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DECOMPOSITION BASED GENERATING FUNCTIONS 
FOR SEQUENCES 

D. M. JACKSON AND R. ALELIUNAS 

PART I : General Theorems. 

1. I n t r o d u c t i o n . Numerous combinatorial enumeration problems may be 
reduced to equivalent problems of enumerating sequences with prescribed 
restrictions. For example, the expression, given by T u t t e [38], for the number 
of planar maps may be derived (see Cori and Richard [12]) by essentially a 
sequence enumeration technique. The correspondence between a set of con
figurations which are to be enumerated and an appropriate set of sequences is 
often complicated. Indeed, the existence of such a correspondence has occasion
ally only been discovered fortuitously by observing the equality of two counting 
series (see, for example, Klarner [25]). However, sequence enumeration has, in 
principle, wider application than simply to what may be loosely termed the 
' 'classical" problems which date back to the beginning of combinatorial 
analysis. In general the classical sequence enumeration problems concern the 
determination of the number of sequences which possess or lack certain specific 
subsequences. However, even these problems typically have been treated by 
non-uniform methods which are specific to each case. In this paper we demon
s t ra te t ha t a decomposition of sequences into maximal paths leads to a uniform 
t rea tment of these problems and we present an elementary enumeration 
theorem wThich, when specialised appropriately, provides solutions to a con
siderable number of sequence problems. Some of these have, of course, been 
treated before, bu t the solutions of the remaining ones are, to the authors ' 
present knowledge, new. 

Let P be a distinguished set of sequences which we will call paths. We are 
concerned with the significance of generating functions of the form 

where h is some function. I t will be seen tha t many problems which involve 
enumerat ing sequences with respect to the presence or absence of subsequences 
which are members of P , have generating functions of this form. As an example, 
let P be the set of strictly increasing subsequences. Then the generating func
tion for the set of all sequences with no strictly increasing subsequences of 
length three has the above form. 
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972 D. M. JACKSON AND R. ALELIUNAS 

I t is not t rue t ha t all subsets P can act in this capacity, and Section 2 
characterises them, while Proposition 2.8 helps to identify an impor tan t 
subclass. 

We now return to the reason why generating functions of this form are 
significant a t all. If multiplication is viewed as concatenation of corresponding 
subsequences in the above form, then this sum represents an enumerat ion of all 
of the sequences which can be obtained by joining together elements of P. 
The terms 8(p) are simply markers for the fact t ha t p was used in the con
struction. However, any given pa th may be made up of other pa ths in several 
ways. For example the run 1234 can be constructed using 1,234 or 12,34 or 
1,2,3,4 and so on. Some technique is required for suppressing the contribution 
of these kinds of decompositions to the overall generating function. This 
difficulty is also described in Section 2. The solution yields an interpretat ion 
for generating functions of the above form and is given as Theorem 3.1. I t 
makes use of a Alobius inversion formula, in fact the one connected with the 
lattice of compositions of an integer ordered by refinement. 

The principal impediment to the solution of actual enumerat ion problems 
is t ha t the Mobius inversion may be difficult to carry out in practice. However, 
certain simplifying assumptions may be made which, in a commuta t ive ring of 
weights, reduce the problems to inverting power series or matrices. Although 
the applicability of the method is wide, problems of increasing "complexi ty" 
may well involve algebra which becomes increasingly difficult and perhaps 
intractable. 

The material falls into three par ts . Pa r t I, consisting of the first five sections, 
deals with the decomposition, the main theorem and its principal corollaries. 
P a r t I I , consisting of Section 6 to Section 9, deals with applications of the 
theory to a number of sequence enumerat ion problems. More specifically, 
Section 2 defines the decomposition of sequences into pa ths which is used 
throughout the paper. The main theorem is given in Section 3, and its two 
principal corollaries are presented as theorems in Section 4 and Section 5. In 
Pa r t I I , Section 6 deals with Andrews' refinement of the Simon Newcomb 
problem as an application of the theorem given in Section 5, while Section 7 
contains applications of the theorem given in Section 4 to ^ -pa ths in sequences. 
The £-path problems for permutat ions are considered in Section 8 and some 
results relating to rises, levels, falls and the number of maximal runs within 
sequences are discussed in Section 9. In P a r t I I I , the method is extended to 
permit the extreme maximal pa ths to be differentiated from the remaining ones. 
Section 10 contains the extensions of the main theorem, while Section 11 gives 
certain specialisations. Section 12 gives a number of applications of the extended 
theorem to the enumerat ion of permuta t ions with respect to maxima and 
minima. A brief discussion of some of the l imitations of the method is given 
in Section 13. Also in this section we examine the possibility of establishing 
the "pos i t iv i ty" of rational functions by these techniques. For cross referencing 
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purposes the Appendix contains a list of some of the more common problems 
which have been treated in this paper. 

These enumeration theorems fall into several broad classes, as follows. 
Sections 3 and 10 are fundamental and contain the primary results. The next 
level of results are corollaries to these, in one case dealing with length and type 
encoding (Sections 4 and 11), and in the other with init iator-terminator and 
type encoding (Section 5). The third level contains analyses of permutat ion 
problems, based on length and type encoding techniques (Sections 8 and 12), 
and also of Simon Newcomb type problems treated with init iator-terminator 
and type encodings (Section 6). Finally several areas of intersection between 
these diverse approaches and other extant work are examined in Sections 9, 
11 and 12. 

A number of investigations of decomposition based generating functions 
have already been carried out, bu t from different points of view. Among such 
constructions are the "prefab" of Bender and Goldman [6], and the "dissect" 
of Henle [19]. 

For convenience, the following notational conventions are observed: 

(i) Let X = (xi, x2, . . .) and i = (ii, i2, • . . ) , both finite dimensional. 
Then Xiilx2

H . . . is denoted by X1. 
(ii) The empty sum and empty product are taken to be 0 and 1, respectively, 

(iii) The (i, /)-element of a matrix A is denoted by [A]^. 
(iv) The coefficient of xl in the formal power series F(x) is denoted by 

[x*]F(x). We use [x]F(x) to denote [xi x2 . . .]F(x). 
(v) A rise in a sequence i\i2 . . . 4 is defined to be any pair ikik+\ such tha t 

ik < ik-Li. Falls and levels are defined analogously, 
(vi) The symbol o is used to denote function composition, 

(vii) i = (ii, i2, . . .) is the type of a sequence, where ij is the frequency of 
occurrence of the element j . 

T o facilitate cross-referencing between theorems, most of them are preceded 
with single phrases which indicate the contexts in which the theorems apply. 

2. M a x i m a l d e c o m p o s i t i o n s . Let iV* be the set of all sequences (free 
monoid with concatenation) over an arbi t rary countable set N, which we 
identify with the positive integers. Let N+ = N*\e where e is the empty word, 
and let F C N+ be a distinguished subset called the set of paths. The following 
preliminary definitions are needed. 

Definition 2.1. (i) The set of sequences over P is the monoid P* = UT=o Pl 

with concatenation as product. 
(ii) The set of decompositions of P* is the monoid P (* } = U *=o Pi with 

the product (pu . mj , pm) • (gu . . . , qn) = (pu . . . , pm, qu . . . , qn). 
(iii) c : P (* } •—> P* is the concatenation homomorphism defined by 

C(pl, • • • ,Pn) = Plp2 • • • Pn-
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P (* } is the free monoid with letters being the elements of P . We will always 
write elements of P (* } with parentheses to distinguish them from the sequences 
in P* . 

PROPOSITION 2.2. Let ^ be the order relation defined on the free monoid P (* } 

by di ^ d2 <=> di is a refinement of d2, where dx and d2 are decompositions. Then 
c~l(p) = {d\d S (p)}forp e P and c~l(p) is finite. 

Proof. Immediate . The finiteness of c~l(p) follows from the presence of the 
underlying set A. 

Definition 2.3. If R is an arbi t rary ring with unit , and for A : P — > R the 
induced map A : P (* } —> R is defined by 

(i) A(pu ...,pn) = A ( ^ ) A ( ^ 2 ) . . . A(pn) 

and if 

(ii) u(a) = (pi,p2,. . . ,pn) G c-'ia) 

is a distinguished decomposition of a then the generating function for P * is 

(iii) ]Ç Aow(o-) or ,equivalent ly X) A(pi)A(p2) . . . A(pn). 
c r Ç P * (TCP* 

Definition 2.4. P admits maximal decompositions if and only if c~l (a) has a 
maximum for every a £ P* . 

Accordingly if, 7̂  admits maximal decompositions, it is natural to take 
u(a) = max c~l(a). This completes the definition of a generat ing function 
based on maximal decompositions. Examples of sets of pa ths admi t t ing maxi
mal decompositions are given in the next definition. They will be used in a 
number of specialisations of the main theory. 

Definition 2.5. 
(i) l \ = N+. 

(ii) P 2 = {i\i2 . . . in\im+i = im + 1), the set of increasing runs. 
(iii) P 3 = \i\i2 . . . in\i\ ^ i2 ^ . . . S in}, the set of increasing sequences. 
(iv) P 4 = {ii^2 • • • in\i\ < 2̂ < • • • < in] J the set of strictly increasing se

quences. 
(v) P 5 = {iii2 • • • in\n è 2; ii even; in odd; i m + i = im + 1}. 

