 \| C_{G}(v) \mid$.

Put $U=\Omega_{1}(K)=C_{G}(Z)$ and note that $C_{Z}(Q)=\langle v\rangle$. We claim that $C_{F}(Q)=\langle v\rangle$. If not, $\left|C_{F}(Q)\right|=8$, and so there exists an involution $e \in E$ with $e \in C_{F}(Q)-\langle v\rangle$. As $C_{K}(e) \subseteq C_{J}(e)$, it follows immediately that $C_{U}(e)=A$. However $C_{U}(e)$ is Q-invariant whence Q normalizes $A^{\prime}=\langle z\rangle$, which is a contradiction.

Since N / U is isomorphic to a subgroup of $\operatorname{GL}(3,2)$, we have $N / U \cong S_{4}$. An easy computation shows that $K^{\prime}=\langle b, F\rangle$ (where $b \in B-A$ and b is of order 4). From $\left|K^{\prime}: F\right|=2$ we have without loss that $b \in C_{U}(Q)$. Thus $b^{2}=v$ and $C_{K}(Q)=\langle b\rangle$ is cyclic of order 4.

The involution $u \in(F \cap E)-Z$ has centralizer $C_{N}(u)$ of order 2^{8} $\left(C_{N}(u)=C_{J}(u)=C_{T}(u)\right)$ whence u has 24 conjugates in N. All involutions in $F-Z$ are therefore conjugate to v in G (for $E \cap F-Z$ must contain involutions conjugate to v in H). This means that all involutions in $J-E$, and all involutions in $F-\langle t, z\rangle$, are conjugate to v in G.

In U, F has precisely three (non identity) cosets which contain involutions: $F w, F y$, and $F y w b$ where $w \in E-F$ (as above). Clearly Q permutes these three cosets. (Remark. Fywb contains involutions rather than Fyb because $C_{T}(y)$ covers $\langle F, b\rangle / F$ as $b f \in C_{T}(w)$ (for some $\left.f \in F\right)$; thus $v \in \mho^{1}(\langle y b, F\rangle)$ whereas $\mho^{1}(\langle w, F\rangle)=\langle z\rangle, \mho^{1}(\langle y, F\rangle)=\langle t\rangle$ and $\langle t, z\rangle \triangleleft N$.) The coset $F w$
contains 16 involutions, 8 of which are conjugate to z in G (as they are conjugate to t in H) and 8 of which are conjugate to v (in H). It follows therefore that $y \sim_{G} y z$. Without loss we take $z \sim_{G} y$ (whence $v \sim_{G} y z$) and note that $\left|C_{T}(y)\right|=2^{7}$.

Lemma 8. The group G has precisely two conjugate classes of involutions with representatives z and v.
3. Generators and relations for N and H. We recall that $E=\langle z, t, v, u, w\rangle, F=\langle z, t, v, u, a\rangle, T=\langle x, J\rangle$, and $\langle x\rangle \times\langle z\rangle$ is a Sylow 2 -subgroup of $N_{H}(P)$. Further

$$
\begin{equation*}
x^{4}=[x, t]=1,[x, v]=t,[x, u]=v,[x, w]=u . \tag{1}
\end{equation*}
$$

From these relations we derive $[y, v]=1,[y, u]=t$ and $[y, w]=v$. Without loss we take $[b, w]=1$ so

$$
\begin{equation*}
[b, w]=1,[a, w]=[b, u]=z \tag{2}
\end{equation*}
$$

As $u \sim_{N} a$ it follows that $\left|C_{K}(a)\right|=\left|C_{T}(a)\right|=2^{7}$. Also $C_{J}(a)=F$ and so $C_{T}(a)$ covers T / J. As $C_{K}(b)$ is Q-invariant and $w \in C_{K}(b), C_{K}(b)$ covers U / F; but $x \notin C_{T}(b)$ so $C_{K}(b)=C_{U}(b)$. Let d be an involution in $J-D$ (i.e., $d \in T-K)$; by Suzuki's result, d inverts an element of odd order in N so we may assume $d \in N_{N}(Q)$ by Sylow's theorem. However, as $d \sim_{H} a$, $C_{J}(d)=\langle d\rangle \times C_{E}(d)$ whence $d \notin C_{N}(b)$. As $d \in N_{N}(\langle b\rangle)=N_{N}\left(C_{K}(Q)\right)$, we have

