RANK *r* SOLUTIONS TO THE MATRIX EQUATION $XAX^{T} = C$, *A* NONALTERNATE, *C* ALTERNATE, OVER $GF(2^{y})$.

PHILIP G. BUCKHIESTER

1. Introduction. Let GF(q) denote a finite field of order $q = p^y$, p a prime. Let A and C be symmetric matrices of order n, rank m and order s, rank k, respectively, over GF(q). Carlitz [6] has determined the number N(A, C, n, s) of solutions X over GF(q), for p an odd prime, to the matrix equation

where n = m. Furthermore, Hodges [9] has determined the number N(A, C, n, s, r) of $s \times n$ matrices X of rank r over GF(q), p an odd prime, which satisfy (1.1). Perkin [10] has enumerated the $s \times n$ matrices of given rank r over GF(q), $q = 2^{y}$, such that $XX^{T} = 0$. Finally, the author [3] has determined the number of solutions to (1.1) in case C = 0, where $q = 2^{y}$.

An $n \times n$ symmetric matrix over $GF(2^v)$ is said to be an alternate matrix if A has 0 diagonal. Otherwise, A is said to be nonalternate. The author [4; 5] has determined the number N(A, C, n, s, r) of $s \times n$ matrices X of rank r over GF(q), $q = 2^v$, which satisfy (1.1), in case A is an alternate matrix over GF(q) and in case both A and C are symmetric, nonalternate matrices over GF(q).

The purpose of this paper is to determine the number N(A, C, n, s, r), in case A is a symmetric, nonalternate matrix over $GF(2^y)$ and C is an alternate matrix over $GF(2^y)$. In determining this number, Albert's canonical forms for symmetric matrices over fields of characteristic two are used [1]. These forms and other necessary preliminaries appear in Section 2. In Section 3, the number N(A, C, n, s) is found, in case both A and C are nonsingular. Finally, in Section 4, the number N(A, C, n, s, r), $0 \leq r \leq \min(s, n)$, is determined.

The difference equations obtained in Section 4 were solved by using methods due to Carlitz [7].

Throughout the remainder of this paper, GF(q) will denote a finite field of order $q = 2^{\nu}$ and V_n will denote an *n*-dimensional vector space over GF(q). Further, for any matrix M over GF(q), $\mathscr{R} \mathscr{S}[M]$ will denote the row space of M.

For matrices X_1, X_2, \ldots, X_k , where X_i is $m_i \times n$, col $[X_1, X_2, \ldots, X_k]$

Received August 2, 1972 and in revised form, February 16, 1973.

will denote the $(m_1 + m_2 + \ldots + m_k) \times n$ matrix

$$\begin{bmatrix} X_1 \\ X_2 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ X_k \end{bmatrix}.$$

2. Notation and preliminaries. Let f be a symmetric bilinear form defined on $V_n \times V_n$. For any subspace E of V_n , define

$$E^* = \{x \in V_n | f(x, y) = 0 \text{ for all } y \text{ in } E\}.$$

Clearly, E^* is a subspace of V_n . If $V_n^* = \{0\}$, then f is said to be nondegenerate. A vector x in V_n such that f(x, x) = 0 is said to be an *isotropic vector*. If every x in V_n is isotropic, then f is said to be an alternating bilinear form. Otherwise, f is called *nonalternating*.

The following theorem, which appears in [8], will be needed in Sections 3 and 4.

THEOREM 2.1. If E is a subspace of V_n , then dim $E^* = n - \dim E + \dim (E \cap V_n^*)$.

From this theorem, it follows that if f is nondegenerate, then dim $E + \dim E^* = n$, for any subspace E of V_n .

Let I_k denote the $k \times k$ identity matrix over GF(q). Albert [1] has proved the following theorems concerning symmetric matrices over GF(q).

THEOREM 2.2. Let C be an $s \times s$ alternate matrix over GF(q). If C is nonsingular, then there is a nonsingular matrix P such that

$$PCP^{T} = \begin{bmatrix} 0 & I_{\gamma} \\ I_{\gamma} & 0 \end{bmatrix}, \quad (s = 2\gamma).$$

If C has rank k < s, then there is a nonsingular matrix Q such that

$$QCQ^{T} = \begin{bmatrix} 0 & I_{\gamma} & 0 \\ I_{\gamma} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad (k = 2\gamma).$$

THEOREM 2.3. Let A be an $n \times n$ symmetric, nonalternate matrix over GF(q). If A is nonsingular, then there is a nonsingular matrix P such that $PAP^T = I_n$. If A has rank k < n, then there is a nonsingular matrix Q such that

$$QAQ^{T} = \begin{bmatrix} I_{k} & 0\\ 0 & 0 \end{bmatrix}.$$

The following lemma, which appears in [4], will be needed in Sections 3 and 4.

LEMMA 2.1. Let A and C be symmetric matrices of orders n and s, respectively, over GF(q). If there exist nonsingular matrices P and Q such that $PAP^T = B$ and $QCQ^T = D$, then N(A, C, n, s) = N(B, D, n, s). Furthermore, N(A, C, n, s, r) $= N(B, D, n, s, r), 0 \leq r \leq \min(s, n)$.

For integers *n* and *k*, let $\begin{bmatrix} n \\ k \end{bmatrix}$ denote the *q*-binomial coefficient defined by

$$\begin{bmatrix} n \\ 0 \end{bmatrix} = 1; \begin{bmatrix} n \\ k \end{bmatrix} = 0, k > n; \begin{bmatrix} n \\ n \end{bmatrix} = 1; \begin{bmatrix} n \\ k \end{bmatrix} = \frac{(q)_n}{(q)_k (q)_{n-k}}, \quad 0 < k < n,$$

where $(q)_j = (q - 1) \dots (q^j - 1), j > 0$. Brawley and Carlitz [2] have proved the following lemma.

LEMMA 2.2. Let X be an $s \times t$ matrix of rank r over GF(q). The number of $s \times m$ matrices [X, Y] of rank $r + \gamma$ over GF(q) is given by

$$L(s,t,m,r,r+\gamma) = \begin{bmatrix} m-t \\ \gamma \end{bmatrix} q^{r(m-t-\gamma)} \prod_{i=0}^{\gamma-1} (q^s - q^{r+i}).$$

Let f be the bilinear form defined on $V_n \times V_n$ by $f(\xi, \eta) = \xi \eta^T$, for all ξ, η in V_n . It is immediate that f is a nondegenerate, nonalternating bilinear form. Let W denote the set of all isotropic vectors in V_n . Then W is a subspace of V_n and, further, $x = (x_1, \ldots, x_n)$ is in W if and only if

$$f(x, x) = xx^{T} = \sum_{i=1}^{n} x_{i}^{2} = \left(\sum_{i=1}^{n} x_{i}\right)^{2} = 0.$$

Thus, W consists of all vectors x such that $\sum_{i=1}^{n} x_i = 0$. Consequently, W is an (n-1)-dimensional subspace of V_n . Let u denote the vector (1, 1, ..., 1) in V_n . Perkins [10] has proved the following theorem.

