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We propose the helicity-conserved Navier–Stokes (HCNS) equation by modifying the
non-ideal force term in the Navier–Stokes (NS) equation. The corresponding HCNS flow
has strict helicity conservation, and retains major NS dynamics with finite dissipation.
Using the helical wave decomposition, we show that the pentadic interaction of Fourier
helical modes in the HCNS dynamics is more complex than the triadic interaction in
the NS dynamics, and enhanced variations for left- and right-handed helicity components
cancel each other in the HCNS flow to keep the invariant helicity. A comparative study of
HCNS and NS flow evolutions with direct numerical simulation elucidates the influence
of the helicity conservation on flow structures and statistics in the vortex reconnection
and isotropic turbulence. First, the HCNS flow evolves towards a Beltrami state with a −4
scaling law of the energy spectrum at high wavenumbers at long times. Second, large-scale
flow structures are almost identical during the viscous reconnection of vortex tubes in the
two flows, whereas many more small-scale helical structures are generated via the pentadic
mode interaction in the HCNS flow than in the NS flow. Moreover, we demonstrate that
parity breaking at small scales can trigger a notable helicity variation in the NS flow. These
findings hint that the helicity may not be conserved in the inviscid limit of the NS flow.
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1. Introduction

Helicity (Moreau 1961; Moffatt 1969; Arnold 2014) is an important global quantity
describing the topology of a divergence-free vector field. Intuitively, a flow field with a
non-zero helicity can have helical stream or vortex lines. Typical vortex tubes with an axial
flow and non-zero helicity were reported in wing-tip vortices (Devenport et al. 1996; Tong,
Yang & Wang 2020), Taylor–Görtler vortices (Wood, Mehta & Koh 1992), streamwise
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vortices in shear flows (Hall & Sherwin 2010; Zhao, Yang & Chen 2016; Ruan et al. 2022),
tornadoes (Kurgansky 2017), Langmuir circulations (Moffatt & Tsinober 1992) and helical
coherent structures in turbulence (Tsinober & Levich 1983; Hussain 1986; Pelz, Shtilman
& Tsinober 1986; Xiong & Yang 2019a).

In particular, helicity is one of only two quadratic invariants in three-dimensional ideal
fluid flows (the other one is kinetic energy). It plays an essential role in the generation and
energy cascade of turbulent flows (Arnold 1992; Moffatt & Tsinober 1992; Moffatt 2021).
André & Lesieur (1977) showed that a finite helicity can be generated from an initial
state with vanishing helicity in decaying isotropic turbulence at high Reynolds numbers,
illustrating the prevalence of helicity in turbulent flows. Moffatt (2014) and Alexakis &
Biferale (2018) pointed out that helicity can impede the forward energy cascade and even
promote the inversion of energy transfer.

Unlike kinetic energy, helicity is not sign definite and its sign is changed by altering the
chirality of the coordinate frame. Therefore, helicity is a pseudo-scalar and characterizes
the parity breaking of a fluid flow. The parity can be quantified by the helical wave
decomposition (HWD) (Constantin & Majda 1988; Waleffe 1992). Using the HWD, Chen,
Chen & Eyink (2003a) and Chen et al. (2003b) studied the joint cascade of energy and
helicity in three-dimensional turbulence, and conjectured the asymptotic restoration of
parity symmetry at small scales. Yang, Su & Wu (2010) and Yang & Wu (2011) extended
the HWD to an arbitrary single-connected domain. Zhu, Yang & Zhu (2014) studied purely
helical absolute equilibria of incompressible turbulence with the HWD. Alexakis (2017)
investigated the interaction between different helical modes in turbulent flows, based on a
decomposition of energy and helicity fluxes. Yan et al. (2020) proposed the dual-channel
helicity cascade as a mechanism of hindered or inverse energy cascade. However, the
specific role of helicity in three-dimensional turbulence remains an open problem (Chen
et al. 2003a; Yao & Hussain 2022).

Since helicity can vary in viscous flows, its dynamics has been extensively investigated
during topological change, e.g. viscous reconnection (Kida & Takaoka 1994; Yao &
Hussain 2022), of a trefoil knotted vortex tube with simple initial geometry and non-trivial
topology in numerical simulations (e.g. Kida & Takaoka 1987; Ricca, Samuels & Barenghi
1999; Scheeler et al. 2014; Kerr 2018; Xiong & Yang 2019a; Yao, Yang & Hussain
2021; Zhao et al. 2021; Shen et al. 2022) and experiments (e.g. Kleckner & Irvine 2013;
Scheeler et al. 2014). Kida & Takaoka (1987, 1988) reported that helicity decays in the
entire evolution at a low Reynolds number Re = 1200, and the decay rate decreases with
increasing Re, implying that helicity may be conserved in the inviscid limit. By contrast,
the recent direct numerical simulation (DNS) of trefoil vortex knots (Yao et al. 2021; Zhao
& Scalo 2021; Zhao et al. 2021) and Hopf links (Yao et al. 2022) at high Reynolds numbers
found a ‘transient growth’ of helicity when vortex reconnection occurs, implying that
helicity is not conserved in the inviscid limit. Since helicity and its time derivative are not
positive definite, the study of helicity in limiting conditions appears to be more challenging
than that of kinetic energy or the mean dissipation rate (Batchelor 1953; Sreenivasan 1984,
1998; Kaneda et al. 2003). Thus, there is no consensus on whether helicity is conserved in
the inviscid limit (Moffatt 2017; Yao & Hussain 2022). This open problem inspires us to
think from another perspective – how does the flow evolution change if we impose helicity
conservation on the Navier–Stokes (NS) equations?

The NS equations were modified to understand some specific roles of helicity. Biferale,
Musacchio & Toschi (2012, 2013) performed a surgery of the NS dynamics by only
keeping the velocity components carrying a well-defined positive or negative helicity,
and then they found a stationary inverse energy cascade in homogeneous isotropic

954 A36-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.878


Flows with imposed helicity conservation

turbulence (HIT). Biferale & Titi (2013) then demonstrated the global regularity of
such helical-decimated NS equations. Furthermore, a series of studies explored the
relation between helicity and the direction of energy cascade (e.g. Sahoo, Alexakis &
Biferale 2017; Slomka & Dunkel 2017; Alexakis & Biferale 2018; Plunian et al. 2020;
Alexakis & Biferale 2022). Hao, Xiong & Yang (2019) applied vorticity-based orthogonal
decomposition to the non-ideal force in the NS equations, and showed that vortex surfaces
can be tracked by a virtual velocity in the modified fluid flow with helicity conservation.
She & Jackson (1993) and Gallavotti (1996, 1997) discussed another approach to modify
the NS equations by introducing integral constraints with a Lagrange multiplier. In this
way, the constrained Euler equation (She & Jackson 1993) and the Gaussian dissipative
Euler equation (Gallavotti 1997) with conserved kinetic energy, and the Gaussian NS
equation (Gallavotti 1996, 1997; Jaccod & Chibbaro 2021) with conserved enstrophy were
obtained. In addition, Bos (2021) kept the enstrophy conserved in turbulence by removing
vortex stretching from the NS equations.

In the present study, we investigate the influence of helicity on vortex dynamics and
flow statistics by imposing helicity conservation on the NS equations while retaining
major NS dynamics. The modified NS equation is referred to as the helicity-conserved
Navier–Stokes (HCNS) equation. We then compare the evolutions governed by NS and
HCNS equations in various flows to reveal the critical role of helicity. Moreover, the
HWD is used to explore the relation between small-scale parity breaking and large-scale
helical structures. These efforts can explain the transient helicity variation during vortex
reconnection and facilitate flow control by manipulating small-scale flow structures.

The outline of the present paper is as follows. Section 2 introduces the HCNS equation
and derives the properties of the HCNS flow. Section 3 studies the HWD of NS and
HCNS dynamics. Section 4 describes numerical set-ups and methods. Section 5 compares
evolutions of vortical structures and flow statistics in HCNS and NS flows. Some
conclusions are drawn in § 6.

