RANK r SOLUTIONS TO THE MATRIX EQUATION $X A X^{T}=C, A$ NONALTERNATE, C ALTERNATE, OVER $G F\left(2^{y}\right)$.

PHILIP G. BUCKHIESTER

1. Introduction. Let $G F(q)$ denote a finite field of order $q=p^{y}, p$ a prime. Let A and C be symmetric matrices of order n, rank m and order s, rank k, respectively, over $G F(q)$. Carlitz [6] has determined the number $N(A, C, n, s)$ of solutions X over $G F(q)$, for p an odd prime, to the matrix equation

$$
\begin{equation*}
X A X^{T}=C \tag{1.1}
\end{equation*}
$$

where $n=m$. Furthermore, Hodges [9] has determined the number $N(A, C, n, s, r)$ of $s \times n$ matrices X of rank r over $G F(q), p$ an odd prime, which satisfy (1.1). Perkin [10] has enumerated the $s \times n$ matrices of given rank r over $G F(q), q=2^{y}$, such that $X X^{T}=0$. Finally, the author [3] has determined the number of solutions to (1.1) in case $C=0$, where $q=2^{y}$.

An $n \times n$ symmetric matrix over $G F\left(2^{y}\right)$ is said to be an alternate matrix if A has 0 diagonal. Otherwise, A is said to be nonalternate. The author $[4 ; 5]$ has determined the number $N(A, C, n, s, r)$ of $s \times n$ matrices X of rank r over $G F(q), q=2^{y}$, which satisfy (1.1), in case A is an alternate matrix over $G F(q)$ and in case both A and C are symmetric, nonalternate matrices over $G F(q)$.

The purpose of this paper is to determine the number $N(A, C, n, s, r)$, in case A is a symmetric, nonalternate matrix over $G F\left(2^{y}\right)$ and C is an alternate matrix over $G F\left(2^{y}\right)$. In determining this number, Albert's canonical forms for symmetric matrices over fields of characteristic two are used [1]. These forms and other necessary preliminaries appear in Section 2. In Section 3, the number $N(A, C, n, s)$ is found, in case both A and C are nonsingular. Finally, in Section 4, the number $N(A, C, n, s, r), 0 \leqq r \leqq \min (s, n)$, is determined.

The difference equations obtained in Section 4 were solved by using methods due to Carlitz [7].

Throughout the remainder of this paper, $G F(q)$ will denote a finite field of order $q=2^{y}$ and V_{n} will denote an n-dimensional vector space over $G F(q)$. Further, for any matrix M over $G F(q), \mathscr{R} \mathscr{S}[M]$ will denote the row space of M.

For matrices $X_{1}, X_{2}, \ldots, X_{k}$, where X_{i} is $m_{i} \times n$, col $\left[X_{1}, \quad X_{2}, \ldots, X_{k}\right]$

[^0]will denote the $\left(m_{1}+m_{2}+\ldots+m_{k}\right) \times n$ matrix
\[

\left[$$
\begin{array}{c}
X_{1} \\
X_{2} \\
\cdot \\
\cdot \\
\cdot \\
X_{k}
\end{array}
$$\right] .
\]

2. Notation and preliminaries. Let f be a symmetric bilinear form defined on $V_{n} \times V_{n}$. For any subspace E of V_{n}, define

$$
E^{*}=\left\{x \in V_{n} \mid f(x, y)=0 \text { for all } y \text { in } E\right\}
$$

Clearly, E^{*} is a subspace of V_{n}. If $V_{n}{ }^{*}=\{0\}$, then f is said to be nondegenerate. A vector x in V_{n} such that $f(x, x)=0$ is said to be an isotropic vector. If every x in V_{n} is isotropic, then f is said to be an alternating bilinear form. Otherwise, f is called nonalternating.

The following theorem, which appears in [8], will be needed in Sections 3 and 4.

Theorem 2.1. If E is a subspace of V_{n}, then $\operatorname{dim} E^{*}=n-\operatorname{dim} E+\operatorname{dim}$ $\left(E \cap V_{n}{ }^{*}\right)$.

From this theorem, it follows that if f is nondegenerate, then $\operatorname{dim} E+\operatorname{dim}$ $E^{*}=n$, for any subspace E of V_{n}.

Let I_{k} denote the $k \times k$ identity matrix over $G F(q)$. Albert [1] has proved the following theorems concerning symmetric matrices over $G F(q)$.

Theorem 2.2. Let C be an $s \times s$ alternate matrix over $G F(q)$. If C is nonsingular, then there is a nonsingular matrix P such that

$$
P C P^{T}=\left[\begin{array}{ll}
0 & \mathrm{I}_{\gamma} \\
I_{\gamma} & 0
\end{array}\right], \quad(\mathrm{s}=2 \gamma) .
$$

If C has rank $k<s$, then there is a nonsingular matrix Q such that

$$
Q C Q^{T}=\left[\begin{array}{lll}
0 & I_{\gamma} & 0 \\
I_{\gamma} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad(k=2 \gamma)
$$

Theorem 2.3. Let A be an $n \times n$ symmetric, nonalternate matrix over $G F(q)$. If A is nonsingular, then there is a nonsingular matrix P such that $P A P^{T}=I_{n}$. If A has rank $k<n$, then there is a nonsingular matrix Q such that

$$
Q A Q^{T}=\left[\begin{array}{ll}
I_{k} & 0 \\
0 & 0
\end{array}\right] .
$$

The following lemma, which appears in [4], will be needed in Sections 3 and 4.

Lemma 2.1. Let A and C be symmetric matrices of orders n and s, respectively, over $G F(q)$. If there exist nonsingular matrices P and Q such that $P A P^{T}=B$ and $Q C Q^{T}=D$, then $N(A, C, n, s)=N(B, D, n, s)$. Furthermore, $N(A, C, n, s, r)$ $=N(B, D, n, s, r), 0 \leqq r \leqq \min (s, n)$.
For integers n and k, let $\left[\begin{array}{l}n \\ k\end{array}\right]$ denote the q-binomial coefficient defined by

$$
\left[\begin{array}{c}
n \\
0
\end{array}\right]=1 ;\left[\begin{array}{l}
n \\
k
\end{array}\right]=0, k>n ;\left[\begin{array}{l}
n \\
n
\end{array}\right]=1 ;\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{(q)_{n}}{(q)_{k}(q)_{n-k}}, \quad 0<k<n,
$$

where $(q)_{j}=(q-1) \ldots\left(q^{j}-1\right), j>0$. Brawley and Carlitz $[2]$ have proved the following lemma.

