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In this work, the relationship between the velocity of an elongated bubble and its shape
is investigated, in the case where the elongated bubble flows in a viscous liquid initially
at rest in a pipe. The velocity, expressed as a Froude number, depends on the angle of the
inclined pipe, the Eötvös number and the buoyancy Reynolds number. The diameter of the
pipe and the surface tension being fixed, the Eötvös number remains constant; this study
focuses on the dependence of the velocity on the pipe inclination angle and the viscosity of
the liquid. The velocity of the elongated bubble was measured for different angles between
0 and 15 degrees and for liquid viscosities 10 to 200 times that of water. As the velocity
of elongated bubbles depends closely on their shape, shadowgraphy coupled with particle
image velocimetry was used. The results show that the velocity of the elongated bubbles
is highly sensitive to the inclination angle of the pipe and to the viscosity of the liquid,
particularly for low pipe inclinations and large viscosities. In the layer of liquid located
downstream of the elongated bubble, laminar flow develops rapidly in the liquid, resulting
from a balance between gravity and friction at the wall. The identification of the position
of the stagnation point close to the nose of the elongated bubble and the curvature of the
interface at this point helps to explain why the velocity of the elongated bubble decreases
for low angles and high viscosities.

Key words: gas/liquid flows, pipe flow, bubble dynamics

1. Introduction

The present paper examines elongated bubbles flowing in a tube slightly inclined from
the horizontal, initially filled with a viscous fluid at rest. An elongated bubble is
generated when liquid is drained out of a pipe at one end; it fills the liquid volume lost
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Figure 1. Shape of an elongated gas bubble propagating in an inviscid fluid in a horizontal pipe.

during drainage. A simple representation of the elongated bubble is given in figure 1.
Gas–liquid gravity currents in a pipeline are thus considered and correspond to phenomena
that are encountered in chemical, nuclear and petroleum engineering (for example Séon
et al. 2005; Hallez 2007; Séon et al. 2007; Znaien, Moisy & Hulin 2011).

A dimensional analysis (White & Beardmore 1962) shows that the motion of an
elongated bubble in a liquid at rest is controlled by the acceleration due to gravity g, the
pipe diameter D, the inclination angle θ , the fluid properties (the gas and liquid densities
ρG and ρL, the gas and liquid viscosities μG and μL, the surface tension σ ) and the bubble
length lB. Since we deal with gravity currents, it is useful to define a Froude number
involving the elongated bubble velocity U∞ as a function of 6 independent dimensionless
numbers which do not contain U∞. Although the choice of dimensionless numbers is
not unique, the following dimensionless form for the elongated bubble velocity U∞ is
proposed:

Fr2 = f
(

Eo, Reb,
ρG

ρL
,
μG

μL
,

lB
D

, θ

)
, (1.1)

where the dimensionless numbers are defined as

• the Froude number Fr2 = U2∞ρL/gD(ρL − ρG) accounting for the relative effect of
inertia over gravity;

• the Eötvös number Eo = g(ρL − ρG)D2/σ evaluating the relative effect of gravity
and surface tension;

• and the Archimedes or buoyancy Reynolds number Reb = ρ
1/2
L (ρL − ρG)1/2g1/2

D3/2/μL, where g is the acceleration due to gravity.

In the case of a gas–liquid system, it is possible to do some simplifications: if ρG � ρL
and μG � μL, then ρG/ρL and μG/μL are likely to be negligible terms in the expression
of the dimensionless bubble velocity. In addition, for sufficiently long bubbles, i.e. lB >

2D, Zukoski (1966) showed that the elongated bubble velocity U∞ does not depend on
the bubble length lB. Consequently, only three dimensionless numbers are necessary to
describe a elongated bubble in an inclined tube with an angle θ : the Froude number Fr, the
Eötvös number Eo and buoyancy Reynolds number Reb. In this paper, the surface tension
as well as the pipe diameter will be maintained fixed. The Eötvös number is thus constant
and sufficiently large, so that surface tension effects are of second order compared with
gravity. Hence, this study focuses thus on the effect of liquid viscosity and pipe inclination
on both the velocity and shape of the elongated bubbles.

In the literature, experimental studies of elongated bubble motion flowing in a stagnant
liquid have been carried out by Zukoski (1966), Spedding & Nguyen (1978) and Weber,
Alarie & Ryan (1986) for pipe inclinations ranging from 0 to 90◦. If the empirical
correlation of Bendiksen (1984), improved by Weber et al. (1986), may be used for the
inertia-controlled regime, the influence of both inclination and viscosity is not being
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Dynamics of elongated bubbles in slightly inclined pipes

properly taken into account. Following Couët & Strumolo (1987), it may be useful
to reduce the complexity of the problem to the study of two-dimensional plane flow.
Such quasi-plane flows were addressed in Hele-Shaw cells, inclined with respect to
the horizontal axis. Brener, Rabaud & Thomé (1993) studied the effect of gravity on
Saffman–Taylor fingers. It corresponds to a gravity current too, where a viscous fluid is
displaced by a less viscous one. In their study, the authors observe significant gravity
effects for inclination angles of a few degrees, both on the shape and velocity of the gas
fingers; in particular, the velocity increases when the finger broadens. In his study on
the motion of isolated bubbles in inclined pipes, Zukoski (1966) proposed an extensive
experimental work on the velocity U∞ of elongated bubbles. His paper described the
effects of liquid viscosity and surface tension on the bubble velocity. Starting from the
horizontal position, Zukoski (1966) showed that the elongated bubble velocity increases
with pipe inclination to a maximum value (the so-called Boycott effect, Boycott 1920;
Acrivos & Herbolzheimer 1979) and then decreases until the vertical position is reached.
For low values of the Eötvös number Eo = 3.5, Zukoski observed that the elongated
bubbles do not move in horizontal or vertical positions. Bretherton (1961) investigated
such low Eötvös number situations, and he determined that no motion of elongated bubble
occurs for Eo < 3.37. However, Zukoski observed also that, at such low values of the
Eötvös number Eo = 3.5, the elongated bubbles moves in inclined tubes with angles
between 20◦ and 80◦, which confirms that the motion of the elongated bubble depends
on its shape. In this paper, we will focus on elongated bubbles flowing in viscous fluids for
very small pipe inclinations.