2. Theoretical framework of the HCNS flow

2.1. Introduction of the HCNS equation
In a three-dimensional incompressible flow, the velocity u(x, t) is governed by the NS
equations

∇ · u = 0, (2.1)

∂u
∂t

+ ω × u = −∇P + F , (2.2)

where ω ≡ ∇ × u is the vorticity, P = p/ρ + |u|2/2 + VF denotes a generalized potential
with the pressure p, density ρ and potential VF of conservative body forces and

F = 1
ρ

∇ · τ + f (2.3)

denotes a generalized non-ideal force with viscous stress τ and non-conservative external
body force f per unit mass. Note that it is straightforward to extend the present analysis to
compressible flows (Hao et al. 2019).
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From (2.2), we obtain the vorticity equation

∂ω

∂t
+ ∇ × (ω × u) = ∇ × F , (2.4)

and then the transport equation

∂h
∂t

+ ∇ · [Pω + u × (u × ω) + u × F ] = 2ω · F (2.5)

of the helicity density h ≡ u · ω.
We impose helicity conservation on the NS equations by modifying the non-ideal force

in (2.2), where the helicity (Moreau 1961; Moffatt 1969)

H(t) ≡
∫
D

h dV (2.6)

is defined over an unbounded domain D or that bounded by a vortex surface. To remove
the source term of helicity generation, i.e. the right-hand side of (2.5), we apply the
vorticity-based orthogonal decomposition (Hao et al. 2019) to

F = F⊥ + F ‖ = (nω × F ) × nω + (nω · F )nω, (2.7)

and only keep the orthogonal component F⊥ = (nω × F ) × nω with nω ≡ ω/|ω| in F in
(2.2). To avoid the issue of singularity, we define nω = 0 and F⊥ = F at the points with
|ω| = 0.

Thus, we obtain the HCNS equation

∂u
∂t

+ ω × u = −∇P + (nω × F ) × nω, (2.8)

and the corresponding vorticity equation

∂ω

∂t
+ ∇ × (ω × u) = ∇ × [(nω × F ) × nω], (2.9)

for the HCNS flow governed by (2.8) and (2.1). Note that the HCNS equation degenerates
to the NS equation in one and two dimensions, and it has all the symmetry groups (Frisch
1995) of the NS equation.

2.2. Evolution of integral quantities for the HCNS flow
Without loss of generality, we consider viscous, barotropic and incompressible fluid flows
without body forces, i.e. P = p/ρ + |u|2/2 and F = ν∇2u with kinematic viscosity ν

below. The corresponding momentum and vorticity equations for the HCNS flow are

∂u
∂t

+ ω × u = −∇P + ν(nω × ∇2u) × nω (2.10)

and
∂ω

∂t
+ ∇ × (ω × u) = ν∇ × [(nω × ∇2u) × nω], (2.11)

respectively. Next, we derive transport equations of the total kinetic energy

E(t) ≡
∫
D

|u|2
2

dV, (2.12)
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enstrophy

Ω(t) ≡
∫
D

|ω|2
2

dV (2.13)

and helicity (2.6) for the HCNS flow.
First, the transport equation of the local kinetic energy reads

D
Dt

|u|2
2

= ∇ ·
(

− p
ρ

u + νu × ω

)
− ν|ω|2 + νhξω. (2.14)

Here, D/Dt ≡ ∂/∂t + u · ∇ is the material derivative and ξω ≡ nω · (∇ × nω) denotes the
torsion of neighbouring vortex lines (Truesdell 2018). Integrating (2.14) over D yields

dE
dt

= −2νΩ + ν

∫
D

ξuξω|u|2 dV, (2.15)

where ξu ≡ nu · (∇ × nu), similar to ξω, denotes the torsion of neighbouring streamlines
with nu ≡ u/|u|. Note that our discussion is restricted to an unbounded domain or a
periodic domain D, otherwise there will be a boundary integral term in (2.15).

We demonstrate that the HCNS flow is dissipative, i.e. dE/dt ≤ 0. Considering
ξu(x)ξω(x) is a continuous function and |u(x)|2 ≥ 0 within D, applying the mean value
theorem for integrals to (2.15) yields

dE
dt

= −2νΩ + 2νξ∗
u ξ∗

ωE, (2.16)

with ξ∗
u = ξu(x∗) and ξ∗

ω = ξω(x∗) at a particular x∗ in D.
For a periodic cube D, comparing Fourier expansions of E and Ω yields

Ω = L3

2

∑
k

k2|û|2 ≥ q2
0

L3

2

∑
k

|û|2 = q2
0E, (2.17)

where L denotes the side length of D, k the wavenumber vector, k ≡ |k| the wavenumber
magnitude and û = û(k, t) the velocity component in Fourier space. In general, we have
q0 	 1 due to the weight k2 in (2.17), unless the energy spectrum is only non-vanishing
at several lowest wavenumbers in a simple flow, e.g. the Taylor–Green initial field (Taylor
& Green 1937) with the energy spectrum as a Delta-function. Substituting (2.17) with
q0 	 1, |ξ∗

u | = O(1) and |ξ∗
ω| = O(1) into (2.16) yields that the HCNS flow is dissipative

as
dE
dt

≤ −2νΩ + 2ν|ξ∗
u ||ξ∗

ω|E ≤ 2νΩ

(
|ξ∗

u ||ξ∗
ω|

q2
0

− 1

)
≤ 0. (2.18)

Second, we consider the transport of enstrophy. Taking inner product of (2.11) with ω
yields

D
Dt

|ω|2
2

= ω · S · ω + ν
{
− sin2 ϑω|∇2u|2 + ∇ · [ω × (∇ × ω)]

}
, (2.19)

where S ≡ (∇u + ∇uT)/2 is the rate-of-strain tensor and

ϑω ≡ arccos
ω · ∇2u
|ω||∇2u| (2.20)

denotes the angle between ω and ∇2u. Compared with the NS flow, the prefactor 0 ≤
sin2 ϑω ≤ 1 of the second term on the right-hand side of (2.19) weakens the enstrophy
dissipation in the HCNS flow (Hao et al. 2019).
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By integrating (2.19) over D, we obtain

dΩ

dt
= PΩ − EHCNS

Ω , (2.21)

after some algebra, with the production term

PΩ =
∫
D

∇2u · (ω × u) dV (2.22)

and the dissipation term

EHCNS
Ω = ν

∫
D

sin2 ϑω|∇2u|2 dV. (2.23)

Comparing EHCNS
Ω in the HCNS flow and

ENS
Ω = ν

∫
D

|∇2u|2 dV (2.24)

in the NS flow, we have EHCNS
Ω ≤ ENS

Ω with identical production terms in the two flows.
Hence, the integration of (2.21) with time from the same initial condition suggests that

ΩHCNS(t) ≥ ΩNS(t), (2.25)

where the superscripts ‘NS’ and ‘HCNS’ denote the quantities in NS and HCNS flows,
respectively.

Finally, the general equation (2.5) for the helicity density becomes

Dh
Dt

= ∇ · [P′ω − νu × ∇2u + ν(nω · ∇2u)u × nω] (2.26)

in the HCNS flow, where P′ ≡ −p/ρ + |u|2/2 denotes a modified pressure. Applying the
divergence theorem to (2.26) yields

dH
dt

=
∫∫
©

∂D
n · [P′ω − νu × ∇2u + ν(nω · ∇2u)u × nω] dS. (2.27)

Considering D with the vanishing boundary integral, (2.27) is simplified to

dH
dt

= 0. (2.28)

Therefore, the HCNS flow has a strong constraint of helicity conservation:

H(t) = H0, ∀t ≥ 0, (2.29)

where the subscript ‘0’ denotes a quantity at the initial time.
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2.3. Beltramization of the HCNS flow
For a decaying HCNS flow, we show its Beltramization at long times with lower bounds
of E and Ω , where a Beltrami flow has

ω = λu, (2.30)

with a constant λ. Consider the Schwartz inequality

H2 ≤ 4EΩ, (2.31)

for a velocity field with H0 /= 0, which takes equal only for (2.30). From (2.29) and (2.31),
we have

4E(t)Ω(t) ≥ H2
0 > 0, (2.32)

which implies that both E(t) and Ω(t) have non-vanishing lower bounds, otherwise one of
them must diverge. Substituting (2.17) into (2.32) yields

Ω ≥ 1
2

q0|H0|. (2.33)

Note that the HCNS flow allows both E and Ω to decay to zero for H0 = 0, e.g. for highly
symmetric flows.