Lemma 2.2. Let X be an $s \times t$ matrix of rank r over $G F(q)$. The number of $s \times m$ matrices $[X, Y]$ of rank $r+\gamma$ over $G F(q)$ is given by

$$
L(s, t, m, r, r+\gamma)=\left[\begin{array}{c}
m-t \\
\gamma
\end{array}\right] q^{\tau(m-t-\gamma)} \prod_{i=0}^{\gamma-1}\left(q^{s}-q^{\tau+i}\right) .
$$

Let f be the bilinear form defined on $V_{n} \times V_{n}$ by $f(\xi, \eta)=\xi \eta^{T}$, for all ξ, η in V_{n}. It is immediate that f is a nondegenerate, nonalternating bilinear form. Let W denote the set of all isotropic vectors in V_{n}. Then W is a subspace of V_{n} and, further, $x=\left(x_{1}, \ldots, x_{n}\right)$ is in W if and only if

$$
f(x, x)=x x^{T}=\sum_{i=1}^{n} x_{i}{ }^{2}=\left(\sum_{i=1}^{n} x_{i}\right)^{2}=0 .
$$

Thus, W consists of all vectors x such that $\sum_{i=1}^{n} x_{i}=0$. Consequently, W is an ($n-1$)-dimensional subspace of V_{n}. Let u denote the vector $(1,1, \ldots, 1$) in V_{n}. Perkins [10] has proved the following theorem.

Theorem 2.4. Let X be an $s \times n$ matrix over $G F(q)$. Then $(\mathscr{R} \mathscr{S}[X])^{*} \subseteq W$ if and only if u is in $\mathscr{R} \mathscr{S}[X]$.

Let $M\left(I_{n}, 0, n, s, s\right)$ denote the number of $s \times n$ matrices X of rank s over $G F(q)$ such that $X X^{T}=0$ and u is not in $\mathscr{R} \mathscr{S}[X]$. In determining the number $N\left(I_{n}, 0, n, s, s\right)$, Perkins [10] has determined $M\left(I_{n}, 0, n, s, s\right)$.

Theorem 2.5. The number of $s \times n$ matrices X of ranks over $G F(q)$ such that $X X^{T}=0$ and such that u is not in $\mathscr{R} \mathscr{S}[X]$ is given by

$$
M\left(I_{n}, 0, n, s, s\right)=\left\{\begin{array}{l}
\prod_{i=1}^{s}\left(q^{n-i}-q^{i-1}\right), \quad(n \text { odd }) \\
\prod_{i=1}^{s}\left(q^{n-i}-q^{i}\right), \quad(n \text { even })
\end{array}\right.
$$

3. Determination of $N(A, C, n, s), A$ and C nonsingular. Let A be an $n \times n$ symmetric, nonalternate matrix of full rank over $G F(q)$ and let C be an
$s \times s$ alternate matrix of full rank over $G F(q)$. By Theorems 2.2 and 2.3, there exist nonsingular matrices P and Q such that $P A P^{T}=I_{n}$ and $Q C Q^{T}=F_{\gamma}$, $s=2 \gamma$, where F_{γ} denotes the $2 \gamma \times 2 \gamma$ matrix

$$
\left[\begin{array}{ll}
0 & I_{\gamma} \\
I_{\gamma} & 0
\end{array}\right]
$$

over $G F(q)$. By Lemma 2.1, $N(A, C, n, s)=N\left(I_{n}, F_{\gamma}, n, 2 \gamma\right)$, the number of $2 \gamma \times n$ matrices X such that $X X^{T}=F_{\gamma}$. Thus, it suffices to find $N\left(I_{n}, F_{\gamma}, n, 2 \gamma\right)$. Let f be the nonalternate, nondegenerate bilinear form on $V_{n} \times V_{n}$ defined by $f(\xi, \eta)=\xi I_{n} \eta^{T}=\xi \eta^{T}$, for each ξ, η in V_{n}. Let W be the ($n-1$)-dimensional subspace of V_{n} consisting of all isotropic vectors in V_{n}. Let $Z=\operatorname{col}[X, Y]$ be an $s \times n$ matrix over $G F(q)$ such that $Z Z^{T}=F_{\gamma}, s=2 \gamma$, where each of X and Y is $\gamma \times n$. Then, rank $Z=2 \gamma$ and, therefore, rank $X=\gamma$. Furthermore

$$
\left[\begin{array}{l}
X \tag{3.1}\\
Y
\end{array}\right]\left[X^{T} Y^{T}\right]=\left[\begin{array}{ll}
X X^{T} & X Y^{T} \\
Y X^{T} & Y Y^{T}
\end{array}\right]=\left[\begin{array}{ll}
0 & I_{\gamma} \\
I_{\gamma} & 0
\end{array}\right] .
$$

Let $X=\left[x_{1}, \ldots, x_{\gamma}\right]^{T}$ and $Y=\left[y_{1}, \ldots, y_{\gamma}\right]^{T}$. From (3.1), it follows that $f\left(x_{i}, x_{j}\right)=f\left(y_{i}, y_{j}\right)=0$ and $f\left(x_{i}, y_{j}\right)=\delta_{i j}$, for $i, j=1,2, \ldots, \gamma$. Thus $\mathscr{R} \mathscr{S}[X] \subseteq W$. If n is odd, then $f(u, u)=u u^{T}=1$. Then u is not in W and, therefore, not in $\mathscr{R} \mathscr{S}[X]$. If n is even, then $f(u, u)=0$, and u is an isotropic vector. However, u is not in $\mathscr{R} \mathscr{S}[X]$, as the following theorem shows.

Theorem 3.1. Suppose $Z=\operatorname{col}[X, Y]$ is a $2 \gamma \times n$ matrix over $G F(q)$ such that $Z Z^{T}=F_{\gamma}$, where each of X and Y is $\gamma \times n$. Then $u=(1,1, \ldots, 1)$ is not in $\mathscr{R} \mathscr{S}[X]$.

Proof. The proof of the theorem is given above in case n is odd. Suppose n is even and u is in $\mathscr{R} \mathscr{S}[X]$. Since rank $X=\gamma, u$ may be represented uniquely as a linear combination of precisely k rows of X, for some $k, 1 \leqq k \leqq \gamma$, say $u=\lambda_{1} x_{i_{1}}+\ldots+\lambda_{k} x_{i_{k}}, \lambda_{j} \neq 0$, for each $j=1,2, \ldots, k$. Let

$$
S=\left\langle x_{1}, \ldots, x_{i_{1}-1}, x_{i_{1}+1} \ldots, x_{\gamma}\right\rangle
$$

Since $f\left(x_{i_{1}}, y_{i_{1}}\right)=1, f\left(x_{j}, y_{i_{1}}\right)=0$, for $j \neq i_{1}$, and $f\left(y_{j}, y_{i_{1}}\right)=0$, for $j=1$, $2, \ldots, \gamma$, it follows that $y_{i_{1}}$ must be in $W \cap\left(S^{*}-(\mathscr{R} \mathscr{S}[X])^{*}\right)=\left(W \cap S^{*}\right)$ $-(\mathscr{R} \mathscr{S}[X])^{*}$. Since u is in $\mathscr{R} \mathscr{S}[X]$, Theorem 2.4 implies that $(\mathscr{R} \mathscr{S}[X])^{*} \subseteq$ W. Since $S \subseteq \mathscr{R} \mathscr{S}[X],(\mathscr{R} \mathscr{S}[X])^{*} \subseteq S^{*}$. Thus $(\mathscr{R} \mathscr{S}[X])^{*} \subseteq W \cap S^{*}$. By Theorem 2.1, $\operatorname{dim}(\mathscr{R} \mathscr{S}[X]) *=n-\gamma$. Further, since

$$
u=\sum_{j=1}^{k} \lambda_{j} x_{i_{j}}, \lambda_{j} \neq 0, \text { for each } \jmath=1,2, \ldots \gamma
$$

u is not in S. By Theorem 2.4, S^{*} is not a subspace of W. Therefore, dim $\left(W+S^{*}\right)=n$. Furthermore, by Theorem 2.1, $\operatorname{dim} S^{*}=n-\operatorname{dim} S=$ $n-(\gamma-1)$. Hence,
$\operatorname{dim}\left(W \cap S^{*}\right)=\operatorname{dim} W+\operatorname{dim} S^{*}-\operatorname{dim}\left(W+S^{*}\right)=$

$$
(n-1)+[n-(\gamma-1)]-n=n-\gamma=\operatorname{dim}(\mathscr{R} \mathscr{S}[X])^{*} .
$$

Thus, $W \cap S^{*}=(\mathscr{R} \mathscr{S}[X])^{*}$ and, therefore, there exists no $y_{i_{1}}$ in $\left(W \cap S^{*}\right)-$ $(\mathscr{R} \mathscr{S}[X])^{*}$. It follows that u is not in $\mathscr{R} \mathscr{S}[X]$.

