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Abstract

The paper deals with the asymptotic behavior of the bridge of a Gaussian process
conditioned to stay in n fixed points at n fixed past instants. In particular, functional large
deviation results are stated for small time. Several examples are considered: integrated
or not fractional Brownian motions and m-fold integrated Brownian motion. As an
application, the asymptotic behavior of the exit probability is studied and used for the
practical purpose of the numerical computation, via Monte Carlo methods, of the hitting
probability up to a given time of the unpinned process.
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1. Introduction

Simple formulae for the crossing probability in small time for pinned processes have been
recently investigated in the literature, because of their use in improving the performance of the
numerical simulation of processes to be killed when a prescribed boundary is reached. The
idea underlying the application is simple. In fact, consider the generic step of the simulation
procedure: we have generated the process of interest, say X, at some n ≥ 1 fixed instants
0 < T1 < · · · < Tn, observing the positions XT1 = x1, . . . , XTn = xn. In order to obtain the
exit time, we simulate the process again, at time Tn+ε, and if the observed positionXTn+ε = y

reaches the boundary then the crossing is achieved. This gives rise to an overestimate of
the exit time, which can incur a significant error, as observed by many authors. One way to
overcome this difficulty is to compute the crossing probability of the pinned process, that is, for
the conditional process (XTn+εt )0≤t≤1 given all the past observationsXT1 = x1, . . . , XTn = xn
and the present observationXTn+ε = y, and to use it in order to decide if the boundary has been
breached or not. Let us stress that in the general case, no closed formulae are available, so that
such a procedure is carried out with an approximation (by large deviations as ε → 0) of the
exit probability.

In the case of diffusion processes the Markov property allows us to work with the bridge
process between the observations at times Tn and Tn + ε. This case has been widely studied
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The crossing probability for pinned Gaussian processes 425

in the literature; see, e.g. [2] and the references therein. This approach obviously fails if a
non-Markovian process is studied, in which case we have to consider all the past observations
and to handle the bridge of the conditional process.

The present paper deals with the large deviation asymptotic behavior of the exit probability
of such a pinned process whenever the original process is a continuous Gaussian process (and,
in particular, not necessarily a Markovian process). Our wide class of examples can be split
into two main sets.

First, we consider the fractional Brownian motion, which is widely used in risk theory
modeling (see, e.g. [3]). As a consequence, we can handle the semimartingale process resulting
from a linear combination between a fractional Brownian motion with Hurst index greater than
3
4 and a standard Brownian motion, independent of each other, a process providing a promising
tool to set up a non-Markovian model in mathematical finance (see [6]).

Secondly, we can deal with an integrated Gaussian process, that is, a process defined as
the integral with respect to the Lebesgue measure of a Gaussian process. As an example,
we obtain the integrated fractional Brownian motion, which is linked to fractal properties of
solutions to the inviscid Burgers equation. Note that the law of its maximum, analyzed for
example in [13], is strictly connected to level crossing probabilities. Furthermore, we can
consider the m-fold iterated Brownian motion (see, e.g. [5]) and, in particular, the integrated
Brownian motion, which has interesting applications in nonparametric estimating in statistics
(see, e.g. [11] and the references therein) and is used in metrology as a model for the atomic
clock error, whose precision and re-synchronization are strictly related to the level crossing (see,
e.g. [9]).

The paper is organized as follows. After a brief recall of some well-known results related to
large deviations for Gaussian processes (Section 2), we first obtain a functional large deviation
result, for small time, for Gaussian processes conditioned to stay in n fixed positions x1, . . . , xn
at n fixed instants T1 < · · · < Tn (Section 3). In Section 4 we state a functional large deviation
principle for the bridge of such conditional processes. Let us stress that, surprisingly, we obtain
a degenerate kind of large deviations for Gaussian processes having a quite smooth covariance
function (e.g. for integrated Gaussian processes), and so we give some refined results which
also allow us to handle these cases. In particular, we obtain examples of an interesting and
nontrivial asymptotic behavior, in which the (nondegenerate) large deviation speed is different
according to the conditional process or its bridge: the speed associated to the bridge can be
much faster than the one associated to the conditional process. Finally, in Section 5 we give
the asymptotic behavior, in terms of large deviations, of the probability of crossing one or
two possibly time-dependent levels, and we propose some numerical results concerning the
fractional Brownian motion.

2. Large deviations for Gaussian processes

We briefly recall here some main facts we are going to use related to the large deviation
theory for Gaussian processes. There are many references in the literature on this topic, where
all details and proofs may be found; some classical references include [1], [7], and [8]. Without
loss of generality, we can consider centered Gaussian processes.

Throughout the paper,C([0, 1])will denote the set of the continuous paths on [0, 1], endowed
with the topology induced by the sup-norm. Moreover, M[0, 1] will be its dual, i.e. the set of
signed Borel measures on [0, 1], and, for any λ ∈ M[0, 1], 〈λ, h〉 = ∫ 1

0 htλ(dt), h ∈ C([0, 1]),
where 〈λ, ·〉 will stand for the associated linear functional.
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A continuous process U = (Ut )t∈[0,1], defined on some probability space (�,F ,P), is a
centered Gaussian process if, for any λ ∈ M[0, 1], 〈λ,U〉 = ∫ 1

0 Utλ(dt) is a centered Gaussian
random variable (RV) taking values on R. The associated continuous covariance function
k(t, s) = cov(Ut , Us), t, s ∈ [0, 1], plays a crucial role. For example, we have

var(〈λ,U〉) =
∫ 1

0

∫ 1

0
k(t, s)λ(dt)λ(ds) for any λ ∈ M[0, 1].

In addition to k, another important instrument for handling Gaussian processes is the associated
reproducing kernel Hilbert space, H . It is a Hilbert space inC([0, 1]), which is usually defined
through the following (dense with respect to a suitable norm) subset:

L =
{
h ∈ C([0, 1]) : ht =

∫ 1

0
k(t, s)λ(ds) with λ ∈ M[0, 1]

}
.

Let us be a little more precise about H . First, letµ denote the measure induced by the Gaussian
process U : µ(A) = P(U ∈ A) for any Borel set A in C([0, 1]). Let � ⊂ L2(µ) be defined as
the following set of (real) Gaussian RVs:

� = {Y : Y (·) = 〈λ, ·〉 with λ ∈ M[0, 1]}.

It immediately follows that, for Y1, Y2 ∈ � with Yi(·) = 〈λi, ·〉, i = 1, 2,

cov(Y1, Y2) = (Y1, Y2)L2(µ) =
∫ 1

0

∫ 1

0
k(t, s)λ1(dt)λ2(ds),

where, from now on, ‘(·, ·)’ denotes an inner product. We now define

H = �̄
‖·‖

L2(µ) .

Obviously, H is a closed subspace of L2(µ) and is indeed a set of Gaussian RVs taking values
on R. Moreover, it becomes a Hilbert space if endowed with the inner product

(Y1, Y2)H = (Y1, Y2)L2(µ), Y1, Y2 ∈ H.

We now set the following map:

S : H → C([0, 1]),
Y 
→ (SY )t =

∫
xtY (x)µ(dx) ≡ E(UtY ).

It can be shown that S is a linear, one-to-one, and continuous map, so that S−1 : SH → H is a
well-posed continuous and linear map. The reproducing kernel Hilbert space H is defined as
the image of H through S, i.e.

H = SH ≡ {h ∈ C([0, 1]) : ht = (SY )t , Y ∈ H }.
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Finally, setting

(h1, h2)H = (S−1h1,S
−1h2)H ≡ (S−1h1,S

−1h2)L2(µ), h1, h2 ∈ H ,

then (·, ·)H is an inner product on H , which in turn makes H a Hilbert space. This is the
rigorous definition of the reproducing kernel Hilbert space associated to a (centered) Gaussian
process. Finally, it immediately follows that

H = L̄‖·‖H with L =
{
x ∈ C([0, 1]) : xt =

∫ 1

0
k(t, s)λ(ds) with λ ∈ M[0, 1]

}
.

In the sequel we will speak about ‘the reproducing kernel Hilbert space associated to the
covariance function k(t, s)’. In fact, given a continuous, symmetric, and positive definite
function k(t, s) defined on [0, 1] × [0, 1], we can build a centered and continuous Gaussian
process U = (Ut )t∈[0,1] having k as its covariance function. Now, the associated reproducing
kernel Hilbert space is naturally defined.

The main property we are going to use is related to the Cramèr transform (see, e.g. [8]).

Theorem 2.1. (Cramèr transform.) Let I denote the Cramèr transform, that is,

I (x) = sup
λ∈M[0,1]

(〈λ, x〉 − log E(e〈λ,U〉)) = sup
λ∈M[0,1]

(
〈λ, x〉 − 1

2

∫ 1

0

∫ 1

0
k(t, s)λ(dt)λ(ds)

)
.

Then,

I (x) =
{

1
2‖x‖2

H if x ∈ H ,

+∞ otherwise.

Now suppose having a family of continuous Gaussian processes {Uε}ε; is it possible to
determine a large deviation principle? Because of the special form of the Laplace transform for
Gaussian measures, a large deviation principle can be stated if a suitable asymptotic behavior
holds for the Laplace transforms, as summarized in the following theorem.