Next, we explore the Beltramization of HCNS flows at t → ∞. First, the Beltrami field
with (2.30) is a steady-state solution to the HCNS equation. For such a solution, (2.10)
with u, ω and ∇2u parallel to each other is simplified to ∂u/∂t = 0 with dE/dt = 0. Then,
we demonstrate the Beltrami field with (2.30) represents the state of the lowest E in the
HCNS flow using the variational principle (Woltjer 1958).

We seek the minimum E subject to the helicity conservation in (2.29). By varying a
generic function

IE ≡
∫
D

[u · u − λEu · (∇ × u)] dV, (2.34)

for E, and applying the divergence theorem yield

δIE = 2
∫
D

(u − λE∇ × u) · δu dV +
∫∫
©

∂D
λEn · (u × δu) dS = 0, (2.35)

with a Lagrangian multiplier λE. Since δu vanishes at ∂D for a closed domain D, and
the surface integral in (2.35) also vanishes for an unclosed domain such as the unbounded
domain or periodic box, we obtain∫

D
(u − λE∇ × u) · δu dV = 0. (2.36)

The vanishing integral (2.36) with an arbitrary δu suggests

u = λE∇ × u, (2.37)

for the minimum E. Therefore, the Beltrami field with (2.30) and λ = λ−1
E corresponds to

the lowest energy state of the HCNS flow. For the dissipative HCNS flow with (2.18) and
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a non-vanishing lower bound of Ω in (2.33), the Beltrami flow is the only possible state at
long times. At this state, the Schwartz inequality (2.31) becomes

4E∞Ω∞ = H2
0, (2.38)

with E∞ = |H0|/(2|λ|) and Ω∞ = |λH0|/2. The Beltramization of the HCNS flow can
be characterized by the criterion

ΛB(t) ≡ H2(t)
4E(t)Ω(t)

∈ [0, 1]. (2.39)

The Beltrami flow with (2.38) has ΛB = 1.

3. The HWD of NS/HCNS dynamics

3.1. The HWD
Helicity is the signature of parity breaking in incompressible flows (Chen et al. 2003a), and
the parity can be characterized by the HWD (Constantin & Majda 1988; Waleffe 1992).
A divergence-free velocity field has k · û(k) = 0, so û(k) has two degrees of freedom. In
the HWD, two independent degrees of freedom are obtained by projecting the velocity

u(x) =
∑

k

û(k) eik·x =
∑

k

(u+h+ + u−h−) eik·x (3.1)

onto two orthogonal helical waves with a definite sign of helicity. Here, k = (k1, k2, k3)
is for a periodic cube of side L = 2π, with ki = 0, ±1, ±2, . . . , i = 1, 2, 3. The helical
modes u±(k) are complex scalars, and

h±(k) = 1√
2

(zk × k) × k
k|zk × k| ± i√

2

zk × k
|zk × k| (3.2)

are two eigenvectors of the curl operator as ik × h±(k) = ±kh±(k), where zk is randomly
generated for each k, keeping |zk × k| /= 0. Note that h+ and h− have properties h±(k) =
h∓∗(k), |h±|2 = h+ · h− = 1 and h+ · h+ = h− · h− = 0, where the superscript ‘*’
denotes the complex conjugate.

Projecting û onto h∓ yields

u±(k) = û(k) · h∓(k) = 1
L3

∫
L3

h∓(k) · u(x) e−ik·x dx, (3.3)

where u+ and u− are right- and left-handed components, respectively. The vorticity can
also be expressed in terms of helical modes as

ω̂(k) = k(u+(k)h+(k) − u−(k)h−(k)). (3.4)

The integral quantities have HWDs

E(t) = E+(t) + E−(t), Ω(t) = Ω+(t) + Ω−(t), H(t) = H+(t) − H−(t),
(3.5a–c)

with

E± ≡ L3

2

∑
k

|u±|2, Ω± ≡ L3

2

∑
k

k2|u±|2, H± ≡ L3
∑

k

k|u±|2. (3.6a–c)
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3.2. Transient variation of helicity in the NS dynamics
Applying the HWD with (3.1) and (3.3) to the NS equation (2.2) with F = ν∇2u yields
the equation for helical modes of velocity as (Waleffe 1992)

(∂t + νk2)usk∗(k, t) = −1
2

∑
k+p+q=0

∑
sp,sq

(spp − sqq)(hsk · hsp × hsq)uspusq . (3.7)

There are eight helical combinations with (sk, sp, sq) = (±, ±, ±) among three interacting
modes usk(k, t), usp(p, t) and usq(q, t), and only four of them are independent due to parity
symmetry.

Multiplying (3.7) by usk and adding its complex conjugate, the evolution equation

(∂t + 2νk2)|usk |2 = −1
2

∑
k+p+q=0

∑
sp,sq

T (k, p, q)usk uspusq + c.c. (3.8)

for the right- or left-handed energy component with

T (k, p, q) = (spp − sqq)(hsk · hsp × hsq) (3.9)

is obtained, where c.c. denotes the complex conjugate. The right-hand side of (3.8)
represents the inter-scale and inter-chiral energy transfer in the NS flow.

Multiplying (3.7) by usk , adding its complex conjugate, swapping indices k, p, q and
summing all of them up, we have

∂

∂t
(|usk |2 + |usp |2 + |usq |2) = −2ν(k2|usk |2 + p2|usp |2 + q2|usq |2). (3.10)

Similarly, we derive

∂

∂t
(skk|usk |2 + spp|usp |2 + sqq|usq |2) = −2ν(skk3|usk |2 + spp3|usp |2 + sqq3|usq |2)

(3.11)
from (3.7). In (3.10) and (3.11), the wavenumber vectors satisfy k + p + q = 0, and the
summation convention over repeated indices sk, sp and sq is not applied.

Letting p = −k and q = 0 in (3.11) and summing over k yields

dH
dt

= −2νL3
∑

k

k3(|u+(k, t)|2 − |u−(k, t)|2). (3.12)

This equation, similar to (2.29) in Chen et al. (2003a), divides the velocity components
altering H in terms of the chirality and scale, so that we can pinpoint which part causes a
notable variation to H.

Considering flows at very high Reynolds numbers with ν � 1, L = O(1) and
|u±(k, t)|2 ≤ O(1), the contribution from small k in (3.12) can be ignored due to the weight
k3. Thus, we define a truncated wavenumber

kc ≡ U1/3L−2/3ν−1/3, (3.13)

to demarcate the energy-containing and inertial ranges, and a characteristic wavenumber
(Pope 2000)

kDI ≡ U3/4L−1/4ν−3/4 > kc, (3.14)
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to demarcate the inertial and dissipative ranges, with characteristic velocity U and length
scale L. In general, the major contribution to dH/dt comes from small-scale structures as

dH
dt

≈ −2νL3
∑
k>kc

k3(|u+(k, t)|2 − |u−(k, t)|2). (3.15)

By contrast, the total helicity is determined by large-scale structures. Applying the
model helicity spectra with power-law and exponential decay to moderate and high
wavenumbers (Brissaud et al. 1973; Ditlevsen & Giuliani 2001), respectively, we estimate∣∣∣∣∣∣

∑
k>kc

k(|u+(k, t)|2 − |u−(k, t)|2)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∑

kc<k<kDI

CHk−n

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

k≥kDI

k e−βk(C+ − C−)

∣∣∣∣∣∣
≤ C1(k1−n

DI − k1−n
c ) + C2

1 + βkDI

β2 e−βkDI

= −C3ν
(n−1)/3 + O(ν3(n−1)/4), (3.16)

with model parameters CH, C+ and C−, and constants

C1 = 1
1 − n

max
kc<k<kDI

{|CH|},
C2 = max

k≥kDI
{|C+ − C−|},

C3 = C1U (1−n)/3L−2(1−n)/3,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.17)

and 4/3 ≤ n ≤ 5/3. For n > 1, (3.16) is a high-order small term, so H(t) is mainly
contributed from scales larger than 2π/kc as

H(t) = L3
∑
k≤kc

k(|u+(k, t)|2 − |u−(k, t)|2) + O(ν(n−1)/3). (3.18)

We define

H±
<(t) ≡ L3

∑
k≤kc

k|u±|2 and H±
>(t) ≡ L3

∑
k>kc

k|u±|2 (3.19a,b)

for large and small scales, respectively. Then, (3.18) is re-expressed as

H(t) ≈ H+
<(t) − H−

<(t). (3.20)

From (3.15) and (3.20), we derive

dH
dt

> 0, if H+
> < H−

>,

dH
dt

< 0, if H+
> > H−

>.