By (3.1) and Theorem 3.1, if $Z=\operatorname{col}[X, Y]$ is such that $Z Z^{T}=F_{\gamma}$, then the $\gamma \times n$ matrix X of rank γ is such that $X X^{T}=0$ and such that u is not in $\mathscr{R} \mathscr{S}[X]$. The number of such matrices X is the number $M\left(I_{n}, 0, n, \gamma, \gamma\right)$, as given in Theorem 2.5. Given a $\gamma \times n$ matrix X of rank γ over $G F(q)$ such that $X X^{T}=0$ and u is not in $\mathscr{R} \mathscr{S}[X]$, we seek the number of $\gamma \times n$ matrices Y over $G F(q)$ such that $X Y^{T}=I_{\gamma}$ and $Y Y^{T}=0$. In the argument given below it is shown that this number depends only on γ and n. Consequently, if we denote this number by $K(\gamma, n)$, it follows that

$$
\begin{equation*}
N\left(I_{n}, F_{\gamma}, n, 2 \gamma\right)=K(\gamma, n) M\left(I_{n}, 0, n, \gamma, \gamma\right) \tag{3.2}
\end{equation*}
$$

Thus, it suffices to determine the number $K(\gamma, n)$. Consider any $2 \gamma \times n$ matrix $Z=\operatorname{col}[X, Y]$ such that $Z Z^{T}=F_{\gamma}$. By (3.1), $\mathscr{R} \mathscr{S}[Z] \subseteq W$. Hence, as before, if n is odd u is not in W and, therefore, not in $\mathscr{R} \mathscr{S}[Z]$. The following theorem shows that this is also the case if n is even.

Theorem 3.2. If Z is a $2 \gamma \times n$ matrix over $G F(q)$ such that $Z Z^{T}=F_{\gamma}$, where each of X and Y is $\gamma \times n$, then $u=(1,1, \ldots, 1)$ is not in $\mathscr{R} \mathscr{S}[Z]$.

Proof. The proof of the theorem is given above in case n is odd. Suppose n is even and let $Z=\operatorname{col}[X, Y]$, where each of X and Y is $\gamma \times n$. By Theorem 3.1, u is not in $\mathscr{R} \mathscr{S}[X]$. Suppose u is in $\mathscr{R} \mathscr{S}$ col [X, $\left.y_{1}\right]$. Since u is not in $\mathscr{R} \mathscr{S}[X], y_{1}$ is in $\mathscr{R} \mathscr{S} \operatorname{col}[X, u]$. If $v=\left(v_{1}, \ldots, v_{n}\right)$ is any isotropic vector in V_{n}, then

$$
0=f(v, v)=v v^{T}=\sum_{i=1}^{n} v_{i}^{2}=\left(\sum_{i=1}^{n} v_{i}\right)^{2},
$$

which implies $f(u, v)=u v^{T}=\sum_{i=1}^{n} v_{i}=0$. Thus, if v is an isotropic vector in V_{n}, then u is in $\langle v\rangle^{*}$. It follows that $\mathscr{R} \mathscr{S} \operatorname{col}[X, u] \subseteq\left\langle x_{1}\right\rangle^{*}$. Thus y_{1} is in $\left\langle x_{1}\right\rangle^{*}$ and $f\left(x_{1}, y_{1}\right)=0$. Since $f\left(x_{1}, y_{1}\right)=1$, it follows that u is not in $\mathscr{R} \mathscr{S}$ $\operatorname{col}\left[X, y_{1}\right]$. Suppose u is not in $\mathscr{R} \mathscr{S} \operatorname{col}\left[X, y_{1}, \ldots, y_{k}\right]$, where $1 \leqq k<\gamma$ and u is in $\mathscr{R} \mathscr{S} \operatorname{col}\left[X, y_{1}, \ldots, y_{k+1}\right]$. Then y_{k+1} is in

$$
\mathscr{R} \mathscr{S}\left[\begin{array}{c}
X \\
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{k} \\
u
\end{array}\right] \subseteq\left\langle x_{k+1}\right\rangle^{*},
$$

an impossibility since $f\left(x_{k+1}, y_{k+1}\right)=1$. Hence, u is not in

$$
\mathscr{R} \mathscr{S} \operatorname{col}\left[X, y_{1}, \ldots, y_{k+1}\right]
$$

and the proof is complete.

We proceed to determine the number $K(\gamma, n)$. Let $X=\left[x_{1}, \ldots, x_{\gamma}\right]^{T}$ be a $\gamma \times n$ matrix of rank γ over $G F(q)$ such that $X X^{T}=0$ and u is not in $\mathscr{R} \mathscr{S}$ $[X]$. In order to choose a $\gamma \times n$ matrix $Y=\left[y_{1}, \ldots, y_{\gamma}\right]^{T}$ such that $X Y^{T}=I_{\gamma}$ and $Y Y^{T}=0, y_{1}$ must be chosen from

$$
=\left(W \cap\left(\mathscr{R} \mathscr{S}\left[\begin{array}{c}
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{\gamma}
\end{array}\right]\right) *\right)-(\mathscr{R} \mathscr{S}[X])^{*} .
$$