$$
\begin{equation*}
[d, b]=b^{2}=v,[d, t]=z \tag{3}
\end{equation*}
$$

Note that $\left|C_{T}(b)\right|=2^{6}$ so that $b E$ possesses two classes of elements of order 4 in T with representatives b and $b w$. As $x \sim_{N} c^{*}$ for some $c^{*} \in D-B$, $\left|C_{E}(x)\right|=8$ whence $C_{T}(x)$ covers A / E and $\left|C_{T}(x)\right|=2^{5}$. Further, as $\left(c^{*}\right)^{2} \sim_{H} v$,

$$
\begin{equation*}
x^{2}=y z . \tag{4}
\end{equation*}
$$

Since $\langle z,[a, b]\rangle=\langle b, F\rangle{ }^{\prime} \operatorname{char}\langle b, F\rangle \triangleleft N,[a, b]$ must be either t or $t z$. Replacing a by $a u$ if necessary, we take

$$
\begin{equation*}
[a, b]=t \tag{5}
\end{equation*}
$$

Choose $q \in Q$ so that $z^{q}=t$. Now $[u, b]=z$ and $[a, b]=t$ so $u^{q}=a e$ for some $e \in Z$. Put $x^{q^{-1}}=c^{*}$; then as $[x, Z]=\langle t\rangle,\left[c^{*}, Z\right]=\langle z\rangle$. We see that $c^{*} \in D-B$. Thus $\left[c^{*}, u\right] \in\langle z\rangle$ yields $[x, a e] \in\langle t\rangle$ so $[x, a]=1$ or t. In either case

$$
\begin{equation*}
[y, a]=1 \tag{6}
\end{equation*}
$$

Next we choose w, u more exactly. Namely, replacing w by $w t$ if necessary,

$$
\begin{equation*}
[d, w]=1 \tag{7}
\end{equation*}
$$

and replacing u by $u t$ and hence w by $w v$ (so that (1) still holds),

$$
\begin{equation*}
[d, u]=1 \tag{8}
\end{equation*}
$$

We now choose $c \in D-B$ so that

$$
\begin{equation*}
[c, u]=[c, w]=1 \tag{9}
\end{equation*}
$$

and clearly

$$
\begin{equation*}
[c, t]=1,[c, v]=z . \tag{10}
\end{equation*}
$$

Using (1) we see that $[c, x] \in a b E,[d, x] \in a b c E$, and the cosets $a E, d E$, $a b c d E, c b E$, and $d b E$ contain involutions. Further, the conjugates of t in H are found easily by noticing that $C_{E}(d)$ contains precisely three involutions conjugate to z in G. The conjugates of t in H are: $t, t z$, wt, wtz, wut, wutz, wvt, wotz, wuv, wuvz.

Since $\langle a, d\rangle$ is dihedral of order $8,[a, d] \in\langle u, v, z\rangle=C_{E}(\langle a, d\rangle)$. From (2) and (3), replacing a by at if necessary, either

$$
\begin{equation*}
[a, d]=u \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
[a, d]=u v \tag{11'}
\end{equation*}
$$

Case 1: Relation (11) holds. Using (11), (1), $[a, x] \in\langle t\rangle,[d, x] \in a b c E$, and (5), we deduce that $[a, c]$ lies in the coset $v t\langle z\rangle$. We can replace c by $c w$ if need be to get

$$
\begin{equation*}
[a, c]=v t . \tag{12}
\end{equation*}
$$

As $c^{2} \in E-F$ and $c^{2} \sim_{H} v, c^{2} \in w\langle u, z\rangle$. From $[c, y] \in a E$, (1), and (6), it follows that $c^{2} \in w u\langle z\rangle$. We choose