THEOREM 2.4. Let X be an $s \times n$ matrix over GF(q). Then $(\mathscr{R} \mathscr{S}[X])^* \subseteq W$ if and only if u is in $\mathscr{R} \mathscr{S}[X]$.

Let $M(I_n, 0, n, s, s)$ denote the number of $s \times n$ matrices X of rank s over GF(q) such that $XX^T = 0$ and u is not in $\mathscr{R} \mathscr{S}[X]$. In determining the number $N(I_n, 0, n, s, s)$, Perkins [10] has determined $M(I_n, 0, n, s, s)$.

THEOREM 2.5. The number of $s \times n$ matrices X of rank s over GF(q) such that $XX^T = 0$ and such that u is not in $\mathscr{R} \mathscr{S}[X]$ is given by

$$M(I_n, 0, n, s, s) = \begin{cases} \prod_{i=1}^{s} (q^{n-i} - q^{i-1}), & (n \text{ odd}) \\ \prod_{i=1}^{s} (q^{n-i} - q^{i}), & (n \text{ even}) \end{cases}$$

3. Determination of N(A, C, n, s), A and C nonsingular. Let A be an $n \times n$ symmetric, nonalternate matrix of full rank over GF(q) and let C be an

 $s \times s$ alternate matrix of full rank over GF(q). By Theorems 2.2 and 2.3, there exist nonsingular matrices P and Q such that $PAP^T = I_n$ and $QCQ^T = F_{\gamma}$, $s = 2\gamma$, where F_{γ} denotes the $2\gamma \times 2\gamma$ matrix

$$\begin{bmatrix} 0 & I_{\gamma} \\ I_{\gamma} & 0 \end{bmatrix}$$

over GF(q). By Lemma 2.1, $N(A, C, n, s) = N(I_n, F_\gamma, n, 2\gamma)$, the number of $2\gamma \times n$ matrices X such that $XX^T = F_\gamma$. Thus, it suffices to find $N(I_n, F_\gamma, n, 2\gamma)$. Let f be the nonalternate, nondegenerate bilinear form on $V_n \times V_n$ defined by $f(\xi, \eta) = \xi I_n \eta^T = \xi \eta^T$, for each ξ, η in V_n . Let W be the (n - 1)-dimensional subspace of V_n consisting of all isotropic vectors in V_n . Let Z = col [X, Y] be an $s \times n$ matrix over GF(q) such that $ZZ^T = F_\gamma$, $s = 2\gamma$, where each of X and Y is $\gamma \times n$. Then, rank $Z = 2\gamma$ and, therefore, rank $X = \gamma$. Furthermore

(3.1)
$$\begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} X^T Y^T \end{bmatrix} = \begin{bmatrix} XX^T & XY^T \\ YX^T & YY^T \end{bmatrix} = \begin{bmatrix} 0 & I_{\gamma} \\ I_{\gamma} & 0 \end{bmatrix}$$

Let $X = [x_1, \ldots, x_{\gamma}]^T$ and $Y = [y_1, \ldots, y_{\gamma}]^T$. From (3.1), it follows that $f(x_i, x_j) = f(y_i, y_j) = 0$ and $f(x_i, y_j) = \delta_{ij}$, for $i, j = 1, 2, \ldots, \gamma$. Thus $\mathscr{R} \mathscr{S}[X] \subseteq W$. If *n* is odd, then $f(u, u) = uu^T = 1$. Then *u* is not in *W* and, therefore, not in $\mathscr{R} \mathscr{S}[X]$. If *n* is even, then f(u, u) = 0, and *u* is an isotropic vector. However, *u* is not in $\mathscr{R} \mathscr{S}[X]$, as the following theorem shows.

THEOREM 3.1. Suppose $Z = \operatorname{col} [X, Y]$ is a $2\gamma \times n$ matrix over GF(q) such that $ZZ^T = F_{\gamma}$, where each of X and Y is $\gamma \times n$. Then $u = (1, 1, \ldots, 1)$ is not in $\mathscr{R} \mathscr{S}[X]$.

Proof. The proof of the theorem is given above in case n is odd. Suppose n is even and u is in $\mathscr{R} \mathscr{S}[X]$. Since rank $X = \gamma$, u may be represented uniquely as a linear combination of precisely k rows of X, for some k, $1 \leq k \leq \gamma$, say $u = \lambda_1 x_{i_1} + \ldots + \lambda_k x_{i_k}, \lambda_j \neq 0$, for each $j = 1, 2, \ldots, k$. Let

$$S = \langle x_1, \ldots, x_{i_1-1}, x_{i_1+1} \ldots, x_{\gamma} \rangle.$$

Since $f(x_{i_1}, y_{i_1}) = 1$, $f(x_j, y_{i_1}) = 0$, for $j \neq i_1$, and $f(y_j, y_{i_1}) = 0$, for j = 1, 2, ..., γ , it follows that y_{i_1} must be in $W \cap (S^* - (\mathscr{R}\mathscr{S}[X])^*) = (W \cap S^*)$ $- (\mathscr{R}\mathscr{S}[X])^*$. Since u is in $\mathscr{R}\mathscr{S}[X]$, Theorem 2.4 implies that $(\mathscr{R}\mathscr{S}[X])^* \subseteq$ W. Since $S \subseteq \mathscr{R}\mathscr{S}[X]$, $(\mathscr{R}\mathscr{S}[X])^* \subseteq S^*$. Thus $(\mathscr{R}\mathscr{S}[X])^* \subseteq W \cap S^*$. By Theorem 2.1, dim $(\mathscr{R}\mathscr{S}[X])^* = n - \gamma$. Further, since

$$u = \sum_{j=1}^{k} \lambda_{j} x_{ij}, \lambda_{j} \neq 0, \text{ for each } j = 1, 2, \ldots \gamma,$$

u is not in S. By Theorem 2.4, S^* is not a subspace of W. Therefore, dim $(W + S^*) = n$. Furthermore, by Theorem 2.1, dim $S^* = n - \dim S = n - (\gamma - 1)$. Hence,

$$\dim (W \cap S^*) = \dim W + \dim S^* - \dim (W + S^*) = (n-1) + [n-(\gamma-1)] - n = n - \gamma = \dim (\mathscr{R}\mathscr{S}[X])^*.$$

Thus, $W \cap S^* = (\mathscr{R} \mathscr{S}[X])^*$ and, therefore, there exists no y_{i_1} in $(W \cap S^*) - (\mathscr{R} \mathscr{S}[X])^*$. It follows that u is not in $\mathscr{R} \mathscr{S}[X]$.