⎫⎪⎪⎬
⎪⎪⎭ (3.21)

Here, the difference between the left- and right-handed components of the small-scale
helicity needs to satisfy∣∣∣∣∣∣

∑
k>kc

k3(|u+(k, t)|2 − |u−(k, t)|2)
∣∣∣∣∣∣ 	

∣∣∣∣∣∣
∑
k≤kc

k3(|u+(k, t)|2 − |u−(k, t)|2)
∣∣∣∣∣∣ , (3.22)
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H+
<

H–
<

H+
>

H–
>

kc kDI k

Figure 1. Schematic diagram for the influence of small-scale chiral helicity components on large-scale
components in Fourier space at large Re. The superscripts ‘+’ and ‘−’ denote the right-handed (red in
upper row) and left-handed (blue in lower row) components, respectively. The wavenumbers are plotted in
a logarithmic scale, and characteristic wavenumbers are marked by dashed lines.

which requires

|H+
> − H−

>| 	 k−2
c O(kc) = O(ν1/3) (3.23)

in (3.21).
As illustrated in figure 1, (3.21) indicates that small-scale left-handed (or right-handed)

structures can drive the generation of large-scale right-handed (or left-handed) structures,
leading to the time variation of H. This explains the ‘transient growth’ of H during the
reconnection of a trefoil knot, in which Yao et al. (2021) observed that H−

> is slightly larger
than H+

>. Therefore, the breaking of parity symmetry at small scales can strongly alter the
total helicity, which is further discussed in Appendix A.

3.3. Pentadic interactions in the HCNS dynamics
We investigate the HCNS dynamics in Fourier space based on the HWD. Substituting
(3.1), (3.3) and the HWD of the squared vorticity magnitude

|ω|2 =
∑
p,q

pq(u+
p h+

p − u−
p h−

p ) · (u+
q h+

q − u−
q h−

q ) ei(p+q)·x (3.24)

into the HCNS equation (2.10), we derive

mn(u+
mh+

m − u−
mh−

m) · (u+
n h+

n − u−
n h−

n )[(∂t + νk2)(u+
k h+

k + u−
k h−

k ) + iP̂kk]

− νmnk2(u+
mh+

m − u−
mh−

m) · (u+
k h+

k + u−
k h−

k )(u+
n h+

n − u−
n h−

n )

+
∑

p+q+r+s=k+m+n

prs[(u+
p h+

p − u−
p h−

p ) × (u+
q h+

q + u−
q h−

q )]

× [(u+
r h+

r − u−
r h−

r ) · (u+
s h+

s − u−
s h−

s )]

= 0, (3.25)

where k, m and n are not restrained from each other, and the subscript denotes the
corresponding wavenumber vector, e.g. hk is a shorthand for h(k, t). Letting m = k and
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n = −k, we obtain

2k2Ek(∂t + νk2)u±
k

= −
∑

p+q+r+s=k

prs[h∓
k · (u+

p h+
p − u−

p h−
p ) × (u+

q h+
q + u−

q h−
q )]

× [(u+
r h+

r − u−
r h−

r ) · (u+
s h+

s − u−
s h−

s )], (3.26)

with Ek = (|u+
k |2 + |u−

k |2)/2 after some algebra. It can be further written in a more
symmetric and compact form as

4k2Ek(∂t + νk2)usk∗

= −
∑

k+p+q+r+s=0

∑
sp,sq,sr,ss

(spp − sqq)srssrs(hsk · hsp × hsq)(hsr · hss)uspusqusr uss .

(3.27)

In (3.27), the mode interaction in Fourier space takes place among pentads
of wavenumbers with k + p + q + r + s = 0. There are 32 interaction types with
(sk, sp, sq, sr, ss) = (±, ±, ±, ±, ±), and 16 of them are independent. Therefore, the
pentadic interactions in the HCNS dynamics are more complex than the triadic interactions
in the NS dynamics, due to the imposed helicity conservation on a viscous flow.

Similar to the derivation for the NS flow, we obtain

(∂t + 2νk2)|usk |2

= − 1
4k2Ek

∑
k+p+q+r+s=0

∑
sp,sq,sr,ss

T (k, p, q)T ′(r, s)usk uspusqusr uss + c.c., (3.28)

with
T ′(r, s) = srssrs(hsr · hss). (3.29)

From (3.8) and (3.28), we derive the evolution equations of the left- and right-handed
helicity components for the NS/HCNS flow as

dHsk
NS/HCNS

dt
= −E sk + Psk

NS/HCNS, (3.30)

with

E sk = 2νL3
∑

k

k3|usk |2, (3.31)

Psk
NS = −L3

2

∑
k

k
∑

k+p+q=0

∑
sp,sq

T (k, p, q)usk uspusq + c.c., (3.32)

Psk
HCNS = −L3

2

∑
k

k
∑

k+p+q+r+s=0

∑
sp,sq

S(k, r, s)T (k, p, q)usk uspusq + c.c., (3.33)

and a stretch factor

S(k, r, s) = 1
2k2Ek

∑
sr,ss

T ′(r, s)usr uss = 1
2

∑
sr,ss

srss
rs
k2

usr uss

Ek
(hsr · hss). (3.34)

Since the convective term dominates flow dynamics at large Re, we assume that
the major part of the pentadic interactions in the HCNS dynamics are still the triadic
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interactions. Thus, (3.33) becomes

Psk
HCNS =

⎛
⎝−L3

2

∑
k

k
∑

k+p+q=0

∑
r+s=0

∑
sp,sq

S(k, r, s)T (k, p, q)usk uspusq + c.c.

⎞
⎠+ h.o.t.,

(3.35)
where h.o.t. denotes a higher-order term. From the orthogonality of h±, we find∑

r+s=0

S(k, r, s) = 1
2

∑
r

∑
sr,ss

srss
r2

k2
usr(r)uss∗(r)

Ek
(hsr(r) · hss∗(r))

= 1
2k2Ek

∑
r

r2(u+(r)u+∗(r) + u−(r)u−∗(r))

= 1
k2Ek

∑
r

r2Er > 1. (3.36)

Comparing (3.32) and (3.35) with (3.36) yields |Psk
HCNS| > |Psk

NS|. Integrating (3.30)
yields

Hsk
NS/HCNS = Hsk

0 −
∫ t

0
E sk dt′ +

∫ t

0
Psk

NS/HCNS dt′. (3.37)

Considering the production Psk > 0 in general, we obtain

H±
HCNS > H±

NS. (3.38)

Starting from the same initial condition, (3.38) indicates that the left- or right-handed
helicity component in the HCNS flow is larger than its counterpart in the NS flow.

4. Simulation overview

The DNS is performed to solve (2.1) and (2.4) with F = ν∇2u for the NS flow and F =
ν(nω × ∇2u) × nω for the HCNS flow. It is carried out using the pseudo-spectral method
in a periodic cube of side L = 2π on N3 uniform grid points. Aliasing errors are removed
using the two-thirds truncation method with the maximum wavenumber kmax ≈ N/3.

Note that strictly speaking the N/5 dealiasing rule should be used in the presence of the
fifth-order nonlinear interaction for the HCNS equation. Consistent with the conjectured
dominance of triadic interactions in (3.35), we found that the N/3 rule is still sufficient
in numerical tests. The temporal evolution is integrated using an explicit second-order
Runge–Kutta scheme with adaptive time steps in physical space. The spatial resolution,
i.e. N, is selected to resolve the smallest motion by grid convergence tests as in Yao et al.
(2021). The time step Δt is selected to ensure that the Courant–Friedrichs–Lewy number
small enough (0.1–0.3 for different cases) for numerical stability and accuracy. We set up
several DNS cases with Re = 1/ν and different initial conditions. The DNS parameters
are listed in table 1.