Theorem 2.2. Let {Uε}ε be a family of continuous Gaussian processes. Let γε be an infinites-
imal function, i.e. limε→0 γε = 0, and suppose that, for any λ ∈ M[0, 1],

0 = lim
ε→0

E(〈λ,Uε〉) and �(λ) = lim
ε→0

var(〈λ,Uε〉)
γ 2
ε

≡
∫ 1

0

∫ 1

0
k̄(t, s)λ(dt)λ(ds)

for some continuous, symmetric, and positive definite function k̄. Then, {Uε}ε satisfies a large
deviation principle on C([0, 1]), with inverse speed γ 2

ε and (good) rate function

I (h) =
{

1
2‖h‖2

H̄
if h ∈ H̄ ,

+∞ otherwise,
(2.1)

where H̄ and ‖ · ‖H̄ respectively denote the reproducing kernel Hilbert space and the related
norm associated to the covariance function k̄.
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Let us recall, once and for all, that the sentence ‘{Uε}ε satisfies a large deviation principle on
C([0, 1]) with inverse speed γ 2

ε and (good) rate function I ’ means that limε→0 γε = 0, the set
{I ≤ a} is compact in C([0, 1]) for any fixed a, and that the following inequalities hold:

• for any open set G in C([0, 1]), lim infε→0 γ
2
ε log P(Uε ∈ G) ≥ − infh∈G I (h);

• for any closed set F in C([0, 1]), lim supε→0 γ
2
ε log P(Uε ∈ F) ≤ − infh∈F I (h).

For the sake of convenience, Theorem 2.2 is written for a noncentered family of Gaussian
processes, even if it requires that the expected path weakly converges to 0. The idea of the proof
of Theorem 2.2 is the following. It is well known (for example, by applying the Gärtner–Ellis
theorem; see, e.g. [7]) that a large deviation principle holds if the hypotheses of Theorem 2.2
are satisfied, and the rate function is given by the Legendre transform of

�̄(λ) = 1

2

∫ 1

0

∫ 1

0
k̄(t, s)λ(dt)λ(ds), λ ∈ M[0, 1].

In view of Theorem 2.1, we immediately obtain (2.1).

3. Large deviations for the conditional process

Let X = (Xt )t≥0 be a Gaussian, centered process with continuous covariance function

k(t, s) = cov(Xt ,Xs).

For a fixed n ∈ N and j = 1, . . . , n, let Xj = (X
j
t )t≥0 stand for the process giving the

conditional behavior of X given that it assumes the values x1, . . . , xj at the j times 0 < T1 <

· · · < Tj , respectively. Since the original process X is Gaussian, the process Xj = (X
j
t )t≥0 is

equal in law to (see, e.g. [10])

X
j
t = X

j−1
t − αj (t)(X

j−1
Tj

− xj ), (3.1)

where

αj (t) = kj−1(t, Tj )

kj−1(Tj , Tj )
(3.2)

and kj , which gives the covariance function associated to Xj , is recursively defined as

kj (t, s) = cov(Xjt , X
j
s )

= kj−1(t, s)− αj (t)kj−1(s, Tj )

= kj−1(t, s)− αj (s)kj−1(t, Tj ). (3.3)

Obviously, the case in which j = 0 is related to the original process and its covariance function,
that is, X0 ≡ X and k0 ≡ k.

Our first aim is to study the behavior of the covariance function of the original process X in
order to obtain a functional large deviation principle for the n-fold conditional process Xn for
small time, that is, for {XnTn+ε·}ε as ε → 0.
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Let us consider an infinitesimal function γε (γε → 0 as ε → 0), whose square will play
the role of the inverse speed of the large deviation principles we are going to study, and let us
introduce the following assumptions.

Assumption 3.1. There exists the asymptotic covariance function k̄(t, s), defined as

k̄(t, s) = lim
ε→0

cov(XTn+εt −XTn,XTn+εs −XTn)

γ 2
ε

= lim
ε→0

k(Tn + εt, Tn + εs)− k(Tn + εt, Tn)− k(Tn, Tn + εs)+ k(Tn, Tn)

γ 2
ε

(3.4)

uniformly for (t, s) ∈ [0, 1] × [0, 1].
Assumption 3.2. For any fixed T > 0, the following limit exists:

ρ̄(t, T ) = lim
ε→0

cov(XTn+εt −XTn,XT )

γε
= lim
ε→0

k(Tn + εt, T )− k(Tn, T )

γε

uniformly for t ∈ [0, 1].
Intuitively, Assumption 3.1 defines a ‘local process’. In fact, it says that locally, as ε → 0,

the process (XTn+εt −XTn)t∈[0,1] behaves as a Gaussian process with covariance function given
by γ 2

ε k̄(t, s). Assumption 3.2 is set in order to describe the influence of a distant value on the
local process.

Let us discuss some simple but useful consequences of the assumptions introduced above. As
an immediate application of Theorem 2.2 (take Uεt = XTn+εt −XTn ), Assumption 3.1 implies
that the family {(XTn+εt −XTn)t∈[0,1]}ε satisfies a large deviation principle on C([0, 1]) with
inverse speed γ 2

ε and good rate function given by

J (h) =
{

1
2‖h‖2

H̄
if h ∈ H̄ ,

+∞ otherwise,

where H̄ is the reproducing kernel Hilbert space associated to the covariance function k̄(t, s)
and ‖ · ‖H̄ denotes the usual norm defined on H̄ .

Now, in order to achieve a large deviation principle for the n-fold conditional process Xn,
we have to investigate the behavior of the functions kj , defined through (3.3), in a small time
interval of length ε. This can be done by means of Assumption 3.2 as follows.

Lemma 3.1. (i) Under Assumption 3.2, as j = 1, . . . , n, we have

lim
ε→0

αj (Tn + εt)− αj (Tn)

γε
= ᾱj (t) uniformly for t ∈ [0, 1],

where

ᾱj (t) = ρ̄j−1(t, Tj )

kj−1(Tj , Tj )
, (3.5)

kj−1 is as defined in (3.3), ρ̄0 ≡ ρ̄, and

ρ̄j (t, T ) = lim
ε→0

kj (Tn + εt, T )− kj (Tn, T )

γε

= ρ̄j−1(t, T )− ᾱj (t)kj−1(T , Tj )

= ρ̄j−1(t, T )− αj (T )ρ̄j−1(t, Tj ), (3.6)

with the above limit being uniformly for t ∈ [0, 1].
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(ii) Under Assumptions 3.1 and 3.2, we have, for j = 1, . . . , n,

lim
ε→0

E(XjTn+εt −X
j
Tn
) = 0 uniformly for t ∈ [0, 1] (3.7)

and

lim
ε→0

cov(XjTn+εt −X
j
Tn
,X

j
Tn+εs −X

j
Tn
)

γ 2
ε

= k̄j (t, s) uniformly for t, s ∈ [0, 1]

with

k̄j (t, s) = k̄(t, s)−
j∑
	=1

k	−1(T	, T	)ᾱ	(t)ᾱ	(s), (3.8)

where ᾱ	 is as defined in (3.5).

Proof. (i) From Assumption 3.2 and (3.2), we immediately have

ᾱ1(t) = ρ̄(t, T1)

k(T1, T1)
.

Therefore, by using (3.3), there exists, uniformly for t ∈ [0, 1],

ρ̄1(t, T ) = lim
ε→0

k1(Tn + εt, T )− k1(Tn, T )

γε

= ρ̄0(t, T )− ᾱ1(t)k0(T , T1)

= ρ̄0(t, T )− α1(T )ρ̄0(t, T1),

where, as usual, we have set ρ̄0 ≡ ρ̄ and k0 ≡ k. This ensures the existence of ᾱ2. The
statement now follows by iteration.

The proof of part (ii) is a straightforward application of Assumption 3.1 and part (i).

Note that, in particular, since XnTn = xn, we have, again, uniformly for t, s ∈ [0, 1],

xn = lim
ε→0

E(XnTn+εt ), (3.9)

k̄n(t, s) = lim
ε→0

cov(XnTn+εt , X
n
Tn+εs)

γ 2
ε

= k̄(t, s)−
n∑
	=1

k	−1(T	, T	)ᾱ	(t)ᾱ	(s). (3.10)

We are now ready to prove the main large deviation result of this section.

Theorem 3.1. Under Assumptions 3.1 and 3.2, the family {(XnTn+εt )t∈[0,1]}ε satisfies a large
deviation principle on C([0, 1]) with inverse speed γ 2

ε and good rate function

Jn(h) =
{

1
2‖h− xn‖2

H̄n
if h0 = xn and h− xn ∈ H̄n,

+∞ otherwise,
(3.11)
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where H̄n is the reproducing kernel Hilbert space associated to the covariance function

k̄n(t, s) = k̄(t, s)−
n∑
j=1

kj−1(Tj , Tj )ᾱj (t)ᾱj (s), (3.12)

where k̄(·, ·), kj (·, ·), and ᾱj (·) are defined in (3.4), (3.3), and (3.5), respectively.

Proof. We start by showing that {(X1
Tn+εt −X1

Tn
)t∈[0,1]}ε, where X1 is as defined in (3.1)

with j = 1, satisfies a large deviation principle. By (3.7), it follows that

lim
ε→0

E(〈λ,X1
Tn+ε· −X1

Tn
〉) = lim

ε→0

∫ 1

0
E(X1

Tn+εt −X1
Tn
)λ(dt) = 0,

and, recalling that var(XT1) = k(T1, T1) ≡ k0(T1, T1), by (3.8), it follows that

lim
ε→0

var(〈λ,X1
Tn+ε· −X1

Tn
〉)

γ 2
ε

= lim
ε→0

∫ 1

0
λ(dt)

∫ 1

0
λ(ds)

cov(X1
Tn+εt −X1

Tn
, X1

Tn+εs −X1
Tn
)

γ 2
ε

=
∫ 1

0
λ(dt)

∫ 1

0
λ(ds)(k̄(t, s)− k(T1, T1)ᾱ1(t)ᾱ1(s)).

Using Theorem 2.2, we obtain the large deviation principle. Now, iterating the same procedure
up to n, we would achieve the following (recall that var(Xj−1

Tj
) = kj−1(Tj , Tj )):

lim
ε→0

E(〈λ,XnTn+ε· −XnTn〉) = 0,

lim
ε→0

var(〈λ,XnTn+ε· −XnTn〉)
γ 2
ε

=
∫ 1

0
λ(dt)

∫ 1

0
λ(ds)k̄n(t, s),

with k̄n(t, s) as defined in (3.12). Note that, by (3.10), k̄n is a continuous covariance function,
being the (uniform) limit of a continuous, symmetric, and positive definite function. Therefore,
we can assert that {(XnTn+εt − XnTn)t∈[0,1]}ε satisfies a large deviation principle on C([0, 1])
with inverse speed γ 2

ε and good rate function

Hn(ϕ) =
{

1
2‖ϕ‖2

H̄n
if ϕ ∈ H̄n,

+∞ otherwise.

