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ON THE RANGE AND INVERTIBILITY OF A 
CLASS OF MELON MULTIPLIER TRANSFORMS III 

To Professor Tim Rooney with best wishes 

A. C. MCBRIDE AND W. J. SPRATT 

ABSTRACT. We continue to develop the theory of previous papers concerning trans
forms corresponding to Mellin multipliers which involve products and/or quotients of 
T-functions. We show that, by working with certain subspaces of Lp^ consisting of 
smooth functions, we can simplify considerably the restrictions on the parameters which 
were necessary in the Lp^ setting. As a result, operators in our class become homeo-
morphisms on these subspaces under conditions of great generality. 

1. In this paper we continue our investigations into Mellin multiplier transforms T 
satisfying a relation of the form 

(1.1) (M(Tf))(s) = h(s)(Mf)(s) 

under suitable conditions, where the multiplier h has the form 

(1.2) h(s)~ ; -e . 

Here k,l,K,L are non-negative integers satisfying 0<k<K, 0<l < L (empty 
products being unity by convention), the numbers r\,..., rK and t\,..., tL are real and 
positive, and 771,..., 77*, £ i , . . . , £L are complex numbers. 

In [5] and [6] we characterised the range of the operators corresponding to the multi
pliers T(rj +s/ m), 1H(£ — s I m) and T(r] +s/ m)F(£ — sj m), with m > 0, on the weighted 
spaces Lp^. In the case of the third multiplier, the range was already becoming rather 
complicated and depended on 77 and £ separately. In principle, it might be feasible to 
analyse the multiplier ( 1.2) relative to Lp^ but, in practice, it would be a very tiresome 
business. A thorough investigation was carried out by Rooney in [9] but was restricted 
to the special case when all the numbers rt and tj are unity. 

The purpose of the present paper is to develop a corresponding theory within the 
framework of certain subspaces Fp>/x of Lp^ consisting of smooth functions. It turns out 
that the complexity associated with Lptfi disappears and is replaced by a set of simple con
ditions of great generality. In particular the range on Fp^ of the operator T corresponding 
to (1.2) is a certain subspace Fp^r which depends essentially on only a particular com
bination of the numbers r, and tj, as given by (5.3). 
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In § 2, we introduce the relevant spaces by examining the range on Fp^ of the op
erator NJn corresponding to the simple multiplier T{rf + s/ m) with m > 0. We obtain 
a characterisation of N^(FP^) as a set and then equip it with an appropriate topology 
which turns the set into a Fréchet space. We then discover that the range is essentially 
independent of r\ and relabel it as Fp^r with the number r = \j m often being more 
convenient to use than m itself. An equally simple multiplier which we might have tried 
at the start is T(£ — s/ m). This gives rise to an operator M^ which was studied along 
with A ĵ in [5] but produced a different range for every £. In contrast we discover in § 3 
that M^(FP^ ) is independent of £ and is just Fp^,r back again. This is the first hint of the 
intrinsic importance of FP4ir for all operators with the same value of r given by (5.3). In 
§ 4, we examine a few simple operators relative to Fp^j and review some known results. 
Finally, in § 5, we reveal the full details of how the spaces FPiVLJ emerge as the ranges of 
operators on Fp^ with multipliers of the form (1.2). However, as we point out at the end, 
the theory can be extended in a number of ways and this we hope to do in a future paper. 

Throughout the paper we shall make use of notation, terminology and results from [5] 
and [6] to which the reader should refer as necessary. In particular, we use the notation 

(1.3) £1= { z G C i R e z ^ 0 , - 1 , - 2 , . . . } . 

2. We begin by recalling the following result from [5]. 

THEOREM 2.1. If I < p < oo, m > 0 andrj — [ij m € ft then g G N%(Lp^) if and 
only if g G Fp4l and there exists a constant Ag such that 

(2.1) | [ r (Re( i ,+n- / i /m)) ]" , J^ 4 " - -"g | p i / i <A g /o r f i = 0 , l , 2 , . . . 

where K^n~n denotes the differential operator 

(2.2) /C+n'~" - jr>+mn(-Dm)'1jc-m7> ; Dm = dj dx"1. 

PROOF. See [5, Theorems 3.3 and 7.3]. 

Since the topology of FPtll is defined by a family of seminorms rather than a single 
norm as in the case of Lp^, the next result represents the obvious modification to Theo
rem 2.1 which makes use of these seminorms. 

THEOREM 2.2. If 1 < p < oo, m > 0 and 77 - \ij m G ft then g e N^(FPtll) if and 
only if g G FPttJL and, for each i = 0,1,2, . . . , there exists a constant A^, depending on g 
but independent ofn, such that 

(2.3) T r f ^ R e ^ + n - ^ / m f V ; ^ ) < A? for n = 0,1,2, . . . . 

