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Introduction: Count Data Containing
Dispersion

This chapter is an overview summarizing relevant, established, and well-
studied distributions for count data that motivate the consideration of the
Conway–Maxwell–Poisson (COM–Poisson) distribution. Each of the dis-
cussed models provides an improved flexibility and computational ability
for analyzing count data; yet associated restrictions help readers to appre-
ciate the need for and usefulness of the COM–Poisson distribution, thus
resulting in an explosion of research relating to this model. For complete-
ness of discussion, each of these sections includes discussion of the relevant
R packages and their contained functionality to serve as a starting point for
forthcoming discussions throughout subsequent chapters. Along with the R
discussion, illustrative examples aid readers in understanding distribution
qualities and related statistical computational output. This background pro-
vides insights into the real implications of apparent data dispersion in count
data models and the need to properly address it.

This introductory chapter proceeds as follows. Section 1.1 introduces
the most well-known model for count data: the Poisson distribution. Its
probabilistic and statistical properties are discussed, along with R tools to
perform computations. Section 1.2, however, notes a major limitation of
the Poisson distribution – namely its inability to properly model dispersed
count data. Focusing first on the phenomenon of data over-dispersion, this
section focuses attention on the negative binomial (NB) distribution – the
most popular count distribution that allows for data over-dispersion. Sec-
tion 1.3 meanwhile recognizes the existence of count data that express data
under-dispersion and the resulting need for model consideration that can ac-
commodate this property. While several flexible models allowing for data
over- or under-dispersion exist in the literature, this section focuses atten-
tion on the generalized Poisson (GP) distribution for modeling such data
because it is arguably (one of) the most popular option(s) for modeling
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2 Introduction: Count Data Containing Dispersion

such data. Section 1.4 offers an overarching perspective about these models
as special cases of a larger class of weighted Poisson distributions. Finally,
Section 1.5 motivates an interest in the COM–Poisson distribution and sum-
marizes the rest of the book, including the unifying background that will be
referenced in subsequent chapters.

1.1 Poisson Distribution

The Poisson distribution is the most studied and applied distribution ref-
erenced to describe variability in count data. A random variable X with a
Poisson(λ) distribution has the probability mass function

P(X = x) = λxe−λ

x! , x = 0, 1, 2, . . . , (1.1)

or, on the log-scale,

ln [P(X = x)] = x ln λ− ln (x!) − λ

= x ln λ−
x∑

j=1

ln (j) − λ,

where λ is the associated intensity parameter; illustrative examples of the
distributional form assuming various values of λ are provided in Figure 1.1.

Derived as the limiting distribution of a binomial(n, p) distribution where
n → ∞ and p → 0 such that np = λ, the beauty of this distribution lies in
its simplicity. Both its mean and variance equal the intensity parameter λ;
thus, the dispersion index is

DI(X) = V(X)

E(X)
= λ

λ
= 1. (1.2)

The probability mass function satisfies the recursion

P(X = x − 1)

P(X = x)
= x

λ
, (1.3)

with its moment generating function MX(t) = eλ(et−1), and the Poisson
distribution is a member of the exponential family of the form

P(X = x; θ) = H(x) exp [η(θ)T(x) −�(θ)], x ∈ N, (1.4)

where, for θ = λ, η(θ) = ln (λ), �(θ) = λ, T(x) = x, and H(x) = (x!)−1.
The simplicity of the Poisson distribution, however, can also be viewed as
theoretically constraining and not necessarily representative of real count
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Figure 1.1 Poisson probability mass function illustrations for λ ∈ {0.3, 1, 3, 10}.

data distributions. Thus, applying statistical methods that are motivated
and/or developed by the Poisson model assumption can cause significant
repercussions with regard to statistical inference. This matter is discussed
in more detail in the subsequent sections in Chapter 1 and throughout this
reference.
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4 Introduction: Count Data Containing Dispersion

1.1.1 R Computing

The stats package contains functions to compute the probability, distribu-
tion function, quantile function, and random number generation associated
with the Poisson distribution. All of the relevant commands require the
Poisson rate parameter λ (lambda) as an input value. The dpois func-
tion computes the probability/density P(X = x) for a random variable X
at observation x. The command has the default setting as described (log
= FALSE), while changing the indicator input to log = TRUE computes
the probability on the natural-log scale. The ppois function computes the
cumulative probability P(X ≤ q) given a quantile value q, while qpois
determines the quantile q (i.e. the smallest integer) for which the cumula-
tive probability P(X ≤ q) ≥ p for some given probability p. This quantile
determination stems from the discrete nature of the Poisson probability
distribution. Both commands contain the default settings lower.tail =
TRUE and log.p = FALSE. The condition lower.tail = TRUE infers in-
terest regarding the cumulative probability P(X ≤ q) while lower.tail
= FALSE focuses on its complement P(X > q) (i.e. the upper tail). The
indicator log.p = FALSE (TRUE) meanwhile infers whether to consider
probabilities on the original or natural-log scale, respectively. Finally, the
rpois function produces a length n (n) vector of count data randomly
generated via the Poisson distribution.