Let $T=W \cap\left(\mathscr{R} \mathscr{S} \operatorname{col}\left[x_{2}, \ldots, x_{\gamma}\right]\right)^{*}$ and let $S=T \cap(\mathscr{R} \mathscr{S}[X])^{*}=$ $W \cap(\mathscr{R} \mathscr{S}[X]) *$. Then y_{1} must be chosen in $T-S$. Since u is not in $\mathscr{R} \mathscr{S}[X]$, Theorem 2.4 implies that neither $(\mathscr{R} \mathscr{S}[X])^{*}$ nor $\left(\mathscr{R} \mathscr{S} \operatorname{col}\left[x_{2}, \ldots, x_{\gamma}\right]\right)^{*}$ is a subspace of W. Applying Theorem 2.1, we obtain $\operatorname{dim} \mathrm{S}=\operatorname{dim} W+\operatorname{dim}$ $(\mathscr{R} \mathscr{S}[X])^{*}-\operatorname{dim}\left(W+(\mathscr{R} \mathscr{S}[X])^{*}\right)=(n-1)+[n-\gamma]-n=n-\gamma$ -1 and $\operatorname{dim} T=(n-1)+[n-(\gamma-1)]-n=n-\gamma$. Thus, $\operatorname{dim} T / S=$ 1. Define the mapping \bar{f} from T / S into $G F(q)$ by $\bar{f}(z+S)=f\left(z, x_{1}\right)$ for each coset $z+S$ in T / S. Let z_{0} be such that $T / S=\left\langle z_{0}+S\right\rangle$. Then z_{0} is in $T-S$ and, therefore, $\bar{f}\left(z_{0}+S\right)=f\left(z_{0}, x_{1}\right) \neq 0$. It follows that \bar{f} is a one-to-one mapping from T / S onto $G F(q)$. Hence, there exists precisely one coset $z_{1}+S$ in T / S such that $\bar{f}\left(z_{1}+S\right)=1$. For any v in $S, f\left(v, x_{1}\right)=0$ and, thus, $f\left(z_{1}+v, x_{1}\right)=f\left(z_{1}, x_{1}\right)+f\left(v, x_{1}\right)=\bar{f}\left(z_{1}+S\right)=1$. Since y_{1} must be such that $f\left(x_{1}, y_{1}\right)=1$, the number of choices for y_{1} is equal to $\left|z_{1}+S\right|=|S|=$ $q^{n-\gamma-1}$. Suppose $y_{1}, \ldots, y_{k}, k<\gamma$, have been chosen such that the following properties hold:
(i) y_{1}, \ldots, y_{k} are independent vectors in V_{n},
(ii) u is not in $T_{k}=\left\langle x_{1}, \ldots, x_{\gamma}, y_{1}, \ldots, y_{k}\right\rangle$,
(iii) $f\left(x_{i}, y_{j}\right)=\delta_{i j}$ and $f\left(y_{l}, y_{j}\right)=0$, for $i=1,2, \ldots, \gamma$ and $j, l=1,2, \ldots$, k.
Then y_{k+1} must be chosen from $W \cap\left(S_{k}{ }^{*}-\left(T_{k}^{*} \cup T_{k}\right)\right)=\left(W \cap S_{k}{ }^{*}\right)-$ $\left(T_{k}{ }^{*} \cup T_{k}\right)$, where $S_{k}=\left\langle x_{1}, \ldots, x_{k}, x_{k+2}, \ldots, x_{\gamma}, y_{1}, \ldots, y_{k}\right\rangle$. However,

$$
\begin{aligned}
\left(W \cap S_{k}^{*}\right) \cap\left(T_{k}^{*} \cup T_{k}\right) & =\left(W \cap S_{k}^{*} \cap T_{k}^{*}\right) \cup\left(W \cap S_{k}^{*} \cap T_{k}\right) \\
& =\left(W \cap T_{k}^{*}\right) \cup\left(W \cap S_{k}^{*} \cap T_{k}\right) .
\end{aligned}
$$

If z is in $S_{k}{ }^{*} \cap T_{k}$, then

$$
z=\sum_{i=1}^{\gamma} a_{i} x_{i}+\sum_{i=1}^{k} b_{i} y_{i} .
$$

However, $0=f\left(z, y_{j}\right)=a_{j}$ and $0=f\left(z, x_{j}\right)=b_{j}$, for $j=1,2, \ldots, k$. Thus $z=\sum_{i=k+1}^{\gamma} a_{i} x_{i}$. Since x_{i} is in $S_{k}^{*} \cap T_{k}$ for $i=k+1, \ldots, \gamma$, it follows that $S_{k}{ }^{*} \cap T_{k}=\left\langle x_{k+1}, \ldots, x_{\gamma}\right\rangle$. Hence, $W \cap S_{k}{ }^{*} \cap T_{k}=\left\langle x_{k+1}, \ldots, x_{\gamma}\right\rangle \subseteq$ $W \cap T_{k}{ }^{*}$ and, therefore, $\left(W \cap S_{k}{ }^{*}\right)-\left(T_{k}{ }^{*} \cup T_{k}\right)=\left(W \cap S_{k}{ }^{*}\right)-\left(W \cap T_{k}{ }^{*}\right)$. Since u is not in T_{k} and, therefore, not in S_{k}, it follows from Theorems 2.4 and 2.1 that

$$
\operatorname{dim}\left(W \cap S_{k}^{*}\right)=(n-1)+[n-(\gamma-1+k)]-n=n-\gamma-k
$$

and

$$
\operatorname{dim}\left(W \cap T_{k}^{*}\right)=(n-1)+[n-(\gamma+k)]-n=n-\gamma-k-1
$$

Let $J=W \cap S_{k}{ }^{*}$ and $M=W \cap T_{k}{ }^{*}$. Then $\operatorname{dim} J / M=1$. As before, the mapping \bar{f} from J / M into $G F(q)$ defined by $\bar{f}(z+M)=f\left(z, x_{k+1}\right)$ is a one-tomapping onto $G F(q)$. Since y_{k+1} must be such that $f\left(x_{k+1}, y_{k+1}\right)=1$, it follows that the number of choices for y_{k+1} is equal to $|M|=q^{n-\gamma-k-1}$. As in the proof of Theorem 3.2, it can be shown that for any such y_{k+1}, u is not an element of $T_{k+1}=\left\langle x_{1}, \ldots, x_{\gamma}, y_{1}, \ldots, y_{k+1}\right\rangle$. Thus, the inductive argument is complete and it follows that

$$
\begin{equation*}
K(\gamma, n)=\prod_{i=1}^{\gamma} q^{n-\gamma-i} \tag{3.3}
\end{equation*}
$$

Together, (3.2) and (3.3) yield the number $N\left(I_{n}, F_{\gamma}, n, 2 \gamma\right)=N(A, C, n, 2 \gamma)$.
Theorem 3.3. Let A be an $n \times n$ symmetric, nonalternate matrix of full rank over $G F(q)$ and let C be an $s \times s$ alternate matrix of full rank over $G F(q), s=2 \gamma$. Then the number of $s \times n$ matrices X over $G F(q)$ such that $X A X^{T}=C$ is given by

$$
N(A, C, n, s)=\prod_{i=1}^{\gamma}\left(q^{n-\gamma-i}\right) M\left(I_{n}, 0, n, \gamma, \gamma\right)
$$

where $M\left(I_{n}, 0, n, \gamma, \gamma\right)$ is given in Theorem 2.5.
4. Determination of $N(A, C, n, s, r)$. Let A be an $n \times n$ symmetric, nonalternate matrix of full rank over $G F(q)$. Let C be an $s \times s$ alternate matrix of rank $2 \gamma \leqq s$ over $G F(q)$. By Theorem 2.2, Theorem 2.3, and Lemma 2.1, $N(A, C, n, s, r)=N\left(I_{n}, G_{\gamma}, n, s, r\right), 0 \leqq r \leqq \min (s, n)$, where G_{γ} denotes the $s \times s$ matrix

$$
\left[\begin{array}{lll}
0 & I_{\gamma} & 0 \\
I_{\gamma} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

over $G F(q)$. Thus, it suffices to determine the number $N\left(I_{n}, G_{\gamma}, n, s, r\right)$ of $s \times n$ matrices M of rank r such that $M M^{T}=G_{\gamma}$. Let $M=\operatorname{col}\left[X_{1}, Z\right]$ be any such matrix, where X_{1} is $2 \gamma \times n$ and Z is $(s-2 \gamma) \times n$. Then

$$
\left[\begin{array}{l}
X_{1} \tag{4.1}\\
Z
\end{array}\right]\left[X_{1}{ }^{T} Z^{T}\right]=\left[\begin{array}{cc}
X_{1} X_{1}{ }^{T} & X_{1} Z^{T} \\
Z X_{1}{ }^{T} & Z Z^{T}
\end{array}\right]=\left[\begin{array}{cc}
F_{\gamma} & 0 \\
0 & 0
\end{array}\right] .
$$