Finally, sinceXnTn+εt = xn + (XnTn+εt −XnTn), the large deviation principle follows by contrac-
tion and the associated rate function is actually given by (3.11).

Before we continue with the asymptotic behavior of the n-fold conditional bridge process,
let us give some examples of applications of Theorem 3.1 to the fractional Brownian motion
and integrated Gaussian processes.
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3.1. Fractional Brownian motion

The following result holds as a consequence of Theorem 3.1.

Theorem 3.2. Let X be a fractional Brownian motion with Hurst index H ∈ (0, 1), and let
Xn denote the n-fold conditional process as given in (3.1). Then, the family of processes
{(XnTn+εt )t∈[0,1]}ε satisfies a large deviation principle on C([0, 1]) with inverse speed ε2H and
good rate function

Jn(h) =
{

1
2‖h− xn‖2

HH
if h0 = xn and h− xn ∈ HH ,

+∞ otherwise,

where HH is the reproducing kernel Hilbert space associated to the fractional Brownian motion
itself.

Let us recall that a fractional Brownian motionXwith Hurst indexH ∈ (0, 1) is a continuous,
non-Markovian (unless H = 1

2 ), centered, Gaussian process whose covariance function is

kH (t, s) = t2H + s2H − |t − s|2H
2

.

Proof of Theorem 3.2. We show that Assumptions 3.1 and 3.2 hold. First, we have

cov(XTn+εt −XTn,XTn+εs −XTn)

ε2H = cov(Xt ,Xs),

because of the homogeneity and self-similarity properties holding for the fractional Brownian
motion, so that the limit in (3.4) trivially exists and k̄(t, s) = kH (t, s). Concerning Assump-
tion 3.2, straightforward computations (using Taylor’s expansion) allow us to easily state that

lim
ε→0

sup
t∈[0,1]

|kH (Tn + εt, T )− kH (Tn, T )|
εH

= 0 for any T > 0,

so that ρ̄ ≡ 0. This in turn implies that ᾱj (t) = 0 for any t ∈ [0, 1] and j = 1, . . . , n, as an
immediate consequence of what developed in Lemma 3.1(i). Then k̄n ≡ k and the statement
now follows from Theorem 3.1.

Note that the n-fold conditional fractional Brownian motion satisfies a large deviation
principle with the same rate function as the nonconditioned process. This means that the
asymptotic behavior of the n-fold conditional process does not depend on the past, although
X is not Markovian unless H = 1

2 . However, such a local independence property has recently
been observed by several authors; see, e.g. [12], as well as [14].

Example 3.1. As an example, let us consider the process

Xt = cBt + cHB
H
t ,

in which c and cH are non-null real numbers, B stands for a standard Brownian motion, and
BH denotes a fractional Brownian motion with Hurst index H = 1

2 . Moreover, suppose that
B and BH are independent. Such a process has been studied by Cheridito [6], who proved
that X is a semimartingale if and only if H ∈ ( 3

4 , 1), a property that gives rise to interesting
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applications in finance. The covariance function associated to X is given by

k(t, s) = c2k1/2(t, s)+ c2
HkH (t, s).

Then, using arguments similar to the ones developed in the proof of Theorem 3.2, we can state
a large deviation principle for {(XnTn+εt )t∈[0,1]}ε on C([0, 1]) with inverse speed ε2(H∧1/2) and
good rate function associated to the covariance function

k̄n(t, s) = σ 2
HkH∧1/2(t, s) with σ 2

H =
{
c2 if H > 1

2 ,

c2
H if H < 1

2 ,
(3.13)

where kH∧1/2 denotes the covariance function associated to a fractional Brownian motion with
Hurst index H ∧ 1

2 . By contraction, the constant σ 2
H can be put inside the rate function, which

becomes

Jn(h) =
⎧⎨
⎩

1

2σ 2
H

‖h− xn‖2
HH∧1/2

if h0 = xn and h− xn ∈ HH∧1/2,

+∞ otherwise,

where HH∧1/2 is the reproducing kernel Hilbert space associated with a fractional Brownian
motion with Hurst index H ∧ 1

2 .

3.2. Integrated Gaussian process

Let Z be a centered Gaussian process with covariance function κ(t, s), and let X be the
integrated process, i.e.

Xt =
∫ t

0
Zu du. (3.14)

The process X is a continuous, centered Gaussian process whose covariance function k is
given by

k(t, s) =
∫ t

0

∫ s

0
κ(u, v) du dv.

As a consequence of Theorem 3.1, we have the following theorem.

Theorem 3.3. Let X be an integrated Gaussian process, as in (3.14), with κ(t, s) contin-
uous, and let Xn denote the n-fold conditional process given in (3.1). Then, the family
{(XnTn+εt )t∈[0,1]}ε satisfies a large deviation principle on C([0, 1]) with inverse speed ε2 and
good rate function

Jn(h) =
{

1
2‖h− xn‖2

H̄n
if h0 = xn and h− xn ∈ H̄n,

+∞ otherwise,

where H̄n is the reproducing kernel Hilbert space associated to the covariance function

k̄n(t, s) = a2
nts, where a2

n = κ(Tn, Tn)−
n∑
j=1

dj−1(Tj )
2

kj−1(Tj , Tj )
,
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and dj−1(T ) is recursively defined as d0(T ) = ∫ T
0 κ(Tn, u) du and

di(T ) = di−1(T )− αi(T )di−1(Ti) for i = 1, 2, . . . , n− 1

(recall that kj and αj are defined through (3.3) and (3.2), respectively).

Proof. Let us first show that Assumption 3.1 holds with γε = ε and k̄(t, s) = ts κ(Tn, Tn).
In fact, ∣∣∣∣ 1

ε2 cov(XTn+εt −XTn,XTn+εs −XTn)− ts κ(Tn, Tn)

∣∣∣∣
≤ 1

ε2

∫ Tn+ε

Tn

du
∫ Tn+ε

Tn

dv|κ(u, v)− κ(Tn, Tn)|
≤ sup
u,v∈[Tn,Tn+ε]

|κ(u, v)− κ(Tn, Tn)|,

and the last term goes to 0 as ε → 0 because κ is continuous; thus, κ is uniformly con-
tinuous on compact sets. Similarly, we prove that Assumption 3.2 also holds with ρ̄(t, T ) =
t
∫ T

0 κ(Tn, v) dv. The large deviation principle is now an immediate application of Theorem 3.1.
Finally, in order to give the above more explicit expression for k̄n, we need the functions ᾱj .
By (3.5), it is sufficient to show that

ρ̄j (t, T ) = dj (T )t.

We have already seen that ρ̄0(t, T ) = ρ̄(t, T ) = d0(T )t , so that, by (3.6),

ρ̄1(t, T ) = ρ̄0(t, T )− α1(T )ρ̄0(t, T1) = d1(T )t

with d1(T ) = d0(T )− α1(T )d0(T1). By iteration, the statement holds.

Remark 3.1. It follows that the law of an n-fold conditional integrated Gaussian process
behaves asymptotically as anUt , where U is a standard Gaussian RV. Moreover, a deeper
view to the proof of Theorem 3.3 shows that this kind of ‘degenerate’ behavior can be stated
for any Gaussian process whose covariance function k(t, s) is quite smooth, in particular, if
both the first and the mixed second derivatives exist, the latter being continuous on the diagonal
points (T , T ). In fact, in this case the asymptotic covariance k̄n(t, s) for Xn is again of the
type a2

nts.

Example 3.2. (m-fold integrated Brownian motion.) Suppose that X is defined as

Xt =
∫ t

0
du

(∫ u

0
dum−1 · · ·

∫ u2

0
du1Wu1

)
,

where W denotes a standard Brownian motion. It is known that X is a centered, Gaussian
process with covariance function

k(t, s) = 1

(m!)2
∫ s∧t

0
(s − ξ)m(t − ξ)m dξ =

∫ t

0

∫ s

0
κ(u, v) du dv,

where

κ(t, s) = 1

((m− 1)!)2
∫ t∧s

0
(t − ξ)m−1(s − ξ)m−1 dξ
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(for details, see [5]). Then, Theorem 3.3 applies to X. Note that, for T ≤ Tn and m ≥ 1,

d0(T ) = m

(m!)2
∫ T

0
(Tn − ξ)m−1(T − ξ)m dξ.

Example 3.3. (Integrated fractional Brownian motion.) Suppose that Xt = ∫ t
0 Zu du, where

Z denotes a fractional Brownian motion with Hurst index H . Then, the associated covariance
function is

k(t, s) =
∫ t

0

∫ s

0
κH (u, v) du dv with κH (t, s) = 1

2 (t
2H + s2H − |t − s|2H ).

Again, Theorem 3.3 immediately applies to X. Here, for T ≤ Tn, we have

d0(T ) = 1

2

(
T 2H
n T + 1

2H + 1
(T 2H+1 − T 2H+1

n − (Tn − T )2H+1)

)
.

4. Large deviations for the bridge of the conditional process

Let (Xnt )t≥0 be the n-fold conditional process defined in Section 3, and let us now consider
the process Yn defined as the bridge of the processXn, i.e. the processXn conditioned to be in
y at the future time Tn + ε. Then, in law, we have

YnTn+εt = XnTn+εt − βεTn+εt (X
n
Tn+ε − y), (4.1)

where

βεTn+εt = kn(Tn + εt, Tn + ε)

kn(Tn + ε, Tn + ε)
.