Demonstrative examples utilizing the respective functions are pro-
vided in Code 1.1, all of which assume the Poisson rate param-
eter λ= 3. The command dpois(x=5, lambda=3) determines that
P(X = x) = 0.1008188; this value is illustrated in Figure 1.1 for
λ= 3. Meanwhile, dpois(x=5, lambda=3, log = TRUE) shows that
ln (P(X = x)) = ln (0.1008188) = − 2.29443. The ppois functions demon-
strate the difference between computing the lower versus upper tail,
respectively; naturally, the sum of the two results equals 1. The com-
mand qpois(p=0.9, lambda=3) produces the expected result of 5 be-
cause we see that the earlier ppois(q=5, lambda=3) result showed that
P(X ≤ 5) = 0.9160821> 0.9. Meanwhile, one can see that qpois(p=0.9,
lambda=3, lower.tail = FALSE) produces the value 1 by considering
the corresponding ppois commands:

ppois(q=0, lambda=3, lower.tail=FALSE) produces the result 0.9502129
ppois(q=1, lambda=3, lower.tail=FALSE) produces the result 0.8008517.

Recall that the discrete nature of the Poisson distribution requires a mod-
ified approach for determining the quantile value; the resulting quantile is

https://doi.org/10.1017/9781108646437.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108646437.002


1.2 Data Over-dispersion 5

Code 1.1 Examples of R function use for Poisson distributional computing:
dpois, ppois, qpois, rpois.

> dpois (x=5, lambda =3)
[1] 0.1008188
> dpois (x=5, lambda =3, log = TRUE)
[1] -2.29443
> ppois (q=5, lambda =3)
[1] 0.9160821
> ppois (q=5, lambda =3, lower .tail = FALSE )
[1] 0.08391794
> qpois (p=0.9 , lambda =3)
[1] 5
> qpois (p=0.9 , lambda =3, lower .tail = FALSE )
[1] 1
> rpois (n=10, lambda =3)

[1] 3 4 3 5 2 0 5 5 4 3

determined such that the cumulative probability of interest is at least as
much as the desired probability of interest. This definition suggests that,
when considering the upper tail probability, the resulting quantile now
implies that the corresponding upper tail probability is no more than the
desired probability of interest. As noted above, P(X > 0) = 0.9502129 and
P(X > 1) = 0.8008517; because the desired upper tail probability in the
example is 0.9, we see that 0 produces an upper tail probability that is too
large for consideration, while the upper tail probability associated with 1 is
the first integer that satisfies P(X > x) ≤ 0.9, thus producing the solution
as 1. Finally, for completeness, the rpois function produces 10 randomly
generated potential observations stemming from a Poisson(3) distribution.
Given the probability mass function illustration provided in Figure 1.1 for
λ = 3, these outcomes appear reasonable.

1.2 Data Over-dispersion

Over-dispersion (relative to a comparable Poisson model) describes distri-
butions whose variance is larger than the mean, i.e. DI(X)> 1 for a random
variable X. This is a well-studied phenomenon that occurs in most real-
world datasets. Over-dispersion can be caused by any number of situations,
including data heterogeneity, the existence of positive correlation between
responses, excess variation between response probabilities or counts, and
violations in data distributional assumptions. Apparent over-dispersion can
also exist in datasets because of outliers or, in the case of regression
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6 Introduction: Count Data Containing Dispersion

models, the model may not include important explanatory variables or a
sufficient number of interaction terms, or the link relating the response
to the explanatory variables may be misspecified. Under such circum-
stances, over-dispersion causes problems because resulting standard errors
associated with parameter estimation may be underestimated, thus pro-
ducing biased inferences. Interested readers should see Hilbe (2007) for
a comprehensive discussion regarding over-dispersion and its causes.

The most popular distribution to describe over-dispersed data is the NB
distribution. A random variable X with an NB(r, p) distribution has the
probability mass function

P(X = x) =
(

r + x − 1

x

)

px(1 − p)r (1.5)

= �(r + x)

x!�(r)
px(1 − p)r, x = 0, 1, 2, . . . , (1.6)

and can be viewed as the probability of attaining a total of x successes
with r > 0 failures in a series of independent Bernoulli(p) trials, where
0 < p < 1 denotes the success probability associated with each trial.
Alternatively, the NB distribution can be derived via a mixture model of
a Poisson(λ) distribution, where λ is gamma distributed1 with shape and
scale parameters, r and p/(1 − p), respectively. The latter approach is a
common technique for addressing heterogeneity. Other possible distribu-
tions for λ include the generalized gamma (which produces a generalized
form of the NB distribution (Gupta and Ong, 2004)), the inverse Gaussian,
and the generalized inverse Gaussian (which produces the Sichel distribu-
tion (Atkinson and Yeh, 1982; Ord and Whitmore, 1986)). Various other
mixing distributions have also been considered; see Gupta and Ong (2005)
for discussion.