PROOF. Let g = WJ where/ G FPttl. Then, for each / = 0,1,2, . . . , 6lg = WJlf 
and since 6 lf G LA/i, Theorem 2.1 shows that, for some constant B^\ 

(2.4) | [ r (Re(?7+n-/x/m))]"1^ I
+ ' l ' - , ,«^| | < Bf for n. = 0,1,2, . . . . 
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MELLIN MULTIPLIER TRANSFORMS III 1325 

However the operators K^n~n and bl commute and the operator x*Dl appearing in the 
seminorm i f 'M is a polynomial of degree / in <5. Hence (2.3) follows from (2.4) with the 
constant A® being a linear combination of B^ (k = 0 , 1 , . . . , /). 

Conversely, let g G FPffÂ and let g satisfy (2.3) for certain constants Af. Then g satis
fies (2.4) for certain constants Bf. By Theorem 2.1, for each / = 0,1,2,. . . there exists 
fi G LPjfJL such that 

(2.5) big = WJi. 

If Re // ^ 0, 8 is invertible on FPtfi and, since 5 _ 1 commutes with A^ on Lp^, 

(2.6) g=(6-iyNlfi = Nl(6-lyfi (i = 0 , l ,2 , . . . ) . 

Explicitly, 5 _ 1 is given by 

JX h(t)dt/t (Re/x > 0) 

- / h(t)dt/t (Re/x < 0) 
(2.7) (rt)(*) = 

and in either case defines a bounded integral operator on LA/i. Hence (5 x)lfi G LA/X for 
each i = 0,1,2, Further, A^ is one-to-one on LPitl and (2.5), (2.6) therefore lead to 

(2.8) fo = (è-lyfi (i = 0 , l ,2 , . . . ) . 

A standard argument based on (2.7) and (2.8) now shows that/o is infinitely differentiable 
and is a function in FPtfl. Hence g = N%fo G A^(FAM) in this case. Finally, to deal with 
the case Re/x = 0, notice that (2.3) can be rewritten as 

yP,»-m ([r(Re(rj+n-fi/m))] l K^1^'" x~m g} < Af forn = 0,1,2,. . . . 

By the previous case with 77, /x and g replaced by 77 — 1, /x — m and x~mg respectively, 
there exists h G Fp^-m such that jc_mg = N^~lh. A simple calculation shows that, as 
operators on Fp M, 

under the stated conditions. Hence g = N%f where/ = JC"1/* G Fp>/i. This completes the 
proof. 

REMARK 2.3. The necessary and sufficient condition obtained in Theorem 2.2 is 
equivalent to another condition in which the non-negative integer n is replaced by a 
more general complex number A. More precisely, under the hypotheses of Theorem 2.2, 
g G A^(Fp?/i) if and only if g G FPtil and there are constants A® independent of A such 
that 

(2.9) 7 r ( [ r ( R e ( i y + A - »/m))]'1^^g) <Af 

for all complex numbers A such that Re(77 + A — /x/ra) ^ 0 , - 1 , - 2 , . . . . The 
operator A^+A,_A is a general Erdélyi-Kober operator whose Mellin multiplier is 
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T(r] + À + s J m)/T(rj + s/ m). The proof of (2.9) is omitted but we shall require this 
characterisation of the range in the sequel. 

In [5], we noted that N^(LP^) depends on 77 in the sense that, if Re 771 < Re 772 then 
Â ,1 (Lp^) is a subset of A^2 (LPtfÀ) under appropriate conditions. See in particular [5, Corol
lary 3.6]. This situation arose because a certain Erdélyi-Kober operator was not invertible 
in the Lp^ setting. However, when we work in Fp^, this difficulty disappears. 

THEOREM 2.4. If l<p< 00, m>0 and rjj — \ij m E Qforj = 1 , 2 then, as sets, 

(2.10) *C(Fp,v) = ti%(Fp*)-

PROOF. Under the stated conditions, the operator equation 

*m m m 

holds on Fp^, while fQl,m~111 is a homeomorphism from FPiil onto itself, with inverse 
fqnw-vi^ The result follows immediately. 

Our experience with N^(LP^) suggests that, to turn A^ into a homeomorphism in the 
Fp^ setting, we should make use of (2.3) and imitate the construction in [5]. This time, 
however, we shall obtain a whole family of new seminorms on the range rather than just 
a single new norm. In what follows, we shall often write 

(2.11) r=l/m (where m > 0). 

DEFINITION 2.5. Let m > 0, 1 < p < 00 and 77 - / 1 / m e Q. For j = 0,1,2, . . . 

and g €#£(/>,,,) let 

(2.12) 7 f ' ^ (g) = mf{Af : (2.3) holds for this fixed g and i}. 

REMARK 2.6. It is easy to check that, under the stated conditions, { -y^w } °?0 is a 
countable multinorm in the sense of Zemanian [13]. Having shown in Theorem 2.4 that 
the set N^(FP^ ) is independent of 77, under the appropriate conditions, our aim is to show 
that N^iFp^) equipped with the multinorm {7f'M,rT/}^0 is independent of such 77 as a 
topological vector space. 