By (3.1) and Theorem 3.1, if $Z = \operatorname{col} [X, Y]$ is such that $ZZ^T = F_{\gamma}$, then the $\gamma \times n$ matrix X of rank γ is such that $XX^T = 0$ and such that u is not in $\mathscr{R} \mathscr{S}[X]$. The number of such matrices X is the number $M(I_n, 0, n, \gamma, \gamma)$, as given in Theorem 2.5. Given a $\gamma \times n$ matrix X of rank γ over GF(q) such that $XX^T = 0$ and u is not in $\mathscr{R} \mathscr{S}[X]$, we seek the number of $\gamma \times n$ matrices Y over GF(q) such that $XY^T = I_{\gamma}$ and $YY^T = 0$. In the argument given below it is shown that this number depends only on γ and n. Consequently, if we denote this number by $K(\gamma, n)$, it follows that

(3.2)
$$N(I_n, F_{\gamma}, n, 2\gamma) = K(\gamma, n) M(I_n, 0, n, \gamma, \gamma).$$

Thus, it suffices to determine the number $K(\gamma, n)$. Consider any $2\gamma \times n$ matrix $Z = \operatorname{col} [X, Y]$ such that $ZZ^T = F_{\gamma}$. By (3.1), $\mathscr{R} \mathscr{S}[Z] \subseteq W$. Hence, as before, if n is odd u is not in W and, therefore, not in $\mathscr{R} \mathscr{S}[Z]$. The following theorem shows that this is also the case if n is even.

THEOREM 3.2. If Z is a $2\gamma \times n$ matrix over GF(q) such that $ZZ^T = F_{\gamma}$, where each of X and Y is $\gamma \times n$, then u = (1, 1, ..., 1) is not in $\mathscr{R}\mathscr{S}[Z]$.

Proof. The proof of the theorem is given above in case n is odd. Suppose n is even and let $Z = \operatorname{col} [X, Y]$, where each of X and Y is $\gamma \times n$. By Theorem 3.1, u is not in $\mathscr{R} \mathscr{S}[X]$. Suppose u is in $\mathscr{R} \mathscr{S}$ col $[X, y_1]$. Since u is not in $\mathscr{R} \mathscr{S}[X]$, y_1 is in $\mathscr{R} \mathscr{S}$ col [X, u]. If $v = (v_1, \ldots, v_n)$ is any isotropic vector in V_n , then

$$0 = f(v, v) = vv^{T} = \sum_{i=1}^{n} v_{i}^{2} = \left(\sum_{i=1}^{n} v_{i}\right)^{2},$$

which implies $f(u, v) = uv^T = \sum_{i=1}^n v_i = 0$. Thus, if v is an isotropic vector in V_n , then u is in $\langle v \rangle^*$. It follows that $\mathscr{R} \mathscr{S}$ col $[X, u] \subseteq \langle x_1 \rangle^*$. Thus y_1 is in $\langle x_1 \rangle^*$ and $f(x_1, y_1) = 0$. Since $f(x_1, y_1) = 1$, it follows that u is not in $\mathscr{R} \mathscr{S}$ col $[X, y_1]$. Suppose u is not in $\mathscr{R} \mathscr{S}$ col $[X, y_1, \ldots, y_k]$, where $1 \leq k < \gamma$ and u is in $\mathscr{R} \mathscr{S}$ col $[X, y_1, \ldots, y_{k+1}]$. Then y_{k+1} is in

$$\mathscr{RS}\begin{bmatrix} X\\ y_1\\ \cdot\\ \cdot\\ \cdot\\ y_k\\ u \end{bmatrix} \subseteq \langle x_{k+1} \rangle^*,$$

an impossibility since $f(x_{k+1}, y_{k+1}) = 1$. Hence, u is not in

$$\mathscr{R} \mathscr{S} \operatorname{col} [X, y_1, \ldots, y_{k+1}]$$

and the proof is complete.

We proceed to determine the number $K(\gamma, n)$. Let $X = [x_1, \ldots, x_{\gamma}]^T$ be a $\gamma \times n$ matrix of rank γ over GF(q) such that $XX^T = 0$ and u is not in $\mathscr{R} \mathscr{S}$ [X]. In order to choose a $\gamma \times n$ matrix $Y = [y_1, \ldots, y_{\gamma}]^T$ such that $XY^T = I_{\gamma}$ and $YY^T = 0$, y_1 must be chosen from

$$W \cap \left(\left(\mathscr{R} \mathscr{S} \begin{bmatrix} x_2 \\ \cdot \\ \cdot \\ x_{\gamma} \end{bmatrix} \right)^* - (\mathscr{R} \mathscr{S} [X])^* \right)$$
$$= \left(W \cap \left(\mathscr{R} \mathscr{S} \begin{bmatrix} x_2 \\ \cdot \\ \cdot \\ x_{\gamma} \end{bmatrix} \right)^* \right) - (\mathscr{R} \mathscr{S} [X])^*.$$