The moment generating function of the NB(r, p) random variable X is

MX(t) =
(

p

1 − (1 − p)et

)r

, t < − ln (1 − p),

1 For a gamma(α,β) distributed random variable X with shape and scale parameters α and
β, respectively, its probability density function (pdf) is f (x) = 1

�(α)βα xα−1e−x/β (Casella
and Berger, 1990).
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1.2 Data Over-dispersion 7

which produces a respective mean and variance,

μ
.= E(X) = r(1 − p)

p
and (1.7)

V(X) = r(1 − p)

p2
= μ+ 1

r
μ2, (1.8)

where r > 0 can be viewed as a dispersion parameter. Given the dispersion
parameter r, this distribution can be represented as an exponential family
(Equation (1.4)), where θ = p, H(x; r) = (r+x−1

x

)
, T(x) = x, η(p) = ln p,

and ψ(p; r) = r ln (1 − p). Equation (1.8) demonstrates that the NB dis-
tribution can accommodate data over-dispersion (DI(X) > 1) because one
can clearly see that the distribution’s variance is greater than or equal to
its mean since r > 0. Further, the NB distribution contains the Poisson
as a limiting case; as r → ∞ and p → 1 such that r(1 − p) → λ,
0 < λ <∞, not only do the NB mean and variance both converge to λ, but
the NB probabilities likewise converge to their respective Poisson counter-
parts. Figure 1.2 illustrates the distributional convergence of the NB(r, p)
to the Poisson(λ = 3) distribution, where r → ∞ and p → 1 such that
r(1 − p) = 3. The NB distribution likewise contains the geometric(p) as a
special case when r = 1.

The NB distribution can alternatively be represented as NB(r, r/(r +μ))
with the probability mass function

P(X = x) =
(

x + r − 1

x

)(
r

r + μ
)x (

μ

r + μ
)r

, x = 0, 1, 2, . . . , (1.9)

where r > 0,μ > 0; this formulation explicitly has a meanμ and a variance
μ+ μ2/r. The MASS package in R utilizes this parametrization and defines
the dispersion parameter as theta such that V(X) = μ+ μ2/θ , i.e. θ

.= r;
we will revisit this in Chapter 5. While the NB distribution has been well
studied and statistical computational ability is supplied in numerous soft-
ware packages (e.g. R and SAS), an underlying constraint regarding the NB
distribution leads to its inability to address data under-dispersion (i.e. the
dispersion index is less than 1, or the variance is smaller than the mean).

1.2.1 R Computing

The stats package provides functionality for determining the probability,
distribution function, quantile function and random number generation for
the NB distribution. These commands all require the inputs size (r) and
either the success probability p (prob) or mean μ (mu), depending on the
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Figure 1.2 Negative binomial distribution illustrations for values of (r, p) ∈
{(5, 0.4), (10, 0.7), (15, 0.8), (60, 0.95), (300, 0.99)} and the Poisson(λ = 3) prob-
ability mass function. This series of density plots nicely demonstrates the distribu-
tional convergence of the negative binomial to the Poisson as r → ∞ and p → 1
such that r(1 − p) → λ.

choice of parametrization. The function dnbinom computes the probability
P(X = x) for a random variable X at observation x, either on the original
scale (log = FALSE; this is the default setting) or on a natural-log scale
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1.2 Data Over-dispersion 9

Code 1.2 Examples of R commands for NB distributional computing: dnbinom,
pnbinom, qnbinom, rnbinom.

> dnbinom (x=5, size =10, prob =0.7)
[1] 0.1374203
> dnbinom (x=5, size =10, prob =0.7 , log = TRUE)
[1] -1.984712
> pnbinom (q=5, size =10, prob =0.7)
[1] 0.7216214
> pnbinom (q=5, size =10, prob =0.7 , lower .tail = FALSE )
[1] 0.2783786
> qnbinom (p=0.9 , size =10, prob =0.7)
[1] 8
> qnbinom (p=0.9 , size =10, prob =0.7 , lower .tail = FALSE )
[1] 1
> rnbinom (n=10, size =10, prob =0.7)

[1] 1 8 7 3 5 8 4 2 5 3

(log = TRUE). For a given quantile value q, the pnbinom function deter-
mines the cumulative probability P(X ≤ q), where the default settings,
lower.tail = TRUE and log.p = FALSE, imply that the resulting cu-
mulative probability is attained by accumulating the probability from the
lower tail and on the original probability scale. The command qnbinom
meanwhile determines the smallest discrete quantile value q that satisfies
the cumulative probability P(X ≤ q) ≥ p for a given probability p. This
function likewise assumes the default settings, lower.tail = TRUE and
log.p = FALSE, such that the quantile q is determined from the lower tail
and on the original probability scale. For both of these commands, changing
the default settings to lower.tail = FALSE and log.p = TRUE, respec-
tively allows analysts to instead consider quantile determination on the
basis of the upper tail probability P(X > q), and via a probability compu-
tation on the basis of the natural-log scale. Finally, the rnbinom function
randomly generates n (n) observations from an NB distribution with the
specified size (size) and success probability (prob).