(vi) P 6 = \i\ii • . • in\n ^ l ; t „ = l ) . 

Note tha t P * = iV* if and only if A7 C P , so P 5 * and P 6 * do not equal A*, 
T h e following propositions characterise a certain class of pa ths . 

PROPOSITION 2.6. A set of paths admitting maximal decompositions may always 
be obtained from a generalised successor function s : N —> 2N which takes letters 
into subsets of letters. This determines a set of paths Ps = {i\i2 . . . in\n ^ 1; 
im+i G s(im)}. 

Proof. Straightforward. 

We can see, for example, t ha t P3 = Ps for s(i) = {j\j ^ i}. Now u(a) may 
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be calculated readily by checking the conditions im+\ G s(im) along the se

quence a. Thus , for example, if s(i) = {j\j ^ i) then w(1324) = (13,24) 

since 2 # 5(3). 

Definition 2.7. P contains arbitrary subwords if for any £ G P then any non

empty subword of p is also a path. 

PROPOSITION 2.8. P admits maximal decompositions and contains arbitrary sub-

words if and only if P = Psfor some generalised successor function s. 

Proof. UP = Ps for some 5 then P contains arbi t rary subwords. Suppose 
now tha t P admits maximal decompositions and contains arbi t rary subwords. 
Let 5 be defined as follows: 

j G s(i) if and only if (ij) appears as a subword of some path in P . 

Now clearly P C P , . Further ,we claim tha t PS\P = 0, for if ps G PS\P t hen 
u(Ps) = (£i, p2, . . . , pn) for w > 1, or else it belongs to P . Let £i = p\a and 
£2 = bp2 where a, b G N. Since £>5 G P s then b G s (a), whence ab is a subword 
of some path in P . But the arbi t rary subword property implies tha t (ab) G P 
as well as pi G P and p2 G P . Thus (pi, (ab), p2l pz, pi, . . . , pn) G c~1(ps) 
which is not comparable to u(ps) = (pi, pi, . . . , £w), which provokes a 
contradiction. 

Note tha t P5 and P 6 do not contain arbi t rary subwords. 

3. T h e m a i n t h e o r e m . In this section the main theorem is developed, 
which is specialised in subsequent sections. Let A : P —> R be an arbi t rary map 
from paths to a ring with identi ty which may be non-commutat ive. For those P 
which admit maximal decompositions we wish to write the generating function 
X ^ G P * Aou(a), which iscombinatorially easy to interpret, as {1 — 2]PGP<$(£>)}_1 

which is algebraically preferable. The first form considers only the maximal 
decompositions, while the second one incorporates all allowable decomposi
tions. The following theorem demonstrates tha t the connexion exists and 
describes what it is. 

T H E O R E M 3.1 (Maximal pa ths) . / / 
(i) P admits a maximal decomposition u(a) for any a G P* , and 

(ii) A : P —> R is arbitrary, where R is a ring with 1, then there exists a unique 
8 : P —> R such that 

A(£) = Z ) *(d) for any p G P 
d€c-i(p) 

and 

£ Ao«(<0 = { l - Z «(*>)} '• 
<r£P* I p£P J 

Proof. Informally one sets up the desired equality and a t t empts to find a 
solution for the <5's in terms of the A's. The following presentation, however, 
is more compact. 
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Since c~l(p) = {d\d ^ (p)} for p £ P , the condition on ô may be rewrit ten 

as 

MP) = E SW 

for any p Ç P . T h u s ô may be constructed by Mobius inversion with respect 

to each maximal element of P(s |e). Moreover, we have 

{ l - E 5(4" = £ JE «(/>) 
I pep J * >o I pep pep J fèo ^pep 

= 1 L 2Z 2 ^ ) (where the summation is taken over d £ c~ (cr) C\ Pj) 
; ^ 0 (TCP* d 

= E E â ) = E n E 50) 

(where w(o-) = (£i, £2 , . . • , A»)). 

The last equali ty holds because the maximal decomposition proper ty implies 

tha t 
n 

c~V) = X c-1(p(). 

Now 

d € c - ! ( p t ) 

SO 

1 - E *(*>)} ' = E Ao«(ff) 
PGP J (r£P* PGP J (TGP* 

and the proof is complete. 

This generating function for P * can be loosely described as the translation of 
the monoid sum P (* } = U*^o Pk to the sum X ^ o Œ P e p à(p))k. 

4. L e n g t h a n d type e n c o d i n g for m a x i m a l d e c o m p o s i t i o n s . We con
sider the first of the two simplifications of A : P —•> R which allows the Mobius 
inversion to be performed more easily in many cases. In this section we allow 
only those A which are able to encode length and type information. T h e 
second simplification is given in Section 5. 

T H E O R E M 4.1 (Length and type) . If 
(i) P admits maximal decompositions, and 

(ii) A(p) = FJT(P) where 

( a ) 3 — \p\ is the length of p £ P', and 
(b) T is a path-homomorphism (r(pq) = r(p)r(q) for any two paths p} q) 

which maps to the centre of the ring R (we will usually take r to be an 
encoding of the type of p) 
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then 

(iii) d(p) = fjT(p) where 1 + £ Fku
k = \ 1 - £ / t « 4 , awrf 

A;>0 V * > 0 

(iv) the generating function is \ 1 — ^ /*7A;( where yk = Yl T(P)-
\ k>0 / p£P 

\p\=k 

Proof. We show that 8(p) is of the form fj(p) by induction on the length of 
p, or alternatively, on the maximum number of subpaths into which p can be 
decomposed. Since A(p) = b(p) for those p of minimal length we have, in this 
case, that ô(p) = f\P\r(p) where f\p\ = F\v\. By the induction hypothesis for 
all paths shorter than p and the committativity of r(di) with every element, 
we have, for any p: 

S(p) = MP) - D fjjh . . .fimr(di)r(dt) . . . r(dm) 
d<(p) 

where \dk\ = jk and d — {di, d2, . . . , dm). Thus 

ô(p) =r(p)Flpl -T(p) Z M i 2 . . . / i m 
d<(p) 

and the result follows immediately. 
Now r(p) may be factored from A(p) = X ^ ( P ) 8(d) to give 

wh 

oo / ou \ A 

fc=0 \ tf=l / 

ence 

i + E *•*«* = {1 - E /*«4_1-
Moreover, the generating function is 

1 - Y. f\v\r{p)\ ' " 1 1 - E/*7* 

since 

7* = Z) r{p). 
pep 

\p\=k 

We note that the generating function given in the above theorem involves 
an umbral substitution (see Mullin and Rota [29]) or, equivalently, the umbral 
composition of the series f{u) = 1 — J2k>ofkUk and y(u) = 1 + ]C*>o 7*^*- In
deed, the generating function may be written (foy)~l where the composition 
is umbral. However, we do not pursue this further. 

The following example demonstrates the generality of Theorem 4.1 while 
illustrating some of the difficulties which may attend its use. In the example, 
we assume that the Fk do not commute. 

Example 4.2. We consider the enumeration of sequences over {1, 2, 3} ac
cording to their type and the number and order of the increasing runs they 
possess. Accordingly, let N = {1, 2, 3j , P = P2 = {1, 2, 3, 12, 23, 123} 
(see Definition 2.5(h)), and r(iii2, . . . , in) = xtlxi2 . . . xin. The inversion 
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formulae and the appropriate posets of decompositions corresponding to 

- M Z*>o{ - Ze>o FiU1]*, for n = 1, 2, 3 are given in Figure 1. 

F1 F2 

Fi2 

h = Fi f2= F2- F1 

F2FX 

FIGURE 1 

For simplicity, let f 1 = 1 so the generating function for the problem is, from 
Theorem 4 .1 : 

G = {1 - [(xi + x2 + x3) + (F2 - l ) (x ix 2 + X2X3) 
+ (F3 - 2F2 + l)Xlx2x,]}-\ 

In particular, for sequences of type (2,2,1), we have 

[x1
2x2

2x3]G = 7 + 12F2 + 4F 3 + 5,F2
2 + F2FZ + F,F2. 

Thus , for sequences possessing exactly two l ' s , two 2's and one 3, there are: 
1 with a 3-run followed by a 2-run, 1 with a 2-run followed by a 3-run, 5 with 
two 2-runs, 4 with one 3-run, 12 with one 2-run, and 7 which are run-free. 
There are 5!/(2!2!) = 30 sequences in all. 

The following example uses a Dirichlet generating function in connexion 
with multiplicative part i t ions. 

Example 4.3. The number of sequences over {1, 2, 3} of type (i'i, i2, i3) whose 
maximal increasing run lengths are factorisations of n is 

[^- s][xi i lx2 '2x3 '3]{l — (xi + x2 + xz) — (2~s — l ) (x ix 2 + x2x3) 

- (3~ s - 2.2-* + l)x!X2XZ}-1. 

This follows directly from Example 4.2 with Fk = k~s. T h e coefficient of XiX2x3 

is 3~ s + 2.2~s + 3 which agrees with the direct enumerat ion given in Table 1. 