Benjamin (1968) conducted a comprehensive analytical work on the motion of elongated
bubbles in an inviscid fluid and a horizontal pipe. The motion of elongated bubbles in a
horizontal pipe was analysed in a frame of reference travelling with the gas bubble front.
The problem unknowns are the elongated bubble velocity U∞, the liquid velocity and the
liquid height hL in the layer under the bubble (see figure 1).

These three unknowns were found by applying mass and momentum balances on
the liquid phase between sections upstream and downstream of the bubble nose and
Bernoulli’s equation along the gas–liquid interface. The gas–liquid interface was assumed
to be horizontal far downstream of the bubble front. In the frame of reference travelling
with the front of the elongated bubble at velocity U∞, the conservation of mass between
two sections, one in the upstream region and the second one in the downstream liquid
layer, can be expressed as

ρLU∞S = ρL U′
L S εL, (1.2)

where U′
L is the mean liquid velocity in the downstream liquid layer in the frame of

reference travelling with the elongated bubble front (throughout the text, the prime will
denote variables written in the frame of reference of the bubble front), S is the pipe
cross-sectional area and εL is the liquid volume fraction in the downstream liquid layer.
The momentum balance between the two sections is

ρLU2
∞S + P0S + ρLg

D
2

S = ρLU′2
L SεL + ρLg(hL − hgL)SεL, (1.3)

where P0 is the pressure at the upper boundary of the pipe (Benjamin considered that
the pressure is zero everywhere along the free surface) and hgL is the centre of gravity in
the liquid phase (its analytical expression is given in Appendix A). Following Benjamin
(1968), Bernoulli’s equation can be expressed along the gas–liquid interface as

ρLgD = 1
2ρLU′2

L + ρLghL. (1.4)
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The system of 3 equations ((1.2), (1.3) and (1.4)) fixes the three unknowns: U∞, hL and
U′

L. This system can be reduced to a system of two equations and two unknowns, expressed
as

U∞√
gD

=
√√√√√1 − 2εL(HL − HgL)

2
εL

− 1
, (1.5)

U∞√
gD

= εL
√

2 (1 − HL), (1.6)

where all the lengths are divided by the diameter of the pipe (HL = hL/D, HgL = hgL/D).
Solving this set of (1.5) and (1.6) provides the Froude number Fr = U∞/

√
gD and the

dimensionless liquid height HL. The solution corresponds to a Froude number equal to the
well-known value of 0.54, a liquid layer height equal to 56 % of the pipe diameter and a
liquid volume fraction εL equal to 57.5 %.

The paper from Benjamin (1968) is a reference case for assessing the velocity of an
elongated bubble in horizontal tubes for inviscid liquids. However, further investigations
are required for situations where the liquid viscosity or the surface tension plays a major
role. In particular, surface tension has been shown to reduce the velocity of the bubble
front U∞ and modify its shape (Gardner & Crow 1970).

Several experimental and numerical studies have been performed to better understand
the impact of liquid viscosity and surface tension on the elongated bubble velocity in
horizontal and inclined pipes. Gokcal et al. (2008) extended the work of Benjamin (1968),
highlighting that viscous effects were responsible for a uniform increase in the liquid
layer height in the receding stream under the bubble. Jeyachandra et al. (2012) proposed
empirical correlations for elongated bubble velocities in high-viscosity liquids in pipes
with different dimensions.

Various Froude number correlations were addressed in Livinus et al. (2018) and Valdés
et al. (2020). These investigators assessed the performance of previous correlations against
experimental data (Livinus et al. 2018) and numerical simulations (Valdés et al. 2020).
They argued that the correlations barely account for the combined effects of liquid
viscosity and surface tension under specific operating conditions and that a more general
model is needed. The experimental studies listed above covered all inclinations between 0◦
and 90◦, with rather large steps (10◦ to 15◦) and thus little information at lower inclinations.
The experimental studies of Losi & Poesio (2016) and Livinus & Verdin (2021) addressed
the velocity, shape, length and gas volume fraction along bubbles in pipes with small
inclinations. For inclination angles smaller than 2◦, a significant drop in the terminal
velocity of the elongated bubble was reported for viscous fluids. However, the physical
origin behind this phenomenon remains unknown.

Based on the above literature review, studies of the dynamics of elongated bubbles at
small inclinations in viscous liquids are scarce. In this paper, an experimental analysis
of the bubble front velocity is conducted for various pipe inclinations with respect to
horizontal alignment (between 0.2◦ and 15◦) and liquid viscosities (from 50 mPa s
to 200 mPa s); in this study, the Eötvös number remains constant and large. The
experimental set-up and measurement techniques are presented in § 2. Section 3 describes
the experimental results, starting with the terminal velocities and the elongated bubble
shape, followed by an analysis of the velocity field in the liquid. A discussion of the results
is presented in § 4, with fluids that are 50 and 200 times more viscous than water.
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Figure 2. Experimental set-up to measure the dynamics of elongated gas bubbles in inclined pipes. 1: pipe;
2: precision toothed rack; 3: valve; 4: diode; 5: test section with the optical box and the optical set-up (camera
and particle image velocimetry); 6: test section with the optical box and camera.