The NB(r = 10, p = 0.7) distribution is provided in Figure 1.2 and
serves as a graphical reference for the illustrative commands featured
in Code 1.2. All of the demonstrated functions assume r = 10 and
p = 0.7 as the associated NB size and success probability parameters.
The first command (dnbinom(x=5, size=10, prob=0.7)) shows that
P(X = x) = 0.1374203; this probability is shown in the associated
plot in Figure 1.2. Meanwhile, dnbinom(x=5, size=10, prob=0.7,
log = TRUE) shows that ln (P(X = x)) = ln (0.1374203) = − 1.984712.
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10 Introduction: Count Data Containing Dispersion

The pnbinom functions show the results when computing the lower
versus upper tail, respectively; naturally, the sum of the two com-
putations equals 1. Calling qnbinom(p=0.9, size=10, prob=0.7)
produces the result 8, while qnbinom(p=0.9, size=10, prob=0.7,
lower.tail = FALSE) yields the value 1. Finally, the rnbinom com-
mand produces 10 randomly generated potential observations stemming
from an NB(r = 10, p = 0.7) distribution.

1.3 Data Under-dispersion

Where data over-dispersion describes excess variation in count data, under-
dispersion describes deficient variation in count data. Data under-dispersion
(relative to the Poisson model) refers to count data that are distributed
such that the variance is smaller than the mean, i.e. its dispersion index
DI(X) < 1 for a random variable X.

There remains some measures of debate regarding the legitimacy of
data under-dispersion as a real concept. Some researchers attribute under-
dispersion to the data generation (e.g. small sample values) or to the
modeling process (e.g. model over-fitting), noting that the arrival process,
birth–death process, or binomial thinning mechanisms can also lead to
under-dispersion (Kokonendji, 2014; Lord and Guikema, 2012; Puig et al.,
2016). As an example, for renewal processes where the distribution of
the interarrival times has an increasing hazard rate, the distribution of the
number of events is under-dispersed (Barlow and Proschan, 1965). Efron
(1986), however, argues that “there are often good physical reasons for not
believing in under-dispersion, however, especially in binomial and Poisson
situations.”

Whether real or apparent, examples across disciplines are surfacing with
more frequency where data under-dispersion is present; thus there exists the
need to represent such data. The most popular model that can accommodate
data dispersion (whether over- or under-dispersion) is the GP distribution –
a flexible two-parameter distribution that contains the Poisson distribution
as a special case (Consul, 1988). A random variable X that is GP(λ1, λ2)
distributed has the probability mass function

P(X = x)=
⎧
⎨

⎩

λ1(λ1 + λ2x)x−1

x! exp ( − λ1 − λ2x), x = 0, 1, 2, . . .

0, x ≥ m where λ1 + λ2m ≤ 0

(1.10)
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1.3 Data Under-dispersion 11

for λ1 > 0 and −1 < λ2 < 1 (Consul and Jain, 1973). This distribution has
the respective mean and variance,

E(X) = λ1

1 − λ2
(1.11)

V(X) = λ1

(1 − λ2)3
, (1.12)

and can accommodate any form of data dispersion via λ2. The GP(λ1, λ2)
distribution contains the special-case Poisson(λ1) distribution, where
λ2 = 0; this is the case of equi-dispersion relative to the Poisson model.
Meanwhile, for λ2> (<)0, the GP distribution accommodates data over-
dispersion (under-dispersion). Figure 1.3 illustrates various probability
mass functions for different values of λ1 and λ2 ∈ {−0.5, 0, 0.5}. These
choices for λ1 and λ2 demonstrate the change in shape and skewness for this
unimodal distribution and also illustrate the data over- or under-dispersion
as a function of λ2. The middle column of Figure 1.3 contains the respective
Poisson(λ1 = 2, 3, 6) probability distributions.

The GP distribution allows for over- or under-dispersion; however, ex-
treme under-dispersion can result in probability models that do not satisfy
the basic probability axioms (Famoye, 1993). Alternative count distribu-
tions exist that allow for data under-dispersion, such as the condensed
Poisson, the Gamma count, and the double Poisson distributions; see
Sellers and Morris (2017) for discussion regarding these distributions.
Nonetheless, the GP distribution maintains its status as a very popular and
well-studied count distribution that allows for data dispersion.

1.3.1 R Computing

The GP distribution is a popular model for describing count data that
express either over- or under-dispersion, and this is reflected through
the multiple R packages available for statistical computing. Basic func-
tionality exists in the packages HMMpa (Witowski and Foraita, 2018),
LaplacesDemon (Statisticat and LLC., 2021), and RNGforGPD (Li et al.,
2020), while commands to conduct GP regression are available in the VGAM
(Yee, 2008) package.