Let $T = W \cap (\mathscr{R} \mathscr{G} \operatorname{col} [x_2, \ldots, x_{\gamma}])^*$ and let $S = T \cap (\mathscr{R} \mathscr{G}[X])^* = W \cap (\mathscr{R} \mathscr{G}[X])^*$. Then y_1 must be chosen in T - S. Since u is not in $\mathscr{R} \mathscr{G}[X]$, Theorem 2.4 implies that neither $(\mathscr{R} \mathscr{G}[X])^*$ nor $(\mathscr{R} \mathscr{G} \operatorname{col} [x_2, \ldots, x_{\gamma}])^*$ is a subspace of W. Applying Theorem 2.1, we obtain dim $S = \dim W + \dim (\mathscr{R} \mathscr{G}[X])^* - \dim (W + (\mathscr{R} \mathscr{G}[X])^*) = (n-1) + [n-\gamma] - n = n - \gamma - 1$ and dim $T = (n-1) + [n - (\gamma - 1)] - n = n - \gamma$. Thus, dim T/S = 1. Define the mapping \tilde{f} from T/S into GF(q) by $\tilde{f}(z + S) = f(z, x_1)$ for each coset z + S in T/S. Let z_0 be such that $T/S = \langle z_0 + S \rangle$. Then z_0 is in T - S and, therefore, $\tilde{f}(z_0 + S) = f(z_0, x_1) \neq 0$. It follows that \tilde{f} is a one-to-one mapping from T/S onto GF(q). Hence, there exists precisely one coset $z_1 + S$ in T/S such that $\tilde{f}(z_1 + S) = 1$. For any v in S, $f(v, x_1) = 0$ and, thus, $f(z_1 + v, x_1) = f(z_1, x_1) + f(v, x_1) = \tilde{f}(z_1 + S) = 1$. Since y_1 must be such that $f(x_1, y_1) = 1$, the number of choices for y_1 is equal to $|z_1 + S| = |S| = q^{n-\gamma-1}$. Suppose $y_1, \ldots, y_k, k < \gamma$, have been chosen such that the following properties hold:

(i) y_1, \ldots, y_k are independent vectors in V_n ,

(ii) u is not in $T_k = \langle x_1, \ldots, x_{\gamma}, y_1, \ldots, y_k \rangle$,

(iii) $f(x_i, y_j) = \delta_{ij}$ and $f(y_l, y_j) = 0$, for $i = 1, 2, ..., \gamma$ and j, l = 1, 2, ..., k.

Then y_{k+1} must be chosen from $W \cap (S_k^* - (T_k^* \cup T_k)) = (W \cap S_k^*) - (T_k^* \cup T_k)$, where $S_k = \langle x_1, \ldots, x_k, x_{k+2}, \ldots, x_{\gamma}, y_1, \ldots, y_k \rangle$. However,

$$(W \cap S_k^*) \cap (T_k^* \cup T_k) = (W \cap S_k^* \cap T_k^*) \cup (W \cap S_k^* \cap T_k)$$
$$= (W \cap T_k^*) \cup (W \cap S_k^* \cap T_k).$$

If z is in $S_k^* \cap T_k$, then

$$z = \sum_{i=1}^{\gamma} a_i x_i + \sum_{i=1}^{k} b_i y_i.$$

However, $0 = f(z, y_j) = a_j$ and $0 = f(z, x_j) = b_j$, for j = 1, 2, ..., k. Thus $z = \sum_{i=k+1}^{\gamma} a_i x_i$. Since x_i is in $S_k^* \cap T_k$ for $i = k + 1, ..., \gamma$, it follows that $S_k^* \cap T_k = \langle x_{k+1}, \ldots, x_{\gamma} \rangle$. Hence, $W \cap S_k^* \cap T_k = \langle x_{k+1}, \ldots, x_{\gamma} \rangle \subseteq W \cap T_k^*$ and, therefore, $(W \cap S_k^*) - (T_k^* \cup T_k) = (W \cap S_k^*) - (W \cap T_k^*)$. Since u is not in T_k and, therefore, not in S_k , it follows from Theorems 2.4 and 2.1 that

dim
$$(W \cap S_k^*) = (n-1) + [n - (\gamma - 1 + k)] - n = n - \gamma - k$$

and

dim $(W \cap T_k^*) = (n-1) + [n - (\gamma + k)] - n = n - \gamma - k - 1.$

Let $J = W \cap S_k^*$ and $M = W \cap T_k^*$. Then dim J/M = 1. As before, the mapping \overline{f} from J/M into GF(q) defined by $\overline{f}(z + M) = f(z, x_{k+1})$ is a one-to-mapping onto GF(q). Since y_{k+1} must be such that $f(x_{k+1}, y_{k+1}) = 1$, it follows that the number of choices for y_{k+1} is equal to $|M| = q^{n-\gamma-k-1}$. As in the proof of Theorem 3.2, it can be shown that for any such y_{k+1} , u is not an element of $T_{k+1} = \langle x_1, \ldots, x_{\gamma}, y_1, \ldots, y_{k+1} \rangle$. Thus, the inductive argument is complete and it follows that

(3.3)
$$K(\gamma, n) = \prod_{i=1}^{\gamma} q^{n-\gamma-i}$$

Together, (3.2) and (3.3) yield the number $N(I_n, F_{\gamma}, n, 2\gamma) = N(A, C, n, 2\gamma)$.

THEOREM 3.3. Let A be an $n \times n$ symmetric, nonalternate matrix of full rank over GF(q) and let C be an $s \times s$ alternate matrix of full rank over GF(q), $s = 2\gamma$. Then the number of $s \times n$ matrices X over GF(q) such that $XAX^T = C$ is given by

$$N(A, C, n, s) = \prod_{i=1}^{\gamma} (q^{n-\gamma-i})M(I_n, 0, n, \gamma, \gamma),$$

where $M(I_n, 0, n, \gamma, \gamma)$ is given in Theorem 2.5.

4. Determination of N(A, C, n, s, r). Let A be an $n \times n$ symmetric, nonalternate matrix of full rank over GF(q). Let C be an $s \times s$ alternate matrix of rank $2\gamma \leq s$ over GF(q). By Theorem 2.2, Theorem 2.3, and Lemma 2.1, $N(A, C, n, s, r) = N(I_n, G_\gamma, n, s, r), 0 \leq r \leq \min(s, n)$, where G_γ denotes the $s \times s$ matrix

$$\begin{bmatrix} 0 & I_{\gamma} & 0 \\ I_{\gamma} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

over GF(q). Thus, it suffices to determine the number $N(I_n, G_{\gamma}, n, s, r)$ of $s \times n$ matrices M of rank r such that $MM^T = G_{\gamma}$. Let $M = \text{col} [X_1, Z]$ be any such matrix, where X_1 is $2\gamma \times n$ and Z is $(s - 2\gamma) \times n$. Then

(4.1)
$$\begin{bmatrix} X_1 \\ Z \end{bmatrix} \begin{bmatrix} X_1^T Z^T \end{bmatrix} = \begin{bmatrix} X_1 X_1^T & X_1 Z^T \\ Z X_1^T & Z Z^T \end{bmatrix} = \begin{bmatrix} F_{\gamma} & 0 \\ 0 & 0 \end{bmatrix}.$$