Now, in order to achieve a large deviation principle for {(Y nTn+εt )t∈[0,1]}ε, we need a suitable
asymptotic behavior for βεTn+ε·. In fact, we have the following lemma.

Lemma 4.1. Let Assumptions 3.1 and 3.2 be satisfied. Then there exists the limit

lim
ε→0

βεTn+εt = k̄n(t, 1)

k̄n(1, 1)
=: β̄t uniformly for t ∈ [0, 1]. (4.2)

Proof. We have

|βεTn+εt − β̄t | =
∣∣∣∣kn(Tn + εt, Tn + ε)

kn(Tn + ε, Tn + ε)
− k̄n(t, 1)

k̄n(1, 1)

∣∣∣∣
≤ γ 2

ε

kn(Tn + ε, Tn + ε)

∣∣∣∣kn(Tn + εt, Tn + ε)

γ 2
ε

− k̄n(t, 1)

∣∣∣∣
+ |k̄(t, 1)|

∣∣∣∣ γ 2
ε

kn(Tn + ε, Tn + ε)
− 1

k̄n(1, 1)

∣∣∣∣.
From (3.10),

lim
ε→0

sup
t∈[0,1]

∣∣∣∣kn(Tn + εt, Tn + ε)

γ 2
ε

− k̄n(t, 1)

∣∣∣∣ = 0

and lim
ε→0

∣∣∣∣ γ 2
ε

kn(Tn + ε, Tn + ε)
− 1

k̄n(1, 1)

∣∣∣∣ = 0,

so that the statement holds.
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It is now easy to prove a first large deviation principle. But, as we will see, there are cases in
which the next, immediate, result turns out to be degenerate in some sense. So, let us split this
section into two subsections: Subsection 4.1 contains a first result and Subsection 4.2 develops
some refinements.

4.1. A first large deviation result for the bridge

Theorem 4.1. Let Yn be the bridge of the n-fold conditional process Xn, as defined in (4.1).
Under Assumptions 3.1 and 3.2, the family of processes {(Y nTn+εt )t∈[0,1]}ε satisfies a large
deviation principle on C([0, 1]) with inverse speed γ 2

ε and good rate function

JY (h) =
{

1
2‖h− m̄‖2

H̄Y
if h0 = xn, h1 = y, h− m̄ ∈ H̄Y ,

+∞ otherwise,
(4.3)

where m̄t = xn + β̄t (y − xn) and H̄Y is the reproducing kernel Hilbert space associated to the
covariance function

k̄Y (t, s) = k̄n(t, s)− β̄s k̄n(t, 1) = k̄n(t, s)− k̄n(t, 1)k̄n(s, 1)

k̄n(1, 1)
.

Proof. First, let us set

UnTn+εt = YnTn+εt − m̄t , where m̄t = xn + β̄t (y − xn) = lim
ε→0

E(Y nTn+εt ),

and note that, by (3.9), (4.1), and (4.2), the above limit holds uniformly for t ∈ [0, 1]. We will
start by showing a large deviation principle for {UnTn+ε·}ε, again by using Theorem 2.2. In fact,

lim
ε→0

E(〈λ,UnTn+ε·〉) =
∫ 1

0
λ(dt)E(UnTn+εt ) = 0 for any λ ∈ M[0, 1].

Moreover, from (3.10) and Lemma 4.1, we have

lim
ε→0

cov(UnTn+εt , U
n
Tn+εs)

γ 2
ε

= lim
ε→0

cov(Y nTn+εt , Y
n
Tn+εs)

γ 2
ε

= lim
ε→0

cov(XnTn+εt , X
n
Tn+εs)− βεTn+εs cov(XnTn+εt , X

n
Tn+ε)

γ 2
ε

= k̄n(t, s)− β̄s k̄n(t, 1)

=: k̄Y (t, s) uniformly for s, t ∈ [0, 1],
so that

lim
ε→0

var(〈λ,UnTn+ε·〉)
γ 2
ε

= lim
ε→0

1

γ 2
ε

∫ 1

0
λ(dt)

∫ 1

0
λ(ds) cov(UnTn+εtU

n
Tn+εs)

=
∫ 1

0
λ(dt)

∫ 1

0
λ(ds) k̄Y (t, s) for any λ ∈ M[0, 1].

We can then assert that the family of processes {(UnTn+εt )t∈[0,1]}ε does satisfy a large deviation
principle on C([0, 1]) with inverse speed γ 2

ε and good rate function

JU(ϕ) =
{

1
2‖ϕ‖2

H̄Y
if ϕ0 = ϕ1 = 0 and ϕ ∈ H̄Y ,

+∞ otherwise,
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where H̄Y is the reproducing kernel Hilbert space associated to the covariance function

k̄Y (t, s) = k̄n(t, s)− β̄s k̄n(t, 1) = k̄n(t, s)− k̄n(t, 1)k̄n(s, 1)

k̄n(1, 1)
.

Let us stress that the condition ϕ0 = ϕ1 = 0 is trivially satisfied if ϕ ∈ H̄Y (it immediately
follows from the fact that kY (0, s) = kY (1, s) = 0 for any s), but we have chosen to write it
for the sake of clearness. Now, since YnTn+εt = UnTn+εt + m̄t , by contraction, we immediately
obtain the large deviation principle for {(Y nTn+εt )t∈[0,1]}ε on C([0, 1]) with inverse speed γ 2

ε

and good rate function as in (4.3).

Remark 4.1. The rate function JY given by (4.3) can also be written in the following way:

JY (h) =
⎧⎨
⎩

1

2

(
‖h− xn‖2

H̄n
− (y − xn)

2

k̄n(1, 1)

)
if h0 = xn, h1 = y, and h− xn ∈ H̄n,

+∞ otherwise,
(4.4)

where H̄n is the reproducing kernel Hilbert space associated to the covariance function k̄n
defined in (3.12). Such a representation agrees with well-known formulae, for example,
whenever X is a standard Brownian motion (see, e.g. [4]). The proof of (4.4) is postponed
to Appendix A.

Example 4.1. (Fractional Brownian motion.) Following Subsection 3.1, let X be a fractional
Brownian motion with Hurst index H and let Xn be the associated n-fold conditional process.
As seen in Theorem 3.2, Assumptions 3.1 and 3.2 hold and the asymptotic covariance function
k̄n(t, s) coincides with the original covariance function kH (t, s). By applying Theorem 4.1,
the bridge process Yn satisfies a functional large deviation principle for small time with inverse
speed ε2H and good rate function

JY (h) =
{

1
2‖h− m̄‖2

H̄Y
if h0 = xn, h1 = y, and h− xn ∈ H̄Y ,

+∞ otherwise,

where H̄Y is the reproducing kernel Hilbert space associated to the covariance function

k̄Y (t, s) = kH (t, s)− kH (t, 1)kH (1, s).

Using (4.4), JY can also be written in terms of the reproducing kernel Hilbert space HH

associated to the original fractional Brownian motion X:

JY (h) =
{

1
2 (‖h− xn‖2

HH
− (y − xn)

2) if h0 = xn, h1 = y, and h− xn ∈ HH ,

+∞ otherwise.
(4.5)

Whenever H = 1
2 , that is, X is a standard Brownian motion, then the above result is well

known and widely applied in the literature. Moreover, (4.5) confirms that, as a consequence of
the ‘local’ independence of the n-fold conditional fractional Brownian motion, its bridge also
satisfies a large deviation principle which is independent of all the past except for what happens
at time Tn.

Example 4.2. (Cheridito process.) Let X be the process given in Example 3.1, i.e. Xt =
cBt + cHB

H
t , where c, cH = 0 are constant numbers, B and BH are independent, B denotes
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a Brownian motion, and BH denotes a fractional Brownian motion with Hurst index H = 1
2 .

By developing arguments similar to the ones in Example 4.1, we find that the bridge of the
associatedn-fold conditional process satisfies a large deviation principle. By taking into account
the results in Example 3.1 and (4.4), we easily find that the inverse speed is equal to ε2(H∧1/2)

and the good rate function is given by the following formula:

JY (h) =
⎧⎨
⎩

1

2σ 2
H

(‖h− xn‖2
HH∧1/2

− (y − xn)
2) if h0 = xn, h1 = y, and h− xn ∈ HH∧1/2,

+∞ otherwise,

where σ 2
H is given by (3.13).

Example 4.3. (Integrated Gaussian processes.) Following Subsection 3.2, let Xn be the
n-fold conditional process when X is an integrated Gaussian process, as in (3.14). Under
the hypotheses of Theorem 3.3, Assumptions 3.1 and 3.2 hold, and a functional large deviation
principle for Xn follows, with asymptotic covariance function k̄n(t, s) = a2

nts for a suitable
constant a2

n. Now, by applying Theorem 4.1, we obtain a functional large deviation principle
for the bridge process Yn as well, but unfortunately we obtain a degenerate asymptotic behavior
because the associated rate function turns out to be

JY (h) =
{

0 if h = m̄,

+∞ otherwise.

This follows from the fact that, since H̄n is ‘spanned’by the covariance function k̄n(t, s) = a2
nts,

it contains only the paths running at constant speed. Then, JY is finite only for h such that
h− m̄ = ct . Since here m̄t = xn + (y − xn)t , the additional constraints h0 = xn and h1 = y

give the unique path h = m̄.

Note that Theorem 4.1 gives an unsatisfactory large deviation result not only for integrated
Gaussian processes but also for Gaussian processes whose (original) covariance function is
smooth enough; as observed in Remark 3.1, in this case the asymptotic covariance function
is (constant)ts as well, and the same degenerate behavior holds for the rate function. This
motivates the next subsection, in which we study some refinements that allow us to state
nontrivial large deviation estimates or, more precisely, the correct large deviation speed.

4.2. Faster large deviations for the bridge

In this subsection we prove a refined version of Theorem 4.1: we study the exact (faster)
speed giving a nontrivial rate function whenever the covariance is smooth. With the same
notation as Section 3, Assumptions 3.1 and 3.2 must be strengthened here as follows.