The HMMpa and LaplacesDemon packages each contain commands
that can compute the probability mass function of a GP distribution.
HMMpa provides the dgenpois(x, lambda1, lambda2) function, where
lambda1 and lambda2 are λ1 and λ2 as defined in Equation (1.10).
LaplacesDemon meanwhile contains the function dgpois(x, lambda,
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Figure 1.3 Generalized Poisson probability mass function illustrations for values
of λ1 > 0, and dispersion parameter λ2 ∈ {−0.5, 0, 0.5}. For λ1 > 0 and −1 <
λ2 < 1 such that λ2 > (<)0 denotes data over-dispersion (under-dispersion), the
generalized Poisson distribution has the mean E(X) = λ1

1−λ2
and variance V(X) =

λ1
(1−λ2)3 .
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1.3 Data Under-dispersion 13

omega, log=FALSE) that computes the probability mass function via an
alternate parametrization, namely

P(X = x) = λ(1 − ω)[λ(1 − ω) + ωx]x−1

x! exp (− λ(1 − ω) − ωx),

x = 0, 1, 2, . . . , (1.13)

for parameters λ > 0 and 0 ≤ ω < 1 (as reported in Statisticat and LLC.
(2021)). Under this parametrization, ω = 0 reduces the GP distribution
to the Poisson(λ) distribution. Equations (1.10) and (1.13) are equivalent
with λ1 = λ(1 − ω) and λ2 = ω. The dgpois logical input log deter-
mines whether the probability mass function is provided on the original
(log=FALSE; this is the default) or natural-log (log=TRUE) scale. The two
functions dgenpois and dgpois produce identical outcomes for lambda1
= lambda(1-omega) and lambda2 = omega for appropriate values of x.

While dgenpois and dgpois both have the capability to compute
P(X = x) for a GP Poisson random variable X, these functions should be
used with caution. The GP parametrization that motivates dgpois stems
from an applied focus involving claim count data with the argument that
such data are not commonly under-dispersed so that distributional focus
assumes nonnegative ω (Ntzoufras et al., 2005). Equation (1.13) thus has a
mean and variance

E(X) = λ (1.14)

V(X) = λ

(1 − ω)2
(1.15)

that results in the dispersion index, DI(X) = 1/(1 − ω)2 ≥ 1. The dgpois
function, however, appears to accurately compute probabilities associated
with data under-dispersion (i.e. satisfying −1 < ω < 0); hence analysts
can safely maintain |ω| < 1. The dgenpois function meanwhile computes
the first component of Equation (1.10) (i.e. λ1(λ1+λ2x)x−1

x! exp ( −λ1 −λ2x) for
x = 0, 1, 2, . . .); however, it does not set P(X = x) = 0 for those x ≥ m,
where λ1 +λ2m ≥ 0. As a result, the function can compute extraneous out-
put; Figure 1.4 provides an illustrative example. As demonstrated in Figure
1.4(a), because the dgenpois function does not properly account for values
x ≥ m, where λ1 + λ2m ≥ 0 for some m, the resulting outcomes defy the
probability axioms. In this illustration, we see that m = 6; thus P(X = x)
should equal 0 for x ≥ 6. Reported computations for x > 6, however,
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Figure 1.4 The probability mass function P(X = x) created for x ∈ {0, . . . , 20}
for a generalized Poisson distribution (a) via dgenpois (HMMpa) with λ1 = 3,
λ2 = −0.5; and (b) via dgpois (LaplacesDemon) with λ = 2, ω = −0.5. The
resulting plots should be identical because λ1 = λ(1 − ω) and λ2 = ω.

instead bifurcate between outcomes that increase in absolute value, whether
negative or positive (thus further producing outcomes that are greater than
1); both of these scenarios contradict probability axioms. Thus, in order to
get the dgenpois function to provide appropriate output, it is important to
insert the condition (lambda1+lambda2*x) >= 0; see below for illustra-
tive R code and output that can produce probabilities as shown in Figure
1.4(b).

> x<- 0:20
> lambda1=3
> lambda2=-0.5
> ifelse((lambda1+lambda2*x) >= 0, dgenpois(x, lambda1, lambda2), 0)
[1] 0.0497870684 0.2462549959 0.4060058497 0.2510214302 0.0459849301
[6] 0.0009477042 0.0000000000 0.0000000000 0.0000000000 0.0000000000

[11] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[16] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[21] 0.0000000000

The command dgpois(x=0:20, lambda=2, omega=-0.5) likewise
produces Figure 1.4(b); this is because dgpois properly detects the need to
set P(X = x) = 0 for x ≥ 7. This function, however, does so by producing
a warning and NaNs as outcomes for those probabilities P(X = x), x ≥ m2

for some m2 such that λ1 + λ2m2 = λ(1 −ω) +ωm2 < 0; see the following
illustration for details. The term λ(1 −ω) +ωx is defined as lambda.star
in the dgpois function and is referenced in the following warning message.
In this example, x ≥ 7 produces NaN (i.e. in the eighth position).
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1.3 Data Under-dispersion 15

> dgpois(x=0:20, lambda=2, omega=-0.5)
[1] 0.0497870684 0.2462549959 0.4060058497 0.2510214302 0.0459849301
[6] 0.0009477042 0.0000000000 NaN NaN NaN

[11] NaN NaN NaN NaN NaN
[16] NaN NaN NaN NaN NaN
[21] NaN
Warning message:
In log(lambda.star) : NaNs produced

The dgpois and dgenpois P(X = x) outputs are equivalent for x =
0, . . . , 6 (see Figure 1.4); thus both of these functions are capable of com-
puting the first condition of the GP probability mass function as shown in
Equations (1.10) and (1.13). Analysts are thus encouraged to first confirm
that the constraint λ1 + λ2x = λ(1 − ω) + ωx ≥ 0 is satisfied in order to
ensure proper GP probability computation.