There are two types of initial conditions. For the first type, the initial vorticity is
concentrated in a thin closed vortex tube, such as the vortex ring and vortex knot. The
parametric equation of the tube centreline C, a spatially closed curve, is

c(ζ ) = [R0 + r0 cos(qζ )] cos( pζ )ex + [R0 + r0 cos(qζ )] sin( pζ )ey − [r0 sin(qζ ) + 2]ez,
(4.1)

with ζ ∈ [0, 2π) and unit vectors {ex, ey, ez} for Cartesian coordinates. Geometric/
topological parameters Wr0, Tw0, R0, r0, p and q for different cases are listed in table 1.
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Cases Re N3 H0 Wr0 Tw0 Γ R0 r0 ( p, q)

Twisted ring 1000 5123 10 0 10 1 1 0 (1, 1)

Trefoil knot 2000 10243 3.518 3.518 0 1 1 0.5 (2, 3)

Colliding rings 2000 10243 0 0 0 1 1 0 (1, 1)

HIT 500 5123 −104.5 — — — — — —

Table 1. DNS cases and parameters.

Here, the writhe Wr characterizes the degree of distortion of C and Tw characterizes
the twist of a ribbon formed by C and its accompanying curve. Their definitions and
geometric meanings are detailed in Moffatt & Ricca (1992). For a closed vortex tube with
uniform twist, the total helicity has the decomposition H = Γ 2(Wr + Tw), where Γ is the
circulation of the vortex tube.

We use the method adapted from Xiong & Yang (2019a, 2020) to construct unknotted
or knotted vortex tubes with finite thickness and tunable twist. The case set-ups are very
similar to those in Xiong & Yang (2020) and Yao et al. (2021), so they are only briefly
discussed below. The vorticity flux distribution is a Gaussian function with Γ = 1 and
standard deviation σ0 = 1/(16

√
2π) ≈ 0.025. The effective core radius is estimated as

re = 2σ0, within which the vortex tube contains 95 % of the circulation. The vortex tube is
sufficiently thin corresponding to the criterion in Zhao et al. (2021). The velocity field
is calculated by the Biot–Savart law u(x) = F−1(ik × ω̂/k2) in Fourier space, where
ω̂ = F(ω) denotes the Fourier coefficient of the vorticity field with the Fourier transform
operator F and its inverse form F−1.

For the second type of initial condition, the initial velocity u0 is a Gaussian random field
for simulating decaying HIT (Xiong & Yang 2019b), with volume-averaged initial energy
〈E0〉 = E0/L3 = 1 and a prescribed energy spectrum (Kraichnan 1970; Ishida, Davidson
& Kaneda 2006; Briard & Gomez 2017) Ek(k, t = 0) ∼ k4 exp[−2(k/4)2].

5. Evolution of HCNS flows

For the cases of the twisted vortex ring, trefoil vortex knot and colliding vortex rings
in table 1, the NS flows show significant changes of H with essential vortex dynamics,
such as vorticity diffusion and vortex reconnection. For the case of HIT, the NS flow
has decaying H and energy cascade with time. We demonstrate how the imposed helicity
conservation changes vortex and helicity dynamics in HCNS flows, and its implication to
parity breaking in NS flows.

5.1. Twisted ring
We investigate a vortex ring with an initially uniform twist with Wr = 0 and Tw0 = 10.
This is a simple model for the decay of H or Tw in NS flows. Figure 2 depicts the
temporal evolution of the isosurface of |ω| in HCNS and NS flows. Here, the time t can
be considered as a normalized one: t/(R2

0/Γ ) with R2
0/Γ = 1. In the NS flow, the helical

degree of vortex lines, characterized by Tw, diminishes with time. By contrast, the ring
shape and helical vortex lines are maintained in the HCNS flow due to the imposed helicity
conservation. Figure 3(b) shows the persistent growth of ΛB, i.e. the Beltramization of the
HCNS flow analysed in § 2.3, which is distinguished from the decaying ΛB in the NS flow.
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t = 0

t = 1

0
h

5 10 15 20

HCNS

(a)

(b)

(c)

NS

t = 1

t = 2

t = 2

t = 4

t = 4

Figure 2. Evolution of the isosurface of |ω| for (a) the twisted vortex ring in (b) HCNS and (c) NS flows. The
isocontour thresholds are |ω| = 25, 25, 25, 20 for the HCNS flow and |ω| = 25, 20, 17, 13 for the NS flow at
t = 0, 1, 2, 4, respectively. The isosurfaces are colour-coded by the helicity density.

10
(a) (b) 0.3

0.2

HCNS

NS
0.1

ΛB5

H, HCNS

Γ 2Wr, HCNS

Γ 2Tw, HCNS

Γ 2Wr, NS

Γ 2Tw, NS

H, NS

0

0 1 2

t
3 4 0 1 2

t
3 4

Figure 3. Evolution of (a) the helicity and its components and (b) the Beltramization criterion for the twisted
vortex ring in HCNS and NS flows.

At long times, u and ω tend to be aligned to maintain H with decaying |u| and |ω| in the
HCNS flow.

The large-scale ring structures in both flows are the same. In figure 3(a), both vortex
centrelines keep as a circle with Wr = 0, where Wr is calculated by the method in Yao
et al. (2021). Thus, the helicity variation in the NS flow is totally due to the decay of Tw
in figure 3(a), whereas Tw is conserved in the HCNS flow. Note that the local twist within
the vortex ring can be non-uniform in the HCNS flow.

In figure 4, the total energy of the HCNS flow persistently decays with time, and the
decaying of E and Ω in the HCNS flow is slower than that in the NS flow, consistent with
(2.18) and (2.25).

5.2. Trefoil knot
We investigate the evolution of a trefoil knotted vortex tube with Wr > 0 and Tw0 = 0 to
show how the imposed helicity conservation influences the vortex reconnection, which
plays an essential role in the dynamics of viscous flows (Kida & Takaoka 1994; Yao
& Hussain 2022). Moreover, we examine the theory in § 3.2 that the breaking of parity
symmetry at small scales leads to a sudden change of H during vortex reconnection.

In figure 5, the evolutions of large-scale vortical structures in NS and HCNS flows are
very similar. Driven by the self-induced velocity, the knotted vortex tube is untied into a
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t
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HCNS

NS

(a)

0 1 2 3 4

t

200

400

Ω

(b)

Figure 4. Evolution of (a) total kinetic energy and (b) enstrophy for the twisted vortex ring in HCNS and NS
flows.

(a) t = 0

(b)
t = 4 t = 6 t = 8

(c)

(d)

x y

z

HCNS

NS

SLR

LTR

Threads

h

−10

−5

0

5

10

x

y

z

HCNS

Figure 5. Evolution of the isosurface of |ω| = 0.04ω0 for (a) the trefoil knot in (b) HCNS and (c) NS flows,
with ω0 = |ω0|max, the maximum value of |ω0| in the computational domain. The SLR, LTR and threads are
marked. (d) Close-up view of vortex lines at the reconnection site at t = 4 in the HCNS flow, and the region is
marked by the dashed box in (b). All isosurfaces and vortex lines are colour-coded by the helicity density.

large tailing ring (LTR) and a small leading ring (SLR) via vortex reconnection. Strong
positive and negative helicity density are generated locally near reconnection sites. The
close-up view of the reconnection region in figure 5(d) shows that the vortex lines are not
strictly anti-parallel in the HCNS flow, and their geometry in the NS flow is very similar,
so the writhe and twist can vary during the reconnection with helicity conservation (Laing,
Ricca & Sumners de 2015).
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HCNS

(a) (b)

y

x

NS

Figure 6. Top view of vortex lines for the trefoil knot at t = 4 when the vortex reconnection occurs in (a)
HCNS and (b) NS flows. Red and blue vortex lines are integrated from points on the isosurface of |ω| = 0.16ω0
and |ω| = 0.04ω0, respectively.