Thus, the $2 \gamma \times n$ matrix X_{1} must be such that $X_{1} X_{1}{ }^{T}=F_{\gamma}$. The number of such matrices X_{1} is the number $N\left(I_{n}, F_{\gamma}, n, 2 \gamma\right)$, given in Theorem 3.3. Further, since rank $X_{1}=2 \gamma$, rank $M=2 \gamma+\tau$ for some $\tau, 0 \leqq \tau \leqq \min (s, n)-2 \gamma$. Given a $2 \gamma \times n$ matrix X_{1} such that $X_{1} X_{1}{ }^{T}=F_{\gamma}$, the number of $s \times n$ matrices $M=\operatorname{col}\left[X_{1}, Z\right]$ of rank $2 \gamma+\delta$ such that $M M^{T}=G_{\gamma}$ depends only on γ, n, s, and δ. Thus, if we denote this number by $\Phi(2 \gamma, n, s, \delta)$, it follows that

$$
\begin{equation*}
N\left(I_{n}, G_{\gamma}, n, s, 2 \gamma+\tau\right)=N\left(I_{n}, F_{\gamma}, n, 2 \gamma\right) \cdot \Phi(2 \gamma, n, s, \tau) \tag{4.2}
\end{equation*}
$$

Suppose n is odd and let $X_{1}=\operatorname{col}[X, Y]$ be a $2 \gamma \times n$ matrix over $G F(q)$ such that $X_{1} X_{1}{ }^{T}=F_{\gamma}$, where each of $X=\left[x_{1}, \ldots, x_{\gamma}\right]^{T}$ and $Y=\left[y_{1}, \ldots . ., y_{\gamma}\right]^{T}$ is $\gamma \times n$. Then, if f is the nonalternate, nondegenerate bilinear form defined by $f(\xi, \eta)=\xi \eta^{T}$, for all ξ, η in V_{n}, we have $f\left(x_{i}, x_{j}\right)=f\left(y_{i}, y_{j}\right)=0$ and $f\left(x_{i}, y_{j}\right)=$ $\delta_{i j}$, for $i, j=1,2, \ldots, \gamma$. Suppose $M=\operatorname{col}\left[X_{1}, Z\right]$ is an $s \times n$ matrix of rank $2 \gamma+\tau$ over $G F(q)$ such that $M M^{T}=G_{\gamma}$. By (4.1), $\mathscr{R} \mathscr{S}[M] \subseteq W$. Since n is odd, u is not an isotropic vector and, therefore, is not in $\mathscr{R} \mathscr{S}[M]$. Furthermore, if $Z=\operatorname{col}\left[Z_{1}, z_{s-2 \gamma}\right]$, where $Z_{1}=\left[z_{1}, \ldots, z_{s-1-2 \gamma}\right]^{T}$ is $(s-1-2 \gamma) \times n$, then the $(s-1) \times n$ matrix $D=\operatorname{col}\left[X_{1}, Z_{1}\right]$ has rank $2 \gamma+\tau$ or $2 \gamma+\tau-1$ and is such that

$$
D D^{T}=\left[\begin{array}{lll}
0 & I_{\gamma} & 0 \\
I_{\gamma} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Since $M M^{T}=G_{\gamma}$, it is clear that $z_{s-2 \gamma}$ must be in $W \cap(\mathscr{R} \mathscr{S}[D])^{*}$. If rank $D=2 \gamma+\tau$, then $z_{s-2 \gamma}$ is in $W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S}[D]$. If v is in this subspace, then

$$
v=\sum_{i=1}^{\gamma} a_{i} x_{i}+\sum_{i=1}^{\gamma} b_{i} y_{i}+\sum_{i=1}^{s-1-2 \gamma} c_{i} z_{i},
$$

for some a_{i}, b_{i}, c_{i} in $G F(q)$. However, $0=f\left(v, x_{j}\right)=b_{j}$ and $0=f\left(v, y_{j}\right)=a_{j}$, for $j=1,2, \ldots, \gamma$. Hence,

$$
v=\sum_{i=1}^{s-1-2 \gamma} c_{i} z_{i} .
$$

Clearly, $\mathscr{R} \mathscr{S}\left[Z_{1}\right] \subseteq W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S}[D]$. Thus, in order that rank $D=2 \gamma+\tau$, it is necessary and sufficient that $z_{s-2 \gamma}$ be in $\mathscr{R} \mathscr{S}\left[Z_{1}\right]$. Since $\operatorname{dim} \mathscr{R} \mathscr{S}$ col $\left[X_{1}, Z_{1}\right]=2 \gamma+\tau$, it is clear that $\operatorname{dim} \mathscr{R} \mathscr{S}\left[Z_{1}\right] \geqq \tau$. If $\operatorname{dim} \mathscr{R} \mathscr{S}\left[Z_{1}\right]>\tau$, then for some $i, 1 \leqq i \leqq s-1-2 \gamma, z_{i}$ is in

$$
\mathscr{R} \mathscr{S} \operatorname{col}\left[X_{1}, z_{1}, \ldots, z_{i-1}\right]-\left\langle z_{1}, \ldots, z_{i-1}\right\rangle .
$$

But z_{i} is in $\left(\mathscr{R} \mathscr{S} \operatorname{col}\left[X_{1}, z_{1}, \ldots, z_{i-1}\right]\right)^{*}$, whose intersection with

$$
\mathscr{R} \mathscr{S} \operatorname{col}\left[X_{1}, z_{1}, \ldots, z_{i-1}\right] \quad \text { is } \quad\left\langle z_{1}, \ldots, z_{i-1}\right\rangle
$$