HMMpa also contains the functions pgenpois and rgenpois to con-
duct cumulative probability computation and random number generation,
respectively, based on the GP distribution. Both functions require the pa-
rameter inputs lambda1 and lambda2; pgenpois needs the added input
q to determine the cumulative probability P(X ≤ q) for a quantile value q,
while rgenpois further requires the value n to obtain n randomly generated
observations from a GP(λ1, λ2) distribution. Recognizing the aforemen-
tioned issue, however, that the genpois functions contained in HMMpa do
not first constrain the support space for x such that λ1 + λ2x ≥ 0, one
should ensure that this caveat holds for any subsequent use of dgenpois
or pgenpois in order to have confidence in the resulting output. The
HMMpa function rgenpois appears to operate properly as a random num-
ber generator based on the GP distribution; the function selects proper
values associated with the true support space. The RNGforGPD package
offers alternative commands with the ability to randomly generate univari-
ate or multivariate generalized Poisson data. The GenUniGpois function
generates univariate GP data via one of five methods (inversion, build-up,
chop-down, normal-approximation, and branching) selected by the analyst.
For the given rate and dispersion parameters, theta and lambda respec-
tively, and method, GenUniGpois can generate n univariate data from
a GP(theta=λ1, lambda=λ2) distribution, where we note the aforemen-
tioned variable substitutions to adhere to Equation (1.10) for λ1 > 0 and
−λ1/4 ≤ λ2 < 1.

As with other GP representations, the RNGforGPD package recognizes
the Poisson model as a special case of the GP distribution when lambda
= λ2 = 0; under this circumstance, any data-generation method can be
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16 Introduction: Count Data Containing Dispersion

specified. Analysts should otherwise be mindful of which method is se-
lected for random number generation as constraints exist in order to ensure
performance and/or reliability. The branching method does not work for
generating under-dispersed data (thus λ2 ≥ 0), and the normal approxima-
tion approach is not necessarily reliable for λ1 < 10 (Demirtas, 2017; Li
et al., 2020). The GenMVGpois function meanwhile generates data of size
sample.size from a multivariate GP distribution with the marginal rate
and dispersion vectors theta.vec and lambda.vec, respectively, and the
correlation matrix cmat.star; see Li et al. (2020) for details.

The RNGforGPD package likewise contains the function Quantile-
Gpois that can determine the quantile q that satisfies the cumulative
probability P(X ≤ q) ≥ p for some percentile p associated with a
GP(theta=λ1, lambda=λ2) distributed random variable. This function in-
cludes the logical input details, where details=FALSE (the default
setting) reports the quantile value, and details=TRUE provides the prob-
ability P(X = x) and cumulative probability P(X ≤ x) for every x ≤ q.
When providing a negative dispersion parameter, it may be helpful to set
details=TRUE as RNGforGPD adjusts the initially provided cumulative
probabilities to account for the truncation error, and then lists the adjusted
cumulative probabilities.

1.4 Weighted Poisson Distributions

The weighted Poisson distribution is a flexible model class for count data
that can account for either over- or under-dispersion. Let Xw denote the
weighted version of a Poisson random variable X with the probability mass
function P(X = x; λ) as defined in Equation (1.1); Xw has the probability

P(Xw = x; λ) = w(x)P(X = x; λ)

Eλ(w(X))
, x = 0, 1, 2, . . . , (1.16)

where w(·) is a nonnegative weight function, and Eλ(w(X)) = ∑∞
j=0 w(j)

P(X = j; λ) > 0 is the finite expectation. The weighted Poisson is actually
a class of distributions that depends on their associated weight functions
and does not offer its own general statistical computing packages (e.g. in
R). Examples of weighted Poisson distributions include the NB and GP
distributions; Table 1.1 provides the weight functions that define several
examples of weighted Poisson models.

The weighted Poisson distribution has several interesting properties. For
a Poisson weight function having an exponential form,

w(y) = exp [rt(y)], y ∈ N,
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1.4 Weighted Poisson Distributions 17

Table 1.1 Weight functions associated with various examples of weighted Poisson
distributions.