84

Thus, the $2\gamma \times n$ matrix X_1 must be such that $X_1X_1^T = F_{\gamma}$. The number of such matrices X_1 is the number $N(I_n, F_{\gamma}, n, 2\gamma)$, given in Theorem 3.3. Further, since rank $X_1 = 2\gamma$, rank $M = 2\gamma + \tau$ for some τ , $0 \leq \tau \leq \min(s, n) - 2\gamma$. Given a $2\gamma \times n$ matrix X_1 such that $X_1X_1^T = F_{\gamma}$, the number of $s \times n$ matrices $M = \operatorname{col} [X_1, Z]$ of rank $2\gamma + \delta$ such that $MM^T = G_{\gamma}$ depends only on γ , n, s, and δ . Thus, if we denote this number by $\Phi(2\gamma, n, s, \delta)$, it follows that

$$(4.2) N(I_n, G_{\gamma}, n, s, 2\gamma + \tau) = N(I_n, F_{\gamma}, n, 2\gamma) \cdot \Phi(2\gamma, n, s, \tau).$$

Suppose *n* is odd and let $X_1 = \operatorname{col} [X, Y]$ be a $2\gamma \times n$ matrix over GF(q) such that $X_1X_1^T = F_{\gamma}$, where each of $X = [x_1, \ldots, x_{\gamma}]^T$ and $Y = [y_1, \ldots, y_{\gamma}]^T$ is $\gamma \times n$. Then, if *f* is the nonalternate, nondegenerate bilinear form defined by $f(\xi, \eta) = \xi\eta^T$, for all ξ, η in V_n , we have $f(x_i, x_j) = f(y_i, y_j) = 0$ and $f(x_i, y_j) = \delta_{ij}$, for *i*, $j = 1, 2, \ldots, \gamma$. Suppose $M = \operatorname{col} [X_1, Z]$ is an $s \times n$ matrix of rank $2\gamma + \tau$ over GF(q) such that $MM^T = G_{\gamma}$. By (4.1), $\mathscr{R} \mathscr{S}[M] \subseteq W$. Since *n* is odd, *u* is not an isotropic vector and, therefore, is not in $\mathscr{R} \mathscr{S}[M]$. Furthermore, if $Z = \operatorname{col} [Z_1, z_{s-2\gamma}]$, where $Z_1 = [z_1, \ldots, z_{s-1-2\gamma}]^T$ is $(s - 1 - 2\gamma) \times n$, then the $(s - 1) \times n$ matrix $D = \operatorname{col} [X_1, Z_1]$ has rank $2\gamma + \tau$ or $2\gamma + \tau - 1$ and is such that

$$DD^{T} = \begin{bmatrix} 0 & I_{\gamma} & 0 \\ I_{\gamma} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Since $MM^T = G_{\gamma}$, it is clear that $z_{s-2\gamma}$ must be in $W \cap (\mathscr{R} \mathscr{S}[D])^*$. If rank $D = 2\gamma + \tau$, then $z_{s-2\gamma}$ is in $W \cap (\mathscr{R} \mathscr{S}[D])^* \cap \mathscr{R} \mathscr{S}[D]$. If v is in this subspace, then

$$v = \sum_{i=1}^{\gamma} a_i x_i + \sum_{i=1}^{\gamma} b_i y_i + \sum_{i=1}^{s-1-2\gamma} c_i z_i,$$

for some a_i , b_i , c_i in GF(q). However, $0 = f(v, x_j) = b_j$ and $0 = f(v, y_j) = a_j$, for $j = 1, 2, \ldots, \gamma$. Hence,

$$v = \sum_{i=1}^{s-1-2\gamma} c_i z_i.$$

Clearly, $\mathscr{R}\mathscr{G}[Z_1] \subseteq W \cap (\mathscr{R}\mathscr{G}[D])^* \cap \mathscr{R}\mathscr{G}[D]$. Thus, in order that rank $D = 2\gamma + \tau$, it is necessary and sufficient that $z_{s-2\gamma}$ be in $\mathscr{R}\mathscr{G}[Z_1]$. Since dim $\mathscr{R}\mathscr{G}$ col $[X_1, Z_1] = 2\gamma + \tau$, it is clear that dim $\mathscr{R}\mathscr{G}[Z_1] \ge \tau$. If dim $\mathscr{R}\mathscr{G}[Z_1] > \tau$, then for some $i, 1 \le i \le s - 1 - 2\gamma, z_i$ is in

$$\mathscr{R} \mathscr{S} \operatorname{col} [X_1, z_1, \ldots, z_{i-1}] - \langle z_1, \ldots, z_{i-1} \rangle.$$

But z_i is in $(\mathscr{R} \mathscr{S} \operatorname{col} [X_1, z_1, \ldots, z_{i-1}])^*$, whose intersection with

$$\mathscr{R} \mathscr{S} \operatorname{col} [X_1, z_1, \ldots, z_{i-1}] \text{ is } \langle z_1, \ldots, z_{i-1} \rangle.$$

Thus dim $\mathscr{R}\mathscr{S}[Z_1] = \tau$ and the number of choices for $z_{s-2\gamma}$ is q^{τ} . If rank $D = 2\gamma + \tau - 1$, then $z_{s-2\gamma}$ must be in $W \cap (\mathscr{R}\mathscr{S}[D])^* - \mathscr{R}\mathscr{S}[D]$. Since u is not in $\mathscr{R}\mathscr{S}[D]$, it follows from Theorem 2.4 that $(\mathscr{R}\mathscr{S}[D])^*$ is not a

subspace of W. Hence,

dim $(W \cap (\mathscr{R} \mathscr{S}[D])^*) = (n-1) + [n - (2\gamma + \tau - 1)] - n = n - 2\gamma - \tau$. Furthermore, $W \cap (\mathscr{R} \mathscr{S}[D])^* \cap \mathscr{R} \mathscr{S}[D] = \mathscr{R} \mathscr{S}[Z_1]$, which, by an argument similar to the one used above, can be shown to be of dimension $\tau - 1$. Thus, the number of choices for $z_{s-2\gamma}$ is $q^{n-2\gamma-\tau} - q^{\tau-1}$. Hence, we obtain the difference equation

(4.3)
$$\Phi(2\gamma, n, s, \tau) = q^{\tau} \Phi(2\gamma, n, s - 1, \tau) + (q^{n-2\gamma-\tau} - q^{\tau-1}) \\ \times \Phi(2\gamma, n, s - 1, \tau - 1), \quad (n \text{ odd}),$$

with initial condition $\Phi(2\gamma, n, s, 0) = 1$, for $s \ge 2\gamma$, and $\Phi(2\gamma, n, 2\gamma, \tau) = 0$, for $\tau \ne 0$. It is easily seen that the solution to the recurrence in (4.3) is given by

(4.4)
$$\Phi(2\gamma, n, s, \tau) = \begin{bmatrix} s - 2\gamma \\ \tau \end{bmatrix} \prod_{j=0}^{\tau-1} (q^{n-2\gamma-j-1} - q^j), \quad (n \text{ odd}),$$

where $\begin{bmatrix} s - 2\gamma \\ \tau \end{bmatrix}$ is the *q*-binomial coefficient as defined in Section 2.