Thus $\operatorname{dim} \mathscr{R} \mathscr{S}\left[Z_{1}\right]=\tau$ and the number of choices for $z_{s-2 \gamma}$ is q^{τ}. If rank $D=2 \gamma+\tau-1$, then $z_{s-2 \gamma}$ must be in $W \cap(\mathscr{R} \mathscr{S}[D])^{*}-\mathscr{R} \mathscr{S}[D]$. Since u is not in $\mathscr{R} \mathscr{S}[D]$, it follows from Theorem 2.4 that $(\mathscr{R} \mathscr{S}[D])^{*}$ is not a
subspace of W. Hence,
$\operatorname{dim}\left(W \cap(\mathscr{R} \mathscr{S}[D])^{*}\right)=(n-1)+[n-(2 \gamma+\tau-1)]-n=n-2 \gamma-\tau$.
Furthermore, $W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S}[D]=\mathscr{R} \mathscr{S}\left[Z_{1}\right]$, which, by an argument similar to the one used above, can be shown to be of dimension $\tau-1$. Thus, the number of choices for $z_{s-2 \gamma}$ is $q^{n-2 \gamma-\tau}-q^{\tau-1}$. Hence, we obtain the difference equation

$$
\begin{align*}
\Phi(2 \gamma, n, s, \tau)=q^{\tau} \Phi(2 \gamma, n, s-1, & \tau)+\left(q^{n-2 \gamma-\tau}-q^{\tau-1}\right) \tag{4.3}\\
& \times \Phi(2 \gamma, n, s-1, \tau-1), \quad(n \text { odd })
\end{align*}
$$

with initial condition $\Phi(2 \gamma, n, s, 0)=1$, for $s \geqq 2 \gamma$, and $\Phi(2 \gamma, n, 2 \gamma, \tau)=0$, for $\tau \neq 0$. It is easily seen that the solution to the recurrence in (4.3) is given by

$$
\Phi(2 \gamma, n, s, \tau)=\left[\begin{array}{c}
s-2 \gamma \tag{4.4}\\
\tau
\end{array}\right] \prod_{j=0}^{\tau-1}\left(q^{n-2 \gamma-j-1}-q^{j}\right), \quad(n \text { odd })
$$

where $\left[\begin{array}{c}s-2 \gamma \\ \tau\end{array}\right]$ is the q-binomial coefficient as defined in Section 2.
Suppose n is even and suppose $X_{1}=\operatorname{col}[X, Y]$ is a $2 \gamma \times n$ matrix over $G F(q)$ such that $X_{1} X_{1}{ }^{T}=F_{\gamma}$. Given the matrix X_{1}, let $J_{1}(2 \gamma, n, s, \delta)$ denote the number of $s \times n$ matrices $M=\operatorname{col}\left[X_{1}, Z\right]$ of rank $2 \gamma+\delta$ over $G F(q)$ such that $M M^{T}=G_{\gamma}$ and such that u is in $\mathscr{R} \mathscr{S}[M]$, and let $J_{2}(2 \gamma, n, s, \delta)$ denote the number of $s \times n$ matrices $M=\operatorname{col}\left[X_{1}, Z\right]$ of rank $2 \gamma+\delta$ over $G F(q)$ such that $M M^{T}=G_{\gamma}$ and such that u is not in $\mathscr{R} \mathscr{S}[M]$. The use of this notation is justified below as we show that the numbers J_{1} and J_{2} depend only on γ, n, s, and δ. Furthermore,

$$
\begin{equation*}
\Phi(2 \gamma, n, s, \tau)=J_{1}(2 \gamma, n, s, \tau)+J_{2}(2 \gamma, n, s, \tau), \quad(n \text { even }) \tag{4.5}
\end{equation*}
$$

Let $M=\operatorname{col}\left[X_{1}, Z\right]$ be an $s \times n$ matrix of rank $2 \gamma+\tau$ over $G F(q)$ such that $M M^{T}=G_{\gamma}$. Since n is even, u is isotropic and, therefore, may or may not be in $\mathscr{R} \mathscr{S}[M]$. Let $Z=\operatorname{col}\left[Z_{1}, z_{s-2 \gamma}\right]$, where $Z_{1}=\left[z_{1}, \ldots, z_{s-1-2 \gamma}\right]^{T}$ is $(s-1-2 \gamma) \times n$. Suppose u is not in $\mathscr{R} \mathscr{S}[M]$. Then the $(s-1) \times n$ matrix $D=\operatorname{col}\left[X_{1}, Z_{1}\right]$ has rank $2 \gamma+\tau$ or $2 \gamma+\tau-1$ and is such that u is not in $\mathscr{R} \mathscr{S}[D]$. In order to determine a difference equation in $J_{2}(2 \gamma, n, s, \tau)$, we seek expressions $Q(2 \gamma, n, s, \tau)$ and $R(2 \gamma, n, s, \tau)$ such that

$$
\begin{align*}
J_{2}(2 \gamma, n, s, \tau)=Q(2 \gamma, n, s, \tau) J_{2} & (2 \gamma, n, s-1, \tau)+R(2 \gamma, n, s, \tau) \tag{4.6}\\
& \times J_{2}(2 \gamma, n, s-1, \tau-1), \quad(n \text { even }) .
\end{align*}
$$

If rank $D=2 \gamma+\tau$, then $z_{s-2 \gamma}$ must be in $W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S}[D]=$ $\mathscr{R} \mathscr{S}\left[Z_{1}\right]$, a subspace of dimension τ. Further, since u is not in $\mathscr{R} \mathscr{S}[D]$, any $z_{s-2 \gamma}$ in $\mathscr{R} \mathscr{S}\left[Z_{1}\right]$ will be such that u is not in $\mathscr{R} \mathscr{S}[M]$. Hence, $Q(2 \gamma, n, s, \tau)=$ q^{τ}. If rank $D=2 \gamma+\tau-1$, then $z_{s-2 \gamma}$ must be in $W \cap(\mathscr{R} \mathscr{S}[D])^{*}-\mathscr{R} \mathscr{S}[D]$. Since u is not in $\mathscr{R} \mathscr{S}[D], u$ is not in $\mathscr{R} \mathscr{S}[M]$ if and only if $z_{s-2 \gamma}$ is not in $\mathscr{R} \mathscr{S} \operatorname{col}[D, u]-\mathscr{R} \mathscr{S}[D]$. Hence, it is necessary and sufficient that $z_{s-2 \gamma}$ be
in $T-(S \cap T)$, where $T=\left(W \cap(\mathscr{R} \mathscr{S}[D])^{*}\right)-\mathscr{R} \mathscr{S}[D]$ and $S=$ $\mathscr{R} \mathscr{S} \operatorname{col}[D, u]-\mathscr{R} \mathscr{S}[D]$. Since u is not in $\mathscr{R} \mathscr{S}[D]$,
$\operatorname{dim}\left(W \cap(\mathscr{R} \mathscr{S}[D])^{*}\right)=(n-1)+[n-(2 \gamma+\tau-1)]-n=n-2 \gamma-\tau$.
Further, $W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S}[D]=\mathscr{R} \mathscr{S}\left[Z_{1}\right]$, a subspace of dimension $\tau-1$. Thus, $|T|=q^{n-2 \gamma-\tau}-q^{\tau-1}$. Next,

$$
T \cap S=\left(W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S} \operatorname{col}[D, u]\right)-\mathscr{R} \mathscr{S}[D] .
$$

Suppose v is in $W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S}$ col $[D, u]$. Then

$$
v=\sum_{i=1}^{\gamma} a_{i} x_{i}+\sum_{i=1}^{\gamma} b_{i} y_{i}+\sum_{i=1}^{s-1-2 \gamma} c_{i} z_{i}+d u,
$$

for scalars a_{i}, b_{i}, c_{i}, and d in $G F(q)$. Since x_{j} and y_{j} are isotropic, for $j=1,2, \ldots, \gamma, f\left(u, x_{j}\right)=f\left(u, y_{j}\right)=0, j=1,2, \ldots, \gamma$. Thus, $0=f\left(v, x_{j}\right)=b_{j}$ and $0=f\left(v, y_{j}\right)=a_{j}$, for $j=1,2, \ldots, \gamma$. Hence,

$$
v=\sum_{i=1}^{s-1-2 \gamma} c_{i} z_{i}+d u .
$$

Moreover, since n is even,

$$
\left\langle z_{1}, \ldots, z_{s-1-2 \gamma}, u\right\rangle \subseteq W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S} \operatorname{col}[D, u] .
$$