Distribution Weight function, w(x)

Poisson 1
negative binomial �(r + x), where r > 0

generalized Poisson
(
λ1+λ2x
λ1

)x−1
exp ( − λ2x), where λ1 > 0 and −1 < λ2 < 1

where r ∈ R and y → t(y) is a convex function (that may or may not depend
on the original Poisson parameter), r > 0 corresponds to a weighted Pois-
son distribution that is over-dispersed. Similarly, r = (<) 0 implies that it
is equi-dispersed (under-dispersed) (del Castillo and Pérez-Casany, 2005).
The random variable Xw is over-dispersed (under-dispersed) if and only if
the mean weight function Eλ(w(X;φ)) for a weight function w(x;φ) that
does not depend on the Poisson mean λ > 0 is log-convex (log-concave).
Further, Eλ(w(X;φ)) has the same direction of log-concavity as w(x;φ);
if w(x;φ) is log-convex (log-concave), then Eλ(w(X;φ)) is likewise log-
convex (log-concave). Thus, one can simply assess the shape of w(x;φ) to
determine the direction of dispersion for Xw. Accordingly, a positive weight
function’s log-concavity implies the log-concavity of the weighted Poisson
distribution; if the weight function w(x;φ) is log-concave, then the associ-
ated weighted Poisson distribution is likewise log-concave. These concav-
ity results are compelling because they imply other relationships regarding
distributional forms. Discrete log-concave distributions have an increas-
ing failure rate and are unimodal, while log-convex distributions have a
decreasing failure rate (DFR) and are infinitely divisible, thus implying
over-dispersion (Kokonendji et al., 2008). Two weighted Poisson distribu-
tions are defined as a pointwise dual pair if their respective positive Poisson
weight functions w1 and w2 satisfy w1(x)w2(x) = 1 for all x ∈ N. The dual
of weighted Poisson distributions is closed if the two distributions have dif-
fering dispersion types, i.e. one is over-dispersed (under-dispersed) and the
other is under-dispersed (over-dispersed). Further, all natural exponential
families of the form

P(X = x; θ ,φ) = �(x;φ) exp [η(θ)T(x) −�(θ ;φ)], x ∈ N, (1.17)

with a fixed φ > 0 are weighted Poisson distributions where the weight
function is w(x;φ) = x!�(x;φ), x ∈ N; however, not all weighted Pois-
son distributions have the exponential family form. The weighted Poisson
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18 Introduction: Count Data Containing Dispersion

distribution is likewise a member of an exponential dispersion family if it
satisfies the form

P(X = x; θ ,φ) = H(x;φ) exp

(
(η(θ)T(x) −�(θ ;φ))w

φ

)

. (1.18)

Weighted Poisson distributions give rise to a destructive cure rate model
framework in survival analysis. Let Mw denote the number of competing
causes associated with an event occurrence and have a weighted Poisson
distribution as defined in Equation (1.16). Given Mw, let

Dw =
{ ∑Mw

i=1 Bi Mw > 0
0 M = 0,

(1.19)

where Bi are independent and identically Bernoulli(p) distributed random
variables (independent from Mw) noting the presence (1) or absence (0) of
Cause i = 1, . . . , Mw. Dw denotes the total number of competing risks or
causes that remain viable after eradication or treatment. Accordingly, the
destructive weighted Poisson cure rate survival function is

Sp(y) = P(Y ≥ y) =
∞∑

d=0

P(Dw = d)[S(y)]d,

where Y = min (W0, W1, W2, . . . , WDw) measures the survival time based
on Dw competing risks and their independent and identically distributed
survival times S(y) (Rodrigues et al., 2011, 2012). We will revisit these
ideas in Chapter 8.

1.5 Motivation, and Summary of the Book

The Poisson distribution is a classical statistical model for modeling count
data and, because its probability mass function is the simplest distribution
for counts, is a “fan favorite” in the statistics community. Its underlying
equi-dispersion property, however, is idealistic and constraining such that
real data do not typically satisfy this attribute. Over-dispersed data are
often modeled via the NB distribution; however, it cannot address data
under-dispersion. A distribution that can effectively model data over- or
under-dispersion would be convenient for analysts because such a construct
could address any exploratory analyses regarding dispersion in a direct
sense without a priori knowledge of the dispersion type in the data. More
broadly, any statistical methods motivated and/or derived by such a dis-
tribution would likewise allow for more flexibility and thus more proper
inference. The GP distribution is a popular two-parameter distribution that
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allows for over- or under-dispersion; however, its distributional complex-
ity and inability to properly model extreme under-dispersion are troubling.
Thus, there remains the need to consider an alternate count distribution that
can likewise accommodate data over- or under-dispersion.