2. Experimental set-up and measurement techniques

The velocity U∞ and the shape of elongated bubbles are measured experimentally. The
experimental set-up is presented in figure 2 and consists of a 4.5 m long pipe with an
internal diameter D of 0.0352 m. The pipe is mounted on a metal structure that can be
inclined from 0.2◦ to a maximum of 15◦ with a ±0.05◦ precision. Note that no experiment
has been performed for a strictly horizontal pipe, i.e. θ = 0◦.

Air is used to generate the bubbles, and the liquid phase is a mixture of distilled
water and Breox� 75 W 55 000 (BASF Germany, chemical name: polyalcoxyether).
Mixing Breox with water noticeably increases the viscosity of the solution while
ensuring Newtonian behaviour. The viscosity of the liquid is measured at different
temperatures using a Brookfield rotating viscometer (Ametek, USA). The surface tension
of water–Breox solutions is constant and equal to 0.055 N m−1 regardless of the
Breox concentration. The viscosities of the solutions used in this study are given
in table 1.

All the experimental results presented in this paper correspond to elongated bubbles
(drainage experiments). The pipe is initially filled with liquid. Drainage is initiated by
opening the downstream valve. An elongated bubble is generated when liquid is drained
out of a pipe; it fills the liquid volume lost during drainage. The measurement of the
velocity of the elongated bubble is presented in § 2.1. The shapes of the elongated bubbles
are measured using shadowgraphy with collimated parallel light; the technique is presented
in § 2.3. Moreover, bubble shape measurements allow us to obtain the height of the liquid
layer far downstream of the bubble nose hL and the curvature at the stagnation point
RCS. Particle image velocimetry (two-dimensional, two component PIV) measurements
are performed in the vertical symmetry plane at the bubble nose and in the liquid layer;
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Liquid Composition (% Breox) Density (kg m−3) Viscosity (Pa s) Surface tension (N m−1)

1 0 998 9.57 × 10−4 0.072
2 8.7 1018 0.01 0.055
3 13.2 1028 0.021 0.055
4 18.5 1036 0.063 0.055
5 20 1041 0.091 0.055
6 21 1041 0.11 0.055
7 30 1055 0.19 0.055

Liquid Mo = gμ4
L

ρLσ 3 Eo = ρLgD2

σ
Reb = ρL

√
gDD

μL

1 2.17 × 10−11 174 20 680
2 5.72 × 10−7 221 2068
3 1.11 × 10−5 221 995
4 9.02 × 10−4 221 328
5 3.93 × 10−3 221 227
6 8.38 × 10−3 221 188
7 7.46 × 10−2 221 109

Table 1. Fluid properties at 20 ◦C of the water–Breox mixtures used in this work.

this measurement technique is presented in § 2.2. The velocity field close to the bubble
nose also enables the determination of the position of the stagnation point.

The optical set-up and the test section are presented in figure 3. Two cameras are placed
on a plane associated with the pipe structure, so that they follow the pipe inclination and
do not need to be recalibrated each time the pipe inclination is modified. The two cameras
are set up so that synchronised shadowgraphy and PIV measurements are possible; i.e.
these cameras use the same visualisation window. The test section is located 3 m away
from the pipe inlet to avoid any entrance effects and 1.5 m away from the end to avoid
disturbances from the top end. An optical box filled with water is used to reduce the optical
distortion or aberration linked to the travel of light through media with different optical
indices.

2.1. Terminal velocity measurements of elongated bubbles
The elongated bubble velocity U∞ is measured using three laser diodes mounted on the
top of the pipe and placed one metre apart. When a bubble passes through a laser diode,
the signal jumps abruptly due to the difference in the refractive index between the liquid
and air. Thus, the position of the elongated bubble in the pipe can be recorded as a function
of time, with a frequency of 1000 Hz. The distance between the diodes is known, and the
velocity of the elongated bubble is easily determined by obtaining the time lag between
the different signal jumps (bubble noses). The uncertainties related to the measurements
of U∞ are discussed further in Appendix B.

2.2. Liquid velocity measurements: PIV
The PIV measurements are carried out using a Dantec 4M camera with a resolution of 1632
(horizontal) × 816 (vertical) pixels (12 bits) and a double-cavity pulsed 30 mJ Nd:Yag
laser with a 532 nm wavelength and a 30 Hz maximum frequency. Rhodamin-B particles
with sizes close to 20 μm are used as seeding particles because of their light spectrum.
Their highest light absorption is in the green range with a peak at 550 nm, while the highest
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Figure 3. Test section with the optical box and the optical set-up of coupled shadowgraphy and PIV imaging.
1: PIV camera; 2: shadowgraphy camera; 3: shadowgraphy collimated light source; 4: PIV laser sheet; 5:
parallelepipedic box; 6: pipe.

emission is in the orange and red range with a peak at 590 nm. Hence, a green (532 nm)
laser (Skylight from Dantec) is used as the light source for Rhodamin-B particle excitation
and a highpass light filter (over 570 nm) is installed on the camera to register only the red
light emitted from the particles.

2.3. Elongated bubble shape: shadowgraphy
The gas–liquid interface position is recorded using the projected bubble shape on a camera.
The major challenge when dealing with spatially extended bubbles is to ensure uniform
lighting on the entire bubble surface. The shadowgraphy experiments make use of a Basler
Ace acA1920-155 μm camera with a resolution of 1920 (H) × 1200 (V) pixels in full
frame on 12 bits, together with a collimated light source positioned at the other side of
the pipe.