Assumption 4.1. For some α ∈ (0, 1],
(i) there exist a function ϕ̄(t, s), a constant a2, and a remaining term R1

ε(t, s) (depending
on Tn) such that

cov(XTn+εt −XTn,XTn+εs −XTn) = ε2(a2 ts + ϕ̄(t, s)εα + R1
ε(t, s))

with

lim
ε→0

sup
s,t∈[0,1]

|R1
ε(t, s)|
εα

= 0;
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(ii) for any fixed T > 0, there exist a function ψ̄(t, T ), a constant c(T ), and a remaining
term R2

ε (t; T ) (depending on Tn) such that

k(Tn + εt, T )− k(Tn, T ) = ε(c(T )t + ψ̄(t; T )εα + R2
ε (t; T ))

with

lim
ε→0

sup
t∈[0,1]

|R2
ε (t; T )|
εα

= 0.

As a consequence of Assumption 4.1, by using the same arguments as in Lemma 3.1 we
immediately prove the following lemma.

Lemma 4.2. For j = 1, . . . , n,

kj (Tn + εt)− kj (Tn, T ) = ε(cj (T )t + ψ̄j (t; T )εα + R2
ε (t; T )),

where c0 ≡ c, ψ̄0 ≡ ψ̄ , and cj and ψ̄j are given by

cj (T ) = cj−1(T )− αj (T )cj−1(Tj ) and ψ̄j (t; T ) = ψ̄j−1(t; T )− αj (T )ψ̄j−1(t; Tj ).

Moreover,

cov(XjTn+εt −X
j
Tn
,X

j
Tn+εs −X

j
Tn
) = ε2(a2

j ts + ϕ̄j (t, s)ε
α + R1,j

ε (t, s)),

where R
1,j
ε (t, s) → 0 as ε → 0 uniformly on [0, 1] × [0, 1], aj = a − ∑j

	=1 c
2
	−1(T	), and

ϕ̄j (t, s) = ϕ̄(t, s)−
j∑
	=1

c	−1(T	)

k	−1(T	, T	)
(ψ̄	−1(t; T	)s + ψ̄	−1(s; T	)t). (4.6)

In particular, since XnTn = xn,

kn(Tn+εt, Tn+εs) = ε2(a2
n ts+ϕ̄n(t, s)εα+R1,n

ε (t, s)) with lim
ε→0

sup
t,s∈[0,1]

|R1,n
ε (t, s)|
εα

= 0.

(4.7)

Then, we have the following theorem.

Theorem 4.2. Let Yn be the bridge of the n-fold conditional processXn, as defined in (4.1). If
Assumption 4.1 holds then the family of processes {(Y nTn+εt )t∈[0,1]}ε satisfies a large deviation
principle on C([0, 1]) with inverse speed ε2+α and good rate function

JY (h) =
{

1
2‖h− m̄‖2

H̄Y
if h− m̄ ∈ H̄Y ,

+∞ otherwise,

where m̄t = xn + β̄t (y − xn) and H̄Y is the reproducing kernel Hilbert space associated to the
covariance function

k̄Y (t, s) = ϕ̄n(t, s)+ tsϕ̄n(1, 1)− t ϕ̄n(1, s)− sϕ̄n(t, 1). (4.8)
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Proof. The proof is the same as Theorem 4.1. It is enough to observe that in this case we
have, from (4.7),

cov(Y nTn+εt , Y
n
Tn+εs)

= kn(Tn + εt, Tn + εs)− kn(Tn + εt, Tn + ε)kn(Tn + ε, Tn + εs)

kn(Tn + ε, Tn + ε)

= ε2
(
a2
nts + ϕ̄n(t, s)ε

α − (a2
nt + ϕ̄n(t, 1)εα)(a2

ns + ϕ̄n(1, s)εα)

a2
n + ϕ̄n(1, 1)εα + R1,n

ε (1, 1)
+ R1,n

ε (t, s)

)

= a2
nε

2

a2
n + ϕ̄n(1, 1)εα + R1,n

ε (1, 1)

× ((ϕ̄n(t, s)+ tsϕ̄n(1, 1)− t ϕ̄n(1, s)− sϕ̄n(t, 1))εα + R1,n
ε (t, s)).

Therefore,

lim
ε→0

cov(Y nTn+εt , Y
n
Tn+εs)

ε2+α = ϕ̄n(t, s)+ tsϕ̄n(1, 1)− t ϕ̄n(1, s)− sϕ̄n(t, 1), (4.9)

uniformly for s, t ∈ [0, 1], and the theorem holds.

Remark 4.2. Note that ϕ̄n is symmetric and continuous whereas it is not positive definite in
general, so that it is not necessarily a covariance function. Nevertheless, kY given by (4.8) does
represent a covariance function, as an immediate consequence of (4.9). However, if ϕ̄n was a
covariance function, a curious effect would happen: the asymptotic behavior of the bridge is
regulated by a covariance function which coincides with the one associated to what is usually
called ‘the false bridge’, that is, a process of the type Zt − tZ1, where Z is a Gaussian process
with covariance ϕ̄n.

Now, if the function k(t, s) is more regular then Theorem 4.2 would again give a degenerate
behavior. In fact, suppose that k has continuous derivatives up to the third order. Then, since k
is symmetric, by straightforward computations we obtain

ϕ̄(t, s) = 1

3! (3∂
3
t tsk(Tn, Tn)t

2s + 3∂3
tssk(Tn, Tn)ts

2) = 1

2
∂3
t tsk(Tn, Tn)ts(t + s),

and by using (4.6) we can show that ϕ̄n(t, s) = bnts(t+s) for a suitable constant bn. Therefore,
by (4.8) we have

k̄Y (t, s) = bnts(t + s)+ 2bnts − bn(t
2 + t)s − bn(s + s2)t ≡ 0,

and again a trivial large deviation principle holds for the bridge of the conditional process. Let
us refine further on the hypothesis.

Assumption 4.2. For some α ∈ (0, 1],
(i) there exist a function ϕ̄(t, s), constants a2 and b, and a remaining term R1

ε(t, s) (depen-
ding on Tn) such that

cov(XTn+εt −XTn,XTn+εs −XTn)

= ε2(a2ts + b(t2s + ts2)ε + ϕ̄(t, s)ε1+α + R1
ε(t, s))
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with

lim
ε→0

sup
s,t∈[0,1]

|R1
ε(t, s)|
ε1+α = 0;

(ii) for any fixed T > 0, there exist a function ψ̄(t, T ), constants c(T ) and d(T ), and a
remaining term R2

ε (t; T ) (depending on Tn) such that

k(Tn + εt, T )− k(Tn, T ) = ε(c(T ) t + d(T )t2ε + ψ̄(t; T )ε1+α + R2
ε (t; T ))

with

lim
ε→0

sup
t∈[0,1]

|R2
ε (t; T )|
ε1+α = 0.

Let us remark that if k(t, s) is smooth enough then we immediately have a2 = ∂2
tsk(Tn, Tn),

b = 1
2∂

3
t tsk(Tn, Tn), c(T ) = ∂tk(Tn, T ), and d(T ) = 1

2∂
2
t t k(Tn, T ).

Moreover, as an immediate consequence of Assumption 4.2, by using the same arguments
as in Lemma 3.1 and Lemma 4.2, we are able to prove the following lemma.

Lemma 4.3. For j = 1, . . . , n,

kj (Tn + εt)− kj (Tn, T ) = ε(cj (T )t + dj (T )t
2ε + ψ̄j (t; T )ε1+α + R2,j

ε (t; T )),
where c0(T ) = c(T ), d0(T ) = d(T ), ψ̄0 ≡ ψ̄ , and cj (T ), dj (T ), and ψ̄j are defined as fol-
lows:

cj (T ) = cj−1(T )− αj (T )cj−1(Tj ),

dj (T ) = dj−1(T )− αj (T )dj−1(Tj ),

ψ̄j (t; T ) = ψ̄j−1(t; T )− αj (T )ψ̄j−1(t; Tj ).
Moreover,

cov(XjTn+εt −X
j
Tn
,X

j
Tn+εs −X

j
Tn
) = ε2(a2

j ts + bj (t
2s + ts2)ε+ ϕ̄j (t, s)ε

1+α + R1,j
ε (t, s)),

where a2
j = a2 − ∑j

	=1 c
2
	−1(T	), bj = b − ∑j

	=1 c	−1(T	)d	−1(T	), and

ϕ̄j (t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̄(t, s)−
j∑
	=1

c	−1(T	)

k	−1(T	, T	)
(ψ̄	−1(t; T	)s + ψ̄	−1(s; T	)t) for α < 1,

ϕ̄(t, s)−
j∑
	=1

c	−1(T	)

k	−1(T	, T	)
(ψ̄	−1(t; T	)s + ψ̄	−1(s; T	)t)

−
j∑
	=1

d2
	−1(T	)

k	−1(T	, T	)
t2s2 for α = 1.

In particular, since XnTn = xn, we have

kn(Tn + εt, Tn + εs) = ε2(ants + bn(t
2s + ts2)ε + ϕ̄n(t, s)ε

1+α + R1,n
ε (t, s)).

Let us stress that in Lemma 4.3, the notation Rε (with some suitable superscript) stands for
a generic remaining term, which uniformly converges to 0 as ε → 0.

Then, we have the following theorem.
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Theorem 4.3. Let Yn be the bridge of the n-fold conditional processXn, as defined in (4.1). If
Assumption 4.2 holds then the family of processes {(Y nTn+εt )t∈[0,1]}ε satisfies a large deviation
principle on C([0, 1]) with inverse speed ε3+α and good rate function

JY (h) =
{

1
2‖h− m̄‖2

H̄Y
if h− m̄ ∈ H̄Y ,

+∞ otherwise,

where m̄t = xn + β̄t (y − xn) and H̄Y is the reproducing kernel Hilbert space associated to the
covariance function

k̄Y (t, s) =

⎧⎪⎪⎨
⎪⎪⎩
ϕ̄n(t, s)+ tsϕ̄n(1, 1)− t ϕ̄n(1, s)− sϕ̄n(t, 1) if α < 1,

b2
n(ts

2 + t2s − t2s2 − st)+ ϕ̄n(t, s)+ tsϕ̄n(1, 1)

−t ϕ̄n(1, s)− sϕ̄n(t, 1) if α = 1.