$$
\begin{equation*}
c^{2}=w u \tag{13}
\end{equation*}
$$

since we may replace c by $c v$ if necessary. Now $c d E$ contains involutions so we assume $(c d)^{2}=1$ as c so far is chosen only up to a factor in $\langle u, t, z\rangle$ and $[d, t]=z$. We have

$$
\begin{equation*}
[c, d]=w u . \tag{14}
\end{equation*}
$$

A simple calculation yields $[b, c]=u v$ or $u v z$, so by our remark above and as $[b, u]=z$ we may choose

$$
\begin{equation*}
[b, c]=u v \tag{15}
\end{equation*}
$$

Case 2: relation (11') holds. As above, we may choose c in the appropriate way to get:

$$
\begin{align*}
& {[a, c]=v} \\
& c^{2}=w \\
& {[c, d]=w}
\end{align*}
$$

and

$$
[b, c]=u t .
$$

In Case 2 we now replace j by j^{\prime} for any $j \in J$ and write J^{\prime} for J. Then the isomorphism $\sigma: J \rightarrow J^{\prime}$ given by

$$
\sigma(a)=a^{\prime}, \quad \sigma(b)=a^{\prime} b^{\prime} t^{\prime}, \quad \sigma(c)=c^{\prime}, \quad \sigma(d)=c^{\prime} d^{\prime} u^{\prime}
$$

shows that Cases 1 and 2 give isomorphic groups for J. From now on we assume we are in Case 1 ; i.e., relations (1)-(15) hold. Next we choose

$$
\begin{equation*}
[a, x]=1 \tag{16}
\end{equation*}
$$

for, if $[a, x]=t$ (we know $[a, x] \in\langle t\rangle$) and if we put $a^{\prime}=a v$ and $c^{\prime}=c w$, we see that $a^{\prime}, b, c^{\prime}, d$ satisfy (1)-(15) and $\left[a^{\prime}, x\right]=1$.

Taking $q \in Q$ as above (i.e., $z^{q}=t$), we have $w^{q}=y f$ and $y^{q}=y b w f^{\prime}$, $f, f^{\prime} \in F$ (because $[w, F]=z$ and $[y, F]=t$). It now follows (from $b \in C_{N}(q)$, (1), (2), (4), and (5)) that $[y, b]=1$. Hence $(y b w)^{2}=1$ and $[y, d]=b w f_{1}$ for some $f_{1} \in\langle v, z\rangle$ by (3). Replacing y by $y t$ (and then x by $x v$) if necessary, we may assume $f_{1} \in\langle v\rangle$. Suppose $f_{1}=v$; then putting $d^{\prime}=d w$ and $a^{\prime}=a t$, $a^{\prime}, b, c, d^{\prime}$ satisfy (1)-(16) and $\left[y, d^{\prime}\right]=1$. We may choose $f_{1}=1$:

$$
\begin{equation*}
[y, d]=b w \tag{17}
\end{equation*}
$$

Next we see that $[b, x] \in a\langle t, z\rangle$ because of (1) and $[y, b]=1$. We may replace x by $x u$ (and then y by $y v$) if necessary, to choose $[b, x] \in a\langle t\rangle$, and then repeat the argument used above to choose

$$
\begin{equation*}
[b, x]=a \quad(\text { with }[b, y]=1) \tag{18}
\end{equation*}
$$

A computation, using the relations above, yields $[c, y]=a t z^{\delta}, \delta=0,1$. However, $y^{d x d}=y a t z \varkappa_{G} y a t$ so $[c, y]=a t z$. Two further computations enable us to determine $[x, c]$ uniquely and $[x, d]$ up to a factor of z. Thus replacing x by $x t$ if necessary, we have

$$
\begin{equation*}
[y, c]=a t z, \quad[x, c]=a b u v, \quad[x, d]=a b c u v . \tag{19}
\end{equation*}
$$

