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EXPONENTIALITY OF CERTAIN REAL SOLVABLE LIE GROUPS

MARTIN MOSKOWITZ AND MICHAEL WÜSTNER

ABSTRACT. In this article, making use of the second author’s criterion for expo-
nentiality of a connected solvable Lie group, we give a rather simple necessary and
sufficient condition for the semidirect product of a torus acting on certain connected
solvable Lie groups to be exponential.

In [13], the second author established a criterion for a connected solvable real Lie
group to be exponential. This was a generalization of the standard result of Dixmier and
of Saito in the classical case of a simply connected solvable group (see [4] or [12]).
One important virtue of this criterion is that it does not require the solvable group to be
faithfully represented (which is automatically so in the simply connected case). Therefore
one is not tied to the power series form of the exponential function. In contradistinction,
using power series, it was observed by the first author [9] (in the course of his proof that
the group, SO0(nÒ 1), of hyperbolic motions is exponential) that in an important case,
namely the connected component of the Euclidean motion group, non-simply connected
groups can be exponential even if the criterion of Dixmier-Saito fails.

Actually, in [9] the first author developed a method for showing that all centerless,
non-compact, rank 1, real simple Lie groups are exponential and subsequentlydiscovered
that a part of the argument broke down except for the groups SO0(nÒ 1), the other cases
remaining unresolved. The present results have been developed, among other reasons,
because they are what is needed to complete the argument for the other rank 1 groups
in [9]. This is done in [10] where it is proven that all rank 1, centerless, non-compact
simple groups are exponential, save the exceptional group (which is not, this latter fact
being due to Djokovic and Nguyen [5]). It is also expected that the present results will
be useful in deciding whether the connected isometry groups of certain other Hadamard
manifolds are exponential, or not.

Finally, the authors would like to take this opportunity to thank the referee for a number
of useful comments, both in improving the exposition and in somewhat generalizing the
results.

In our situation, Cartan subgroups play an important role. Whereas Cartan sub-
algebras are well understood and their definition will cause no difficulty—a Cartan
subalgebra of a Lie algebra ª is a nilpotent subalgebra which is equal to its normalizer—
the definition of a Cartan subgroup is more complicated. Indeed, there are two different
concepts for a Cartan subgroup. The first is due to C. Chevalley ([3, Definition VI.4.1]):
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DEFINITION 1. A subgroup H of G is called a Cartan subgroup if the following
conditions are satisfied:

1. H is a maximal nilpotent subgroup of G.
2. Every normal subgroup U of finite index in H is of finite index in its normalizer

NG(U).

We note that this definition makes sense for any group, not just a Lie group. The other is
due to K. H. Hofmann and K.-H. Neeb: Let G be a Lie group, ª its Lie algebra, º a Cartan
subalgebra of ª and NG(º) the normalizer of º in G under the adjoint representation. If
Λº � ºŁC denotes the set of roots belonging to º and ªïC is the root space with respect to
ï, we define

C(º) =
n
g 2 NG(º) : ï Ž Ad(g)jº

C

= ï for all ï 2 Λº

o


Here a subgroup H of G is called Cartan subgroup if and only if its Lie algebra, L(H),
is a Cartan subalgebra of ª and H = C

�
L(H)

�
. Moreover, since Ad(g�1) Ð ªïC = ªïŽAd(g)

C

we have

C(º) =
n

g 2 G : Ad(g) Ð ªïC = ªïC for all ï 2 Λº [ f0g
o


In [11, Theorem A.4], K.-H. Neeb proved that for connected Lie groups the two defini-
tions are actually equivalent. As a result the criterion of Chevalley can be simplified in
certain cases.

PROPOSITION 2. Let G be a connected Lie group and suppose His a maximal nilpotent
subgroup satisfying:

1. [H : H0] is finite where H0 is the identity component of H.
2. The index, [NG(H0) : H0], is finite.

Then H is a Cartan subgroup of G.

PROOF. If U � H be a normal subgroup with finite index, then H0 = U0. Because
H0 is characteristic in U, we get NG(U) � NG(H0). Since NG(H0)ÛH0 is a finite group,
NG(U)ÛH0 is also finite. As a subgroup of the finite group HÛH0 we see UÛH0 is also
finite. Hence the quotient group NG(U)ÛU is finite and so H is a Cartan subgroup of G.

An immediate consequence is:

PROPOSITION 3. Let G be a connected Lie group and H be a maximal nilpotent
subgroup which is connected and whose index, [NG(H) : H], is finite. Then H is a Cartan
subgroup.