TABLE 1 

0- A 0 w(<r) 

123 3 ~ 8 X1X2X3 

213 1 XiX2X3 

132 1 XiX2XS 

231 2 _ s X1X2X3 

312 2~8 X1X2X3 

321 1 X1X2X3 

There are six sequences in all, a fact which emerges by put t ing 5 = 0. 
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5. Type and initiator-terminator encoding for maximal decomposi
tions. The following theorem presents the second simplification of Theorem 
3.1. Here we allow only those A which are able to record the first and last 
elements of a maximal path along with its type. 

THEOREM 5.1 (Type, initiators and terminators) . If 
(i) P — Ps for some generalised successor function s, such that s(i) ^ 0 for 

any i, and 
(ii) A : P —> Ris arbitrary, where R is a ring with 1, then 

(iii) / + X AtjMij = \l - E hjMih 
i,3 ^ i'j ' 

where 

Az; = E A(p) andôtj= E «(?)» 
p£Mij p£Mij 

Ma = {p Ç P\p begins with i and ends withj), 

and the matrix 

1 if i = m and n £ s (j) 
[MijUn - l Q otherwis€f 

and I is the identity matrix. Moreover, 

(iv) the generating function is \ 1 — E àuÇ • 

Proof. The relationship 

MtjMkl = Mu= (0) <=» Af,,A?*, H P ^ 0 ( = 0 respectively) 

arises because of condition (i). The matrices represent the essential properties 
of the monoid product on the sets Mtj. Now 

HP) = E &(d) forpt P 
dS(p) 

SO 

A„ = £ A(*0 = £ £ «(d) = £ £ n *»«,.• 
pÇMij p£Mij d^(p) k^l i=l 

where the second summation is over Wi, n\, m<i, n<i, . . . , mk, nk such tha t 

Mmini • Mm2n2 ' . . . ' M ^ H ^ ^ 0. 

T h u s 

Atj = [M,,] E ( E 5mnÂfrore) 

from which it follows that 

I + E A ^ , = \ I - E « A 
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The extraction of the coefficient is well-defined since the matrices are linearly 
independent. Finally, since P = Oij Mtj is a disjoint union we have 

i - E s(p)\ ' = {i - E «J ' 

and the theorem follows from Theorem 3.1. 

Condition (i) of Theorem 5.1 may be replaced by 

MijMkl = Mu= (0) ^ MtjMkl r\ P ^ 0 (= 0 respectively) 

where the M ^ are suitable linearly independent matrices. The task of finding 
matrices to fit the conditions appears to be unrewarding, and we have not 
found an application which uses this weaker condition. The set P 5 of paths 
(see Definition 2.5(v)) satisfies this weaker condition, but does not admit a 
generalised successor function. 

PART II : Applications. 

6. Problems involving initiator-terminator information. This section 
is concerned with problems which involve initiator and terminator information, 
and is divided into two subsections. The first deals with a refinement of the 
Simon Newcomb problem, while the second deals with a variant of this problem. 
Clearly, there are several such variants which may be treated by the same 
method. Two sets of paths, P 3 (increasing sequences) and P4 (strictly in
creasing sequences) are used and the section serves to illuminate the use of 
Theorem 5.1 in the two situations. 

6.1 Andrews' refinement of the Simon Newcomb problem. Andrews' refinement 
(Andrews [4]) concerns the enumeration of sequences with respect to occur
rences of maximal paths of P 3 (increasing sequences) and the terminator ele
ments of each of the paths. The refinement arose in connexion with Long's 
Conjecture (Long [26; 27]) concerning factorisations of integers, and its proof 
(Andrews [5]). 

COROLLARY 6.1. The number of sequences with at occurrences of i, and Hi 
occurrences of i as a terminator of maximal increasing subsequences is 

[*aHvH]{i - z xfl, n d - **(i - v,))-1} \ 
Proof. Let A(p) = VJT(P) whenever p G Mih and let r{i\ii . . . in) = xtixi2 

. . . xin. The ring of weights is assumed to be commutative. Now clearly the 
generating function for increasing sequences beginning with i and ending with 
j , where j ^ i, may be written down directly since a sequence on 

https://doi.org/10.4153/CJM-1977-098-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-098-3


GENERATING FUNCTIONS 981 

{i, i + 1, . . . , j) corresponds to a unique increasing sequence. Accordingly, 

(vjXjil - Xj)'1 Hi =j 

[A]tj = Atj = \VjXiXj I I (1 - s*)"1 if ^ < j 

' ( 

[Ir-l ij\mn 

[T]tj = 

vO if i > j 
for an increasing path beginning with i and terminating with j . But P 3 = Ps 

where s(i) = {j|j ^ i} so the representing matrices are 

1 if m = i rg j ^ n 
[0 otherwise. 

Hence, from Theorem 5.1 

may be written 

I + AT = (I - DT)-1 

where 

[D]ij = diJ 

and 
' 1 iîi^j 
, 0 otherwise. 

It follows that D = (A~l + T) - 1 . Now, by routine but lengthy algebra we 
have: 

!

(1 — xm)vm-lxm-1 if m = n 
0 if m > n 

— vm~l if m < n 
so 

.4-1 + T = diag (xr^r1, x<rlv<r\ .. .)#r 
where 

Î
1 — xt(l — vt) if i = j 
- 1 i f i + l = j 

0 otherwise. 
Hence 

D = T~lB~l diag (xitfi, x2z>2, . . •) 
where 

FR-ii ) n {l - xk(\ - vu)}'1 iîi^j 

vO otherwise. 
Thus 

oo oo j 

HI atj = Z [P _ 1 d iag (pcivu x2v2, . . . ) ]u = Z * j ^ IT {1 — **(! - ^ ) } _ 1 

i,j 3=1 j=l k=l 

which gives the required generating function. 
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Remark. This generating function differs from the one obtained by Andrews' 
[4], but yields the same coefficient as the following derivation demonstrates. 

[X°VH]] i - z Xtvt n i l - **(i - «or1 

i = l Zc=l 

k + ... + k = I*"»"] E | , ; 

x i î {î-stu-»*)}-1"*-*' 

(xiVi) h . . . (xnVn) ' 

[vH\ E 
Il In^O L n, I2, • • • » In . ^...vn")n d - o " 

X [ a* - / * + £ / « - 1 

E 

a* - h 

"/l + . • • + 4 
^ 1 > • • • > ' t t - n 

X \Hk-lJ ^ i j 

^ - 4 + X) 4 - 1 

= E (-i)IJ- lCH*+, t )^(f) (̂ 1 +••• + « ! 
Z l , . . . , Zn^O 0,n \ ln J 

xâ(rèJ(è)-

, l - ' (5 . ' - ' ) - f l (s ' ->) 'r k - w J 
n 

Zl In^O 

(which is a version of Andrews' result) 

&A; fc=l W f c / A;=l 

No further simplification has been obtained. 

Q w-/fj I w 

(Hk+lk) 

ak+ Z *i - 1 
z=fc+1 
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6.2 A related problem. There is a certain degree of freedom in the choice of 
the set of paths to be used in the problem stated in Section 6.1. A natural 
second choice is the set P 4 of strictly increasing sequences. The following 
corollary gives the enumeration in this case. 

COROLLARY 6.2. The number of sequences with at occurrences of i and Ht 

occurrences of i as a terminator of a maximal strictly increasing subsequence is 

[ * W ( l - L xfi, ff {1 + xk(l - vk)})\ \ 

Proof. The proof follows closely that of Corollary 6.1. In this case we have 

(xiVi if i = j 
) j~1 

[A]ij = \VjXiXj f i (1 + *h) if i < j k=i+l 

otherwise 

since the subsequences are strictly increasing. Now P 4 = Ps where s(i) = 
{j\j > i) so 

riC/r i _)litm = iSj<n 
W*>l™-\0 otherwise 

for the representing algebra. Accordingly, from Theorem 5.1, 

i,j \ i,j 

becomes 

I + AS = (I - DS)~l 

where 

' 1 if i < j 
[S]iJ {0 otherwise 

and D = [Ôi3] as before. Accordingly D = (A-1 + S)'1 + Z where ZS = 0. 
Clearly Z = 0 since 5 is infinite dimensional. 
Thus 

D = (diag (x1-
1v1-\x2-

1v2-\ . . .)BT)~l 

where 

L ]ij 10 otherwise 
and 

(l if i = j 
[B]ij = < - ( l +xt(l -v,)) ifi+ 1 = j 

(O otherwise 
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whence 

D = T-lB~l diag {xxvu x2v2, . . .) 

where 

, - 1 - , _ ^ fc=i 

0 otherwise. [B Jo-

It follows that 

°° °° tzl 
E su = Y [5 - 1diag (x1vhx2v2, . . .)]i*= XI * ^ I I {1 + xk(l - vk)\ 

and the corollary follows. 

7. Problems involving length information: ^-paths in sequences. In 
this section, generating functions concerned with the occurrence of paths of 
length p are obtained, and in the next section the corresponding results for 
permutations are derived. The following assumptions are made for the re
mainder of the paper. 

(i) The set of paths is P 2 (increasing runs), P 3 (increasing sequences) or 
7J

4 (strictly increasing sequences). The results may be generalised in 
many cases, but this has been left to the reader. 