We have now given all relations between the generators x, a, b, c, d of T.
Generators and relations for H. If X is a subset of G, put $I(X)$ equal to the subset of all involutions of X. An easy computation yields

$$
\left|\left\{j^{i} \mid i \in I(T-J)\right\}\right|=8
$$

for any $j \in I(J-A)$.
Let $r \in I(H-T)$ with $r \sim_{H} y$ and $(a E)^{r}=d E$. Note that $H=\langle T, r\rangle$. We have $C_{E}(r)=\langle z, u, w v t\rangle, C_{J / E}(r)=\langle d c, a d\rangle E / E$, and $(r y)^{5}=1$. Let T_{1} denote the Sylow 2 -subgroup of H which contains r. If $(y r)^{2}=\sigma$, then $T^{\sigma}=T_{1}, F^{\sigma}=F_{1}=\langle c d, t v, w, u, z\rangle$, and of course $y^{\sigma}=r$. Thus $t^{r}=w u v$ or $w u v z$, so replacing r by an appropriate involution in $r c d E$ if necessary,

$$
\begin{equation*}
r^{2}=(r y)^{5}=1, \quad t^{r}=w u v z . \tag{20}
\end{equation*}
$$

Further, $v^{r}=u v$ or $u v z$ so we may choose r (as r can be replaced by an involution in racE if need be) to get

$$
\begin{equation*}
v^{r}=u v, \tag{21}
\end{equation*}
$$

and so

$$
\begin{equation*}
u^{r}=u, w^{r}=v t z . \tag{22}
\end{equation*}
$$

By the remark above, $\left|\left\{a^{i} \mid i \in I\left(T_{1}-J\right)\right\}\right|=8$ and so

$$
\left\{a^{i} \mid i \in I\left(T_{1}-J\right)\right\}=\left\{d f \mid f \in C_{F_{1}}(d)=\langle w, u, z\rangle\right\} \text { or }=\left\{d v f \mid f \in C_{F_{1}}(d)\right\} .
$$

These two possibilities yield isomorphic groups $H=\langle T, r\rangle$ (in fact under the correspondence in $\S 6$, this isomorphism is given by the outer automorphism induced by the element $u_{5} \in{ }^{2} F_{4}(2)-\mathscr{T}$ in Tits' notation [6].)

We take the first possibility; i.e., $a^{\tau}=d f$ for some $f \in\langle w, u, z\rangle$. Put $(a b)^{\sigma}=$ $a d h$ where $h \in\langle z, v, u, w t\rangle$ so that $a d h \in C_{J}(r)$ (because $y^{\sigma}=r$). This forces $f \in\langle u, z\rangle$ and $h \in v\langle z, u, w v t\rangle$; i.e., $a^{r}=d u^{\alpha} z^{\beta}(\alpha, \beta=0,1)$. However, we may replace r by $r v t w$ if necessary, to have $a^{r}=d u^{\alpha}(\alpha=0,1)$ and thus $d^{r}=a u^{\alpha}$. It follows immediately that $c^{r}=c d a u^{\alpha}$ and a computation shows $b^{r}=d c b(v t)^{\alpha} w^{\alpha+1} z^{\gamma}(\alpha, \gamma=0,1)$. Replacing r by $r u$ if need be, we choose $\gamma=0$. Thus we have the following possible two sets of relations between r and J :

$$
\begin{align*}
& \text { If } \alpha=1 \text {, then } a^{r}=d u, d^{r}=a u, c^{r}=c d a u, b^{r}=d c b v t ; \tag{23}\\
& \text { if } \alpha=0 \text {, then } a^{r}=d, \quad d^{r}=a, \quad c^{r}=c d a, \quad b^{r}=d c b v .
\end{align*}
$$

If the elements of $\langle J, r\rangle$ satisfy (23') put $J=J^{\prime}, r=r^{\prime}$, and $j=j^{\prime}$ for any $j \in J$. Then $\lambda:\langle J, r\rangle \rightarrow\left\langle J^{\prime}, r^{\prime}\right\rangle$ given by

$$
\lambda(a)=a^{\prime} v^{\prime} t^{\prime} z^{\prime}, \quad \lambda(b)=b^{\prime} t^{\prime} z^{\prime}, \quad \lambda(c)=c^{\prime} w^{\prime} z^{\prime}, \quad \lambda(d)=d^{\prime} u^{\prime} w^{\prime}, \quad \lambda(r)=r^{\prime}
$$