In studying exponential Lie groups, a first step is to investigate weakly exponential Lie
groups, i.e., Lie groups where the range of the exponential map is dense. K. H. Hofmann
and K.-H. Neeb observed the following ([11, Theorem I.2] and [6, Corollary 18]):

https://doi.org/10.4153/CMB-1998-049-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-049-5


370 M. MOSKOWITZ AND M. WÜSTNER

THEOREM. A connected Lie group G is weakly exponential if and only if all its Cartan
subgroups are connected.

Thus a necessary condition for exponentiality is that the Cartan subgroups are con-
nected. K.H. Hofmann and A. Mukherjea showed in [8, Proposition 3.4] that if a con-
nected Lie group is solvable then it is weakly exponential. Hence in the solvable case all
Cartan subgroups are connected and since the Cartan subgroups are nilpotent, they are
themselves exponential. This means the Cartan subgroups of a connected solvable Lie
group are exactly the exponential images of the Cartan subalgebras of the Lie algebra
and it is this fact which we will use several times in the sequel.

Recall also that by Section 3, no 4, Théorème 3 of [2] the Cartan subalgebras of a
solvable Lie algebra are conjugate. Hence the Cartan subgroups of a connected solvable
Lie group are also conjugate.

An element x 2 ª for which ad x is nilpotent we will call, briefly, a nilpotent element.
One for which ad x is semisimple we will call a semisimple element. We can now
formulate the following criterion ([13]):

CRITERION. A connected solvable Lie group, G, is exponential if and only if for
some Cartan subgroup H of G, ZH(x) := fh 2 H : Ad(h)(x) = xg, the centralizer of x in
H, is connected for each nilpotent element x 2 ª, the Lie algebra of G.

In order to apply this criterion we must first identify a Cartan subgroup of the group
we want to establish is exponential. We shall consider the semidirect product of a torus
acting on a connected nilpotent Lie group. Later we will pass to the situation where the
group being acted upon is a simply connected solvable group of type E.

PROPOSITION 4. Let N be a connected nilpotent Lie group, T be a torus acting on
N via ë: T ! Aut(N), where Aut(N) is the automorphism group of N and G be the
semidirect product. Then H = T Ð NŁ is a Cartan subgroup of G, where NŁ is the group
of T-fixed points in N.

PROOF. We look at the Lie algebra » of T. This is abelian and consists only of
semisimple elements. So, by Proposition VII.2.10 of [2] there is a Cartan subalgebra º
containing ». In particular, T is contained in a Cartan subgroup H. By the modular law,
we get H = H \ (T Ð N) = T Ð (H \ N). Moreover, since T Ð (H \ N) is even a semidirect
product and H and T are connected, H \ N is also connected. Since it is nilpotent, it is
equal to exp(º\¬). On the other hand, each t 2 » acts semisimply and nilpotently on º,
hence t is in the center of º. It follows that (H \ N) � NŁ and H ≤ T ð (H \ N). On the
other hand, TNŁ is nilpotent because T and NŁ commute elementwise and NŁ is nilpotent.
Because of the maximality of H with respect to nilpotency, H = TNŁ and NŁ = (H \ N).

Having identified a Cartan subgroup we can now give a sharper criterion for the
exponentiality for certain semidirect products. If x 2 ¬, T(x) will denote the subgroup
of T fixing x.
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THEOREM 5. Let N be a connectednilpotent Lie group and G = TðëN be a semidirect
product of N with a torus. Then G is exponential if and only if T(x) is connected for each
x 2 ¬.

PROOF. By the proposition above, H = T ÐNŁ is a Cartan subgroup of G, where NŁ is
the T-fixed points in N. We apply the criterion of [13], which, in this context, states that
G is exponential if and only if ZH(x) is connected for each x 2 ¬. Let x 2 ¬ be fixed. As
above, ë: T ! Aut(N) � Aut(¬) and ëÐ: » ! Der(¬).

Making use of the fact that the nilpotent group, N, is exponential, a direct calculation
in the semidirect product and then taking differentials yields:

ZH(x) =
n

(tÒ exp nŁ) : Exp Dt(x) = Adexp n�1
Ł

(x)
o
Ò

where nŁ 2 ¬Ł, t 2 T and ë(t) = Exp Dt, where Dt 2 Der(¬). Since ¬Ł =
T

t2T Ker Dt,
we see that for each Dt, [DtÒ adn

Ł

] = adDt(nŁ) = 0, so that Dt and adn
Ł

commute for every
nŁ 2 ¬Ł and t 2 T. Hence Exp Dt and Exp adn

Ł

= Adexp n
Ł

also commute for every
nŁ 2 ¬Ł and t 2 T. Consider the pairs, (tÒ exp nŁ), where t 2 T and nŁ 2 ¬Ł, for which
Exp Dt(x) = Adexp n�1