(4.10)

Proof. The proof is the same as Theorem 4.1. It is enough to observe that

cov(Y nTn+εt , Y
n
Tn+εs)

= kn(Tn + εt, Tn + εs)− kn(Tn + εt, Tn + ε)kn(Tn + ε, Tn + εs)

kn(Tn + ε, Tn + ε)

= ε2
(
a2
nts + bn(t

2s + ts2)ε + ϕ̄n(t, s)ε
1+α

− (a2
nt + bn(t

2 + t)ε + ϕ̄n(t, 1)ε1+α)(a2
ns + bn(s + s2)ε + ϕ̄n(1, s)ε1+α)

a2
n + 2bnε + ϕ̄n(1, 1)ε1+α + R1

ε(1, 1)

+ R1
ε(t, s)

)

= a2
nε

2

a2
n + 2bnε + ϕ̄n(1, 1)ε1+α + R1

ε(1, 1)

× ((ϕ̄n(t, s)+ tsϕ̄n(1, 1)− t ϕ̄n(1, s)− sϕ̄n(t, 1))ε1+α

+ b2
n(ts

2 + t2s − t2s2 − st)ε2 + R1
ε(t, s)).

Therefore, the theorem holds.

Let us observe that if the covariance function k(t, s) is more regular, that is, C4+β for some
β ≥ 0, then Theorem 4.3 continues to hold and the associated asymptotic covariance k̄Y , given
by (4.10), is not in general degenerate. In fact, since the fourth derivatives exist, we obtain
ϕ̄n(t, s) = en(t

3s + ts3)+ fnt
2s2, where en and fn are suitable constants. Therefore, tedious

but straightforward computations will give k̄Y (t, s) = (constant)ts(1 − t)(1 − s).
Let us now return to Example 4.2 which dealt with our first result for the bridge of the n-fold

conditional process, that is, the following integrated Gaussian process:

Xt =
∫ t

0
Zu du,

where Z is a centered Gaussian process with covariance function κ(t, s). We are looking for
conditions on κ so that Assumption 4.1 or 4.2 is satisfied and then a large deviation principle
as in Theorem 4.2 or 4.3 holds. We have the following proposition.
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Proposition 4.1. (i) Suppose that, for some α ∈ (0, 1],
κ(Tn + εu, Tn + εv) = κ(Tn, Tn)+ εαĝ(u, v)+ R̂ε(u, v),∫ T

0
κ(Tn + εu, v) dv =

∫ T

0
dv κ(Tn, v)+ εαg̃(u; T )+ R̃ε(u; T ), T > 0,

(the above functions and remaining terms may all depend on Tn) with ĝ ∈ L1([0, 1]2),
g̃(·; T ) ∈ L1([0, 1]), and

lim
ε→0

ε−α‖R̂ε(·, ·)‖L1([0,1]2) = 0 and lim
ε→0

ε−α ‖R̃ε(·; T )‖L1([0,1]) = 0.

Then, Assumption 4.1 holds with

ϕ̄(t, s) =
∫ t

0
du

∫ s

0
dv ĝ(u, v) and ψ̄(t, T ) =

∫ t

0
du g̃(u; T ).

(ii) Suppose that, for some α ∈ (0, 1],
κ(Tn + εu, Tn + εv) = κ(Tn, Tn)+ εe(u+ v)+ ε1+αĝ(u, v)+ R̂ε(u, v),∫ T

0
κ(Tn + εu, v) dv =

∫ T

0
dv κ(Tn, v)+ εuf (T )+ ε1+αg̃(u; T )+ R̃ε(u; T ), T > 0,

(the above functions, remaining terms, and constants e and f (T ) may all depend on Tn), with
ĝ ∈ L1([0, 1]2), g̃(·; T ) ∈ L1([0, 1]), and

lim
ε→0

ε−(1+α)‖R̂ε(·, ·)‖L1([0,1]2) = 0 and lim
ε→0

ε−(1+α)‖R̃ε(·; T )‖L1([0,1]) = 0.

Then, Assumption 4.2 holds with

ϕ̄(t, s) =
∫ t

0
du

∫ s

0
dv ĝ(u, v) and ψ̄(t, T ) =

∫ t

0
du g̃(u; T ).

The proof is straightforward and postponed to Appendix B.

Example 4.4. (m-fold integrated Brownian motion.) Let us return to Example 4.3 with X as
the following m-fold integrated Brownian motion:

Xt =
∫ t

0
du

(∫ u

0
dum−1 · · ·

∫ u2

0
du1Wu1

)
,

where W denotes a standard Brownian motion. Recall that here the covariance function is

k(t, s) =
∫ t

0

∫ s

0
κ(u, v) du dv with κ(t, s) = 1

((m− 1)!)2
∫ t∧s

0
(t − ξ)m−1(s − ξ)m−1 dξ.

Things are slightly different according to whether m = 1 or m ≥ 2. Let us consider the
m ≥ 2 case; the case in which m = 1 is dealt with in Example 4.5, below. Straightforward
computations allow us to show that

κ(Tn + εu, Tn + εv) = κ(Tn, Tn)+ ε 1
2T

2m−2
n (u+ v)

+ ε2 (m− 1)

2m− 3
T 2m−3
n

(
(m− 2)

2
(u+ v)2 + uv

)
+ O(ε3) (4.11)
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and∫ T

0
κ(Tn + εu, v) dv =

∫ T

0
κ(Tn, v) dv + εu

m− 1

m

∫ T

0
(Tn − x)m−2(T − x)m dx

+ ε2u2 (m− 2)(m− 1)

m

∫ T

0
(Tn − x)m−3(T − x)m dx + O(ε3),

(4.12)

in which O(ε3) denotes a function going to 0 as ε → 0 in the right L1 space at speed ε3.
Therefore, thanks to (4.11), (4.12), and Proposition 4.1, Assumption 4.2 does hold with

ϕ̄(t, s) = (m− 1)

4(2m− 3)
T 2m−3
n ((m− 2)(t2s + ts2)+ t2s2),

ψ̄(t, T ) =
(

1

2

(m− 2)(m− 1)

m

∫ T

0
(Tn − x)m−3(T − x)m dx

)
t2.

By using Theorem 4.3, we can assert that the bridge process Y satisfies a (nondegenerate) large
deviation principle with inverse speed ε4 and asymptotic covariance as in (4.10) with α = 1.

Example 4.5. (Integrated fractional Brownian motion.) Let Xt = ∫ t
0 Zu du, where Z is a

fractional Brownian motion with Hurst index H . This is quite an interesting example because,
according to whether H ≤ 1

2 or H > 1
2 , we obtain both cases studied in Proposition 4.1. In

fact, straightforward computations allow us to state that

κH (Tn + εu, Tn + εv) = κH (Tn, Tn)+HT 2H−1
n (u+ v)ε − 1

2 |u− v|2Hε2H + O(ε2)

and∫ T

0
κH (Tn + εu, v) dv

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0
κH (Tn, v) dv + ε

((
HT 2H−1

n T − 1

2
T 2H
n + 1

2
(Tn − T )2H

)
u

)
+O(ε), H < 1

2 ,

T 2

2
, H = 1

2 ,∫ T

0
κH (Tn, v) dv + ε

((
HT 2H−1

n T − 1

2
T 2H
n + 1

2
(Tn − T )2H

)
u

)
+O(ε2), H > 1

2 .

Therefore, the asymptotic behavior can be resumed as follows.

(a) If H < 1
2 , Proposition 4.1(i) holds with α = 2H and

ĝ(u, v; Tn) = − 1
2 |u− v|2H , g̃(u; Tn, T ) ≡ 0.

(b) If H = 1
2 , Proposition 4.1(i) holds again with α = 1 and

ĝ(u, v; Tn) = 1
2 ((u+ v)− |u− v|) = u ∧ v, g̃(u; Tn, T ) ≡ 0.
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(c) If H > 1
2 , Proposition 4.1(ii) holds with α = 2H − 1 and

ĝ(u, v; Tn) = − 1
2 |u− v|2H , g̃(u; Tn, T ) = 0.

In conclusion, by suitably applying Theorems 4.2 and 4.3, the family of bridges (Y nTn+ε·)ε
satisfies a large deviation principle on C([0, 1]) with inverse speed ε2+2H and asymptotic
covariance function given by

k̄Y (t, s) = ϕ̄H (t, s)+ ts ϕ̄H (1, 1)− t ϕ̄H (1, s)− sϕ̄H (t, 1),

where

ϕ̄H (t, s) ≡ ϕ̄n(t, s) =

⎧⎪⎪⎨
⎪⎪⎩
(|t − s|2H+2 − t2H+2 − s2H+2)

2(2H + 1)(2H + 2)
, H = 1

2 ,

(t ∧ s)3
3

+ (t ∧ s)2
2

|t − s|, H = 1
2 .

Let us add some further remarks. In the case in which H = 1
2 , it is immediate to check that

ϕ̄H (t, s) = ∫ t
0

∫ s
0 κH (u, v) du dv. In other words, ϕ̄1/2 turns out to be the covariance function

of the process X. Then, by taking into account Remark 4.2, the large deviations associated
to the bridge of the n-fold integrated Brownian motion behave as ‘the false bridge’, even if
with a faster speed (in fact, in this case the inverse speed is ε3, while the inverse speed of the
nonconditioned n-fold process is given by ε2).