is an isomorphism. As usual we suppose (23) holds from now on.
Finally, a simple but tedious computation shows

$$
\left(r y r x^{-1} r x\right) j\left(x^{-1} r x r y r\right)=j
$$

for each $j \in\{a, b, c, d\}$. As $J=\langle a, b, c, d\rangle$ and $C_{G}(J)=\langle z\rangle$, this implies $r y r x^{-1} r x \in\langle z\rangle$. Thus $r y r=x^{-1} r x z$ or $x^{-1} r x$. However, $y \sim_{H} r$ but $y x_{H} y z$ so $r y r=x^{-1} r x$, or

$$
\begin{equation*}
r x r=(y r)^{2} x . \tag{24}
\end{equation*}
$$

Generators and relations for N. Let $s \in I(N-T)$ with $(y F)^{s}=w F$. Note that $N=\langle T, s\rangle$, and put $T_{2}=\langle s, K\rangle$. Since $\left|\left\{y^{i} \mid i \in I(T-K)\right\}\right|=8$, it follows that all involutions in $w F$ conjugate to y in G are conjugate to y under $I\left(T_{2}-K\right)$. Without loss therefore we take $y^{s}=$ wuvz. Hence $t^{s}=[y, F]^{s}=$ $[w u v z, F]=z$ and $(v t)^{s}=[y, w u v z]^{s}=v t$; i.e., $v^{s}=v t z$.

As $x^{2}=y z, x^{s}=c a e^{\prime}$ for some $e^{\prime} \in C_{E}(c a)=\langle w, u, t, z\rangle$. From (18) and (1) we have $y \sim_{N} y a z$ so $(y a z)^{s} \in w t\langle v, z\rangle$, whence $a^{s} \in u\langle v, z\rangle$. If $x^{s}=c a e^{\prime}$ with $e^{\prime} \in\langle u, t, z\rangle$, then $\left[x^{s}, a\right]=v t=\left[x, a^{s}\right]$ implies $a^{s}=u v$ or uvz. But $1=[x, a]^{s}=\left[c a e^{\prime}, u v\right]=z$, which is a contradiction. Therefore $x^{s}=c a w e$, $e \in\langle u, t, z\rangle$, and $a^{s}=u$ or $u z$.

If m is an element of order 4 in $K-U$, then m^{2} has precisely 16 roots in K, 8 in each of the cosets $m F$ and $m^{-1} F$. Further, these roots are precisely the set $\left\{m^{i},\left(m^{-1}\right)^{i},(m k)^{i},\left(m^{-1} k\right)^{i} \mid i \in I(N-K) \cap C_{N}\left(m^{2}\right)\right.$ and $\left.\langle k\rangle=Z(\langle i, K\rangle)\right\}$. This means we may choose s more exactly so that $x^{s}=$ caw or cawtz (note that above we showed $\left.x^{s} \in c^{-1} F=c w F \neq c F\right)$.

In the former case, $x^{s}=c a w$, using (18), (19), and the possibilities above, $a^{s}=u z$ and $b^{s}=b a u v t$. However, a further computation shows $(b a u v t)^{s}=$ $b t z \neq b$, which is clearly a contradiction. Thus $x^{s}=c a w t z$, and from (18) and (19) we have:

$$
\begin{array}{llll}
t^{s}=z, & v^{s}=v t z, & y^{s}=w u v z, & w^{s}=y a v z \tag{25}\\
a^{s}=u & b^{s}=b a u v z, & c^{s}=x y a u v t, & x^{s}=\text { cawtz }
\end{array}
$$