LEMMA2.7. Ifl<p<oo,m> Oandrjj - \xj m G Qforj = l,2then 

A^1 (/>,/* ) is continuously imbedded in A^2(FA/1 ) 

with respect to the topologies generated by the multinorms {7f'/i'r'1" }£?0 and 

=o-{lP^rj2}^ 

PROOF. Let g e N%(FPtll) = N%(FP^). We shall make use of basic properties of 
the Erdélyi-Kober operators. Firstly, for n = 0,1,2, . . . 

jfri2+n,-n jF^i .^-f / i ffn2+n,rn-r)2-n 

https://doi.org/10.4153/CJM-1991-076-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-076-2


MELLIN MULTIPLIER TRANSFORMS III 1327 

Under the given conditions, hn = K^^^'^^g G FPtli and K%*2-m is a continuous 
linear mapping from FPffl into itself. By [13, Lemma 1.10-1], with 771 and rj2 fixed, for 
each / = 0,1,2,. . . , there exist a non-negative integer N( and non-negative constants C) 
(j = 0 , 1 , . . . , Ni) which are independent of n such that 

7=0 

for all n — 0,1,2,. . . . Now divide both sides by the quantity 

|r(Re(772+/i- /x//n))| = I|Re(f/i +(7/2-771 + n ) - / x / m ) j L 

invoke Remark 2.3 with 77 and À replaced by 771 and 772 — 771 + n to handle the righthand 
side and take infima to get 

(2.i3) irr,V2(s)<icji^\g). 

The result now follows. 

THEOREM 2.8. For fixed m,p and p, such that m>0, l<p<oo and / / E C , the 
topological vector space consisting of the set NJn{Fp^) and the multinorm |7^'/x'r'T7 }.°°Q 

is independent ofrjEC satisfying 77 — \xj m G Q. 

PROOF. The two multinorms give equivalent topologies in view of (2.13) and a sim
ilar inequality with 771 and 772 interchanged. This, together with (2.10), completes the 
proof. 

NOTATION 2.9. Under the conditions of Theorem 2.8, we shall write 

(2.14) Nl(Fp,,) = Fp^r and if*™ = lp^r (i = 0,1,2,. . . ) 

to indicate independence of 77, subject to the condition 

(2.15) 77 - r\i e Q 

which will be assumed throughout. 

REMARK 2.10. 

(i) Since we have lost dependence on 77, we have the first indication that the operator 
N1^ is not the only candidate which can be used to generate Fp^?r. The space 
depends intrinsically on r (equivalently on m) and we have one such space for 
every r > 0. We shall continue to use N^ a little longer to develop properties of 
Fp^j and return later to dependence on r only (for fixed p and p). 

(ii) A fairly routine calculation shows that, with the relevant topologies 

(2.16) Fp,n,r is homeomorphic to Fp^\ 

under the mapping Pr where (Pr(j>)(x) = <f>(xr). Hence any two spaces 
FP41,r(r > 0) a r e homeomorphic to each other, 

(iii) It will be convenient to write 

(2.17) Fp^ = Fp^$ 

i.e. to regard our original Fp^ space as corresponding in some sense to r ~ 0. 
The reason for this will become clearer later. 
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THEOREM 2.11. The space Fp^r(r>0) is a Fréchet space with respect to 

PROOF. Only completeness has to be established and in view of Remark 2.10(ii) it 
is sufficient to prove the result for r — 1. Choose any r / G C : î | - / i Ç Q . 

Let { gk}^\ be a Cauchy sequence in F ^ j . By (2.3) and (2.12), 

(2.18) 7 f {^'-"(gj - gtj) < ir\gj - g*)|r(Reft + n - M))| 

for each fixed i, n = 0,1,2, . . . and all j , /c = 1,2, — Hence for each fixed n, 
{K71

l
+n~ngk}^:l is a Cauchy sequence in Fp^. Since the latter space is complete, for 

each n = 0,1,2, . . . we may define 

(2.19) hn = lim K^~ngk 
k-^oo 

where the limit is with respect to the FPyVL topology. In particular gk —• /z0 as k —-> oo, 
and, since f^+n~n is a homeomorphism on Fp^ under the given conditions, (2.19) shows 
that 

(2.20) hn = KÏ+n'~nho for all n = 0,1,2, . . . . 

Next observe that, for fixed i — 0 ,1,2, . . . , there is a constant Ci such that, for k > 1, 

1?*(lCrn'~ngk) < C;|r(Re(/7 + n - /i))| for all n = 0,1,2, . . . . 

By letting k —> oo and using (2.19) and (2.20), we obtain 

1P,^Kri+n,-nh^ < C / | r ( R e (^ + „ _ ^)) | for all Al = 0, 1, 2, . . . 

so that h0 e FPtliy\n with 7f ,;i,1(^o) < C- Also, from (2.18), for any e > 0, there exists a 
positive integer N, independent of n, such that 

^{^"'-"(gj-gk)) < e|r(Re(iy +>z - /x))| for all;,*: > M 

If we let y —-> ex) and use (2.19) and (2.20) again, we obtain for n — 0,1,2, . . . 