Suppose *n* is even and suppose $X_1 = \operatorname{col} [X, Y]$ is a $2\gamma \times n$ matrix over GF(q) such that $X_1X_1^T = F_{\gamma}$. Given the matrix X_1 , let $J_1(2\gamma, n, s, \delta)$ denote the number of $s \times n$ matrices $M = \operatorname{col} [X_1, Z]$ of rank $2\gamma + \delta$ over GF(q) such that $MM^T = G_{\gamma}$ and such that *u* is in $\mathscr{R} \mathscr{S}[M]$, and let $J_2(2\gamma, n, s, \delta)$ denote the number of $s \times n$ matrices $M = \operatorname{col} [X_1, Z]$ of rank $2\gamma + \delta$ over GF(q) such that $MM^T = G_{\gamma}$ and such that *u* is not $\mathscr{R} \mathscr{S}[M]$. The use of GF(q) such that $MM^T = G_{\gamma}$ and such that *u* is not in $\mathscr{R} \mathscr{S}[M]$. The use of this notation is justified below as we show that the numbers J_1 and J_2 depend only on γ , *n*, *s*, and δ . Furthermore,

(4.5)
$$\Phi(2\gamma, n, s, \tau) = J_1(2\gamma, n, s, \tau) + J_2(2\gamma, n, s, \tau),$$
 (*n* even).

Let $M = \operatorname{col} [X_1, Z]$ be an $s \times n$ matrix of rank $2\gamma + \tau$ over GF(q) such that $MM^T = G_{\gamma}$. Since *n* is even, *u* is isotropic and, therefore, may or may not be in $\mathscr{R} \mathscr{S}[M]$. Let $Z = \operatorname{col} [Z_1, z_{s-2\gamma}]$, where $Z_1 = [z_1, \ldots, z_{s-1-2\gamma}]^T$ is $(s - 1 - 2\gamma) \times n$. Suppose *u* is not in $\mathscr{R} \mathscr{S}[M]$. Then the $(s - 1) \times n$ matrix $D = \operatorname{col} [X_1, Z_1]$ has rank $2\gamma + \tau$ or $2\gamma + \tau - 1$ and is such that *u* is not in $\mathscr{R} \mathscr{S}[D]$. In order to determine a difference equation in $J_2(2\gamma, n, s, \tau)$, we seek expressions $Q(2\gamma, n, s, \tau)$ and $R(2\gamma, n, s, \tau)$ such that

(4.6)
$$J_2(2\gamma, n, s, \tau) = Q(2\gamma, n, s, \tau)J_2(2\gamma, n, s - 1, \tau) + R(2\gamma, n, s, \tau)$$

 $\times J_2(2\gamma, n, s - 1, \tau - 1), \quad (n \text{ even}).$

If rank $D = 2\gamma + \tau$, then $z_{s-2\gamma}$ must be in $W \cap (\mathscr{R} \mathscr{S}[D])^* \cap \mathscr{R} \mathscr{S}[D] = \mathscr{R} \mathscr{S}[Z_1]$, a subspace of dimension τ . Further, since u is not in $\mathscr{R} \mathscr{S}[D]$, any $z_{s-2\gamma}$ in $\mathscr{R} \mathscr{S}[Z_1]$ will be such that u is not in $\mathscr{R} \mathscr{S}[M]$. Hence, $Q(2\gamma, n, s, \tau) = q^{\tau}$. If rank $D = 2\gamma + \tau - 1$, then $z_{s-2\gamma}$ must be in $W \cap (\mathscr{R} \mathscr{S}[D])^* - \mathscr{R} \mathscr{S}[D]$. Since u is not in $\mathscr{R} \mathscr{S}[D]$, u is not in $\mathscr{R} \mathscr{S}[M]$ if and only if $z_{s-2\gamma}$ is not in $\mathscr{R} \mathscr{S}$ col $[D, u] - \mathscr{R} \mathscr{S}[D]$. Hence, it is necessary and sufficient that $z_{s-2\gamma}$ be in $T - (S \cap T)$, where $T = (W \cap (\mathscr{R} \mathscr{S}[D])^*) - \mathscr{R} \mathscr{S}[D]$ and $S = \mathscr{R} \mathscr{S} \operatorname{col}[D, u] - \mathscr{R} \mathscr{S}[D]$. Since u is not in $\mathscr{R} \mathscr{S}[D]$,

dim $(W \cap (\mathscr{R} \mathscr{S}[D])^*) = (n-1) + [n - (2\gamma + \tau - 1)] - n = n - 2\gamma - \tau$. Further, $W \cap (\mathscr{R} \mathscr{S}[D])^* \cap \mathscr{R} \mathscr{S}[D] = \mathscr{R} \mathscr{S}[Z_1]$, a subspace of dimension $\tau - 1$. Thus, $|T| = q^{n-2\gamma-\tau} - q^{\tau-1}$. Next,

$$T \cap S = (W \cap (\mathscr{R}\mathscr{S}[D])^* \cap \mathscr{R}\mathscr{S} \operatorname{col} [D, u]) - \mathscr{R}\mathscr{S}[D].$$

Suppose v is in $W \cap (\mathscr{R} \mathscr{S}[D])^* \cap \mathscr{R} \mathscr{S}$ col [D, u]. Then

$$v = \sum_{i=1}^{\gamma} a_i x_i + \sum_{i=1}^{\gamma} b_i y_i + \sum_{i=1}^{s-1-2\gamma} c_i z_i + du,$$

for scalars a_i , b_i , c_i , and d in GF(q). Since x_j and y_j are isotropic, for $j = 1, 2, \ldots, \gamma, f(u, x_j) = f(u, y_j) = 0, j = 1, 2, \ldots, \gamma$. Thus, $0 = f(v, x_j) = b_j$ and $0 = f(v, y_j) = a_j$, for $j = 1, 2, \ldots, \gamma$. Hence,

$$v = \sum_{i=1}^{s-1-2\gamma} c_i z_i + du.$$

Moreover, since n is even,

$$\langle z_1,\ldots,z_{s-1-2\gamma},u\rangle \subseteq W \cap (\mathscr{R}\mathscr{S}[D])^* \cap \mathscr{R}\mathscr{S} \operatorname{col}[D,u].$$