5. The asymptotic behavior of the crossing probability

In this section previous results are applied in order to state the large deviation asymptotic
behavior of the hitting probability, the underlying process of interest being the bridge of an
n-fold conditional Gaussian process. The already collected results can be resumed in the
following hypothesis.

Hypothesis 5.1. 1. The family of n-fold conditional processes {(XnTn+εt )t∈[0,1]}ε satisfies a
large deviation principle with inverse speed γ 2

ε and rate function

Jn(h) =
{

1
2‖h− xn‖2

H̄n
if h0 = xn and h− m̄ ∈ H̄n,

+∞ otherwise,

where H̄n is the reproducing kernel Hilbert space associated to a suitable covariance function
k̄n.

2. The family of bridges of the n-fold conditional processes {(Y nTn+εt )t∈[0,1]}ε satisfies a large
deviation principle with inverse speed η2

ε and rate function

JY (h) =
{

1
2‖h− m̄‖2

H̄Y
if h0 = xn, h1 = y, and h− m̄ ∈ H̄Y ,

+∞ otherwise,

where H̄Y is the reproducing kernel Hilbert space associated to a suitable covariance function
k̄Y and m̄t = xn + β̄t (y − xn) ≡ xn + k̄n(t, 1)(y − xn)/k̄n(1, 1).

Throughout this section, we assume that Hypothesis 5.1 always holds.
Now, let us first focus on the upper barrier case, the same arguments will apply for lower

barriers.
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Let U : R → R be a continuous function standing for an upper barrier, and consider the
probability that YnTn+ε· reaches the barrier U up to the final time 1, that is,

P(τUε ≤ 1) with τUε = inf{t > 0 : YnTn+εt ≥ UTn+εt }.
The above probability is negligible if YnTn = xn < UTn and YnTn+εt = y < UTn+εt for any ε
close to 0, that is, y ≤ UTn . As we will see, the case in which y = UTn will give a nonrelevant
estimate, so that we can assume that both xn and y are less than UTn . So, if xn, y < UTn ,
we have

lim
ε→0

η2
ε log P(τUε ≤ 1) = −IUY ,

with IUY > 0. Let us now see what form IUY takes. Set ZnTn+εt = YnTn+εt − UTn+εt . Since
limε→0 UTn+εt = UTn uniformly for t ∈ [0, 1], by contraction, it immediately follows that
{(ZnTn+εt )t∈[0,1]}ε satisfies a large deviation principle as well, with the same inverse speed and
rate function

JZ(h) = JY (h+ UTn).

Then, we have

lim
ε→0

η2
ε log P(τUε ≤ 1) = − inf

γ∈�U
JY (γ + UTn) = −IUY ,

where �U = {γ : supt∈[0,1] γt ≥ 0}.
If a (continuous) lower barrier Lt was considered then the same arguments would apply,

giving
lim
ε→0

η2
ε log P(τLε ≤ 1) = − inf

γ∈�L
JY (γ + LTn) = −ILY ,

where τLε = inf{t > 0 : YnTn+εt ≤ LTn+εt } and�L = {γ : inf t∈[0,1] γt ≤ 0}, and this is interest-
ing when xn, y > LTn . Finally, in the double barrier case, with Lt ≤ Ut for any t , the hitting
probability behaves as follows:

lim
ε→0

η2
ε log P(τL,Uε ≤ 1) = −IL,UY ,

where τL,Uε = τLε ∧ τUε is the first time at which YnTn+ε· reaches at least one barrier and IL,UY

is a suitable quantity, which is strictly positive if xn, y ∈ (LTn, UTn).
The quantities IUY , ILY , and IL,UY are computed in the next proposition.

Proposition 5.1. Suppose that L and U are continuous functions with Lt ≤ Ut for any t ∈
[0, 1]. Then,

IUY = inf
t∈[0,1]

((UTn − xn)(1 − β̄t )+ β̄t (UTn − y))2

2 k̄Y (t, t)
if xn, y < UTn,

ILY = inf
t∈[0,1]

((xn − LTn)(1 − β̄t )+ β̄t (y − LTn))
2

2 k̄Y (t, t)
if xn, y > LTn,

I
L,U
Y = min(ILY , I

U
Y ) if xn, y ∈ (LTn, UTn).

Proof. Consider the first equality (single upper barrier case). We have to show that

inf
γ∈�̂U

1

2
‖γ + UTn − m̄‖2

H̄Y
= inf
t∈[0,1]

((UTn − xn)(1 − β̄t )+ β̄t (UTn − y))2

2 k̄Y (t, t)
,
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where �̂U = {γ : γ + UTn − m̄ ∈ H̄Y , supt∈[0,1] γt ≥ 0}. Setting �̂t,U = {γ : γ + UTn − m̄ ∈
H̄Y , γt = 0}, we have �̂ = ⋃

0<t<1 �̂t , so that we simply need

inf
γ∈�̂t,U

1

2
‖γ + UTn − m̄‖2

H̄Y
= ((UTn − xn)(1 − β̄t )+ β̄t (UTn − y))2

2 k̄Y (t, t)
.

As already seen (see Section 2), a set of paths which is dense in H̄Y is the one formed by those
which are the barycenters of the RV belonging to the dual space of C([0, 1]), that is,

γu + UTn − m̄u =
∫ 1

0
k̄Y (u, v)λ(dv)

as λ varies in M[0, 1]. Since, for such kind of paths,

‖γ + UTn − m̄‖2
H̄Y

=
∫ 1

0

∫ 1

0
k̄Y (u, v)λ(du)λ(dv),

it is enough to minimize the right-hand side of the above equation with respect to λ, with the
additional constraint that γt = 0, which yields

m̄t − UTn +
∫ 1

0
k̄Y (t, v)λ(dv) = 0.

This is a constrained extremum problem: using Lagrange multipliers, λ must satisfy∫ 1

0
k̄Y (u, v)λ(dv)− αk̄Y (t, u) = 0 for any u ∈ [0, 1]

for some α ∈ R. Taking care of the constraint, we find that

α = UTn − m̄t

k̄Y (t, t)
, λ(dv) = UTn − m̄t

k̄Y (t, t)
δ{t}(dv),

where δ{t} stands for the Dirac mass in t . Therefore,

inf
w∈�̂t,U

1

2

∫ 1

0

∫ 1

0
k̄Y (u, v)λ(u)λ(dv) = (UTn − m̄t )

2

2k̄Y (t, t)
,

and the statement immediately follows by recalling that m̄t = xn + β̄t (y − xn).
Concerning the second equality, it follows by developing analogous arguments. As for the

final equality, it is standard in large deviation theory (see, e.g. the discussion in the proof of
Theorem 2.2 of [3]).

Let us stress that the barriersU and/orL can also be piecewise continuous, in which case the
previous machinery runs again if the jump times coincide with some of the conditional times
T1, . . . , Tn.

Before we develop some examples, let us recall that β̄t = k̄n(t, 1)/k̄n(1, 1), where k̄n is as
defined in (3.12) and represents the asymptotic covariance function associated to the n-fold
conditional process. When our first set of large deviation results for the bridge holds (as in
Subsection 4.1), we have

k̄Y (t, s) = k̄n(t, s)− k̄n(t, 1)k̄n(s, 1)

k̄n(1, 1)
,
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with k̄Y being more complicated if it takes a more complicated form, as seen in Subsection 4.2.
Therefore, the minimization problem, as required to compute IUY and ILY , does not have a closed
form in general; so, for practical purposes, we might be forced to use some numerical method
(e.g. the Newton method).

Example 5.1. (Integrated Brownian motion.) Following Example 4.5 (with H = 1
2 ), let us

considerXt = ∫ t
0 Bs ds, whereB is a standard Brownian motion. Such a process has interesting

applications in metrology, where it is used as a model for the atomic clock error and the exit
from a fixed boundary means that the clock error exceeds an allowed limit and so must be
resynchronized. Here, we are in the second set of our large deviation estimates: the bridge of
the n-fold conditional process satisfies a large deviation principle at inverse speed ε3 and with
rate function associated to the asymptotic covariance function

k̄Y (t, s) = ϕ̄(t, s)+ tsϕ̄(1, 1)− t ϕ̄(1, s)− sϕ̄(t, 1)

with

ϕ̄(t, s) = (t ∧ s)3
3

+ (t ∧ s)2
2

|t − s|.
Since k̄n(t, s) = a2

nts, we have β̄t = t , so that IUY = g(UTn) and ILY = g(LTn) with

g(a) = inf
t∈[0,1]

(|a − xn|(1 − t)+ t |a − y|)2
2t2(1 − t)2/3

.

The solution is simple to find:

g(a) = 3
2 (|a − xn|1/2 + |a − y|1/2)4.

Example 5.2. (Fractional Brownian motion.) Following Subsection 3.1 and Example 4.1, let
us consider a fractional Brownian motion X with Hurst index H , in which we have

k̄n(t, s) = kH (t, s) = t2H + s2H − |t − s|2H
2

.

So, in order to compute IUY and ILY , giving the asymptotic behavior of the hitting probability of
the bridge Yn, by Proposition 5.1 we should be able to compute

gH (a) = inf
t∈[0,1]

((a − xn)(1 − kH (t, 1))+ kH (t, 1)(a − y))2

2(kH (t, t)− k2
H (t, 1))

,

either with a > xn, y or a < xn, y. In fact, we have IUY = gH (UTn) and ILY = gH (LTn). As
far as we know, the exact solution can be computed only whenH = 1

2 , that is, when a standard
Brownian motion is taken into account, in which case we have

g1/2(a) = 2(a − xn)(a − y),

which agrees with well-known formulae (see, e.g. [2]).

In relation to Example 5.2, we have performed some numerical experiments concerning the
fractional Brownian motion. In particular, we have estimated via Monte Carlo methods the
probability of crossing the upper barrier U = 1 up to time 1 in two different ways: by crude
simulations, in which the exit is reached if a simulated position is greater than U = 1, and by
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Table 1: Fractional Brownian motion: Monte Carlo estimated probability of crossing the upper barrier
U = 1 up to time 1 for varying values of the Hurst index H . The associated 95% confidence interval is

given in the brackets.