7f•"(^+n '"n(/i0 - **)) < ^ | r ( R e ( f | + n - | x ) ) | for all k > N 

=> 7f,AU(/io - £ * ) < £ for all A: > # . 

Hence {gk}^\ converges to ho with respect to {7f'M' }°°0. This completes the proof. 

THEOREM 2.12. Under condition (2.15), A^ is a homeomorphism from Fp^ onto 
Fp,n,r with respect to the multinorms {7f'^} °°0 and {'y?',J"r}™0 respectively. 

PROOF. A^ is one-to-one (by the corresponding result in Lp>il) and onto (by con
struction). As regards continuity of A^, note that, as operators on FPiii, 

fC£n'-nNl = Nl+n ; yZ)r'A^+n - A1+VD'' (/ = 0,1,2, . . . ) 
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so that, f o r / G FPiP, 

= \\Nl^fff\\PtlÂ < | r(Re(r/ + n - / i / m ) ) | \\jtBÏf\\p„ 

where we have used [5, Theorem 7.1]. It then follows that 

l^Wf) < 1ï*<f)for all i = 0 , 1 , 2 , . . . 

from which continuity of A^ follows. Finally, continuity of (A^)_ 1 is now automatic by 

Theorem 2.11 and the Open Mapping Theorem for Fréchet spaces [12, Theorem 17.1]. 

3. In [5], we obtained characterisations of N^(LP^) and M%{LPiP) and discovered 

that these spaces were not the same. In contrast, we shall show that the space Fp>/X,r, 

which represents the range of N1^ on FPtP> for all rj satisfying (2.15), is also the range of 

A/£ on FPJP for all £ satisfying an analogue of (2.15). We achieve this by making use of 

the theory of multipliers developed by Rooney [8]. 

THEOREM 3.1. Let 1 < /? < oo, r > 0 and /x G C. / / ^ is any complex number such 

that £ + r[i G Q then M^ is a homeomorphism from Fp^ onto FPilJ {where, as usual, 

m= l/r). 

PROOF. Choose r/i G C such that Re (r/i — r/x) > max(0, Re (£ + r^i)) and let 

(3.1) hl(s) = r^-rs)/T(r1l+rs). 

Then we can find a strip S = {s € C : a < Res < /3} such that 

(i) S contains the line Re s = —Re \i 

(ii) Re(/7i + rs) > Re(£ - rs) for all s G S 

(iii) h is analytic on S. 

By using the strip S we can check that h is in the class A introduced in [8, Definition 3.1]. 

Indeed, by [1,1.18(6)] 

(3.2) |r(jt + /y)| - y/l^\y\x-xl2e-^l2 

as | v| —• oo, uniformly with respect to x in a bounded interval, and since Re (£ — rs) < 

Re (771 + rs), we can deduce that h is bounded on any substrip of the form a' < Re s < f5' 

with a < a' < /3' < (3. The condition that 

\h'(s)\ =0(\lms\-1) (sGS) 

can be checked similarly by using the formula [1, 1.18(7)] for the asymptotic behaviour 

of the function 1/; = V/ V. Thus, by [8, Theorem 1], h is an Lp^ multiplier and hence, 

by [4, Theorem 3.3], an Fp^ multiplier. Hence there is a continuous linear mapping T\ 

from Fp^ into FPtP such that 

(3.3) (M(Jtf)){s) = h(s)(Mf)(s) 
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whenever/ G Fp^ Pi F2,M and Res = —Re/x. 
Recall that the operators A^1 and M^ have the respective multipliers 

F(r/i + s J m) = T(rj\ + rs) and T(£ — s/ m) = T(£ — rs). 

It follows from (3.1) and (3.3) that 

whenever / G FPifl D F2,/i and Re s — —Re /x. By a standard continuity and density 
argument we deduce that, under the given hypotheses, 

(3.4) N% 7V = Mif for a l l / G F ^ 

so that Af£ is a continuous linear mapping from Fp^ into N%(FP^) = Fp^j this being 
valid since 771 — rxx G £2 by choice of 771. 

To prove that M^ is a homemorphism we choose 772 G C such that Re (772 — r/x) < 
Re(£ + r/Lx) and 772 — r/x G Q. Consider the multiplier 

A2W = r ( f y 2 + r j ) / r ( S - r j ) 

in a suitable strip containing the line Res = —Re/x, throughout which /z2 is analytic 
and Re (772 + rs) < Re (£ — rs). By proceeding as above, we obtain a continuous linear 
operator T2 from F ^ into FPjfi such that 

A/£7y = A^ / fo ra l l / eF p , M 

by analogy with (3.4). This shows that Fp^,r = N%(FP^) C M%(FP^) and hence from 
above we obtain M^(Fp^) — Fp^tr. Furthermore, M% is a homeomorphism by the Open 
Mapping Theorem for Fréchet spaces [12, Theorem 17.1] and the proof is complete. 