Since dim $\mathscr{R}\mathscr{S}[Z_1] = \tau - 1$ and u is not in $\mathscr{R}\mathscr{S}[Z_1]$, dim $\langle z_1, \ldots, z_{s-1-2\gamma}, u \rangle$ = τ and, therefore, $|W \cap (\mathscr{R}\mathscr{S}[D])^* \cap \mathscr{R}\mathscr{S}$ col $[D, u]| = q^{\tau}$. Also, since $W \cap (\mathscr{R}\mathscr{S}[D])^* \cap \mathscr{R}\mathscr{S}$ col $[D, u] = \langle z_1, \ldots, z_{s-1-2\gamma}, u \rangle$, $W \cap (\mathscr{R}\mathscr{S}[D])^* \cap$ $\mathscr{R}\mathscr{S}$ col $[D, u] \cap \mathscr{R}\mathscr{S}[D] = \mathscr{R}\mathscr{S}[Z_1]$. Consequently, $|T \cap S| = q^{\tau} - q^{\tau-1}$. Since $|T| = q^{n-2\gamma-\tau} - q^{\tau-1}$, it follows that $R(2\gamma, n, s, \tau) = q^{n-2\gamma-\tau} - q^{\tau}$. The difference equation in (4.6) becomes

(4.7)
$$J_2(2\gamma, n, s, \tau) = q^{\tau} J_2(2\gamma, n, s - 1, \tau) + (q^{n-2\gamma-\tau} - q^{\tau}) \\ \times J_2(2\gamma, n, s - 1, \tau - 1), \quad (n \text{ even}),$$

with initial conditions $J_2(2\gamma, n, s, 0) = 1$, for $s \ge 2\gamma$, and $J_2(2\gamma, n, s, \tau) = 0$, for $\tau \ne 0$. It is easily seen that the solution to the recurrence in (4.7) is given by

(4.8)
$$J_2(2\gamma, n, s, \tau) = \begin{bmatrix} s - 2\gamma \\ \tau \end{bmatrix} \prod_{j=1}^{\tau} (q^{n-2\gamma-j} - q^j), \quad (n \text{ even}).$$

Next, suppose $u ext{ is in } \mathcal{R} \mathcal{S}[M]$. We seek expressions $B(2\gamma, n, s, \tau), C(2\gamma, n, s, \tau), E(2\gamma, n, s, \tau)$, and $F(2\gamma, n, s, \tau)$ such that

$$(4.9) \quad J_1(2\gamma, n, s, \tau) = B(2\gamma, n, s, \tau)J_1(2\gamma, n, s - 1, \tau) + C(2\gamma, n, s, \tau)J_1(2\gamma, n, s - 1, \tau - 1) + E(2\gamma, n, s, \tau)J_2(2\gamma, n, s - 1, \tau) + F(2\gamma, n, s, \tau)J_2(2\gamma, n, s - 1, \tau - 1).$$

Suppose D has rank $2\gamma + \tau$ and u is in $\mathscr{R}\mathscr{S}[D]$. Then, $z_{s-2\gamma}$ must be in $W \cap (\mathscr{R}\mathscr{S}[D])^* \cap \mathscr{R}\mathscr{S}[D] = \mathscr{R}\mathscr{S}[Z_1]$, a subspace of dimension τ . Thus, $B(2\gamma, n, s, \tau) = q^{\tau}$. Suppose D has rank $2\gamma + \tau - 1$ and u is in $\mathscr{R}\mathscr{S}[D]$. Then, $z_{s-2\gamma}$ must be in $W \cap (\mathscr{R}\mathscr{S}[D])^* - \mathscr{R}\mathscr{S}[D]$. Since u is in $\mathscr{R}\mathscr{S}[D]$, $(\mathscr{R}\mathscr{S}[D])^* \subseteq W$ and, thus, $W \cap (\mathscr{R}\mathscr{S}[D])^* - \mathscr{R}\mathscr{S}[D] = (\mathscr{R}\mathscr{S}[D])^* - \mathscr{R}\mathscr{S}[Z_1]$. It follows that $C(2\gamma, n, s, \tau) = q^{n-2\gamma-\tau+1} - q^{\tau-1}$. If D has rank $2\gamma + \tau$ and u is not in $\mathscr{R}\mathscr{S}[D]$, then for any $z_{s-2\gamma}$ in $\mathscr{R}\mathscr{S}[D]$, u is not in $\mathscr{R}\mathscr{S}[M]$. Therefore, $E(2\gamma, n, s, \tau) = 0$. Finally, suppose rank $D = 2\gamma + \tau - 1$ and u is not in $\mathscr{R}\mathscr{S}[M]$. Then, $z_{s-2\gamma}$ must be in

$$(W \cap (\mathscr{R} \mathscr{S}[D])^* \cap \mathscr{R} \mathscr{S} \operatorname{col} [D, u]) - \mathscr{R} \mathscr{S}[D] = \langle z_1, \ldots, z_{s-1-2\gamma}, u \rangle - \mathscr{R} \mathscr{S}[Z_1].$$

Hence, $F(2\gamma, n, s, \tau) = q^{\tau} - q^{\tau-1}$. The difference equation in (4.9) becomes

$$(4.10) \quad J_1(2\gamma, n, s, \tau) = q^{\tau} J_1(2\gamma, n, s - 1, \tau) \\ + (q^{n-2\gamma-\tau+1} - q^{\tau-1}) J_1(2\gamma, n, s - 1, \tau - 1) \\ + (q^{\tau} - q^{\tau-1}) J_2(2\gamma, n, s - 1, \tau - 1), \quad (n \text{ even}),$$

with initial condition $J_1(2\gamma, n, s, 0) = 0$, for all s, and $J_1(2\gamma, n, 2\gamma, \tau) = 0$, for all τ . This initial condition follows immediately from Theorem 3.2 and from the definition of $J_1(2\gamma, n, s, \delta)$. From (4.5), (4.7), and (4.10), a difference equation in $\Phi(2\gamma, n, s, \tau)$ is obtained, namely,