Finally we compute $x^{(s d)^{3}}$ to be $x t$ whence $(s d)^{3}=v z$. Our final relation is then

$$
\begin{equation*}
(s d v z)^{3}=1 \tag{26}
\end{equation*}
$$

4. Determination of the second centralizer.

Lemma 8. We have $C_{G}(v)=C_{N}(v)$, an extension of a 2-group of order 2^{8} by S_{3}.
Proof. Put $C=C_{G}(v), V=C_{N}(v)$, and $U=O_{2}(V)$ and recall that $U=\langle F, y, w, b\rangle$ and $V=U \cdot Q\langle d\rangle$ with $V / U \cong S_{3}$.
We note that as $\langle z, v\rangle=Z(T \cap V)$, it follows that $T \cap V=\langle U, d\rangle$ is a Sylow 2 -subgroup of C. Also if $\langle z, t\rangle$ normalizes a subgroup O of odd order of C then $O=1$. For, $z \in O_{2}\left(C_{G}(t)\right) \cap O_{2}\left(C_{G}(t z)\right.$) (by the structure of H), whence $\left\langle C_{o}(t), C_{o}(t z)\right\rangle \subseteq C_{o}(z)=1$, which immediately implies $O=1$.
We have $C_{V}(d)=S$ is elementary of order 32 and $S \sim_{H} F$ so that $N_{C}(S)=N_{V}(S)$. On the other hand for any involution $l \in U,\left|C_{V}(l)\right| \geqq 2^{7}$. Thus if $d \sim_{c} l$, a Sylow 2 -subgroup of $C_{C}(d)$ would contain S properly, whence $N_{C}(S) \supset N_{V}(S)$. This is not the case so d is not conjugate to any involution in U. Thompson's transfer lemma [5, p. 411] yields that C has a subgroup M of index 2 , and in fact we may assume $d \notin M$.

Clearly U is then a Sylow 2 -subgroup of M and we claim $Z=Z(U)$ is weakly closed in U with respect to M. For, if $z \sim_{M} l$ with $l \in U-Z$, then $2^{8}| | C_{M}(l) \mid$. However, $C_{U}(l)^{\prime}=\langle z\rangle,\langle t\rangle$, or $\langle t z\rangle$ and obviously $C_{M}(z)=C_{M}(t)=$ $C_{M}(t z)=U$. Therefore a Sylow 2 -subgroup of $C_{M}(l)$ has order 2^{6} which means $z x_{M} l$. Thus, as $\langle v\rangle \triangleleft M, Z$ is weakly closed in U; i.e., M is 2 -normal. Grün's transfer theorem [2, p. 256] implies that M has a subgroup X of index 2 with
$b \notin X$; i.e., $X \cap U=\langle F, b w, b y\rangle$. Hence $Y=X \cap U$ is a Sylow 2-subgroup of $X, \Omega_{1}(Y)=F$, and $C_{Y}(Q)=\langle v\rangle$.

Next we make two remarks:
(i) $\langle z, t\rangle$ is characteristic in any 2 -subgroup of X containing it (in Y, z has precisely $3 G$-conjugates), and $N_{X}(\langle z, t\rangle)=Y Q$;
(ii) if $k \in F-Z$, then $N_{Y}(\langle k, v\rangle)=C_{Y}(k)=F$, while if $k \in Y-F$, then $N_{Y}(\langle k, v\rangle)=C_{Y}(k)=\langle k\rangle Z$.
Put $\bar{X}=X /\langle v\rangle$ and use the bar convention. From (i) and (ii) we have $C_{\bar{Y}}(\bar{k})$ is an abelian Sylow 2 -subgroup of $C_{\bar{X}}(\bar{k}), k \in Y-Z$. As a Sylow 2-subgroup of $C_{\bar{X}}(\bar{k}) /\langle\bar{k}\rangle$ has order at most 8 and as $\bar{z}, \bar{t}, \bar{t} \bar{z}$ lie in distinct conjugate classes in $C_{\bar{X}}(\bar{k})$, the transfer theorem implies $C_{\bar{X}}(\bar{k})$ has a normal 2 -complement \bar{O}. If O denotes the inverse image of \bar{O} in X, and $O=\langle v\rangle \times O_{1}$, then $\langle z, t\rangle \subseteq N_{X}\left(O_{1}\right) \subseteq N_{C}\left(O_{1}\right)$. By the remark at the beginning of the proof, $O_{1}=1$; i.e., $C_{\bar{X}}(\bar{k})=C_{\bar{Y}}(\bar{k})$. It follows immediately that \bar{Y} contains the centralizer of each of its involutions, and hence \bar{Y} is disjoint from its conjugates.