(ii) We define 
(a) r{ixi2 • . . in) = XuXa . . .#<» 

and 

I: / J # M - l # i + 2 • • • %i+k I I -t — 1 2 

(b) 7* = L T(P) =\[xk] IT (1 - xx,)-1 if P = À 

°° 
[xk] I I (1 +xxt) i fP = T\ 

pep 
\p\=k 

(iii) The ring R of weights is commutative, and we define 

F(x) = 1 + E F&\ /(*) = 1 - E /*** and F = f~\ 
k>0 k>0 

For convenience let/o = — 1 and/^ = 0 for k < 0. 

COROLLARY 7.1. 77*e generating Junction for sequences with exactly i p-paths is 

1 ~ E TA/* J 
V k>0 

where 

\u - 1 if£ = 2 

and {fn} satisfies fn = ujn-X + (1 — u)jn-v for n > 2. 
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Proof. Let F(x) = 1 + x + x2 + . . . + xv~l + uxv + uV+1 + . . . + 

uicxp+k-i _[_ # # since there are no p-paths in a sequence of length less than p and 
there are k ^-paths in a sequence of length p + k — 1. Thus 

cY \ _ 1 ~ ^ + (^ — l)xp 

W " (1 - x ) ( l ~ t t * j ~ ~ 

in Theorem 4.1, whence 

„, v (1 — x ) ( l — UX) 

so 

f(x) — uxf(x) + (u — l)xpf(x) = 1 — (1 + w)# + ££x2. 

The corollary follows by comparing coefficients on either side of this relation. 

COROLLARY 7.2. The generating function for sequences with no p-paths is 

) Z) 7* — S 7yfc( 
\ A; E=0(modp) fc=l(modp) / 

w/Aere 70 = 1. 

Proof. Let w = 0 in Corollary 7.1. Then 

F(x) = -~-~ 
1 — x 

so 

f(x) = -——^ = 1 — x + xv — xv+ + . . . 
1 — x 

and the result follows. 

This proves a strengthened form of the conjecture for £-runs given in 
Jackson [20]. 

COROLLARY 7.3. The generating function for sequences whose longest path is of 
length p is ^(1) — ̂ (0) where 

j - 1 

and for p ^ 2,/i = 1 a#d {/*} satisfies 

fn = (1 - «)/*-* + «/w-P-i 

/orw > 1. 

Proof. Let ^(x) = 1 + x + x2 + . . . + xp_1 + ^xp since there are no paths 
of length greater than p, and the lengths of paths less than p are not recorded. 
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T h u s 

F(x) = 
1 — (1 — u + ux)xf 

1 — x 

T h e recurrence for f(x) = 77-1 (x) follows provided £ ^ 2. Thus , from Theorem 
4.1, the generating function is 

00 

Ë [«']¥(«) = * ( 1 ) - * ( 0 ) . 

8. P r o b l e m s invo lv ing l e n g t h i n f o r m a t i o n : p - p a t h s in p e r m u t a t i o n s . 
By a permutation on n we mean a permuta t ion of {1, 2, . . . , n}. T h e initial 

assumptions given in Section 7(i) , (ii), (iii) hold in this section. Two prefatory 

lemmas are needed for the transit ion from sequences to permutat ions . Lemma 

8.1 deals with increasing runs and Lemma 8.2 deals with increasing sequences. 

Theorems 8.3 and 8.4 are the enumerat ive theorems associated with these two 

cases. A collection of seven corollaries follows giving the generating functions 

for specific problems. 

LEMMA 8.1. If 

7k — Z^t Xi+iXi+2 
t=0 

To = 1 

and 

q = ii + ii + • • • + im 

then 

[x][y']{yiyi + 7iy<i + . . . + ynyn} 

ii,...,inJ 
if ii + 2i2 + . . . + nin = n 

otherwise 
where 

.ii,-..,in. 
?! 

ii\i2\ . . . in\ 

and the notational conventions given in Section 1 have been employed. 

Proof. T h e sinister is the number of (additive) compositions of n with q 
parts , since a decomposition of Xi%2 . . • xn into products of yk may be obtained 
by marking off the ik blocks of size k along the set (xi, x2, . . . , xn). T h e proof 
follows. 

LEMMA 8.2. If 

7u = [**i n d - xx,)-1 
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and 

q = ii + ii + • • • + in 

then 

M[y , ]{7i^ i +723^2 + . - . +ynyn\ 

M, U, • . . , In. 

W 

TïïTôîïT^ K if i i + 2i2 + . . . + nin = n 
II z! . . . ni n 

otherwise. 

Proof. The sinister is the number of ordered parti t ions of the set {xi, x 2 , . . . , xn\ 
into unordered blocks such tha t there are ik blocks of length k. This reduces 
immediately to the dexter. 

For permutat ions, increasing sequences must be strictly increasing and 
identical results are accordingly obtained in Lemma 8.2 if 

CO 

ik = [xk] n (i+**<)» 
i=l 

the quan t i ty associated with P 4 (see Section 7(H)). 

T H E O R E M 8.3 (increasing runs in permutat ions) . The number of permutations 
on n with dt maximal increasing runs of length i is 

[xn][Fd] Z (-1)**! 
1 - F(x) 

R=O K F(x) 

Proof. From Theorem 4.1, the generating function is 

V ;>0 / 

where 

F(X) = { i - T. fA 
and 

CO 

7/fc = X ) xi+1xi+2 . . . xi+k, 7o = 1. 
2=0 

But 

= W E E Cfi*1/»*" •../*'*)[ft V • •./*'*] 
k^O ii+i2+...+ ik=k 

(E/^V 
\ j>o l 

from Lemma 8.1 and the theorem follows. 
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THEOREM 8.4 (increasing subsequences in permutations). The number of 
permutations on n with dt maximal increasing subsequences of length i is 

Proof. The proof is similar to that of Theorem 8.3. The generating function is 

- i 

[x]j i - E fa, 

where 

oo 

7k = [xk] El (1 - xXj)~\ 
3=1 

The generating function is 

ME (ZfryX 
k^O \ j>0 I 

= [*] E E (A V • • • h'k) ih%h •-•f*tk]\l, fn, 
k^O ii+i2+...+ ik=k V j>0 

k 

- "i 5 "fe+¥+•••)' 
by Lemma 8.2, and the theorem follows. 

A number of corollaries of these two theorems is now given. Clearly, variants 
of these problems may be treated in the same way. 

COROLLARY 8.5. The number of permutations on n with exactly i (strictly) 
increasing p-runs is 

r n ii V ^ 7 1 k) 1 UX ( 1 U)X { 

iffo { I — ux — (1 — u)x ) 

Proof. Following the proof of Corollary 7.1, let 

F(x) = 1 + x + x2 + . . . + xp~l + uxv + u2xp+l . . . 

and the proof follows from Theorem 8.3. 

COROLLARY 8.6. The number of permutations on n with no increasing p-runs is 

1 P—1|k 

1 — X ' [xk\ E toVT 
k>0 \ 1 

Proof. Substitute u — 0 in Corollary 8.5. 

The case p = 2 of Corollary 8.6 has been given by Whitworth [39] and the 
case p = 3 by Riordan [30]. The more general case has been considered by 
Abramson and Moser [1] who obtained an explicit formula for the number of 
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permutations of {1, 2, . . . , n] with exactly i increasing p-runs. An independent 
proof of Corollary 8.6, together with a linear recurrence equation for the 
coefficients and tabulations of coefficients, has been given by Jackson and 
Reilly [23]. 

COROLLARY 8.7. The number of permutations on n with exactly i {strictly) 
increasing subsequences is 

K»']{'-§¥r 
where 

(1 — x)(l — ux) 
1 

i>0 1 — ux + (u — l)xp ' 

Proof. Direct from Corollary 7.1 and Theorem 8.4. 

COROLLARY 8.8. For Sn
(m\ the Stirling numbers of the second kind, a combina

torial interpretation of the well-known identity (Riordan [31]) 

S (-l)n~mm\Sn
(m) = 1 

m=0 

is that there is exactly one permutation with no increasing 2-sub sequences. 

Proof. Let u = 0 and p = 2 in Corollary 8.7. Then / , = - ( - 1 ) ' . Thus the 
number of permutations on n with no increasing 2-subsequence is 

[$(>-+$>-$+••)-'-[&->• 
But 

K k - [ û l + <«- -1)rl = [û 5 {~ine~x -l) 

[ n | cx> oo 

and the corollary follows. 

COROLLARY 8.9. The number of permutations on n whose longest increasing run 
has length p is 

Proof. As in the proof of Corollary 7.3, let 

w N 1 — (1 — u + ^x)xp 

F(x) = . 
1 — x 
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The required generating function is 

E [«']*(«) = *(i) - *(o), 
z>0 

where ty(u) is obtained from Theorem 8.3. 

COROLLARY 8.10. The number of permutations on n with a unique longest 
increasing run of length k is 

W] £ k.kix«+»-\l - X ) 2 % = - ^ T - -
fc^O {I — X ) 

Proof. In the notation of Corollary 8.9, the solution is [w]^[w]. 

COROLLARY 8.11. The number of permutations on n with only increasing sub
sequences of length 2 is [xn/n\] sec x. 