Since $\operatorname{dim} \mathscr{R} \mathscr{S}\left[Z_{1}\right]=\tau-1$ and u is not in $\mathscr{R} \mathscr{S}\left[Z_{1}\right], \operatorname{dim}\left\langle z_{1}, \ldots, z_{s-1-2 \gamma}, u\right\rangle$ $=\tau$ and, therefore, $\mid W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S}$ col $[D, u] \mid=q^{\tau}$. Also, since $W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S} \operatorname{col}[D, u]=\left\langle z_{1}, \ldots, z_{s-1-2 \gamma}, u\right\rangle, W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap$ $\mathscr{R} \mathscr{S}$ col $[D, u] \cap \mathscr{R} \mathscr{S}[D]=\mathscr{R} \mathscr{S}\left[Z_{1}\right]$. Consequently, $|T \cap S|=q^{\tau}-q^{\tau-1}$. Since $|T|=q^{n-2 \gamma-\tau}-q^{\tau-1}$, it follows that $R(2 \gamma, n, s, \tau)=q^{n-2 \gamma-\tau}-q^{\tau}$. The difference equation in (4.6) becomes

$$
\begin{align*}
& J_{2}(2 \gamma, n, s, \tau)=q^{\tau} J_{2}(2 \gamma, n, s-1, \tau)+\left(q^{n-2 \gamma-\tau}-q^{\tau}\right) \tag{4.7}\\
& \times J_{2}(2 \gamma, n, s-1, \tau-1), \quad(n \text { even })
\end{align*}
$$

with initial conditions $J_{2}(2 \gamma, n, s, 0)=1$, for $s \geqq 2 \gamma$, and $J_{2}(2 \gamma, n, s, \tau)=0$, for $\tau \neq 0$. It is easily seen that the solution to the recurrence in (4.7) is given by

$$
J_{2}(2 \gamma, n, s, \tau)=\left[\begin{array}{c}
s-2 \gamma \tag{4.8}\\
\tau
\end{array}\right] \prod_{j=1}^{\tau}\left(q^{n-2 \gamma-j}-q^{j}\right), \quad(n \text { even }) .
$$

Next, suppose u is in $\mathscr{R} \mathscr{S}[M]$. We seek expressions $B(2 \gamma, n, s, \tau), C(2 \gamma, n, s, \tau)$, $E(2 \gamma, n, s, \tau)$, and $F(2 \gamma, n, s, \tau)$ such that

$$
\begin{align*}
J_{1}(2 \gamma, n, s, \tau)= & B(2 \gamma, n, s, \tau) J_{1}(2 \gamma, n, s-1, \tau) \tag{4.9}\\
+ & C(2 \gamma, n, s, \tau) J_{1}(2 \gamma, n, s-1, \tau-1) \\
+ & E(2 \gamma, n, s, \tau) J_{2}(2 \gamma, n, s-1, \tau) \\
& \quad+F(2 \gamma, n, s, \tau) J_{2}(2 \gamma, n, s-1, \tau-1)
\end{align*}
$$

Suppose D has rank $2 \gamma+\tau$ and u is in $\mathscr{R} \mathscr{S}[D]$. Then, $z_{s-2 \gamma}$ must be in $W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S}[D]=\mathscr{R} \mathscr{S}\left[Z_{1}\right]$, a subspace of dimension τ. Thus, $B(2 \gamma, n, s, \tau)=q^{\tau}$. Suppose D has rank $2 \gamma+\tau-1$ and u is in $\mathscr{R} \mathscr{S}[D]$. Then, $z_{s-2 \gamma}$ must be in $W \cap(\mathscr{R} \mathscr{S}[D])^{*}-\mathscr{R} \mathscr{S}[D]$. Since u is in $\mathscr{R} \mathscr{S}[D]$, $(\mathscr{R} \mathscr{S}[D])^{*} \subseteq W$ and, thus, $W \cap(\mathscr{R} \mathscr{S}[D])^{*}-\mathscr{R} \mathscr{S}[D]=(\mathscr{R} \mathscr{S}[D])^{*}-$ $\mathscr{R} \mathscr{S}\left[Z_{1}\right]$. It follows that $C(2 \gamma, n, s, \tau)=q^{n-2 \gamma-\tau+1}-q^{\tau-1}$. If D has rank $2 \gamma+\tau$ and u is not in $\mathscr{R} \mathscr{S}[D]$, then for any $z_{s-2 \gamma}$ in $\mathscr{R} \mathscr{S}[D], u$ is not in $\mathscr{R} \mathscr{S}[M]$. Therefore, $E(2 \gamma, n, s, \tau)=0$. Finally, suppose $\operatorname{rank} D=2 \gamma+\tau-1$ and u is not in $\mathscr{R} \mathscr{S}[M]$. Then, $z_{s-2 \gamma}$ must be in

$$
\begin{aligned}
& \left(W \cap(\mathscr{R} \mathscr{S}[D])^{*} \cap \mathscr{R} \mathscr{S} \text { col }[D, u]\right)-\mathscr{R} \mathscr{S}[D]= \\
& \left\langle z_{1}, \ldots, z_{s-1-2 \gamma}, u\right\rangle-\mathscr{R} \mathscr{S}\left[Z_{1}\right] .
\end{aligned}
$$

Hence, $F(2 \gamma, n, s, \tau)=q^{\tau}-q^{\tau-1}$. The difference equation in (4.9) becomes

$$
\begin{align*}
J_{1}(2 \gamma, n, s, \tau)= & q^{\tau} J_{1}(2 \gamma, n, s-1, \tau) \tag{4.10}\\
& +\left(q^{n-2 \gamma-\tau+1}-q^{\tau-1}\right) J_{1}(2 \gamma, n, s-1, \tau-1) \\
& +\left(q^{\tau}-q^{\tau-1}\right) J_{2}(2 \gamma, n, s-1, \tau-1), \quad(n \text { even }),
\end{align*}
$$

with initial condition $J_{1}(2 \gamma, n, s, 0)=0$, for all s, and $J_{1}(2 \gamma, n, 2 \gamma, \tau)=0$, for all τ. This initial condition follows immediately from Theorem 3.2 and from the definition of $J_{1}(2 \gamma, n, s, \delta)$. From (4.5), (4.7), and (4.10), a difference equation in $\Phi(2 \gamma, n, s, \tau)$ is obtained, namely,

$$
\begin{align*}
\Phi(2 \gamma, n, s, \tau)= & q^{\tau} \Phi(2 \gamma, n, s-1, \tau) \tag{4.11}\\
& +\left(q^{n-2 \gamma-\tau+1}-q^{\tau-1}\right) \Phi(2 \gamma, n, s-1, \tau-1) \\
& -q^{n-2 \gamma-\tau}(q-1) J_{2}(2 \gamma, n, s-1, \tau-1), \quad(n \text { even })
\end{align*}
$$

with initial condition $\Phi(2 \gamma, n, s, 0)=1$, for $s \geqq 2 \gamma$, and $\Phi(2 \gamma, n, 2 \gamma, \tau)=0$, for $\tau \neq 0$, where $J_{2}(2 \gamma, n, s-1, \tau-1)$ is given in (4.8). It is easily seen that the solution to the recurrence in (4.11) is given by

$$
\begin{align*}
& \Phi(2 \gamma, n, s, \tau)=\left[\begin{array}{c}
s-2 \gamma \\
\tau
\end{array}\right] \tag{4.12}\\
& \quad \times\left\{\left(q^{\tau}-1\right) \prod_{i=1}^{\tau-1}\left(q^{n-2 \gamma-i}-q^{i}\right)+\prod_{i=1}^{\tau}\left(q^{n-2 \gamma-i}-q^{i}\right)\right\}, \quad(n \text { even })
\end{align*}
$$