(4.11)
$$\Phi(2\gamma, n, s, \tau) = q^{\tau} \Phi(2\gamma, n, s - 1, \tau) + (q^{n-2\gamma-\tau+1} - q^{\tau-1}) \Phi(2\gamma, n, s - 1, \tau - 1) - q^{n-2\gamma-\tau}(q - 1) J_2(2\gamma, n, s - 1, \tau - 1), \quad (n \text{ even}),$$

with initial condition $\Phi(2\gamma, n, s, 0) = 1$, for $s \ge 2\gamma$, and $\Phi(2\gamma, n, 2\gamma, \tau) = 0$, for $\tau \ne 0$, where $J_2(2\gamma, n, s - 1, \tau - 1)$ is given in (4.8). It is easily seen that the solution to the recurrence in (4.11) is given by

(4.12)
$$\Phi(2\gamma, n, s, \tau) = \begin{bmatrix} s - 2\gamma \\ \tau \end{bmatrix}$$
$$\times \left\{ (q^{\tau} - 1) \prod_{i=1}^{\tau-1} (q^{n-2\gamma-i} - q^i) + \prod_{i=1}^{\tau} (q^{n-2\gamma-i} - q^i) \right\}, \quad (n \text{ even}).$$

Combining (4.2), (4.4), and (4.12), we obtain the number $N(I_n, G_{\gamma}, n, s, 2\gamma + \tau)$.

THEOREM 4.1. Let A be an $n \times n$ symmetric, nonalternate matrix of full rank over GF(q), and let C be an $s \times s$ alternate matrix of rank 2γ over GF(q). The number of $s \times n$ matrices X of rank $2\gamma + \tau$ over GF(q) such that $XAX^{T} = C$ is $N(A, C, n, s, 2\gamma + \tau) = N(I_n, F_\gamma, n, 2\gamma) \Phi(2\gamma, n, s, \tau)$, where $N(I_n, F_\gamma, n, 2\gamma)$ is given in Theorem 3.3 and $\Phi(2\gamma, n, s, \tau)$ is given in (4.4) in case n is odd, and in (4.12) in case n is even.

Suppose A is an $n \times n$ symmetric, nonalternate matrix of rank ρ over GF(q) and C is an $s \times s$ alternate matrix of rank 2γ over GF(q). By Theorem

2.2, Theorem 2.3, and Lemma 2.1, $N(A, C, n, s, r) = N(R_{\rho}, G_{\gamma}, n, s, r)$, $0 \leq r \leq \min(s, n)$, where R_{ρ} is the $n \times n$ matrix

$$\begin{bmatrix} I_{\rho} & 0 \\ 0 & 0 \end{bmatrix}$$

over GF(q). If $X = [X_1X_2]$ is any $s \times n$ matrix of rank r over GF(q) such that $XR_{\rho}X^T = G_{\gamma}$, where X_1 is $s \times \rho$ and X_2 is $s \times (n - \rho)$, then

(4.13)
$$[X_1X_2] \begin{bmatrix} I_{\rho} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1^T\\ X_2^T \end{bmatrix} = X_1X_1^T = G_{\gamma}.$$

Further, rank X = r implies rank $X_1 \ge r - (n - \rho)$. For any τ , max $(r - n + \rho - 2\gamma, 0) \le \tau \le \min [\min (s, \rho) - 2\gamma, r - 2\gamma]$, the number $N(I_{\rho}, G_{\gamma}, \rho, s, 2\gamma + \tau)$ of $s \times \rho$ matrices X_1 of rank $2\gamma + \tau$ over GF(q) such that $X_1X_1^T = G_{\gamma}$ is given in Theorem 4.1. Consider any such matrix X_1 . By (4.13), any $s \times (n - \rho)$ matrix X_2 such that $X = [X_1X_2]$ has rank r yields $XR_{\rho}X^T = G_{\gamma}$. The number of such matrices X_2 is the number $L(s, \rho, n, 2\gamma + \tau, r)$, given in Lemma 2.2. Thus, we have determined the number N(A, C, n, s, r) = $N(R_{\rho}, G_{\gamma}, n, s, r)$, in case rank $A = \rho \le n$.

THEOREM 4.2. Suppose A is an $n \times n$ symmetric, nonalternate matrix of rank ρ over GF(q) and C is an $s \times s$ alternate matrix of rank 2γ over GF(q). The number of $s \times n$ matrices X of rank $r, 2\gamma \leq r \leq \min(s, n)$, over GF(q) such that $XAX^{T} = C$ is given by

$$N(A, C, n, s, r) = \sum_{\tau=h(r,n,\rho,\gamma)}^{d(s,\rho,\gamma,\tau)} N(I_{\rho}, G_{\gamma}, \rho, s, 2\gamma + \tau) \cdot L(s, \rho, n, 2\gamma + \tau, r).$$

where $N(I_{\rho}, G_{\gamma}, \rho, s, 2\gamma + \tau)$ is given in Theorem 4.1, $L(s, \rho, n, 2\gamma + \tau, r)$ is given in Lemma 2.2, where $h(r, n, \rho, \gamma) = \max(r - n + \rho - 2\gamma, 0)$, and where $d(s, \rho, \gamma, r) = \min[\min(s, \rho) - 2\gamma, r - 2\gamma]$.

References

- 1. A. A. Albert, Symmetric and alternate matrices in an arbitrary field. I, Trans. Amer. Math. Soc. 43 (1938), 386–436.
- 2. J. Brawley and L. Carlitz, *Enumeration of matrices with prescribed row and column sums*, Linear Algebra and Appl. (to appear).
- **3.** P. Buckhiester, Gauss sums and the number of solutions to the matrix equation $XAX^T = 0$ over $GF(2^y)$, Acta Arith. 23 (1973), 271–278.
- 4. ——— Rank r solutions to the matrix equation $XAX^T = C$, A alternate, over $GF(2^y)$, Trans. Amer. Math. Soc. (to appear).
- 5. ——— Rank r solutions to the matrix equation $XAX^{T} = C$, A and C nonalternate, over $GF(2^{y})$, Math. Nachr. (to appear).
- 6. L. Carlitz, Representations by quadratic forms in a finite field, Duke Math. J. 21 (1954), 123-137.
- 7. ——— The number of solutions of certain matric equations over a finite field, Math. Nachr. (to appear).

PHILIP G. BUCKHIESTER

- 8. Dai Zong-duo (Tai Tsung-Tuo), On transitivity of subspaces in orthogonal geometry over fields of characteristic 2, Chinese Math. Acta. 16 (1966), 569-584.
- 9. J. H. Hodges, A symmetric matrix equation over a finite field, Math. Nachr. 30 (1965), 221-228.
- 10. J. C. Perkins, Rank r solutions to the matrix equation $XX^T = 0$ over a field of characteristic two, Math. Nachr. 48 (1971), 69-76.

Clemson University,

Clemson, South Carolina

90