A collimated light source is considered, which ensures that light beams going through
the optical box and test section are strictly parallel. Optical distortions and the variety of
refracted and reflected beams are considerably reduced, increasing the overall contrast and
accuracy of the image near the pipe walls, as shown in Appendix C (figure 14). A reduced
window of observation (96 (H) × 1120 (V) pixels) is used to provide uniform lighting
from the source. This set-up allows an accuracy of 36 μm pixel−1 and is very convenient
for capturing the moving gas–liquid interface with precision.

The recorded shadow images need to be concatenated to reconstruct a full image of
the bubble. The latter step is performed with the knowledge of the bubble velocity and
the number of pixels travelled between two image acquisitions. The whole bubble is then
reconstructed iteratively from an initial image of the bubble nose. Further postprocessing
reported in Appendix C reveals the gas–liquid interface position.
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Figure 4. Froude number based on experimental terminal velocities vs pipe inclination for draining bubbles
in liquids of different viscosities in slightly inclined pipes.

3. Results

3.1. Terminal velocity of elongated bubbles
The influence of the liquid viscosity on the elongated bubble velocity is shown in figure 4,
where the Froude number is plotted as a function of the pipe inclination for different
liquid viscosities. An air–water experiment is shown as a reference case. We can see that,
as expected, the elongated bubble velocity U∞ increases with pipe inclination angle and
decreases with liquid viscosity.

In the air–water case, the elongated bubble velocity increases almost linearly with
the pipe inclination when 0◦ < θ < 15◦. The linear extrapolation to 0◦ of our air–water
experimental data agrees well with the experimental observations of Zukoski (1966) for
similar experimental conditions, where the Froude number is approximately equal to 0.43,
and with the correlation

U∞√
gD

= 0.542 − 1.76
Eo0.56 , (3.1)

proposed by Weber et al. (1986) for horizontal pipes, with the Eötvös number Eo equal to
220.

For liquids with higher viscosities investigated in this paper, the evolution of the bubble
velocity with respect to the pipe inclination angle is no longer linear, and the velocities
U∞ decrease significantly when the pipe inclination angle θ tends to 0◦. Similar velocity
reductions for small inclination angles are present in the literature, even though they have
not been analysed in detail (Weber et al. 1986; Losi & Poesio 2016).

3.2. Shapes of elongated bubbles
Next, we investigate whether the distinguished behaviour of the elongated bubble velocity
in highly viscous fluids can be associated with its shape. With this objective, the profiles
of the bubbles alongside the Froude number are plotted in figure 5 for the same fluids
shown in figure 4. Several features can be observed from an analysis of figure 5. For each
viscosity, the Froude number decreases with pipe inclination. The liquid height in the
downstream liquid layer is constant and one can observe that, at each liquid viscosity,
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Figure 5. Terminal velocities and shapes of elongated bubbles in inclined pipes. Panels show
(a) μL = 0.01 Pa s, (b) μL = 0.02 Pa s, (c) μL = 0.091 Pa s and (d)μL = 0.19 Pa s.

Upstream region Downstream liquid layer

SU∞ U ′
L (hL)

〈U ′
L〉hL

hS

ζ

ξ

Figure 6. Shape of an elongated gas bubble in a horizontal pipe.

the Froude number decreases when the downstream layer liquid height increases. In
the case of water, the bubble shape does not change significantly with pipe inclination,
whereas a significant evolution of both the shape and the velocity of the bubble is noted
for highly viscous liquids.

Additionally, from figure 5, it is possible to analyse the shape of the elongated bubble
nose and the liquid layer height in the downstream area. At the steepest pipe inclinations
(θ = 15◦), the nose shape and the liquid layer height are seemingly unaffected by the
viscosity of the liquid. However, at low pipe inclinations, a significant influence due to the
viscosity is noted. In view of the observations made, we will consider in the following a
bubble shape slightly different from that shown in figure 1. Figure 6 shows the stagnation
point, its vertical position and the ξ and ζ coordinates which will be used later.
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Figure 7. Velocity fields and bubble shape flowing in a 1◦ pipe inclination at different liquid viscosities;
(a) 50 cP, (b) 100 cP and (c) 200 cP.

3.3. The PIV results for the vertical profiles of axial velocity under a draining elongated
bubble

The PIV results coupled to shadowgraphy experiments are presented in figure 7 for three
different viscosities. For simplicity, only one pipe inclination (θ = 1◦) is illustrated. For
clarity, the velocity field is presented on a 4D length of the bubble, and only one vector on
five is represented in the axial (associated with ξ ) direction (see figure 7), except near the
bubble nose. The shapes of the gas bubbles are extracted from shadowgraphy images and
are superimposed on the PIV results.

The vertical profiles of the axial velocity in the liquid are plotted in figure 8 for
several axial positions (ξ = 3D; 15D; 30D, ξ = 0 being fixed in the section of the nose
of the elongated bubble). For the three viscous fluids, the liquid flow develops rapidly
in the liquid layer (figure 8) and the vertical profiles of axial velocity in the liquid
seem to correspond to laminar flows. An analytical solution for laminar stratified flow
was proposed by Ranger & Davis (1979). In what follows, the solution of Ranger &
Davis (1979) is extended to a laminar liquid layer flowing in an inclined pipe without
a pressure gradient (constant pressure in the elongated bubble) or interfacial viscous
stress, corresponding to the fully developed falling liquid layer far from the bubble
nose during drainage (Boucher 2021). Ranger & Davis (1979) used a bipolar coordinate
system together with Fourier transformations to describe the velocity field in both phases.
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Figure 8. Vertical profiles of the axial velocity for a 1◦ pipe inclination at different liquid viscosities;
(a) 50 cP, (b) 100 cP and (c) 200 cP.