Proof. Let F(x) = 1 + x2 in Theorem 8.4. 

Equivalently, Corollary 8.11 enumerates the number of permutations for 
even n which have an alternating sequence of rises and falls. Permutations 
with this property have been called "alternating". For alternating permuta
tions of any length the exponential generating function is sec x + tan x, a 
result obtained by André [2; 3] and examined later by Carlitz [9], Foata 
and Schutzenberger [18] and others. In order to obtain this result, it is neces
sary to allow the occurrence of a single fall at the end of a permutation. More 
generally, it is necessary to treat the extreme maximal paths differently from 
the remaining paths. This is done in Part III, where Andre's result is given as 
Corollary 12.3. The result for alternating sequences is given in Corollary 11.6. 

9. Maximum paths in sequences and related results. The purpose of 
this section is to provide an interpretation of a modified form of Theorem 9.6 
given below. The latter theorem is of enumerative interest because it may be 
used to unify a number of earlier results obtained by Smirnov, et al. [34], 
Carlitz [7], Eifler et al. [15], Dillon and Roselle [14] and Carlitz et al. [8]. The 
details of the proof of Theorem 9.6 and its application to sequence enumera
tion problems are given in Jackson [21]). It may also be specialised to give the 
Eulerian partition identities, a number of (/-binomial identities, the Ménage 
problem, the derangement problem and the generalised derangement problem 
(Even and Gillis [16], Jackson [22]). The relationship between Theorem 9.6 
and its modified form, Theorem 9.7, is analogous to the relationship between 
the Simon Newcomb problem (Riordan [31]) and Andrews' refinement of it 
(Andrews [4]). Certain graph theoretic aspects of some sequence problems, 
including the Simon Newcomb problem, have been considered by Klarner [24] 
and by Roselle [32]. 

We begin with a basic problem involving sequences with a specified number 
of maximal paths. The assumptions of Section 7(i), (ii), (iii) apply throughout 
this section. 
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PROPOSITION 9.1. The generating function for sequences with k maximal paths is 

Proof. Let F(x) = 1 + vx + vx2 + . . . since each maximal path has weight 
v. Then fk = v(l — v)k~l for k ^ 1, and the result follows from Theorem 4.1. 

LEMMA 9.2. The generating function for sequences with exactly k maximal 
strictly increasing subsequences is 

(i) [v*] * " V 

r/^g generating function for sequences with k maximal increasing subsequences is 

/.-x r An 1 - ^ 
( l l ) [V 

1-vU {1 - x . a - z ; ) } - 1 

Proof, (i) follows from Proposition 9.1 with 

oo 

7k = [xk] n ( i + X X J ) 

and (ii) follows from Proposition 9.1 with 

oo 

7k = [xk] I l (1 - xxj)"1. 
i = l 

We may regard a decreasing sequence as being composed of maximum 
strictly increasing subsequences of length one. Accordingly we have the 
following fact. 

PROPOSITION 9.3. A sequence has k falls or levels if and only if it has k + 1 
maximal strictly increasing subsequences. 

Proof. Every fall or level which occurs marks the beginning of a new maximal 
strictly increasing subsequence. 

LEMMA 9.4. The generating function for sequences with k falls or levels is 

(i) [/ ,*+ii 1 - v 

3=1 
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The generating function for sequences with k falls is 

(ii) W> jt+ii 1 ~ v 

1-vU { l - x ^ l - ^ ) } - 1 

Proof. The results follow from Lemma 9.2 and Proposition 9.3. 

We note that Lemma 9.4 gives the solution of the Simon Newcomb problem, 
and it suggests the following lemma. 

LEMMA 9.5. 

(0 a, l~V = { l - » È *<ff { l+**(l- fO}} ' 
i - . n {i+xk(i-v)} i t=i *=i ; 

k=l 

(ii) „ l~V = { 1 - v £ x( n {1 - xk{\ - v)]-' 
\-vYl {l - xk{l - v)]-1 { i = 1 *=1 

k=l 

Proof. (Combinatorial) By Lemma 9.2(i) (resp. (ii)), the sinister enumer
ates sequences with respect to maximal strictly (resp. non-strictly) increasing 
subsequences. By Corollary 6.1 (resp. Corollary 6.2)), the dexter does so as well. 

(Algebraic) (i) By induction we may show that 
n 

1 + YJ (Zt ~ l)(ZiZ2 • • • Zi_i) = ZiZ2 . . . Zn. 

Let Zi = 1 + %i(\ — v) and the result follows. 
(ii) Similarly, it may be shown that 

n 

1 + 2 3 (1 - *0(Sl*2 . • • Zi)'1 = (Z1Z2 • • • O " 1 

and the result follows with zt = 1 — x*(l — z;). 

The expressions given in Lemma 9.5 are related to specialisations of the 
generating function given in the following theorem. 

THEOREM 9.6. The generating function for sequences with i rises, j falls and 
k levels is 

oo oo 

n \i + (r-i)x,} - n {î + if-Dx,} 
[ri+1f+1l*]l - rf-% ^ . 

fU U + (r-l)x,} -rU { 1 + ( / - / ) * , } 
Proof. See Jackson [21]. 

The relationship between the results of this section have suggested the fol
lowing theorem, which is now proved directly with the methods of Theorem 5.1 
as they were applied in Section 6.1. The theorem explains, in effect, what 
happens when the r, I a n d / in Theorem 9.6 are permitted to be subscripted. 
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THEOREM 9.7. The generating function for sequences with at levels on the element 
i, bi rises starting with i, and cx maximal increasing subsequences terminated by i is 

[larbf]\ 1 - D 
xifi T-T 1 + (r* — h)xk\ 

it)xt U i + a* - h)xj • 
Proof. Consider a sequence over (i, i + 1, . . . , j) where i < j . This cor

responds to a unique increasing sequence, and suppose that this sequence 
begins with i and terminates with j . This contributes a factor of xtXj to Atj. 
But since i < j , i initiates a rise and j terminates an increasing subsequence so 
this contributes a further factor of rtfj to A^. Repeated occurrences of i and j 
result in levels recorded by lt and lj. These contribute a factor of (1 — liXf)~l 

(1 — ljXj)~l to Aijm Each element k, where i < k < j if it occurs, initiates a rise, 
marked by rk and, of course, levels marked by lk if k occurs more than once. 
For each k, i < k < j , the contribution to Ai3- is 1 + rk(l — lkxk)~

l. According
ly, Ai:j is the product of these contributions. If i — j , the situation is straight
forward. Thus, let 

[A] «Xifi(l — liXi) 1 if i 

XiXjrifj(l liXi) (J 

VO o 

J. 
3-1 

MiT1 n vJ-^3 1 +xkrk(l - lkxk) } 

if i < j , 
)therwise. 

Thus, following Section 6.1, we have 

D = (A-1 + T)~K 

Now, by routine but lengthy algebra we have 

Î
(i - iiXi)xrlfrl if i = j 
-rtfc

l iii<j 

0 otherwise. 
So A~l + T is of the form 

[1 + {ft - li)Xi}xclfrl = au say, if i = j 
[A-* + T\tj 

It follows that 

rùfr1 = bi, say, if i < j 
otherwise. 

[D] 

(a-1 

/ -if i~1 j~1 I 
a = \a3 ) FI ck - n ck( if i < 

j \ k=i k=i-l J 

VO othen 

if i = j 

j 

otherwise 

where 

Ck ak \ + (fk - lk)xk ' 
Co = 1. 
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The generating function is accordingly 

{i - £ [oh}'1 = {1 - z («r1 + E «r1! ff c* 
V i,j J V ; \ * = 1 l fc=l 

= i1 - E ^r1 n r̂ 
V j k=l J 

and the theorem follows. 

Theorem 9.7 contains Corollaries 6.1 and 6.2, and Theorem 9.6, provided 
the conventional rise and fall a t the ends of the sequences are t reated appropri
ately. Accordingly it unifies the results which devolve from 6.1, 6.2 and 9.6. 

P A R T I I I . E x t e n s i o n s of t h e M e t h o d . 

10. T w o e x t e n s i o n s of t h e m a i n t h e o r e m . T h e remaining sections are 
concerned chiefly with methods of determining the number of maxima and 
minima in sequences and permuta t ions . Andre 's result [3] for permuta t ions is 
perhaps the most familiar one in this context, bu t there are several others. 
Combinatorially, the si tuation presents no difficulties since we may observe 
tha t a maximal increasing subsequence must be terminated with a maximum 
and initiated by a minimum. T h e exceptions are, of course, the initial and 
terminal maximal subsequences, which must therefore be t reated especially. 
However, the maximal decomposition is again applicable, and only slight 
adjus tments to the previous analysis are necessary. For expository purposes 
alone we shall refer loosely to maximal pa ths which are t reated in an exceptional 
fashion as differentiated paths. Although our chief concern lies in differentiated 
initial paths and differentiated terminal paths (or, collectively, differentiated 
extreme paths), in principle other pa ths may be differentiated. I t is unclear, 
however, t ha t there are si tuations which benefit from the la t ter possibility, 
and it has not been pursued further. 