This book introduces the reader to the COM–Poisson distribution and
motivates its use in developing flexible statistical methods based on its
form. This two-parameter model not only serves as a flexible distribution
containing the Poisson distribution as a special case but, in its ability to
capture either data over- or under-dispersion, it contains (in particular)
two other classical distributions as special cases (namely, the geomet-
ric and Bernoulli distributions). The COM–Poisson distribution thereby
can effectively model a range of count data distributions that contain
data over- or under-dispersion, from the geometric to the Poisson to the
Bernoulli distributions, simply through the addition of one parameter. The
statistical methods described in this reference cover a myriad of top-
ics, including distributional theory, generalized linear modeling, control
chart theory, and count processes. Chapter 2 describes the COM–Poisson
distribution in further detail and discusses its associated statistical proper-
ties. It further introduces various proposed parametrizations of the model
and offers added discussion regarding the normalizing constant and its
approximations. Chapter 3 introduces readers to several distributional ex-
tensions of the COM–Poisson distribution and/or other distributions that
otherwise associate with the COM–Poisson model. Chapter 4 highlights
bivariate and multivariate count distributions that are motivated by the
COM–Poisson and discusses their respective statistical properties. Chapter
5 highlights various approaches for COM–Poisson regression under the var-
ious parametrizations, including discussions regarding model formulation
and estimation approach. It further discusses subsequent advancements,
including considerations of observation-level dispersion, additive mod-
els, and accounting for excess zeroes and/or data clustering. Chapter 6
introduces the reader to flexible control chart developments for discrete
data, including COM–Poisson-motivated generalized control charts, cumu-
lative sum charts, and generalized exponentially weighted moving average
control charts. Chapter 7 presents methods for analyzing serially depen-
dent count data via COM–Poisson-motivated stochastic processes, as well
as time series and spatio-temporal models. Finally, Chapter 8 presents
COM–Poisson-motivated cure rate models that can be used to describe
time-to-event data, thus demonstrating the use of this flexible model as
a tool in survival analysis. All of the chapters incorporate (where possi-
ble) discussions regarding statistical computations via R, thus introducing
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readers to the opportunities for data analysis via the featured R packages
and their functionality.

As demonstrated in the subsequent chapters, a great deal of work has
emerged where statistical methodologies are motivated by the COM–
Poisson distribution. The utility of the COM–Poisson distribution, however,
is not limited to these areas. Additional COM–Poisson-related works have
emerged in fields, including capture–recapture and other abundance estima-
tion methods (Anan et al., 2017; Wu et al., 2015), and disclosure limitation
(Kadane et al., 2006a). Further, the COM–Poisson distribution has been
employed in a variety of applications, including biology (Ridout and Bes-
beas, 2004), linguistics (Shmueli et al., 2005), risk analysis (Guikema and
Coffelt, 2008), transportation (Lord and Guikema, 2012; Lord et al., 2008,
2010), and marketing and eCommerce (Boatwright et al., 2003; Borle et al.,
2006, 2005, 2007).

Throughout this reference, much of the discussion focuses on parameter-
estimation techniques associated with the various statistical method devel-
opments. These approaches are relatively thematic, falling in line with one
of three approaches: maximum likelihood estimation, generalized quasi-
likelihood estimation, and Bayesian estimation (Markov Chain Monte
Carlo, Metropolis–Hastings, etc.). This reference will provide a high-level
discussion of the respective approaches as they relate to the featured con-
cepts; however, it assumes that the reader has a prerequisite, rudimentary
knowledge of these concepts.

A common theme regarding parameter estimation in this reference cen-
ters on its dependence on statistical computation to obtain results because
the COM–Poisson distribution does not have a closed form. Various op-
timization tools exist, however, to aid analysts with such issues. This
reference focuses on R tools where existing package functions or analyst-
generated codes can utilize optimization tools such as optim, nlm, or
nlminb to determine parameter estimates. Details are supplied throughout
the manuscript in relation to the respective statistical methodologies under
discussion. Meanwhile, hypothesis testing discussions generally center on
the likelihood ratio test, while other test statistics (e.g. Rao’s score test) can
likewise be considered. The likelihood ratio test statistic is

� = supθ∈�0
L(θ)

supθ∈� L(θ)
, (1.20)

where θ denotes the collection of parameters under consideration, and
�0 and � represent the parameter space under the null hypothesis and
in general, respectively; as n → ∞, −2 ln� converges to a chi-squared
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Table 1.2 Levels of model support based on
AIC difference values, �i = AICi − AICmin,
for Model i (Burnham and Anderson, 2002).

�i Empirical support level for Model i

[0, 2] Substantial
[4, 7] Considerably less
(10, ∞) Essentially none

distribution. Tests about a boundary condition under the null hypothesis
meanwhile produce a likelihood ratio test statistic whose asymptotic dis-
tribution is based on the equally weighted sum of a point mass and the
cumulative probability of a chi-squared distribution (i.e. 0.5 + 0.5χ2) (Self
and Liang, 1987). For example, a common interest is to test for statisti-
cally significant dispersion where the dispersion parameter may be bounded
by 0; this test is introduced in Section 2.4.5 and noted throughout subse-
quent chapters in this reference as the implications of this test relate to the
corresponding chapter content.

Discussions will also include model comparisons to demonstrate and
substantiate the COM–Poisson model’s importance and flexibility. The
Akaike information criterion (AIC) and the Bayesian information criterion
(BIC) are two popular measures used for model comparisons, where

AIC = −2 ln (L) + 2k and BIC = −2 ln (L) + k ln (n)

for a model’s maximized likelihood value L, number of parameters k, and
sample size n. For a collection of considered models, the selected model is
desired to have the minimum AIC or BIC, respectively. In particular, this
reference adopts the Burnham and Anderson (2002) approach for model
comparison, where models are compared via the AIC and relative perfor-
mance is measured via AIC difference values �i = AICi − AICmin, where
AICi denotes the AIC associated with Model i, and AICmin is the minimum
AIC among the considered models. Table 1.2 supplies the levels of model
support based on recommended �i ranges.
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