A numerical solution for the Navier–Stokes equations via a bipolar coordinate system is
obtained inside the unitary circle of equation (see Appendix A for an illustration of the
bipolar coordinates)

z2 + [y − R cos(α)]2 = R2. (3.2)

Recall that x is the pipe axis, z and y are the coordinates in the cross-section of the pipe,
z is horizontal and y is directed upwards. Here, R stands for the pipe radius. Using this
formalism, the liquid lies in y < 0. The bipolar coordinates χ and η are defined for the
cross-section of the pipe as follows:

z
R

= sin(α) sinh(χ)

cosh(χ) − cos(η)
and

y
R

= sin(α) sin(η)

cosh(χ) − cos(η)
. (3.3a,b)

The liquid phase corresponds to −∞ < χ < +∞ and π < η < π + α.
The axial liquid velocity is given by

UL(χ, η) = ρLg sin(θ)R2

μL

[
sin(α) sin(η − α)

2(cosh(χ) − cos(η))
+ βL(χ, η)

]
, (3.4)

where

βL(χ, η) = −sin(2α)

2

∫ +∞

0

sinh[k(π − α − η)] cos(kχ)

cosh(kα) sinh(kπ)
dk. (3.5)

One can thus compare vertical profiles of the axial velocity at different axial positions
with the laminar solution of fully developed laminar flow in a falling liquid layer (see
figure 8). In bipolar coordinates, the vertical plane of symmetry of the pipe corresponds to
χ = 0. Clearly, from figure 8, the liquid flow is laminar, and the fully developed velocity
field in the liquid is reached after 5 pipe diameters downstream of the bubble nose at
200 cP liquid viscosity, after 10 pipe diameters at 100 cP and after more than 20 pipe
diameters at 50 cP. The postprocessing of the shadowgraphy images and the liquid velocity
fields obtained by PIV (see figure 7) allowed us to extract the information reported in
table 2.

For each viscosity of the liquid, the velocity of the elongated bubble U∞ and the
associated Froude number (Fr) are reported. At 1◦ inclination, the elongated bubble
velocity decreases when the liquid viscosity increases. The height of the liquid hL in
the downstream developed liquid layer is constant and can be measured. From the liquid
height hL, one can deduce the liquid volume fraction in a cross-section (see (A1) and (A2)
in Appendix A). One can thus derive the mean liquid velocity in the frame of reference
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Liquid viscosity (cP) U∞ (m s−1) Fr = U∞/
√

gD HS RCS HL FrRS Ca ReEB

1 0.26 0.44 0.94 0.21 0.49 1.28 0.0037 9152
50 0.22 0.38 0.94 0.19 0.56 0.88 0.2 162
100 0.20 0.35 0.93 0.18 0.61 0.69 0.36 74
200 0.19 0.32 0.92 0.14 0.70 0.55 0.70 35

Table 2. Flow characteristics of the water–Breox mixtures at a 1◦ inclination.

moving with the bubble 〈U′
L〉 and the Froude number in the receding stream FrRS, defined

as

FrRS = 〈U′
L〉√

gD
. (3.6)

The position of the stagnation point hS (which differs from the position of the nose of
the elongated bubble) and the curvature rCS of the interface at this point are determined
from data processing. Two dimensionless numbers are added, the capillary number Ca
and a Reynolds number ReEB related to the velocity of the elongated bubble defined,
respectively, as

Ca = μLU∞
σ

, (3.7)

ReEB = ρLDU∞
μL

. (3.8)

The position of the stagnation point HS = hS/D, the curvature RCS = rCS/D of the
interface at this point, the height of the liquid HL = hL/D in the developed liquid layer,
the associated Froude number FrRS, the capillary number Ca and the elongated bubble
Reynolds number ReEB are tabulated in table 2. The decrease in the bubble velocity U∞
observed with increasing liquid viscosity is accompanied by an increase in the height hL of
the liquid layer under the bubble. The Froude FrRS is larger than one in water (supercritical
flow) whereas it is smaller than one in the viscous fluids (subcritical flows in the liquid
layer). The values of the capillary number Ca in viscous fluids are sufficiently large to
consider that the capillary forces are small compared with the viscous forces.

Note that it is possible to observe an upper liquid film between the gas bubble and the
upper wall. It is interesting to compare the estimations of the overpressure induced by the
curvature of the interface at the stagnation point with the height of the liquid film above the
bubble at this point; these two terms 2σ/RCS and ρLg(D − hS) are very close. Nonetheless,
a detailed study of this liquid film requires a more precise and specific camera set-up, and
therefore, the liquid film at the top wall will not be discussed further here.

4. Discussion

The analysis of figures 7 and 8 shows that, from a distance of a few pipe diameters along
ξ (ξ = 0 at the bubble nose), the height of the liquid layer is constant (ξ = 2D at 50 cP,
ξ = 1D at 100 cP, ξ = 0.5D at 200 cP). The free surface of the liquid layer is then parallel
to the axis of the pipe. This behaviour is confirmed in figure 9, which shows different axial
profiles of the elongated bubble for two liquid viscosities and different pipe inclination
angles.
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Figure 9. Profiles of elongated bubbles in viscous liquids, 0 < Ξ = ξ/D < 4; (a) 50 cP and (b) 200 cP.