T h e following two theorems correspond to Theorem 3.1 (maximal pa ths) in 
the context of differentiated extreme pa ths . T h e ring R need not be commuta
tive. 

T H E O R E M 10.1 (differentiated terminal maximal pa ths ) . If 
(i) P admits a maximal decomposition u(a) = (pi, p2, . • • , pn) for any 

a (z P*, and 
(ii) Ai, A2: P —> R are arbitrary, where R is a ring with 1, then there exist 

unique <5i, ô2: P —* R such that for any p £ P 

(H)8 &i(P) = E «iW 

and 

(ii)b *t(p) = £ { i t «i(di)}«.(d,») 

ff,4)} 
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where d — (d\, d2, . . . , dm), m ^ 1. Moreover, the generating function 

(iii)l+ £ I f f AI(^<)[A2(^) 

(note £/&a£ £fe empty product is 1, «so sequences of one path p contribute only à2(p) 
to the sum), is equal to 

i + { i - £ s1(p)\ * £ hip) 
\ p / p 

whereu(a) = (£i, . . . ,pn). 

Proof. Again we seek a connexion between the combinatorially described 
generating function 

£ i ff A,(/>f)L(>„) 

and the form 

ji - £ *i(#o[ ' £ W . 
I PCP J p€P 

Clearly, from (ii)a and (ii)b, b\ and <52 exist and are unique by Môbius inver
sion. We proceed by direct expansion of the dexter of (iii). With 5i(e) = 1, 
we have 

i - £ Site)| j £ h{p)\ = £ £ £ *i(di,d* <4_i)s2(4) 
p J v p J k=l 0-ÇP+ d 

(where the summation is over d G C_1((T) ^ i3*) 

= Z) Z) 5i(^i> d2, . . . , dm_i)h(dm) 

(where d = (dx, d2, . . . , dm) and m ^ 1) 

= £ I n £ «i(<*)[ I £ *i(di. <**.•••. dm^1)ôs(dm) 

(where «i = (du d2, . . . , 4 0 and w(o-) = (pu p2, . . . , />n), « ^ 1) 

= E Iff A1(^,)|A2(^) 

which completes the proof. 

The following theorem deals with the case in which both ends have differen
tiated maximal paths. In this case we examine the relationship between the 
generating function 

£ Aitei)|ff A^Uc/V» + £ A4(<T) 
CT€P+\P W = 2 J a£P 
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where u(a) = (pi, pi, . . . , pn), and the formula 

The last term in each case is due to those sequences which are exactly one 
path long. 

THEOREM 10.2 (differentiated extreme maximal paths). If 
(i) P admits a maximum decomposition u(a) = (pi, . . . , pn) for any a G P*, 

and 
(ii) Ai, A2, A3, A4: P —* R are arbitrary, where R is a ring with 1, then there 

exist unique 81, 82, 83, 84: P —* R such that for any p £ P 

(n)aAi(/>) = E ôi(di)Ô2(d2,d3,...,dTO) 

(ii)b A2(p) = £ hid) 

(ii)c A3(/>) = E «2(di, d2, . . . , dm^)ô,(dm) 
d^(p) 

(ii)d A4(p) - 84(/>) + E 81(^)82(^2,^3, • • . ,dw_i)83(dm) 

where d = (di, d2, . . . , dm), m g; 1. Moreover, the generating function 

(iii) 1 + £ Ai^oj ff A2(/>*)U,(/>„) + Z A4(<r) 
a£P + \P I Jfc=2 J (TCP 

tt(<0 = (pi Pn) 

1 + { Ç « i ( ^ ) } { l - Ç 8 2 ( P ) } - 1 { Ç 8 . ( ^ ) } + Ç 84(/>). 

Proof. Clearly, from (ii)a, (ii)b and (ii)c, 81, 82 and 83 exist and are unique 
by Môbius inversion, while 84 exists and is unique trivially from (ii)d. Again, 
we proceed by direct expansion of the dexter of (iii). We have 

{ ç 8i(£)}{i - Ç S>(P)} ' { ç s,(*o} + Ç 84̂ ) 
= Z E E S1(di)8ï(d2,...,d»-i)8,(dO+ Z 84(p) 

?C^2 CTÇP+ d p 

(where the summation is over d £ c~l(a) C\ Pk) 

= IL 12 81(^1)82(^2, • • • , dm_i)bz(dm) 
a<ip + \p d£c-l((r) 

+ E )84(^>) + £ 81(rf1)52(rf2 4 - i ) « 4 ) 

(where d = (di, d2, . . . , dm) and ra ^ 1). But 

a <E P+V5 => w(cr) = (pu . . . , £n), ^ 7 ^ 2 , 
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so the generating function reduces to 

z ( z s1(d1)sI(d»,...,dm))Iff z ^(d) 
<r£P+\P \d^(p) 1 t k=2 d^(pk) 

X ( E M d l , . . - , d r o - l ) Ô 3 ( 0 ) + E A4(P) 

which completes the proof. 

The utili ty of these two theorems rests with the ease with which the Mobius 
inversion may be carried out. Clearly, there will be situations in which it will 
be unrewarding to a t t emp t to cope with the algebraic details. In the next 
section the theorems are specialised to the case in which only length and type 
information is recorded. 

11. L e n g t h a n d type e n c o d i n g for dif ferent iated m a x i m a l d e c o m p o s i 
t i o n . The Môbius inversion may be simplified as before when A : P —» R 
encodes only length and type information. Theorems 10.1 and 10.2 are treated 
below in this fashion, following the development of Theorem 4.1 (length and 
type) from Theorem 3.1 (maximal pa ths) . Some proofs are omitted because 
they follow closely the proof of Theorem 4.1. Two immediate applications of 
Theorem 11.1 are given. 

T H E O R E M 11.1 (length and type with differentiated terminal maximal pa ths ) . 

If 

(i) P admits maximum decompositions, and 
(ii) At(p) = Fj{i)T(p) fori = 1 and 2, where 

(ii)a j = \p\ is the length of p £ P, and 
(ii)b r : P —> R, is a path-homomorphism to the centre of the ring R, 

then 
(iii) ôi(p) = f\P\{i)r(p) is determined by 

(iii)a F™(x) = ( / ( 1 ) ( ^ ) ) _ 1 

fiii)b F^(x) = 1 + ( f ( 1 ) ( ^ ) ) - 1 ( l - / ( 2 ) ( * 0 ) > or equivalent!?, 
1 -/<2>(x) = (F^ix^-'iF^ix) - 1), where 

(iii)c F™{x) = 1 + E*>o FkwX* and /«>(*) = 1 - E*>o/* ( i )**, 
for i = 1, 2. 

Moreover, the generating function is 

(iv)i+{i-E/.(°4"1{£/*c,)4 
where 

7k = E r(p). 
pep 

\p\=k 
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Proof. As in Theorem 4.1 we note that for any non-empty sequence a we have 
n 

c~l(a) = X c-^pi) where u(a) = (pi . . . pn). 

Accordingly, the generating function may be written 

£ *M . . . A^-O A2(̂ „) = E m E 8i(<*)W„) 

w h e r e 

C m-1 J 

^ ) = E n «i(di)f«2(o. 
d € c _ 1 ( p ) v 2=1 / 

d=(di...(lm) 

To construct fk
{i) it is sufficient to take 

i) Ai(£) = E «i(P) 
which may be treated as in Theorem 4.1 to give 

Ôi(p) =/ ,P , ( 1V(^) and /*»(*) = j /<»(x) | - ' 

and 

ii) A2(p) = A(p). 

For those p of minimal length, wre have A2(p) = 52(p) since c~l(p) = {(/>)}. 
Thus for such paths wre have d2(p) = J\P\{2)T(P). We proceed by induction on 
the length of p as in Theorem 4.1. By the induction hypothesis for all paths 
shorter than p, the commutativity of r(di)} and the form for b\{p) we obtain, 
for any p: 

h{P) = Ai(P) ~ Z //." //," • • -fŒ-jP r(di) • • • r(dm) 
d<(p) 

f*\< Z7(2) V fW f™ fW > 
= r{p)\ F\p\ ~ 2^ Jh • • -hm-lhm f 

V d<(p) J 

where d = (d1 . . . dm) and |dfc| = j k . Thus 52(̂ >) has the form claimed, and by 
factoring r(p) from A2(p) = A(p) we have: 

( o o / c o \ ^ I i ° ° J 

^(,) = [*']{§ ( 5 / / v ) } {g/ i (v| 
which may be expressed in the form 

F<«(x) = 1 + {/(1)(*)}_1{1 -f^(x)}. 

This completes the proof. 