REMARK 3.2. Our proof above required us to choose two separate values of 77 in 
order to use the asymptotics of T and xjj and obtain a multiplier in the class A for both 
h\ and /12. An alternative approach can be found in [10, Theorem 6.22]. We shall make 
further use of multipliers in subsequent work which will reveal that Theorem 3.1 is only 
the tip of the iceberg. There are many continuous linear mappings and homeomorphisms, 
all mapping FA/i onto FPtfJlir and all having their behaviour dictated by a common value 
of a parameter r. Any one of these operators could be used to study the space Fp^^r but 
N% and M^ (with m = 1/ r) are the two which have the simplest multipliers. 

4. Having obtained the topological structure of the spaces Fp^,r, we shall now look 
at a few simple operators relative to these spaces. Some of our results point the way 
ahead to more substantial results in § 5. 
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THEOREM 4.1. For \<p<oo, r>0 and any complex numbers X and p, the 
mapping is a homeomorphism from Fp^,r onto FPtfl+\tr with inverse x . [Here, as 
usual, we are talking of the mapping which sends g(x) to xx g(x). ] 

PROOF. Choose any 77 G C such that 77 — r\x G £1. Then, with m — \jr and 
8 G FPt^r = Nl(FPttl), we obtain 

KP^~ng = x~xKl+rX+n^n(xxg) for n = 0,1,2,. . . . 

Hence, for 1 = 0,1,2, . . . , 

7f'"+A ^[r(Re ( ( , + rA) + « - r(/i + A ) ) ) ] " ' ^ ^ - " ^ ^ 

= | |y/y([r(Re(t, +n - /•/x))]"'x-^+rA+"'-"(xAg))|UM 

= If '"([r(Reft +n - rM))]" V ' " " * ) -

It now follows that 

(4.1) 7^+A^+rA ( jcA^ ) = 7p>M,r,Ate) 

the lefthand side being well defined, as Re ((77 + rX) — rip, + A)) = Re(77 — r/x) ^ 
0, — 1, —2,... . (4.1) proves that ̂  is a continuous mapping from FPifitr into Fp^+\fr. A 
similar argument shows that x~x is a continuous mapping from Fp^+\yr into F ^ + ^ - A ^ 

= Fp>/i>r and the required result follows at once. 

THEOREM 4.2. For 1 < p < 00, r > 0 arcd p e C, the operator U defined by 

(4.2) ( W = # ) (*>0) 

LÇ « homeomorphism from Fp^r onto Fp-^r and U~l = (/. 

PROOF. Choose any 77 G C such that Re (77 — r/i) ^ 0, — 1, —2, A simple calcu
lation involving multipliers [5, (8.2)] gives 

(4.3) MlUf=UNlf (feFp^). 

(We shall use U rather than R, as used in [5], to avoid any confusion with r.) The operator 
U is a homeomorphism from FPitl onto />-^ so that both sides of (4.3) are well-defined 
under the given condition on 77. We can rewrite (4.3) in the form 

Ug = MlU(Nirlg (geF^s) 

and by Theorem 2.12, Theorem 3.1 and our previous remark concerning U, the required 
result now follows. 

REMARK 4.3. From earlier work, we know that Theorems 4.1 and 4.2 remain true 
when r — 0 if we make the convention in (2.17). Indeed such results justify the use of 
(2.17) to some extent and further justification will follow. 
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Suppose now that we look at things the other way. Under what circumstances will 
an operator which is well-behaved in the original Fp^ setting (r = 0) continue to be 
well-behaved relative to the FPy[iJ spaces for r > 0? The simplest situation is when an 
operator T is a continuous linear mapping (or homeomorphism) from Fp^ into Fp^ (i.e. 
no change in /J). For r > 0, Fp>/i,r is a subset of Fp^ and we may ask when T restricted 
to FPyiltr gives a continuous linear mapping (or homeomorphism) from Fp^j into Fp>/i>r. 
There is a large class of operators T for which this is true, as we shall now see. 

THEOREM 4.4. For 1 < p < oo and appropriate complex numbers [i let F be a 
continuous linear mapping from FPii intoFp41 corresponding to an Fp4i Mellin multiplier 
h. Then (the restriction of) T is a continuous linear mapping from FPtilJ into Fp[irfor all 
r > 0 (under the same conditions on p and fi). 