For further quantitative comparisons (not shown), the total length and writhe of the
vortex core line, which were reported in figures 6 and 10 in Yao et al. (2021), are very
close in NS and HCNS flows, and the generalized twist H/Γ 2 − Wr in the HCNS flow is
slightly larger than in the NS flow. The total helicity remains conserved in the HCNS flow,
while it fluctuates during vortex reconnection (Yao et al. 2021). Therefore, although the
helicity characterizes the flow topology, vortex reconnection in the HCNS flow indicates
that the helicity can be invariant during significant topological changes of vortex lines or
tubes by altering internal structures within vortex tubes.

The evolution of the vortex knot in NS flows shows a significant variation of H and even
a transient growth at large Re (Yao et al. 2021; Zhao & Scalo 2021; Zhao et al. 2021). On
the contrary, the HCNS flow conserves the helicity by maintaining or generating a larger
twist than that in the NS flow. Figure 6 shows the vortex lines within the vortex tube in
HCNS and NS flows at the reconnection time. The vortex lines near the vortex core remain
parallel in both flows, and they become chaotic and non-uniform in the outer tube in the
HCNS flow. Then the trefoil knot is split into the LTR and SLR, and the chaotic vortex
lines in the HCNS flow show strong non-uniform twist in figure 5(b), corresponding to the
Beltramization of the HCNS flow.

Figure 7(a) shows that both left- and right-handed helicity components in the HCNS
flow are larger than their counterparts in the NS flow, consistent with the stronger twist
in figure 6 and the theoretical analysis in (3.38). Figure 7(b) shows that the HCNS energy
spectrum is larger than the NS one at late times in the dissipation range, as a quantification
for the more small-scale structures in the HCNS flow in figures 5 and 6. Moreover, Ek(k)
shows a k−4 law in the dissipation range in the HCNS flow, and it remains in the evolution
at late times.

We explain the transient variation of H (see figure 8) during the vortex reconnection
of the trefoil knot in the NS flow using the HWD analysis in § 3.2. For simple closed
vortex tubes such as knots or links, we take the characteristic length L = R0 and velocity
U = Γ/σ(t), where the growth of the vortex core size σ due to the viscous diffusion is

estimated by σ(t) =
√

σ 2
0 + 2νt from the Lamb–Oseen vortex model (Wu, Ma & Zhou

2015). The truncated wavenumber in (3.13) becomes

kc(t) = Γ 1/3R−2/3
0 ν−1/3(σ 2

0 + 2νt)−1/6, (5.1)

which initially is kc(0) ≈ 43.1 at Re = 2000 and decreases with increasing time. Then, we
use the HWD to calculate H±

< and H±
> by (3.19a,b).

954 A36-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.878


Z. Meng, W. Shen and Y. Yang

0 2 4 6 8 10

t

20

40

H± H−
NS

H+
NS

H–
HCNS

H+
HCNS

(a)

100 101 102

k

10−3

10−4

10−5

10−6

10−7

10−8

10−9

Ek

k −5/3

k −4

t = 0

t = 4, HCNS

t = 10, HCNS

t = 4, NS

t = 10, NS

(b)

Figure 7. (a) Evolution of the left- and right-handed helicity components and (b) energy spectra at t = 0, 4
and 10 for the trefoil vortex knot in HCNS and NS flows.

0 2 4 6 8 10

t

4

5

H

NS, Re = 2000

NS, Re = 6000

NS, Re = 12 000

HCNS

Figure 8. Evolution of helicity for the trefoil knot in HCNS and NS flows. The profiles for the NS flow at
Re = 6000 and 12 000 are adapted from Yao et al. (2021). The time period of the transient growth of H during
vortex reconnection is shaded in yellow.

In figure 9(a), the notable difference of the left- and right-handed helicity spectra

H±
k (k) ≡

∑
k′

k′|u±(k′)|2δ(|k′| − k) (5.2)

at k > kc (shaded in yellow) indicates that parity breaking at small scales occurs during
vortex reconnection in the NS flow, where kc is marked by the vertical dashed line. In
figure 9(b) around t = 4 (shaded in yellow), finite H−

> − H+
> appears to cause a spike of

dH/dt, because the peak of H−
> − H+

> occurs slightly earlier than the peak of dH/dt.
The causality of the transient variation of H and small-scale parity breaking is further
discussed in Appendix A. An overall agreement of the peaks of dH/dt and the right-hand
side of (3.15) shows that the helicity variation is dominated by small-scale motions. Since
parity breaking at small scales seems to be unavoidable in practical flows under various
disturbances and instabilities, helicity conservation cannot be ensured, perhaps even in the
inviscid limit, in the NS flow.
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Figure 9. Parity breaking at small scales in the evolution of the trefoil vortex knot in the NS flow at Re =
2000. (a) Left- and right-handed helicity spectra at t = 4. (b) Evolution of the difference between left- and
right-handed helicity components at small scales, the time rate of helicity and right-hand side of (3.15).

5.3. Asymmetric collision of vortex rings
We study the helicity dynamics of the asymmetric collision of vortex rings (Yao et al.
2022) with H0 = 0 in NS and HCNS flows. The parametric equations of the vortex
centrelines of two initial unlinked vortex rings are

c1(ζ ) =
[√

2
2

(cos ζ + sin θ sin ζ ) − δ

]
ex − cos θ sin ζ ey +

√
2

2
(cos ζ − sin θ sin ζ )ez

(5.3)
and

c2(ζ ) =
(√

2
2

cos ζ − δ

)
ex − sin ζ ey −

√
2

2
cos ζ ez. (5.4)

Here, θ = π/8 is a rotating angle to pose asymmetry and δ = 0.85 is a separation distance.
Other initial parameters of the two rings, R0 = 1, Γ = 1 and σ0 = 1/(16

√
2π), are the

same as those for the trefoil knot. The initial configuration is shown in figure 11(a).
Starting from H = 0, the helicity in the NS flow fluctuates in figure 10(a) due to the

asymmetric vortex reconnection in figure 11. Similar to the observation for the trefoil
vortex knot, large-scale structures in NS and HCNS flows are almost identical in figure 11,
while small-scale ones show notable differences. In figure 11(e), the small-scale threads
in the NS flow show that the positive helicity density is stronger than the negative one,
leading to H > 0. By contrast, the HCNS flow generates numerous small-scale structures
in figures 11(a) and 11(d) at t = 2, much more than in the NS flow. The extra threads make
a delicate balance of H+ and H−. In § 3.3, we demonstrate that the pentadic interactions
in the HCNS dynamics are more complex than the triadic interactions in the NS dynamics.
Figure 10 shows H±

HCNS is slightly larger than H±
NS, consistent with (3.38).

The asymmetric collision of vortex rings also shows that parity breaking at small scales
leads to helicity variation in the NS flow. As analysed in § 3.2 and shown in figure 12,
all peaks or valleys of H−

> − H+
> are slightly ahead of those of dH/dt, and the profiles

of dH/dt and the right-hand side of (3.15) almost collapse, where kc in (5.1) is used. For
comparison, helicity conservation in the HCNS flow with H0 = 0 implies absolute parity
symmetry through the pentadic mode interactions.
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Figure 10. Evolution of (a) helicity and (b) left- and right-handed helicity components for the asymmetric
collision of vortex rings in HCNS and NS flows.
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Figure 11. Evolution of the isosurface of |ω| = 0.04ω0 colour-coded by the helicity density for (a) the
asymmetric collision of vortex rings in (b) HCNS and (c) NS flows. Close-up views of vortical structures
at t = 2 after asymmetric reconnection in (d) the HCNS flow and (e) the NS flow. The zoom-in regions are
marked by dashed boxes in (b) and (c), respectively.

5.4. Decaying HIT
We compare HCNS and NS dynamics in decaying HIT. Figure 13 compares the total
kinetic energy, enstrophy, helicity and Beltramization criterion in HCNS and NS flows.
At early times t ≤ O(1), the evolutions of E and Ω in HCNS and NS flows are close; H
starts to grow in the NS flow; and ΛB of the two flows are almost identical. Note that
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Figure 12. Evolution of the difference between left- and right-handed helicity components at small scales, the
time rate of helicity and right-hand side of (3.15) during the asymmetric collision of vortex rings in the NS
flow.
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Figure 13. Evolution of (a) total kinetic energy, (b) enstrophy, (c) helicity and (d) Beltramization criterion for
decaying HIT at Re = 500 in HCNS and NS flows.

the initial helicity is determined by the initial Gaussian random field with a generator of
random numbers, so it varies in different realizations, i.e. H0 can be either positive or
negative. From contours of the helicity density in figure 14(b,e), the large-scale structures
in both flows are also similar, and some local |h| in the HCNS flow is larger than that in
the NS flow.
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Figure 14. Evolution of the helicity-density contour on the x–y plane at z = π for (a) decaying HIT at
Re = 500 in (b–d) HCNS and (e–g) NS flows.