A standard argument (see [2, p. 302], for example) yields that \bar{X} has precisely one class of involutions or $\bar{Y} \triangleleft \bar{X}$. The first possibility implies $z\langle v\rangle \sim_{x} u\langle v\rangle$, which is a contradiction. From $\bar{Y} \triangleleft \bar{X}$ follows $Y \triangleleft X$ and then $Z=Z(Y) \triangleleft X$ so $X \subseteq N_{G}(Z) \subset N$. It follows immediately that $C \subset N$ and so $C=V$. The lemma is proved.
5. Generators and relations for \mathscr{T}. In [6], Tits gives generators and relations for the group ${ }^{2} F_{4}(2)$. Using these generators and relations for ${ }^{2} F_{4}(2)$ and the method of Reidemeister-Schreier (see [4, p. 86-95]), one can derive the following presentation for the group \mathscr{T} :

Generators for $\mathscr{T}: r_{1}, r_{8}, s_{i}, i=1, \ldots, 8$.
(In the notation of [6], we have:

$$
\begin{array}{ll}
s_{i}=u_{i} \quad i \text { even, } \\
s_{i}=u_{1} u_{i} & i=1,3,5, \\
\left.s_{7}=u_{7} u_{1}^{-1}, \text { and } r_{1}, r_{8} \text { are as in }[\mathbf{6}] .\right)
\end{array}
$$

Relations.

(I) $r_{1}{ }^{2}=r_{8}{ }^{2}=s_{1}{ }^{2}=s_{2}{ }^{2}=s_{4}{ }^{2}=s_{6}{ }^{2}=s_{8}{ }^{2}=1, s_{3}{ }^{4}=s_{5}{ }^{4}=s_{7}{ }^{4}=1$. Put $r_{3}=s_{1} s_{2} s_{3}^{2}, r_{5}=s_{1} s_{5}^{2}$ and $r_{7}=r_{3} \cdot s_{3} s_{5} s_{7}$.
(II) $\left[s_{1}, s_{2}\right]=\left[s_{1}, s_{3}\right]=\left[s_{1}, s_{5}\right]=1$.
(III) $\left[s_{1}, s_{6}\right]=r_{3} ;\left[s_{1}, s_{7}\right]=s_{2} r_{3} r_{5} ;\left[s_{1}, s_{8}\right]=s_{7}{ }^{2} r_{3} s_{1}$.
(IV) $\left[s_{2}, s_{4}\right]=\left[s_{2}, s_{6}\right]=1 ;\left[s_{2}, s_{8}\right]=s_{4} s_{6} ;\left[s_{7}, s_{2}\right]=s_{4} r_{5}$.
(V) $\left[s_{7}, s_{4}\right]=r_{3} r_{5} ;\left[s_{3}, s_{5}\right]=s_{2} r_{3} s_{4} ;\left[s_{5}, s_{4}\right]=r_{3}$.
(VI) (i) $\left(r_{1} r_{8}\right)^{8}=1$, (ii) $\left(s_{1} r_{1}\right)^{5}=1$, (iii) $\left(r_{8} s_{8}\right)^{3}=1$.
(VII) $r_{1} s_{2} r_{1}=s_{8} ; r_{1} s_{4} r_{1}=s_{6} ; r_{1} s_{5} r_{1}=\left(s_{1} r_{1}\right)^{2} s_{5}$; $r_{1} s_{3} r_{1}=\left(s_{1} r_{1}\right)^{2} r_{7} ; r_{1} r_{3} r_{1}=s_{7} r_{7}$.
(VIII) $r_{8} s_{2} r_{8}=s_{6} ; r_{8} s_{4} r_{8}=s_{4} ; r_{8} s_{1} r_{8}=s_{7} r_{7} ; r_{8} s_{7} r_{8}=s_{7}^{-1}$; $r_{8} s_{3} r_{8}=s_{7} S_{5} ; r_{8} r_{3} r_{8}=r_{5}$.
6. Identification of G with \mathscr{T}. We consider the following correspondence:

$$
\begin{array}{rlrl}
y & \leftrightarrow s_{1} & x & \leftrightarrow s_{5} \\
a v z & \leftrightarrow s_{2} & u v z & \leftrightarrow s_{6} \\
b x v & \leftrightarrow s_{3} & x^{-1} c a w t z & \leftrightarrow s_{7} \\
v z & \leftrightarrow s_{4} & d v z & \leftrightarrow s_{8} \\
r & \leftrightarrow r_{1} & s & \leftrightarrow r_{8}
\end{array}
$$