PROOF. The differential operator Kr^n~n appearing in (2.3) is a Mellin multiplier 
transform whose multiplier is IlLi(rç +7 — 1 + slm) where, as usual, m = 1/ r and r\ is 
such that Re (r/ — r/i) ^ 0, — 1, — 2 , . . . . Since any two multiplier transforms commute, 
it follows that, in the notation of (2.3), 

1™ ([r(Re(77 +n - fir))]'1 K^'-'Tg) 

(4.4) = Tr(r([r(Re(, +n-n/m))}'lKl+"'-"g)^j 

N(i) , _ 1 \ 

j=o v J 

for some non-negative integer N(i) and constants Cj (j — 0 , 1 , . . . , Af(/)) by [ 13, Lemma 
1.10-1]. The inequality (4.4) now leads to 

N(i) 

ir,r,TJ(Tg) < E Cfl™'«{g) Vg G Nl(Fp,,) = Fp^r 
j=o 

and the result follows. 

COROLLARY 4.5. Let 1 < p < oo and \i EC.IfTisa homeomorphism from Fp^ 
onto FPtp and T, T~x are Mellin multiplier transforms (corresponding to multipliers h 
and 1 / h, say) then (the restriction of) T is a homeomorphism from FPtfljr onto Fp[irfor 
all r > 0. 

PROOF. This is immediate on applying Theorem 4.4 to T and T~l. 

REMARK 4.6. Theorem 4.4 and Corollary 4.5 are further instances of results which 
hold for r > 0 as well as for r — 0, with the results for r > 0 being inherited from those 
for r = 0. 

EXAMPLE 4.7. The spaces Fp^ = Fp^$ studied in [2] were developed for the study 
of the Erdélyi-Kober operators I%a and K%a (the 77 here not being the same 77 as in A^ 
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necessarily!) In view of results obtained for r = 0, we can say that for 1 < p < oo, 
r > 0 and appropriate /i G C (and with m — 1/ r), 

(i) I%a is a continuous linear mapping from FPtil>r into Fp^,r if r/ + 1 + r\i G i l and 
is a homeomorphism if, in addition, r\ + a + 1 + r\i G Q. 

(ii) KJf is a continuous linear mapping from FPttltr into FA/X>r if rj — r[i GQ and is 
a homeomorphism if, in addition, rj + a — rp, Gi). 

We therefore have a whole family of subspaces of the original FPtP, spaces which are 
invariant under the Erdélyi-Kober operators, at least for 1 < p < oo. 

Use of Theorem 4.1 enables us to handle operators where \i changes but/7 and r remain 
the same. An example of such operators is given by certain operators involving the 2^1 
hypergeometric function which were studied relative to the Fp^ spaces in [2]. 

EXAMPLE 4.8. Consider the operator H\(a,b;c;m) — ^Txia.b.c.m) where 
T\(a, b\ c\ m) is a Mellin multiplier transform with multiplier 

(4.5) T(a + 1 - s/m)T(b + 1 - s/ m)j {T(a + b+l - s/m)T(c +l-s/m)}. 

Here a, b and c are suitably restricted complex numbers and m > 0. The multiplier in 
(4.5) is of a form which we shall be handling later in more generality. For the moment, 
we can proceed by factorising H\ (a, b\ c\ m) in the form 

Hx (a, b;c;m) = ^ - ^ 7 ^ - ^ - ^ ^ 

which can easily be checked via multipliers. Manipulations will be valid on Fp^ provided 
that a + 1 + [i J m G Q. and b + 1 + \ij m G Cl. Theorem 4.1 and Example 4.7 then 
show that H\(a, b\ c; m) is a continuous linear mapping from Fp[lXjm into Fp4i+mcl/m for 
I < p < 00, m > 0 and \i as above. Furthermore, a homeomorphism will be obtained 
if, in addition, 

c+ 1 +/ i /m G £2and<2 + &+ 1 + / i /m G Q. 

When Re (a + 1 + /// m) > 0 and Re (b + 1 + /// m) > 0, the operator H\(a, b\ c\ ni) is 
the integral operator given by 

(4.6) (//i(a, b\ c- m)f)(x) = f* tf" - r)F*(a, b\c\\- JT / tm)f(t) d(f) 

where F*(a, b\ c; z) is an analytic continuation of 2F1 (a, b\ c; z)/ T(c) [2, p. 88,93]. These 
results for r — 1/ m > 0 accord with those in [2] for r = 0. The other operators in [2, 
Chapter 4] can be treated similarly. 

Hypergeometric functions also arise in our next example. In [11], differential oper
ators of the form x?*1 Dxf*2Dxf13 (of so-called Bessel type) were studied and in [3] these 
considerations were extended to nth order expressions. We shall review just one of the 
results. 