At later times t > O(1), HCNS and NS dynamics behave very differently. In
figures 13(a) and 13(b), E ∼ t−10/7 and Ω ∼ t−15/7 decay with the Kolmogorov decaying
laws (Kolmogorov 1941) at late times in the NS flow. By contrast, E and Ω in the HCNS
flow slowly decay and relax to constants E∞ and Ω∞ in (2.38), respectively. The helicity
remains invariant in the HCNS flow, whereas it relaxes to zero in the NS flow. In particular,
the HCNS flow exhibits much stronger Beltramization, as the faster and larger growth of
ΛB, than the NS flow. A complete Beltramization of HIT in the HCNS flow, i.e. ΛB → 1
implied from (2.38), appears to be very slow at late times.

The Beltramization of HIT in the HCNS flow is visualized in figure 14. The initial
parity asymmetry due to the random initial field grows with time in the HCNS flow, as
illustrated by the dominance of negative h at t = 10 and 100 in figure 14(c,d). In contrast,
the parity symmetry is restored at long times due to the viscous decay in the NS flow.
Furthermore, the small-scale structures are remarkably maintained at late times in the
dissipative HCNS flow without external forces, while they are gradually dissipated in
the NS flow. In figure 15(a), the right-handed helicity component goes to zero while the
left-handed one remains constant at t ≥ O(102) in the HCNS flow, and H±

HCNS > H±
NS is

consistent with (3.38). Thus, the HCNS equation seems natural to generate purely chiral
turbulence (Biferale et al. 2013).

For the decaying HIT, we take

L = π

2u′2

∫ ∞

0

Ek(k)
k

dk (5.5)

as the integral length scale and U = u′ = (2〈E〉/3)1/2 as the root-mean-square velocity.
The truncated wavenumber in (3.13) becomes

kc(t) = ν−1/3

2 × 35/6π19/6 E5/6(t)
(∫ ∞

0

Ek(k)
k

dk
)−2/3

, (5.6)

which initially is kc(0) ≈ 10.2 at Re = 500 and slightly increases then decreases with time.
Figure 15(b) compares evolutions of Ek(k) in HCNS and NS flows, where kc at different
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Figure 15. (a) Evolution of the left- and right-handed helicity components and (b) energy spectra at t = 0
(black), 1 (red), 10 (blue) and 100 (magenta) for decaying HIT in HCNS and NS flows. Solid and dashed lines
denote the profiles in HCNS and NS flows, respectively, and kc for the NS flow is marked near the profiles of
Ek at different times.

times are marked by arrows. The spectra broaden with time, indicating energy cascade, and
have a narrow inertial range with the −5/3 scaling law in both flows. The inertial range is
expected to be wider with increasing Re. At later times, Ek(k) at high k in the HCNS flow
is significantly larger than that in the NS flow. In particular, Ek(k) in the dissipation range
in this HIT and other HCNS flow (see figure 7b) shows a k−4 law at late times, which
seems related to the Beltramization of the HCNS flow at small scales.

A similar scaling law of k−4 was reported in the anisotropic kinetic alpha instability
(Sulem et al. 1989) and the near-maximum helical turbulent state (Plunian et al. 2020),
and a scaling law of k−7/3 was observed in the evolution of a pair of anti-parallel strongly
polarized vortex tubes (Yao & Hussain 2021).

6. Conclusions

We propose the HCNS equation (2.8) by modifying the non-ideal force term in the NS
equation (2.2). The corresponding HCNS flow has strict helicity conservation in (2.29) and
finite dissipation in (2.18). We find that, in general, the imposed helicity conservation has
very minor influence on the evolutionary topology and geometry of large-scale structures,
whereas it has an impact on those of small-scale structures.

We theoretically derive several properties of the HCNS flow. In (2.25), the enstrophy
of the HCNS flow is larger than that of the NS flow from the same initial condition. In
(2.38), the HCNS flow tends to be Beltramized at long times. In (3.27), the pentadic mode
interactions in the HCNS dynamics are more complex than the triadic interactions in the
NS dynamics. In (3.38), the left- and right-handed helicity components in the HCNS flow
are larger than their counterparts in the NS flow. Furthermore, we demonstrate in (3.21)
that parity breaking at small scales can trigger a notable time variation of helicity in the
NS flow.

The comparative DNS study of HCNS and NS flows elucidates the influence of helicity
conservation on flow structures and statistics. First, the flow with helicity conservation
has the ultimate Beltrami state. In the evolution of the twisted vortex ring, the twisted
vortex lines are preserved in the HCNS flow while they become parallel in the NS flow at
long times. In decaying HIT, small-scale flow structures with positive or negative helicity
density are preserved, and the energy spectra show a k−4 scaling law in the dissipation
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range in the HCNS flow. Thus, the HCNS equation is natural to generate a purely chiral
turbulent flow (Biferale et al. 2012, 2013).

Second, large-scale flow structures are similar and small-scale structures are different
in the evolution of HCNS and NS flows from the same initial condition. During vortex
reconnection of the trefoil vortex knot and the asymmetric collision of vortex rings, the
geometries and topologies of vortex core lines in HCNS and NS flows are almost identical.
This indicates that the helicity can be invariant during significant topological changes of
vortices by altering internal structures of vortex tubes. On the other hand, many more
small-scale threads are generated in the HCNS flow than in the NS flow, consistent with
the slower energy decay and the k−4 scaling of Ek(k) in the dissipation range in the HCNS
flow.

Moreover, the symmetry breaking of left- and right-handed structures at small scales,
with finite |H+

> − H−
>|, during vortex reconnection can lead to a notable helicity variation

in the NS flow. In turn, the imposed helicity conservation generates extra threads via the
pentadic mode interactions to make a delicate balance of H+ and H−, and thus keep
absolute parity symmetry for flows with H0 = 0. The findings above hint that helicity may
not be conserved in the inviscid limit of NS flows, because parity breaking at small scales
seems to be unavoidable in practical flows under various disturbances and instabilities.

In future work, the theoretical framework of the HCNS flow can be extended to study
helicity conservation in the inviscid limit, the mechanism of energy and helicity cascades
and the flow control with manipulation of parity symmetry at small scales.
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Appendix A. Helicity variation under small-scale parity breaking

Equation (3.15) implies that parity breaking at small scales can lead to a notable helicity
variation. Their causality is investigated by perturbing a vortex ring at small scales,
i.e. imposing an asymmetric disturbance with k > kc to a symmetric vortex with H0 =
Wr0 = Tw0 = 0. Here, kc is defined in (5.1), and values of R0, r0, p and q are the same as
those in the DNS of the twisted ring. The evolution of an unperturbed vortex ring in an
unbounded viscous flow has H = 0 for all times.

In the numerical experiment with Re = 2000, we artificially impose a small-scale
disturbance on the left-handed velocity mode in Fourier space at t = td as

u−(k, t = t+d ) =
(

1 + 2 exp
[−(k − 2kc)

4

100k2
c

])
u−(k, t = t−d ), (A1)

after the vortex ring evolves for a short time td = 2 in the NS flow.
The perturbation (A1) amplifies H−

k near k = 2kc to break parity symmetry at small
scales in figure 16(a), and it only adds a negligible amount of energy at small scales
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Figure 16. (a) Left- and right-handed helicity spectra after small-scale perturbation imposed on the vortex
ring at t = td . (b) Energy spectra after (t = t+d ) and before (t = t−d ) the perturbation.
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Figure 17. Evolution of the helicity, the time rate of helicity and the difference between small-scale left- and
right-handed helicity components for the vortex ring perturbed at t = td .

in figure 16(b). In the meantime, we slightly lower the amplitude of the left-handed
component at the largest scale as

u−(k, t = t+d )|k=1 = 0.775u−(k, t = t−d )|k=1 (A2)

to keep H(t+d ) = H(t−d ) = 0. Note that the perturbation performed in the normal plane of
k keeps the perturbed velocity incompressible.