Combining (4.2), (4.4), and (4.12), we obtain the number $N\left(I_{n}, G_{\gamma}, n, s, 2 \gamma+\tau\right)$.
Theorem 4.1. Let A be an $n \times n$ symmetric, nonalternate matrix of full rank over $\operatorname{GF}(q)$, and let C be an $s \times s$ alternate matrix of rank 2γ over $G F(q)$. The number of $s \times n$ matrices X of rank $2 \gamma+\tau$ over $G F(q)$ such that $X A X^{T}=C$ is $N(A, C, n, s, 2 \gamma+\tau)=N\left(I_{n}, F_{\gamma}, n, 2 \gamma\right) \Phi(2 \gamma, n, s, \tau)$, where $N\left(I_{n}, F_{\gamma}, n, 2 \gamma\right)$ is given in Theorem 3.3 and $\Phi(2 \gamma, n, s, \tau)$ is given in (4.4) in case n is odd, and in (4.12) in case n is even.

Suppose A is an $n \times n$ symmetric, nonalternate matrix of rank ρ over $G F(q)$ and C is an $s \times s$ alternate matrix of rank 2γ over $G F(q)$. By Theorem
2.2, Theorem 2.3, and Lemma 2.1, $N(A, C, n, s, r)=N\left(R_{\rho}, G_{\gamma}, n, s, r\right)$, $0 \leqq r \leqq \min (s, n)$, where R_{ρ} is the $n \times n$ matrix

$$
\left[\begin{array}{ll}
I_{\rho} & 0 \\
0 & 0
\end{array}\right]
$$

over $G F(q)$. If $X=\left[X_{1} X_{2}\right]$ is any $s \times n$ matrix of rank r over $G F(q)$ such that $X R_{\rho} X^{T}=G_{\gamma}$, where X_{1} is $s \times \rho$ and X_{2} is $s \times(n-\rho)$, then

$$
\left[X_{1} X_{2}\right]\left[\begin{array}{cc}
I_{\rho} & 0 \tag{4.13}\\
0 & 0
\end{array}\right]\left[\begin{array}{c}
X_{1}{ }^{T} \\
X_{2}{ }^{T}
\end{array}\right]=X_{1} X_{1}{ }^{T}=G_{\gamma} .
$$

Further, rank $X=r$ implies rank $X_{1} \geqq r-(n-\rho)$. For any τ, $\max (r-n+\rho-2 \gamma, 0) \leqq \tau \leqq \min [\min (s, \rho)-2 \gamma, r-2 \gamma]$, the number $N\left(I_{\rho}, G_{\gamma}, \rho, s, 2 \gamma+\tau\right)$ of $s \times \rho$ matrices X_{1} of rank $2 \gamma+\tau$ over $G F(q)$ such that $X_{1} X_{1}{ }^{T}=G_{\gamma}$ is given in Theorem 4.1. Consider any such matrix X_{1}. By (4.13), any $s \times(n-\rho)$ matrix X_{2} such that $X=\left[X_{1} X_{2}\right]$ has rank r yields $X R_{\rho} X^{T}=G_{\gamma}$. The number of such matrices X_{2} is the number $L(s, \rho, n, 2 \gamma+\tau, r)$, given in Lemma 2.2. Thus, we have determined the number $N(A, C, n, s, r)=$ $N\left(R_{\rho}, G_{\gamma}, n, s, r\right)$, in case rank $A=\rho \leqq n$.

Theorem 4.2. Suppose A is an $n \times n$ symmetric, nonalternate matrix of rank ρ over $G F(q)$ and C is an $s \times$ salternate matrix of rank 2γ over $G F(q)$. The number of $s \times n$ matrices X of rank $r, 2 \gamma \leqq r \leqq \min (s, n)$, over $G F(q)$ such that $X A X^{T}=C$ is given by

$$
N(A, C, n, s, r)=\sum_{\tau=h(\tau, n, \rho, \gamma)}^{d(s, \rho, \gamma, \tau)} N\left(I_{\rho}, G_{\gamma}, \rho, s, 2 \gamma+\tau\right) \cdot L(s, \rho, n, 2 \gamma+\tau, r)
$$

where $N\left(I_{\rho}, G_{\gamma}, \rho, s, 2 \gamma+\tau\right)$ is given in Theorem 4.1, $L(s, \rho, n, 2 \gamma+\tau, r)$ is given in Lemma 2.2, where $h(r, n, \rho, \gamma)=\max (r-n+\rho-2 \gamma, 0)$, and where $d(s, \rho, \gamma, r)=\min [\min (s, \rho)-2 \gamma, r-2 \gamma]$.

References

1. A. A. Albert, Symmetric and alternate matrices in an arbitrary field. I, Trans. Amer. Math. Soc. 43 (1938), 386-436.
2. J. Brawley and L. Carlitz, Enumeration of matrices with prescribed row and column sums, Linear Algebra and Appl. (to appear).
3. P. Buckhiester, Gauss sums and the number of solutions to the matrix equation $X A X^{\boldsymbol{T}}=0$ over $G F\left(2^{y}\right)$, Acta Arith. 23 (1973), 271-278.
4. —— Rank r solutions to the matrix equation $X A X^{T}=C, A$ alternate, over $G F\left(2^{y}\right)$, Trans. Amer. Math. Soc. (to appear).
5. - Rank r solutions to the matrix equation $X A X^{T}=C, A$ and C nonalternate, over $G F\left(2^{y}\right)$, Math. Nachr. (to appear).
6. L. Carlitz, Representations by quadratic forms in a finite field, Duke Math. J. 21 (1954), 123-137.
7. The number of solutions of certain matric equations over a finite field, Math. Nachr. (to appear).
8. Dai Zong-duo (Tai Tsung-Tuo), On transitivity of subspaces in orthogonal geometry over fields of characteristic 2, Chinese Math. Acta. 16 (1966), 569-584.
9. J. H. Hodges, A symmetric matrix equation over a finite field, Math. Nachr. 30 (1965), 221-228.
10. J. C. Perkins, Rank r solutions to the matrix equation $X X^{T}=0$ over a field of characteristic two, Math. Nachr. 48 (1971), 69-76.

Clemson University,

Clemson, South Carolina

[^0]: Received August 2, 1972 and in revised form, February 16, 1973.