THEOREM 11.2(length and type with differentiated extreme maximal paths). / / 
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(i) P admits maximum decompositions, and 
(ii) At(p) = F^i)r{p) fori = 1,2,3 and 4, where 

(ii)a j = \p\ is the length of p t P, and 
(ii)b r : P -^ R, is a path-homomorphism to the centre of the ring R, 

then 
(iii) ôi(p) = f\P\(i)r(p) is determined by 

(iii)a F™(x) = 1 + (1 - / ( 1 ) ( ^ ) ) ( / ( 2 ) ( ^ ) )~ 1 

(iii)b F^(x) = (f^ix))-1 

(iii)c F™(x) = 1 + (f^ix))-^! - / ( 3 ) ( * ) ) 
(iii)d F^(x) = 1 + (1 -/<4> (x)) + (1 - /U)(*))( /(2)(x))- i( i - / ( « ( x ) ) 

(iii)e /7<°(*) = l + £ ^(<)«* <™<i /(i>(*) = 1 - £ / * ( V 
fc>0 A;>0 

/or i = 1, 2, 3 and 4. 
Moreover, the generating function is 

(iv) i + £ A ( \ , + ( £ /*(1,Y*) {i - £ /* ( 2 ,4" ( £ /,(3)Y.) 
£ > 0 \ A;>0 / V Jc>0 / \ A;>0 / 

where 

7k = Z) T(P)-
\p\=k 

Proof. Straightforward, and similar to the proofs of Theorems 4.1 and 11.1. 

We now establish a connexion between Theorem 9.6, which enumerates 
sequences according to the number of rises, levels and falls, and Theorem 11.1, 
which enumerates with respect to maximal paths. The following theorem gives 
the enumerators F{1) (x) and F{2) (x) which achieve this connexion by means of 
strictly increasing subsequences (in P4) . 

THEOREM 11.3. Let 

F™ (x) = 1 + Ix + rfx2 + rf(f - I + r)x3 + rf(f - I + r)2x4 + . . . 

and 

F^(x) = 1 + rfx + rf(f - I + r)x2 + rf(f - I + r)2x3 + . . . 

Then 

e = *(/ , r, i) 

where 
oo oo 

n {i + (r-^} - n !i + (/-/)x,i 
i) $( / , r, Z) = 1 - r/ - £ '-=£ a«rf 

/ I I {1 + (r - 0*,} - r J ! {! + ( / - I)x,\ 
3=1 1=1 
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ii) 9 = 1 + { 1 - E A U V f { E f*(2)y*\ - where 
\ k>0 J \ k>0 J 

iii)a F(1)(x) = {f\x)}-\ F(2)(x) = 1 + { .Ax)}- 1 ! ! - / ( 2 > ( x ) } , 

i i i ) b / ( i ) W = 1 - E / * ( V , i = 1,2, 
fc>0 

oo 

iii)C X) T*̂ * = El (1 + x%j)> To = 1. 
k^O j= l 

Proof. 
| oo oo j 

E A(2,7* = - (/ - r)~Vl EI {1 + (r - /)*,} - I l (1 + (/ - 0*y} f-
k>0 \ .7=1 j= l / 

and 

i - E /*(1V* 
A;>0 

I °° oo I 

= (f-r)-l\fU { 1 + ( r - / ) * , } - r n { 1 + C f " 0 ^ } f -
^ j= i ; - l " 

Then 

/*(2) = (/ - r)~hf{ ( / - /)* - (r - /)*}, t e l 

so 
f(V(x) = i _ ^X{1 _ (f _ /)x}-i{i - ( / - Ox}-1. 

Also 

/*(1) = - (/ - r)-M/(r - 0* - r(f - /)*} , i ^ l 

so 
/<i)(a) = {1 _ (f+ r - l)x}{\ - (r - /)x}-Ml - ( / - l)x)-\ 

Thus 

7?(i)(x) = {i _ (r - l)x}{\ - (j - l)x){l - (f+r - /)x}~1 

= 1 + Ix + rfx2 + rf(f - I + r)x2 + . . . 
and 

/7(2)(x) = l + r/x{ i _ (/ _|_ r _ /)x}-i 

= 1 + rfx + rf(f - I + r)x2 + . . . 

and the theorem follows. 

No combinatorial interpretation for the enumerators F(1) (x) and F{2) (x) 
of Theorem 11.3 has been discovered, and the connexion remains at present a 
purely formal algebraic one. The theorem is now used in a formal fashion to 
give the enumeration of sequences with respect to rises, non-rises and maxima, 
where a maximum is a rise followed by a non-rise. 
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COROLLARY 11.4. The generating junction for the number of sequences with a 
specified number of rises {marked by u), non-rises (marked by v) and maxima 
(marked by w) is 

$(0i(w, v, w), (f)2(u, v, w), 03(w, v, w)) 

where 

4>i(u, v, w) = \\u + v — {(u + v)2 — Auvw}1/2} 

<j>2(u,v,w) = \{u + v + {(u + v)2 — 4:uviv}1/2} 

03 (^, V,W) = V 

and <£(/, r, I) is the generating function (given in Theorem 9.6) for the number of 
rises (marked by r), levels (marked by I) and falls (marked by f). 

Proof. We decompose the sequences into strictly increasing subsequences. 
Accordingly, Theorem 11.1 is applicable. Now a non-rise must follow each 
non-terminal maximum, by definition. A maximal subsequence of length « M 
has n — 1 rises. Thus the enumerator for a non-terminal maximal subsequence 
is given by 

F{1) (x) = 1 + vx + uvwx2 + u2vwxs + . . . 

since an increasing subsequence of length 1 has no maxima or rises. For the 
terminal maximal subsequence the enumerator is given by 

F{2) (x) = 1 + uvwx + u2vwx2 + . . . 

since the sequence is terminated by a conventional maximum and a conven
tional rise. Accordingly, set 

I = v, rf = uvw, f + r — I = u 

so 

I = v, rf — uvw and / + r = u + v. 

T h u s / = 0i(u, v, w), r = 02(w, v, w) and / = 03(w, v, w). This identifies the 
enumerators with those of Theorem 11.3. The result follows from Theorems 
11.1 and 11.3. 

COROLLARY 11.5. The exponential generating function for the number of per
mutations of specified length (marked by t) and a specified number of rises 
(marked by u), falls (marked by v) and maxima (marked by w) is 

^(\j/i(u, v, w), -4/2(11, v, w), t) 

where 

\[/i(u, v, w) = \{u + v + {(u + v)2 — 4:uvw}1/2} 

\p2(u, vy w) = \{u + v — {(u + v)2 — kuvw}l/2\ 
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and 

eyt - ex 

*(x,y,t) = -xyxevt_y-z-t. 

Proof. Let cn(i, j) be the number of permutations over {1, 2, . . . , n\ with i 
rises and j falls. Then from Theorem 9.6 we have 

n {i+y**} - n u+***} 
cn(i,j) = — [xty'][x;iX2. • . x„]xy-

n u + w - y n {i+***} 
* = 1 * = 1 

e*1 

= ~ [xlyl][xiX2 • • • ^ n ] ^ — v\ xi where / = xi + x + . . . + xn. 
xe — ye 

Let 

eyt _ ext œ 

G(/) = -̂ -—_---ïï= g ^ 
Then 

oo r n̂ n 
[xix2. . . xn]G(t) = X) g*[*i*2 • • . xn]tk = n\gn = —. \G(t) 

k=o L ni J 

which identifies G(i) as the exponential generating function for {cn(i, j)}. The 
result follows from Theorem 11.3. 

The generating function — xy(eyt — ext)/(xeyt — yext) is given in Foata and 
Schiitzenberger [18]. Corollary 11.5 appears as Theorem 2 in Carlitz and 
Scoville [10]. A final example of the use of Theorem 11.1 is given in the follow
ing corollary. 

COROLLARY 11.6. The generating function for the number of alternating se
quences ixi<i . . . (with the property that u < i2 ^ iz < i\ è ih • • •) beginning 
with a rise is 

{i + £ (-i)Wi}{ £ (-I)*?**} 
V /c=0 / V. fc=0 / k-

where 

oo oo 

X ykXk = H (i + xx,). 
k=0 j=\ 

Proof. For alternating sequences only maximal strictly increasing subse
quences of length two are permitted. Thus the enumerator for non-terminal 
maximal paths is 

f(i)(x) = 1 + x\ 
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The enumerator for terminal maximal paths is 

7 (̂2) ( x ) = 1 _|_ x + X2 

since the terminal path may be a rise or a fall. Thus, from Theorem 11.1 

/<1>(x) = ( l + x 2 r 1 and l~f\x)=Y+Ç 

whence 

p)(x) - / u> (x ) - - x ( l + X 2 ) - 1 

If jfe ^ 1, then 

r<
2> _ / • < » - U ^ U l 4 - r V 1 - 1 ° if ^ even 

The result follows directly from Theorem 11.1. 

12. Differentiated ^-paths and permutations. In the case of permuta
tions on n further simplification is possible. We consider only one case, that of 
increasing subsequences (P = P4) . The transition from sequences to permuta
tions is again accomplished by means of Lemmas 8.2 and 8.3. The ring R is 
now assumed to be commutative. 

THEOREM 12.1 (permutations with increasing subsequences and differen
tiated terminal maximal subsequences). The number of permutations on n with 
di non-terminal maximal increasing subsequences of length i and the terminal one 
of length j is 

where conditions (iii)a, (iii)b, (iii)c of Theorem 11.1 are met. 

Proof. Similar to the proof of Theorem 8.4, by means of Theorem 11.1. 

THEOREM 12.2 (permutations with increasing subsequences and differen
tiated extreme maximal subsequences). The generating function for number of 
permutations on n with dt non-extreme maximal increasing subsequences of 
length i is 

K]IC*">'! ' + S A'" IT + { S A™ Ê {' " S ' " Û" 

where conditions (iii)a, (iii)b, (iii)c, (ih)d of Theorem 11.2 are met. 