This behaviour can be associated with the development of a laminar flow of liquid falling
down the inclined pipe, where the weight of the liquid layer is balanced by the frictional
force of the liquid along the wall. There are no tangential and normal viscous stresses
at the free surface. In this type of flow, the iso-pressure lines in the liquid are parallel
to the wall. So, from a distance of a few pipe diameters along ξ from the bubble nose,
the pressure at the free surface is constant, as is the velocity of the liquid. As a result,
whatever the inclination angle of the pipe, there is a transition from horizontal iso-pressure
lines upstream the bubble nose (corresponding to a hydrostatic pressure distribution in the
liquid at rest) to iso-pressure lines parallel to the free surface and the pipe wall in the
downstream liquid layer. Therefore, the Bernoulli equation can be applied along the free
surface only between the stagnation point S and a point located at a distance of a few pipe
diameters along ξ from the bubble nose.

4.1. Analysis of the 200 cP case
Let us consider the case of the most viscous liquid, 200 times more viscous than water, in
order to analyse the evolution of the shape and the front velocity of the elongated bubbles
as a function of the pipe inclination. The bubble profiles obtained from shadowgraphy are
shown in figure 9(b) for pipe inclinations varying between 0.4◦ and 2◦. Let us recall that
these different cases are accompanied by a significant decrease in the terminal velocity
of the bubble front when decreasing the pipe inclination angle (figure 4). Following the
analysis of figure 8, we can consider the analytical solution of the velocity field in laminar
flow in the fully developed liquid layer to express the momentum in the downstream liquid
layer.

One can derive the mean value of the liquid velocity given by (3.4) in a fixed frame of
reference

〈UL〉 = QL

πR2εL
= ρLg sin(θ)R2

μLπεL

[
1
8

(
α − 2

3
sin(α) + 1

12
sin(2α)

)
− BL

]
, (4.1)

where QL is the liquid flow rate and

BL = −π

2
sin(α) sin(2α)

∫ +∞

0

k

sinh2(k π)
[k sin(α) − cos(α) tanh(kα)] dk. (4.2)

Let us write a material balance between the bubble nose and the fully developed liquid
layer in the frame of reference travelling with the bubble nose at the velocity U∞

φL = εL(U∞ + 〈UL〉) = U∞, (4.3)
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Figure 10. Froude number ((4.5) and (4.10)) as a function of the water layer height; (a) 50 cP and (b) 200 cP.

where φL is the liquid flux in a frame of reference travelling with the bubble front velocity.
The liquid fraction εL in (4.3) corresponds to εL in (1.2). Likewise, the liquid velocity in a
travelling frame 〈U′

L〉 in (1.2) corresponds to the velocity U∞ + 〈UL〉 in (4.3).
One can thus express the velocity of the elongated bubble as

U∞ = εL

1 − εL
〈UL〉 = ρLg sin(θ)R2

μLπ(1 − εL)

[
1
8

(
α − 2

3
sin(α) + 1

12
sin(2α)

)
− BL

]
. (4.4)

One can thus derive a new Froude number FrMM , which is based on the mass and
momentum conservation considering a laminar flow in the fully developed liquid layer,
and which is defined as

FrMM = U∞√
gD

= Reb sin(θ)

4π(1 − εL)

[
1
8

(
α − 2

3
sin(α) + 1

12
sin(2α)

)
− BL

]
. (4.5)

The Froude number, and consequently the velocity of the elongated bubble, increases
with increasing pipe inclination. Similarly, it decreases with increasing liquid viscosity or
decreasing buoyancy Reynolds number Reb. Thus, it is possible to write a Froude number
(4.5) that depends explicitly on the viscosity of the fluid, the inclination angle of the pipe
and the height of the liquid layer. For this viscous fluid, 200 times more viscous than
water, the Froude number is calculated for the different pipe inclinations. The different
curves corresponding to the different pipe inclinations 0.2◦, 0.6◦ and 1.2◦ are plotted in
figure 10(b) as well as the experimental values of the Froude number.

Referring to figure 9(b), the bubble nose does almost not present the shape of a breaking
head for such highly viscous fluid at the lowest pipe inclination. Bernoulli’s equation can
be expressed along the gas–liquid interface between the stagnation point and the surface
of the downstream liquid layer as

PS + ρLghS = 1
2ρLU2

L(hL) + P1 + ρLghL, (4.6)

where hS is the vertical position of the stagnation point from the bottom of the pipe.
Surface tension causes the pressure in the air to exceed the pressure in the liquid.
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Dynamics of elongated bubbles in slightly inclined pipes

Since the pressure in the gas is constant and equal to P1, one can write

P1 = PS + 2σ

rCS
, (4.7)

where rCS is the radius of curvature of the gas–liquid interface at the stagnation point.
These last two equations can be combined as

ρLghS = 1
2
ρLU2

∞ + ρLghL + 2σ

rCS
. (4.8)

Furthermore, one can introduce the constant C1 to relate the interfacial velocity UL(hL) to
the mean velocity 〈UL〉 in the downstream liquid layer

UL(hL) = C1〈UL〉. (4.9)

The constant C1 can thus be derived analytically. One can then derive a second Froude
number FrB from (4.8) combined with the mass balance, (1.2), giving

FrB = U∞√
gD

= εL

C1

√
2(HS − HL) − Σ

RCS
, (4.10)

where HS = hS/D, RCS = rCS/D and Σ is defined as

Σ = 4σ

ρLgD2 = 4
Eo

. (4.11)