(It follows that

$$
\left.t \leftrightarrow r_{3}, \quad z \leftrightarrow r_{5}, \quad x b c w t \leftrightarrow r_{7}, \quad w u v z \leftrightarrow s_{7} r_{7}\right) .
$$

Under this correspondence, using the fact that E and F are elementary and relations (1)-(26) of §4, we see that all the relations of $\S 5$ are satisfied with the possible exception of VI (i).

Verification of VI (i) (i.e., we prove $(r s)^{8}=1$). By the choice of r and s, $r \sim_{G} z$ while $s \sim_{G} v$ which means $r s$ has even order. Further, $(r s)^{4} y(s r)^{4}=$ $r y r \neq y$ shows $r s$ has order at least six. Now the structures of H and C imply that either $(r s)^{8}=1$ or $(r s)^{10}=1$. Suppose $(r s)^{10}=1$; then $(r s)^{5}=i \sim_{G} z$. A simple computation yields $d v z \in C_{G}\left(r(s r)^{3}\right)$, whence

$$
s \cdot d v z \cdot s \in C_{G}\left(s \cdot r(s r)^{3} \cdot s\right)=C_{G}\left((s r)^{4} s\right)=C_{G}(i r)
$$

Clearly $r \in C_{G}(i r)$ as $(r s)^{5}=i$, and so (sdvzs) $r \in C_{G}(i r)$. Using relation (26) (i.e., $s d v z s=d v z s d v z$), a computation gives

$$
\begin{equation*}
(s d v z s r)^{4}=a d v z(s r)^{4} z v d a . \tag{*}
\end{equation*}
$$

But $r \in O_{2}\left(C_{G}(i r)\right)$ as $r \sim_{G} z$ and $i r \sim_{G} v$ (i.e., $C-U$ only contains involutions conjugate to v), which implies ($s d v z s$) r lies in a Sylow 2 -subgroup of $C_{G}(i r)$. This implies by equation $\left(^{*}\right)$ that $(s r)^{4}$ is also a 2 -element. However, as $(s r)^{10}=(r s)^{10}=1,(s r)^{4}$ is of order 5 . This contradiction shows $(r s)^{10} \neq 1$; we have proved $(r s)^{8}=1$.

With the verification of relation VI (i), we have proved that G possesses a subgroup $G_{0}=\langle H, N\rangle$ isomorphic to a factor group of \mathscr{T}, so $G_{0} \cong \mathscr{T}$ as \mathscr{T} is simple. It therefore remains to show that $G=G_{0}$.

At this stage, Thompson's order formula [3, p. 279] may be applied to determine $|G|$. However, the actual computation of $|G|$ is not necessary, for the formula, along with $\S \S 2,3$, and 4 show that $|G|$ is unique. Since \mathscr{T} satisfies the assumptions of the theorem, it follows therefore that $|G|=|\mathscr{T}|$. Thus $|G|=\left|G_{0}\right|$ and as $G_{0} \subseteq G$, we have shown $G=G_{0}$, as required.

This completes the proof of the theorem.

References

1. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
2. D. Gorenstein, Finite groups (Harper and Row, New York, 1968).
3. D. Held, The simple groups related to M_{24}, J. Algebra 13 (1969), 253-296.
4. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory (Wiley-Interscience, New York, 1966).
5. J. G. Thompson, Nonsolvable finite groups all of whose local suogroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.
6. J. Tits, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329.

Ohio State University, Columbus, Ohio

[^0]: Received August 4, 1971. The original version of this paper was written at McGill University, where the author was supported by the N.R.C. Grant of Prof. H. Schwerdtfeger.