In figure 17, the imposed H−
> − H+

> > 0 at t = td causes dH/dt to surge to a finite
value, and H begins to grow after t = td. Moreover, the difference of E(t) in flows with or
without the disturbance is negligible. Figure 18 illustrates the evolution of the contour of a
normalized helicity density in the y–z plane at a cross-section of the vortex ring. At t = t+d ,
the negative helicity density is concentrated at the vortex core due to the enhancement of
the energy for small-scale left-handed structures. In the subsequent evolution, large-scale
right-handed spiral structures form with H > 0, similar to the observation in Takaoka
(1996). Hence, it is evident that parity breaking at small scales can trigger a notable time
variation of helicity in the NS flow.
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t = 2.0 t = 2.5 t = 3.0

y

z

h/|h|max

−1.0 −0.5 0 0.5 1.0

Figure 18. Evolution of the contour of the helicity density normalized by |h|max(t) on the y–z plane at x = π

for the perturbed vortex ring. Note that the other half of the cross-section is not shown due to axial symmetry
with respect to x = y = 0.
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Engng Sci. 439, 411–429.
MOFFATT, H.K. & TSINOBER, A. 1992 Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24,

281–312.
MOREAU, J.J. 1961 Constantes d’un îlot tourbillonnaire en fluide parfait barotrope. C. R. Acad. Sci. Paris 252,

2810–2812.
PELZ, R.B., SHTILMAN, L. & TSINOBER, A. 1986 The helical nature of unforced turbulent flows. Phys.

Fluids 29, 3506.
PLUNIAN, F., TEIMURAZOV, A., STEPANOV, R. & VERMA, M.K. 2020 Inverse cascade of energy in helical

turbulence. J. Fluid Mech. 895, A13.
POPE, S.B. 2000 Turbulent Flows. Cambridge University Press.
RICCA, R.L., SAMUELS, D.C. & BARENGHI, C.F. 1999 Evolution of vortex knots. J. Fluid Mech. 391,

29–44.
RUAN, S., XIONG, S., YOU, J. & YANG, Y. 2022 Generation of streamwise helical vortex loops via successive

reconnections in early pipe transition. Phys. Fluids 34, 054112.
SAHOO, G., ALEXAKIS, A. & BIFERALE, L. 2017 Discontinuous transition from direct to inverse cascade in

three-dimensional turbulence. Phys. Rev. Lett. 118, 164501.
SCHEELER, M.W., KLECKNER, D., PROMENT, D., KINDLMANN, G.L. & IRVINE, W.T. 2014 Helicity

conservation by flow across scales in reconnecting vortex links and knots. Proc. Natl Acad. Sci. USA 111,
15350–15355.

SHE, Z.-S. & JACKSON, E. 1993 Constrained Euler system for Navier–Stokes turbulence. Phys. Rev. Lett. 70,
1255–1258.

SHEN, W., YAO, J., HUSSAIN, F. & YANG, Y. 2022 Topological transition and helicity conversion of vortex
knots and links. J. Fluid Mech. 943, A41.

SLOMKA, J. & DUNKEL, J. 2017 Spontaneous mirror-symmetry breaking induces inverse energy cascade in
3D active fluids. Proc. Natl Acad. Sci. USA 114, 2119–2124.

SREENIVASAN, K.R. 1984 On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27,
1048–1051.

SREENIVASAN, K.R. 1998 An update on the dissipation rate in homogeneous turbulence. Phys. Fluids 10,
528–529.

SULEM, P.L., SHE, Z., SCHOLL, H. & FRISCH, U. 1989 Generation of large-scale structures in
three-dimensional flow lacking parity-invariance. J. Fluid Mech. 205, 341–358.

TAKAOKA, M. 1996 Helicity generation and vorticity dynamics in helically symmetric flow. J. Fluid Mech.
319, 125–149.

TAYLOR, G.I. & GREEN, A.E. 1937 Mechanism of the production of small eddies from large ones. Proc. R.
Soc. Lond. A-Math. Phys. Engng Sci. 158, 499–521.

954 A36-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.878


Z. Meng, W. Shen and Y. Yang

TONG, W., YANG, Y. & WANG, S. 2020 Characterizing three-dimensional features of vortex surfaces in the
flow past a finite plate. Phys. Fluids 32, 011903.

TRUESDELL, C. 2018 The Kinematics of Vorticity. Courier Dover Publications.
TSINOBER, A. & LEVICH, E. 1983 On the helical nature of three-dimensional coherent structures in turbulent

flows. Phys. Lett. A 99A, 321–324.
WALEFFE, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids 4, 350–363.
WOLTJER, L. 1958 A theorem on force-free magnetic fields. Proc. Natl Acad. Sci. USA 44, 489–491.
WOOD, D.H., MEHTA, R.D. & KOH, S.G. 1992 Structure of a swirling turbulent mixing layer. Exp. Therm.

Fluid Sci. 5, 196–202.
WU, J., MA, H. & ZHOU, M. 2015 Vortical Flows. Springer.
XIONG, S. & YANG, Y. 2019a Construction of knotted vortex tubes with the writhe-dependent helicity. Phys.

Fluids 31, 047101.
XIONG, S. & YANG, Y. 2019b Identifying the tangle of vortex tubes in homogeneous isotropic turbulence.

J. Fluid Mech. 874, 952–978.
XIONG, S. & YANG, Y. 2020 Effects of twist on the evolution of knotted magnetic flux tubes. J. Fluid Mech.

895, A28.
YAN, Z., LI, X., YU, C., WANG, J. & CHEN, S. 2020 Dual channels of helicity cascade in turbulent flows.

J. Fluid Mech. 894, R2.
YANG, Y.-T., SU, W.-D. & WU, J.-Z. 2010 Helical-wave decomposition and applications to channel

turbulence with streamwise rotation. J. Fluid Mech. 662, 91–122.
YANG, Y.-T. & WU, J.-Z. 2011 Channel turbulence with spanwise rotation studied using helical wave

decomposition. J. Fluid Mech. 692, 137–152.
YAO, J. & HUSSAIN, F. 2021 Polarized vortex reconnection. J. Fluid Mech. 922, A19.
YAO, J. & HUSSAIN, F. 2022 Vortex reconnection and turbulence cascade. Annu. Rev. Fluid Mech. 54,

317–347.
YAO, J., SHEN, W., YANG, Y. & HUSSAIN, F. 2022 Helicity dynamics in viscous vortex links. J. Fluid Mech.

944, A41.
YAO, J., YANG, Y. & HUSSAIN, F. 2021 Dynamics of a trefoil knotted vortex. J. Fluid Mech. 923, A19.
ZHAO, X. & SCALO, C. 2021 Helicity dynamics in reconnection events of topologically complex vortex flows.

J. Fluid Mech. 920, A30.
ZHAO, Y., YANG, Y. & CHEN, S. 2016 Vortex reconnection in the late transition in channel flow. J. Fluid

Mech. 802, R4.
ZHAO, X., YU, Z., CHAPELIER, J. & SCALO, C. 2021 Direct numerical and large-eddy simulation of trefoil

knotted vortices. J. Fluid Mech. 910, A31.
ZHU, J., YANG, W. & ZHU, G. 2014 Purely helical absolute equilibria and chirality of (magneto) fluid

turbulence. J. Fluid Mech. 739, 479–501.

954 A36-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.878

	1 Introduction
	2 Theoretical framework of the HCNS flow
	2.1 Introduction of the HCNS equation
	2.2 Evolution of integral quantities for the HCNS flow
	2.3 Beltramization of the HCNS flow

	3 The HWD of NS/HCNS dynamics
	3.1 The HWD
	3.2 Transient variation of helicity in the NS dynamics
	3.3 Pentadic interactions in the HCNS dynamics

	4 Simulation overview
	5 Evolution of HCNS flows
	5.1 Twisted ring
	5.2 Trefoil knot
	5.3 Asymmetric collision of vortex rings
	5.4 Decaying HIT

	6 Conclusions
	A Appendix A. Helicity variation under small-scale parity breaking
	References