Method Step size H = 0.3 H = 0.5 H = 0.7

Corrected 0.010 0.608 76 0.318 20 0.205 64
(0.605 73, 0.611 78) (0.315 31, 0.321 09) (0.203 13, 0.208 14)

Corrected 0.002 0.618 41 0.319 80 0.202 74
(0.615 40, 0.621 42) (0.316 91, 0.322 69) (0.200 25, 0.205 23)

Crude 0.010 0.479 09 0.289 18 0.198 84
(0.475 99, 0.482 19) (0.286 37, 0.291 99) (0.196 37, 0.201 31)

Crude 0.002 0.541 14 0.304 96 0.202 22
(0.538 05, 0.544 23) (0.302 11, 0.307 81) (0.199 73, 0.204 71)

Crude 0.001 0.560 82 0.308 78 0.202 51
(0.557 74, 0.563 90) (0.305 92, 0.311 64) (0.200 02, 0.205 00)

means of the corrected procedure, as recalled in the introduction, for which at each step the
crossing is decided by using the large deviation approximation for the exit probability of the
pinned process. In all the experiments the exit probability is numerically computed through 105

simulations. The results are given in terms of the method (corrected or crude) and of the step
size (ε = 0.01, 0.002, 0.001) for varying values of the Hurst indexH , which is set equal to 0.3,
0.5, and 0.7. Whenever H = 0.5, everything is known (exit probability is equal to 0.317 32),
including the fact that the crude approach works very poorly, so it has been considered to assess
the procedure and for comparison purposes. The choices H = 0.3 and H = 0.7 have been
taken into account to compare the results when H < 0.5 (short memory, more irregular paths)
and H > 0.5 (long memory, less irregular paths). The results, given in Table 1, show the level
of sensitivity with respect to the method (corrected or crude) when H decreases, that is, when
the irregularity of the path tends to be higher. This is not surprising because the inverse speed
of the large deviations for the bridge is in fact ε2H , so that the correction works more when H
decreases.

Let us give a final remark. Our simulation scheme relies on the assumption that the past
pinned instants are fixed, although they are all of order ε, and only the step size of the current
time interval is considered negligible. In fact, the past observations have been considered as a
datum, that is, fixed, and only the bridge’s length is supposed to be small enough to approximate
the exit probability with its large deviation estimate. As remarked by an anonymous referee, it
would be interesting to see what happens when the size of all the past time intervals goes to 0,
a case in which the ‘local independence’ fails. We are now working with this case and it will
be interesting to measure the sensitivity of the method with respect to the independence of the
past, by comparing the new results with the ones reported in Table 1.

Appendix A. Proof of (4.4)

Let JY be the rate function given by Theorem 4.1, i.e.

JY (h) =
{

1
2‖h− m̄‖2

H̄Y
if h0 = xn, h1 = y, and h− m̄ ∈ H̄Y ,

+∞ otherwise,
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where m̄t = xn + β̄t (y − xn) and H̄Y is the reproducing kernel Hilbert space associated to the
covariance function

k̄Y (t, s) = k̄n(t, s)− β̄s k̄n(t, 1) = k̄n(t, s)− k̄n(t, 1)k̄n(s, 1)

k̄n(1, 1)
,

where k̄n is as defined in (3.12). We claim that JY can be written as

JY (h) =
⎧⎨
⎩

1

2

(
‖h− xn‖2

H̄n
− (y − xn)

2

k̄n(1, 1)

)
if h0 = xn, h1 = y, and h− xn ∈ H̄n,

+∞ otherwise,

where H̄n is the reproducing kernel Hilbert space associated to the covariance function k̄n. Let
us observe that this can be done in two ways: by large deviation arguments (in particular, by
using contraction type properties that allow for the transfer of large deviation principles) or by
handling reproducing kernel Hilbert spaces. Here, we follow the second way.

First, let us prove that the sets where the two functionals are finite are the same, that is,
K1 = K2, being

K1 = {h : h0 = xn, h1 = y, h− m̄ ∈ H̄Y },
K2 = {h : h0 = xn, h1 = y, h− m̄ ∈ H̄n}.

If we set

D1 :=
{
h ∈ K1 : ht − m̄t =

∫ 1

0
k̄Y (t, s)α(ds) for some α ∈ M[0, 1]

}
,

D2 :=
{
h ∈ K2 : ht − m̄t =

∫ 1

0
k̄n(t, s)γ (ds) for some γ ∈ M[0, 1]

}
,

then the statement would follow from

D1 = D2 and ‖h− m̄‖H̄Y
= ‖h− m̄‖H̄n

for any h ∈ D1 = D2. (A.1)

Indeed, since D1
‖·‖H̄Y = K1 and D2

‖·‖H̄n = K2, it immediately follows that K1 = K2. So,
let us show that (A.1) does hold.

If we take h ∈ D1 then

ht − m̄t =
∫ 1

0
k̄Y (t, s)α(ds)

=
∫ 1

0

(
k̄n(t, s)− k̄n(1, t)k̄n(1, s)

k̄n(1, 1)

)
α(ds)

=
∫ 1

0
k̄n(t, s)

(
α(ds)−

∫ 1
0 k̄n(1, u)α(du)

k̄n(1, 1)
δ{1}(ds)

)
,

where δ{1} denotes the Dirac mass, and then h ∈ D2. Conversely, if h ∈ D2 then ht − m̄t =∫ 1
0 k̄n(t, s)γ (ds) and, in particular, it must be

0 = h1 − m̄1 =
∫ 1

0
k̄n(1, s)γ (ds).
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Therefore,

ht − m̄t =
∫ 1

0
k̄n(t, s)γ (ds)

=
∫ 1

0

(
k̄n(t, s)− k̄n(1, t)k̄n(1, s)

k̄n(1, 1)

)
γ (ds)

=
∫ 1

0
k̄Y (t, s)γ (ds)

and h ∈ D1. Finally,

‖h− m̄‖2
H̄Y

=
∫ 1

0

∫ 1

0
k̄Y (t, s)α(ds)α(dt) =

∫ 1

0

∫ 1

0
k̄n(t, s)γ (ds)γ (dt) = ‖h− m̄‖2

H̄n
,

where α and γ denote the measures representing h − m̄ in D1 and D2, respectively, so that
(A.1) is completely proved.

Now, we need to prove that, for any h ∈ D2, we have ‖h− m̄‖2
H̄n

= ‖h− xn‖2
H̄n

− (y −
xn)

2/k̄n(1, 1). This follows from the fact that m̄− xn belongs to the reproducing kernel Hilbert
space H̄n, because

m̄t − xn = k̄n(t, 1)

k̄n(1, 1)
(y − xn) =

∫ 1

0
k̄n(t, s)

y − xn

k̄n(1, 1)
δ{1}(ds).

Moreover, it holds that

‖m̄− xn‖2
H̄n

= (y − xn)
2

k̄n(1, 1)
.

Now take h ∈ D2. In particular, for some measure γ , we have ht − m̄t = ∫ 1
0 k̄n(t, s)γ (ds).

Then, the measure γ̂ (ds) = γ (ds)+ (y − xn)δ{1}(ds)/k̄n(1, 1) is such that ht − xn =∫ 1
0 k̄n(t, s)γ̂ (ds) and

〈h− xn, m̄− xn〉H̄n
=

∫ 1

0

∫ 1

0
k̄n(t, s)

(
γ (ds)+ y − xn

k̄n(1, 1)
δ{1}(ds)

)
y − xn

k̄n(1, 1)
δ{1}(dt)

= y − xn

k̄n(1, 1)

∫ 1

0
k̄n(1, s)γ (ds)

= y − xn

k̄n(1, 1)
(h− xn)1

= (y − xn)
2

k̄n(1, 1)
.

Therefore,

‖h− m̄‖2
H̄n

= ‖h−xn‖2
H̄n

+‖m̄−xn‖2
H̄n

− 2〈h−xn, m̄−xn〉H̄n
= ‖h−xn‖2

H̄n
− (y − xn)

2

k̄n(1, 1)
,

and the statement finally holds.
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Appendix B. Proof of Proposition 4.1

(1) Since X is an integrated Gaussian process, we have

cov(XTn+εt −XTn,XTn+εs −XTn) =
∫ Tn+εt

Tn

du
∫ Tn+εt

Tn

dv κ(u, v)

= ε2
∫ t

0
du

∫ s

0
dv κ(Tn + εu, Tn + εv).

Therefore, we have

cov(XTn+εt −XTn,XTn+εs −XTn)

= ε2
∫ t

0
du

∫ s

0
dv(κ(Tn, Tn)+ εαĝ(u, v)+ R̂ε(u, v))

= ε2
(
κ(Tn, Tn)ts + εα

∫ t

0
du

∫ s

0
dv ĝ(u, v)+

∫ t

0
du

∫ s

0
dv R̂ε(u, v)

)
,

so that Assumption 4.1(i) is satisfied with ϕ̄(t, s) = ∫ t
0 du

∫ s
0 dv ĝ(u, v).

Moreover, since

k(Tn + εt, T )− k(Tn, T ) =
∫ Tn+εt

Tn

du
∫ T

0
dv κ(u, v) = ε

∫ t

0
du

∫ T

0
dv κ(Tn + εu, v),

we obtain

k(Tn + εt, T )− k(Tn, T ) = ε

(∫ t

0
du

(∫ T

0
dv κ(Tn, v)+ εαg̃(u; T )+ R̃ε(u; T )

))

= ε

(
t

∫ T

0
dv κ(Tn, v)+ εα

∫ t

0
du g̃(u; T )+

∫ t

0
du R̃ε(u; T )

)
.

Then, Assumption 4.1(ii) is also satisfied with ψ̄(t, T ) = ∫ t
0 du g̃(u; T ).

The proof of part (ii) follows analogously.
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