Ł

(x).
Now an easy argument shows if U and S are commuting operators on a vector

space with U unipotent and S semisimple, then the set of elements on which they are
equal forms a subspace on which each restricts to the identity. Since T is compact and
acts continuously on ¬, it acts orthogonally with respect to some inner product so T
acts semisimply. On the other hand, each Adexp n�1

Ł

is unipotent and Exp Dt and Adexp n�1
Ł

commute so the remark above tells us that Exp Dt and Adexp n�1
Ł

are each the identity on the
vectors where they agree. In particular, since this is so at x, Exp Dt(x) = x = Adexp n�1

Ł

(x).
But, if exp nŁ centralizes x, the whole 1-parameter subgroup of NŁ through exp nŁ also
centralizes x. This means ZN

Ł

(x) is connected and ZH(x) = T(x) Ð ZN
Ł

(x). It follows that
ZH(x) is connected if and only if T(x) is.

In the case when the normal subgroup S is solvable, but not nilpotent we can extend
Theorem 5 in certain cases. We denote the nil-radical of S by N and the Lie algebra of
N by ¬. We observe that if T is a maximal torus in a connected Lie group G, there is
always a Cartan subgroup of G containing it. This is because T is exponential and its Lie
algebra, », is abelian and consists of semisimple elements. By Section 2, no 3, Prop. 10
of [2], there is a Cartan subalgebra º of ª, the Lie algebra of G, containing ». Let H be
the Lie subgroup of G with Lie algebra º. Since H0 contains T, H is a Cartan subgroup
of G containing T.

To prove our final result we require Lemma 5 of [7] which we state below. As
usual we shall call a point x 2 ª, exp-regular if exp is a local diffeomorphism in some
neighborhood of x. This is equivalent to the differential being invertable and in the case
of exp that the roots are not non-zero integer multiples of 2ôi.

LEMMA. Suppose that for two elements x, y in the Lie algebra ª of a Lie group G we
have exp x = exp y and that exp is regular at x. Then [xÒ y] = 0 and x� y is in the kernel
of the restriction of exp to the space spanned by x and y.
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THEOREM 6. Let G be the semidirect product of a torus T acting on a connected
solvable group S. Let be H a Cartan subgroup containing T. Assume that for each
s 2 exp(º \ «) there is a exp-regular x 2 « \ º with s = exp(« \ º). Then G is
exponential if and only if T(x) is connected for each x 2 ¬.

PROOF. Let H be a Cartan subgroup of G containing T. Then H = T Ð (H \ S), a
direct product of spaces. Since G is solvable, H is connected, and hence so is H \ S.
But the latter is also nilpotent so is exponential. Clearly the same is true of T. Now, by
the criterion of [13], as a connected solvable Lie group, G is exponential if and only
if ZH(x) is connected for all nilpotent elements x 2 ª. Since ª is solvable, it follows
from Section 2, no 3, Cor. 5 of [1] that every nilpotent element of ª is in ¬. Express
each h 2 ZH(x) as h = exp t exp s, with t 2 » and an exp-regular s 2 « \ º. Hence the
following fixes x:

Adexp t exp s = Adexp t Adexp s = Exp(ad t) Exp(ad s)Ò

so that Exp(ad s)x = Exp(� ad t)x.
We now write x as sum of xï 2 ªï, where ªï is the weight space for the weight ï

(including ï = 0). Let Λ(x) be the set of all weights with xï 6= 0. For each ï 2 Λ(x)
we have eï(s) = e�ï(t), so that ï(s) + ï(t) 2 2ôiZ. But ï(t) 2 iR. Hence, the same
is true of ï(s) and since s is exp-regular ï(s) must be zero for each ï 2 Λ(x). Now
because ï(t) 2 2ôiZ and ad t is semisimple, it follows that Exp(ad t)x = Adexp t x = x
and hence also Adexp s x = x. Thus exp t 2 ZT(x) = T(x) and exp r 2 ZH\S(x) and so
ZH(x) = T(x) Ð ZH\S(x). As these subgroups intersect trivially we have a direct product.
Since s is exp-regular, by the above lemma we get [sÒ x] = 0. Thus ZH\S(x) is exponential
and in particular it is connected. Hence, the direct product, ZH(x), is connected if and
only if the T(x) factor is.

If we assume S as a solvable Lie group whose universal covering group is of type E,
we see that the condition of Theorem 6 is satisfied.

COROLLARY 7. Let G be the semidirect product of a torus and a solvable Lie group
whose universal covering group is of type E. Then G is exponential if and only if T(x) is
connected for each x 2 ¬.
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