EXAMPLE 4.9. Consider the formal differential expression 

T^^D^D'X^Dx"^ 
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of order n where au... , an+\ are complex numbers such that 

n+\ 

m — n — a> 0, where a — ]P at. 
i=\ 

We showed that relative to Fp^ spaces, it was possible to define an« t h power Ta of T 
to be such that 

( ^ / ) ) ( 5 + ma) - m"« ft r,l
ibkîl~S/mhsMm) 

under appropriate conditions, where 

bk = XI û| + /: — n 1 / m (& = 1,... , AZ). 
v/=jk+i 7 -

Again, the product involving gamma functions is a special case of the type of general 
multiplier we shall discuss later but here we can use the factorisation 

(4.7) T* =mnax-ma n # ' ~ a 

in terms of Erdélyi-Kober operators. Theorem 4.1 and Example 4.7 show that Ta defines 
a continuous linear mapping from Fp^^/m into Fp4l_maX/m for every m > 0 provided 
that 1 < p < oo and bk + I + n / m £ Q for k = 1,.. . , n. 

REMARK 4.10. Examples 4.8 and 4.9 both lead to multipliers which are special cases 
of the class we are interested in and, indeed, for Re a < 0 the operator in (4.7) is an 
integral operator involving Meijer's G-function G%®. However, in neither case do we 
effect a change in the value of r. This is because the product of quotients of gamma 
functions is "balanced" in a sense to be made precise. A change in the value of r occurs 
when the multiplier is not "balanced," as we shall discover when we develop the theory 
of our general class of Mellin multiplier transforms relative to the Fp^tr spaces (r > 0). 
We are now ready to embark upon this development. 

5. Consider again the multiplier h in ( 1.2) and let 

K l k L 

(5.1) c= J2 n + Y.tj-'En- £ tj 
i=k+\ j=\ i=\ j=t+\ 

(5.2) </= Re { £ » / , + E $l-J2rU-'£ii)+k+e-\(K + L) 
{i=k+l j=t+\ 1=1 7=1 Z 

K L k I 

(5.3) r = £ '.•+ E h-Y.ri-Y.ti-
i=k+\ j=£+\ i=l 7=1 

The use of r in (5.3) is deliberate and we shall reconcile this version of r with the previous 
version of r = \j m shortly. Of course, c,d and r all depend on the multiplier h. The 
relevance of these quantities is shown in the following lemma. 
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LEMMA 5.1. For the multiplier h in (1.2), and with s = a + ir (a , r real) 

(5.4) \h(s)\ = 0 ( | r | c o r + J e x p { - 7 r r | r | / 2 } ) ^ | T | -»oo, 

f/ze estimate holding uniformly for a in any compact subset ofR. 

PROOF. The result follows by applying (3.2) to each T-function appearing in h. 
Recall next the class C of multipliers introduced in [7]. If we use the equivalent ver

sion obtained in [7, Theorem 4.4], we can deduce 

COROLLARY 5.2. Ifr = rih) > 0, then the multiplier h in (1.2) belongs to the class 

C 

PROOF. Chose any real numbers a and f3 such that the strip a < Re s < (3 contains 
none of the poles of h (which are finite in number). Then h is analytic on this strip and if 
we choose a positive integer N such that 

N > sup{ ca +d : a < a = Re s < /3 }, 

then, by (5.4), |s~Nh(s)\ will be bounded as |^| —> oo, uniformly with respect to a in any 
closed substrip a' < a < f3' where a < af < (3' < /3, i.e. h(s) is uniformly of order 
| s\N as \s\ —•» oo within such a strip. The result follows. 

In view of [7, Theorem 4.3], we can conclude that h is the multiplier of a mapping T 
which maps FPifi into Fp^ for 1 < p < oo and a < —Re /x < f3 where a and (3 are any 
real numbers such that h is analytic on a < Re s < (3. Also we may allow a — —oo or 
(3 — oo, as appropriate. It is convenient to introduce the following notation. 

DEFINITION 5.3. For h as in (1.2), define the set A = A(/i) by 

(5.5) A(/i) = { x G R : no pole of h(s) lies on Re s = x}. 

Our previous statement then becomes the statement that h is an Fp^ multiplier for 1 < 
p < oo and — Re/x G A(/i), provided that r(h) > 0. 

We can think of multipliers (1.2) having r(h) = 0 as being "balanced" while those 
having r(h) > 0 are "top heavy." As might be expected, the properties of the multiplier 
transform T corresponding to h are simplest in the balanced case. 

THEOREM 5.4. Let T be the multiplier transform corresponding to the multiplier 
(1.2) with r(h) = 0. 

(i) If 1 < p < oo and —Re/x G A(h), then T is a continuous linear mapping from 
FPtn intoFp^. 

(ii) If in addition, —Re /i G A(l/ h), then T is a homeomorphismfrom Fp^ onto Fp^ 
whose inverse is the multiplier transform corresponding to 1 / h. 

PROOF. This is almost immediate from the preamble and the observation that, in 
general, 

(5.6) r(l/h)=-r(h) 
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as is obvious from (5.3). In our case r ( l / h) — r(h) = 0. 

EXAMPLE 5.5. Individual Erdélyi-Kober operators are balanced as are products of 
such operators, a particular example being the hypergeometric operator T\ (a, b\ c\ m) in 
Example 4.8 corresponding to the balanced multiplier (4.5). 