Proof. Similar to the proof of Theorem 8.4, and using Theorem 11.2. 
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The following well-known result concerning alternating permutations may 
now be proved. 

COROLLARY 12.3 (André [3]). The number oj alternating permutations on n is 
[xw/w!] (sec x + tan x). 

Proof. The increasing subsequences are each of length 2, so F(l) (x) = 1 + x2. 
Since there may be a single fall at the end, we have F{2) (x) = 1 + x + x2. 
Thus, from Theorem 12.1, we have the following generating function for the 
problem 

= 1 + sec x(sin x + 1 — cos x) = sec x + tan x 

and the result follows. 

The following twTo corollaries concern the enumeration of permutations with 
respect to strict maxima and minima. A strict maximum is a rise followed by 
a fall, and a strict minimum is a fall followed by a rise. Related results have 
been given by Carlitz and Scoville [10], and Carlitz and Vaughan [11]. 

COROLLARY 12.4. The number of permutations on n with i strict maxima and j 
strict minima is 

MW-AGH-1 

nlj 
where 

G = 1 - (1 - M){\ - m)(l - Mm)~l 

X {x(l — a - 1 tanh ax) + 2(1 — Mm)~l{\ — sec h ax) — a~l tanh ax}, 

H = 1 — a~l tanh ax, and a = (1 — Mm)1'2. 

Proof. The initial maximal increasing subsequence has a strict maximum 
terminating it only it if is longer than one element. Thus 

7^(1) (x) = 1 + x + Mx2 + Mx* + . . . = { 1 - (1 - M)x2} (1 - x)-1 . 

Similarly, 

F^(x) = {1 — (1 — m)x2j(l - x)-1 . 

Each non-terminal maximal increasing subsequence is initiated and termi
nated by a strict minimum and a strict maximum respectively, so 

F^(x) = {1 - (1 - Mm)x2}(l - x)~\ 

Permutations consisting of exactly one increasing sequence have no strict 
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maxima or minima, so F(4) (x) = (1 — x ) _ 1 . Thus , from Theorem 12.2, 

k 

23 fk(1)~û = oi^shax — (1 — M)a~2(chax — 1) 
k>0 K\ 

k 

1 — 22 fk 77 = ch ax — cT sh (xx 
k>0 K-

k 

^2 fk 77 = oT sh ax — (1 — m)a~ (ch ax — 1) 
A;>0 K\ 

k 

]C fk 4 77 = x — (m + M — 2)a~3(sh ax — ax) 
A;>0 ^ ' 

and the result follows immediately. 

COROLLARY 12.5. The number of permutations on n with i strict maxima is 

I M ' - J U - a - ' t a n h a * ) - 1 

where a = (1 - M)1/2. 

Proof. P u t w = 1 in Corollary 12.4. 

We observe tha t the number of permutat ions on n is given by 

lim {1 - (1 - M ) - 1 / 2 t a n h (1 - M) 1 ' 2 *}" 1 = "1 (1 ~ ^ ) _ 1 = nl 
M->I LnlJ 

as required. Also the number of permutat ions on n with no strict maxima is 

x_ 
n\. 

[^](l-tanhx)-1=2-1, 

a result which may be obtained trivially by induction on n. 

13. C o n c l u d i n g remarks . The enumerative method which has been 
described above has certain limitations. For example, problems such as the 
Davenport-Shinzel problem (Davenport and Shinzel [13]) and the Terquem 
problem (Moser and Abramson [28]), both of which involve positional infor
mation, cannot be treated by this method. However, a certain class of such 
problems has already been considered by Stanley [36] by means of binomial 
posets. In addition, no way has been found for treating by this method problems 
which involve both maximal increasing paths and maximal decreasing pa ths 
occurring together, since no usable unique maximal decomposition exists in 
this case. The Erdôs-Szekeres problem (Erdos and Szekeres [17]), involving 
embedded increasing and decreasing subsequences of length n + 1 in a per
muta t ion on n2 + 1, is an example of such a problem. However, this problem 
already admits an elegant solution by means of plane part i t ions (Schenstead 
[33]; see also Stanley [35]). 
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No a t t e m p t has been made to apply this enumerat ive method in an exhaustive 
fashion. Probably, several specialisations and applications of the theorems 
remain. In particular, the "par t i t ion t r ick", namely the subst i tut ion xt = q\ 

leads to a var ie ty of expressions in terms of Eulerian generat ing functions. 
T o a certain extent the theory presented here may be a service in establishing 

the positivity of the coefficients in the expansion of certain rational functions. 
Certainly positivity is established provided a combinatorial interpretat ion to 
the rational function is found. If the rational function is symmetr ic it is 
reasonable to seek, in the first instance, a combinatorial interpretat ion in
volving the enumerat ion of sequences. Accordingly, by reversing the applica
tion of Theorem 4.1, for example, we may construct an enumerator F(x) from 
a knowledge of {1 — 2 ^ > O / * 7 À : } _ 1 . In the cases where the coefficients in F(x) 

are non-negative, the problem admits a combinatorial interpretat ion. In this 
context, the contribution of the theory presented here lies chiefly in the con
struction of the combinatorial problem, ra ther than in demonst ra t ing positivity 
since the lat ter may be more readily proved by other means. T h e following 
remark demonstra tes the principle. 

Remark 13.1. Let 

A(x) = {1 — 2(xi + x2 + x3) + (xix2 + x2x3 + x i x 3 ) i _ 1 

= X) ai^ 
i 

Then i) a,- is the sum of the weights A o u(a) over all sequences a in {1, 2, 3}* 
of type l where 

AOM(<X) = (|^| + 1)(|H + ! ) • • • (\P„\ + D 

and u(a) — (pip2 . . . pn), the maximal decomposition of a into strictly in
creasing subsequences (in P 4 ) . 

Also ii) o i ^ 0. 

Proof. Let P = PA (see Definition 2.5 ( iv)) . Then from Section 7(h) we have 

70 = 1, 7l = #1 + X2 + #3, 72 = X1X2 + X2X3 + X1X3 

T h u s 

A(x) = (1 -fai - / 2 7 2 ) - 1 where f(x) = 1 - fxx - J2x2 - (1 - x ) 2 

Then 

F(x) = \f(x)}~1 = (1 - x ) " 2 = 1 + 2x + 3x2 + . . . 

and the result follows from Theorem 4.1 . 
ii) Immedia te , since the coefficients in the expansion of F(x) are positive. 

The following example shows how the weights are determined. 
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Example 13.2. By direct expansion of A(x) we have au.i.i) = 36. The fol
lowing table lists the sequences a of type (1, 1, 1) together with their maximal 
decompositions pip2 . . . pn and their weights A o u(a). 

TABLE 2 

a- P\p2. . . pn A o u(<r) 

123 (123) 4 
132 (13) (2) 3.2 
213 (2)(13) 2.3 
231 (23) (1) 3.2 
312 (3)(12) 2.3 
321 (3)(2)(1) 2.2.2 

Thus 

X Aou(a) = 4 + 6 + 6 + 6 + 6 + 8 = 36 = a(1|1(1) 
r(<r)=( 1,1,1) 

as asserted. 
No such interpretat ion exists for the function 

{(1 - * i ) ( l - x 2 ) + (1 - x 2 ) ( l -xz) + (1 ~ x 3 ) ( l - X i ) } - 1 

considered by Friedrichs and Lewy since the corresponding enumerator F(x) 
has some negative coefficients. Positivity has been proved by Szego [37] by 
an argument relying on special functions. No combinatorial interpretat ion to 
the coefficients in the expansion of this function has been discovered. 
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Appendix . The following table lists some of the more common enumeration 
problems which may be treated by the methods described here. The generating 
functions are given in the cited corollaries. The list does not exhaust the 
possible applications. 
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TABLE 3 

permutation (P) Configurations Conditions 
Corollary sequence (S) Path Type recognised on ^-paths 

6.1 S increasing sequence terminators 
6.2 S strictly increasing sequence terminators 
7.1 S arbitrary £-path exactly i 
7.2 s arbitrary £-path exactly 0 
7.3 s arbitrary longest path 
8.5 p increasing run p-path exactly i 
8.6 p increasing run £-path exactly 0 
8.7 p strictly increasing sequence p-path exactly i 
8.9 p increasing run longest path 
8.10 p increasing run longest path unique length 
8.11 p strictly increasing sequence 2 (alternating) 

even leng th 
11.4 S strictly increasing sequence rise, non-rise, 

maximum 
11.5 P strictly increasing sequence rise, non-rise, 

maximum 
11.6 S strictly increasing sequence length 

2 (alternating) 
12.3 p strictly increasing sequence length 

2 (alternating) 

12.4 p strictly ncreasing sequence j strict maximum 
( strict minimum 
j strict maximum 
( strict minimum 

12.5 p strictly increasing sequence strict maximum 

1. M 

2. D, 
3. — 
4. G. 

5. — 

6. E. 

7. L. 

8. L. 

9. L. 
10. L. 

11. L. 

12. R. 
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