Solving the set of (4.5) and (4.10) provides the Froude number Fr and the dimensionless
liquid height HL, given the constant C1, the experimental values of both the position of
the stagnation point HS and the radius of curvature at this point. Based on the PIV and
shadowgraphy experiments, the position of the stagnation point is estimated to be close to
HS = 0.92 and the radius of curvature close to RCS = 0.14. Given the velocity profiles in
the fully developed liquid layer that are close to the analytical laminar solution, the value
of the coefficient C1 was fixed to 1.4. The Froude number based on Bernoulli FrB(HL) is
plotted in figure 10(b). The agreement between theory and experiments is excellent for the
three pipe inclinations, 0.2◦, 0.6◦ and 1.2◦. The question that arises is how to evaluate the
viscous dissipation along the gas–liquid interface between the upstream stagnation point
and a downstream point located at the surface of the fully developed liquid layer. Viscous
dissipation is obviously important in the liquid layer. For a falling liquid layer, there is
a balance between the power of the volume forces and the viscous dissipation of kinetic
energy. However, in this downstream liquid layer, the viscous dissipation at the interface is
close to zero. Limited data are available on the viscous dissipation at the interface between
an elongated bubble and a liquid layer. Bonometti, Balachandar & Magnaudet (2008)
addressed this issue through direct numerical simulations. These researchers confirm that
wall friction plays a significant role in the dynamics of highly contrasted density currents,
which corresponds to our study with regard to two-phase gas–liquid flow. At high density
contrast, the dissipation at the interface is estimated to be one order of magnitude smaller
than the dissipation at the lower wall.

4.2. Analysis of the 50 cP case
Let us consider now the case of elongated bubbles flowing in a viscous liquid that is 50
times more viscous than water, in order to analyse the evolution of their shape and their
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velocity as a function of the pipe inclination. Contrary to the more viscous case, where
figure 5(d) does not show any significant breaking head at low pipe inclinations, the bubble
nose in a liquid that is 50 times more viscous than water exhibits the shape of a breaking
head at small pipe inclinations (i.e. smaller than 2◦, see figure 5b), suggesting energy
losses along the gas–liquid interface. Similar to the most viscous case, we base ourselves
on the analytical solution of the velocity field in laminar flow in the fully developed liquid
layer. One can thus estimate the Froude number FrMM based on the hydrodynamics in
the liquid layer, given by (4.5), which depends explicitly on the viscosity of the fluid, the
inclination of the pipe and the height of the liquid layer. This Froude number is calculated
for pipe inclinations varying between 0.4◦ and 2◦ and plotted in figure 10(a) together with
the experimental values. Now, for a liquid that is 50 times more viscous than water, we
cannot neglect the energy loss between the stagnation point and the fully developed liquid
layer. To convince us of this, two Froude numbers are plotted in figure 10(a). The first one,
FrB given by (4.10), neglects any energy loss, and the second one, FrBloss, accounts for an
energy loss Δ = 0.05 and is defined as

FrBloss = U∞√
gD

= εL

C1

√
2(HS − HL − Δ) − Σ

RCS
. (4.12)

Interestingly, taking the energy loss into account allows the Froude number of elongated
bubbles with breaking heads at low inclinations to be predicted, whereas the Froude
number of elongated bubbles without breaking heads at slightly higher inclinations can
be predicted by neglecting the energy loss, as in the previous case.

To support this analysis, direct numerical simulations are in progress, as well as a
three-dimensional analysis of the flow of the liquid phase by TOMOPTV.

5. Conclusion

The motion of elongated bubbles flowing in a slightly inclined pipe (with inclination
angles between 0.2◦ and 15◦ from the horizontal) initially filled with a viscous liquid
at rest (10 to 200 times more viscous than water) was studied experimentally. The velocity
and the shape of the elongated bubbles, as well as the velocity profiles in the liquid layer
under the bubble, were analysed using PIV and shadowgraphy. The pipe diameter and the
surface tension being fixed, the Eötvös number remained constant and large (close to 220),
so that it was possible to focus on the dependence of both the velocity and the shape of an
elongated bubble on the pipe inclination angle and the viscosity of the liquid.

The experiments showed that the velocity of the elongated bubbles increases with the
pipe inclination angle and decreases with the viscosity of the liquid. This sensitivity is
particularly amplified at small pipe inclinations and high liquid viscosities, where a sharp
drop of the elongated bubble velocity was observed.

The analysis of the PIV measurements showed that laminar flow develops rapidly in the
liquid layer under the elongated bubble and that the liquid layer height is constant; the
liquid flow results from a balance between gravity and friction at the wall. It was shown
that the fully developed velocity profile in the downstream liquid layer can be derived
analytically using a bipolar coordinate system together with Fourier transformations.

The position of the stagnation point was identified and the curvature of the interface
at this point was estimated. Based on these data, it was shown that the velocity of the
elongated bubble resulted from the transfer of potential energy between the stagnation
point (located near the bubble nose, but not at the bubble nose) and a point located
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downstream along the gas–liquid interface (where the height of the liquid layer becomes
constant) into kinetic energy.

The sharp decrease of the elongated bubble velocity at small pipe inclinations and high
liquid viscosities can be explained physically using the analytical solution of the mass and
momentum conservation equations in laminar flow, and the Bernoulli equation along the
interface. The mass and momentum conservation forces the downstream liquid layer to be
thicker at high liquid viscosities. As a result, the potential energy between the stagnation
point and a point along the fully developed liquid layer becomes smaller, and so the driving
force for the motion of the elongated bubble. In this sense, the approach from Benjamin
(1968) for inviscid flows was extended to laminar flows.