However, the full significance of the Fp^tF spaces begins to become apparent when 
r(h) > 0. The crux of the proof of the following theorem is to make the original top-
heavy multiplier balanced by introducing another T-function in the denominator, the 
extra T-function being the multiplier associated with N^(m = 1/ r). 

THEOREM 5.6. Let T be the multiplier transform corresponding to the multiplier 
(1.2) with r = r(h)> 0. 

(i) If 1 < p < oo and —Re p G A(/i), then T is a continuous linear mapping from 
Fp# into Fp^j. 

(ii) If in addition, —Re/x G A(l//i), then T is a homeomorphism from Fp^ onto 

PROOF. For fixed p such that —Re p G A(h)f there exist numbers a and (3 such 
that h(s) is analytic on a strip a < Re s < (3 which contains the line Re s = —Re [i. 
Choose any 77 such that Re(77 + roc) > 0. Then T(r] + rs) is also analytic on the strip 
a < Res < /î.Let 

(5.7) g(s) = h(s)/T(r1 + rs). 

Then A(h) Ç A(g), since no new poles have been created and the multiplier g is balanced, 
since r(g) = rih)—r— 0. By Theorem 5.4(i), g gives rise to a Mellin multiplier transform 
7b which is a continuous linear mapping from Fp^ into Fp^ for the given p, and for 
1 < p < 00. However, (5.7) leads to 

h(s) = T(rj + rs)g(s) 

and, under the given conditions, T(ri + rs) is the multiplier of A% with m = 1 / r, so that, 
as operators on Fp^, 

(5.8) T^NlTo 

and since, by construction, A^ maps Fp^ continuously onto />,M,r, (i) of the theorem is 
proved. 

To prove (ii) assume also that — p G A(l/ h). Then 

l/g(s) = r(rj + rs)/h(s) 

so that by choice of 77, with a and (J as above, —p G A(l/g). By Theorem 5.4(ii), To 
is a homeomorphism from Fp^ onto Fp^. Also A^ is a homeomorphism from Fp^ onto 
Fp^j. Part (ii) of the theorem therefore follows from (5.8). This completes the proof of 
the theorem. 
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REMARK 5.7. We can now see clearly how the theory of the multiplier (1.2) be
comes so much simpler if we work relative to FPtfl rather than to Lp>/x. In the case when 
the corresponding operator T is as well-behaved as possible, i.e. is a homeomorphism, 
the range depends only on the combination (5.3) of the parameters r,-, t}(1 < i < K, 
1 <j<L) and not on the parameters individually. Furthermore, for fixed \i G C and 1 < 
p < oo, the range is independent of the parameters rjt, £,(1 <i<K,\ <j< L) provided 
only that these are chosen so that we avoid poles and ensure that — JJL e A(h) D A(l/ h). 

Theorem 5.6 can be extended further. Bearing in mind the convention adopted in 
(2.17), we have obtained a continuous linear mapping from Fp^$ into Fp^j and, under 
additional conditions, a homeomorphism. Since any />,M,r space is a subset oïFp^$ (with 
a different topology), we might enquire as to how the restriction of T to Fp^y behaves, 
for any r1 > 0. This question can be answered completely. We can state the answer rather 
imprecisely in the form of the final theorem. 

THEOREM 5.8. Let T be the multiplier transform corresponding to the multiplier 
(1.2) with r = rih) > 0. Then under conditions of great generality, T (restricted where 
appropriate) is a continuous linear mapping from FPttiy into Fp^y+rfor any r1 > 0 and 
will be a homeomorphism under additional mild restrictions. 

REMARK 5.9. 

(i) We shall not offer a proof of Theorem 5.8 here as a certain amount of extra ma
chinery is needed. One approach is via duality and it seems appropriate to defer 
further details until a future paper where we hope to present a distributional ana
logue of the classical Lp^ theory. Since the Fp^ spaces are the underlying spaces 
of test-functions, the simple conditions on parameters exemplified in Theorem 5.6 
will be retained in the distributional theory, again in contrast to the classical the
ory. 

(ii) Theorem 4.4 and Example 4.7 provide an illustration of Theorem 5.8, with r1 

and r being replaced by r and 0 respectively. In general, each FPt^r space will be 
invariant under any multiplier transform corresponding to a balanced multiplier, 

(iii) The question arises as to what can be done when r is negative. The multiplier 
(1.2) is then bottom heavy, a typical example being \/T(r\ + rs) which should 
correspond to (A^)_1 with m— 1/ r. Since this operator maps the subspace FPttijr 

onto Fp^.o, it seems reasonable that (A^)"1(F/?/x) will be a larger set than Fp^$. 
This leads to an attempt to define a "negative space" Fp^^r for r < 0 as opposed 
to the "positive spaces" Fp^,r for r > 0. Such ideas are again related to duality 
and it is possible to mimic a construction often used for Hilbert spaces. We hope 
to pursue this topic also in a future paper. 
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