In some cases (e.g. at medium viscosities), the bubble nose exhibited the shape of
a breaking head, indicating that there was an energy dissipation along the gas–liquid
interface. For those cases, it was possible to include an energy loss in the Bernoulli
equation in order to predict satisfactorily the motion of the elongated bubble.
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Appendix A. Geometrical parameters

In the calculations, the first geometric variable is the height of the liquid layer hL in
the vertical plane of symmetry of the pipe and in the fully developed liquid layer (see
figure 11a). One can derive the angle α such that

hL = D
2

[1 − cos(α)], (A1)

and the liquid fraction εL in the fully developed liquid layer as

εL = 2α − sin(2α)

2π
. (A2)

The centre of gravity in the liquid phase hgL is also introduced and can be expressed as

hgL = D
2

[
1 − 2

3πεL
sin(α)3

]
. (A3)

The bipolar coordinates defined in (3.3a,b) are plotted in figure 11(b).

Appendix B. Measurement of the terminal velocity

B.1. On the uncertainty of the terminal velocity measurements
The uncertainties in the velocity measurements can be estimated based on the accuracy
of the laser diodes. Given the sampling frequency of the diodes, Fe = 1000 Hz, the
uncertainty linked to the detection of a bubble is Δt′ = 1/Fe for one diode; Δt′ = √

2/Fe
for the measurement. This time represents the maximum time a gas bubble can spend
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Figure 11. (a) Cross-section in the liquid layer; definition of the vertical positions of the interface and gravity
centres in each phase and (b) bipolar coordinates.
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Figure 12. Terminal velocities of the bubbles recorded by the first set of diodes (referred to as 1-2) and the
second set (referred to as 2-3).

under the diode without being detected. The resulting uncertainties in the velocities can
be expressed as follows, assuming that Δt′ � Δt, where Δt is the time spent by the slug
bubble between the two diodes:

ΔU∞ = d
Δt2

√
2

Fe
= U2∞

d

√
2

Fe
. (B1)

This error corresponds to the error linked to the measurement technique (laser diodes)
for a given inclination and liquid viscosity. Given the distance between the two
diodes, d = 1 m, and the fact that the maximum velocity experienced for θ = 15◦ is
approximately 0.25 m s−1, the absolute uncertainty made on the velocity is approximately
0.000125 m s−1. In terms of the relative error on the velocity

ΔU∞
U∞

= U∞
d

√
2

Fe
, (B2)

which gives a relative uncertainty of 0.5 % in the velocity measurements.
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Figure 13. Results for the terminal bubble velocity with a ±0.1◦ uncertainty in the pipe inclination angle.
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Figure 14. Shadowgraphy images after reconstruction (postprocessing) with a (a) regular LED board and
(b) collimated light source.

B.2. On the evolution of the terminal velocity along the pipe for bubbles of finite and
infinite volume

The development length of bubbles in a stagnant liquid was investigated by Losi & Poesio
(2016) for different liquid viscosities and pipe inclinations. These researchers concluded
that the flow under an elongated bubble can never develop in horizontal pipes. At one
degree, however, their measurements show a different behaviour, and the flow develops
rather quickly for all investigated liquid viscosities. For instance, for liquid viscosities of
0.038 Pa s and 0.195 Pa s, an average of 2 m is needed for the development of the bubble
velocities over the 1–5◦ range of their experiments. In addition, it is worth noting that the
diameter of the pipe used in their experiment was 0.022 m; hence, a dimensionless length
of 90 pipe diameters on average was needed for the bubble to reach a constant velocity.

Particular attention was thus accorded in our experiments to development effects on
both the velocity and the shape of the bubbles. Figure 12 shows, for two different liquid
viscosities, the velocity measurements obtained from the first set of diodes (1 and 2) and
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Figure 15. Postprocessing steps for bubble shadowgraphy images. Here, θ = 15◦ and μL = 0.1 Pa s.
(a) Reconstructed image of the bubble from unprocessed images, (b) reconstructed image of the bubble from
deflated images, (c) binarised bubble image from the deflated bubble image and (d) gas–liquid interface profile
extracted from the binarised image.

from the second set (2 and 3). No development effects were observed for our elongated
bubbles.

B.3. Influence of the pipe inclination uncertainty on the results
The uncertainties in the velocity measurements are mostly due to the possible error in the
pipe inclination. This error is evaluated to be at maximum 0.1◦ and corresponds to the
precision of the digital level meter used to determine the pipe inclination.

The influence of the uncertainty in the pipe inclination has thus been investigated by
taking velocity measurements in the upper bound θ + 0.1◦ and the lower bound θ − 0.1◦
for the given inclination θ . This set of experiments led to the error bars in figure 13,
which are linked to the ±0.1◦ accuracy of the digital level meter. For clarity, only three
viscosities are represented in figure 13. The induced errors in velocity measurements for
angles ranging from 2.0◦ to 15.0◦ are negligible; however, for smaller inclinations, there is
a noticeable error in the results. However, even in this range of uncertainties, the general
trend of decreasing velocities with decreasing inclination is clearly noticeable in figure 13.
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For the results in § 3.1, each experiment was repeated at least five times for a given set
of parameters, i.e. liquid viscosity and pipe inclination, and very good repeatability was
achieved.

Appendix C. Image processing

Figure 14 shows the improvement of image quality using a collimated light source (see
Boucher (2021) for more details). Figure 15 shows the different steps in the image
postprocessing of the recorded shadow images.

(i) The background is subtracted from the initial image of 96 × 1120 pixels.
(ii) The full bubble is reconstructed from the raw images by successively concatenating

the pixels from two consecutive images.
(iii) The deflated image is binarised, where the gas bubble is black and the liquid is white.
(iv) The gas–liquid interface is determined by a closing operation of successive

dilatations and erosions of the binarised image. The object selected for this operation
is a disc with a radius of 2 pixels.
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