EXAMPLES OF SUPERSOLUBLE LOCKETT SECTIONS

Martin Menth

Two Lockett sections of Fitting classes of supersoluble groups are determined. One of these sections has only one member, a minimal supersoluble nonnilpotent Fitting class.

1. Introduction

Recently a supersoluble Fitting class \mathfrak{U} was presented [6]. This is a construction similar to that of Hawkes in [3], which yields metanilpotent Lockett classes, a fact proved by Brison [2]. The existence of supersoluble Lockett classes is assured by the following

Theorem 1.1. Let \mathfrak{X} be a subgroup and quotient group closed class of groups and \mathfrak{F} be a Fitting class with $\mathfrak{F} \subseteq \mathfrak{X}$. Then $\mathfrak{F}^{*} \subseteq \mathfrak{X}$. Therefore every supersoluble Fitting class \mathfrak{F} has a supersoluble Lockett section $\left[\mathfrak{F}_{*}, \mathfrak{F}^{*}\right]$.

Proof: $\mathfrak{F}^{*}=\left\{G \in \mathbb{S} \mid(G \times G)_{\mathfrak{F}}=\left(G_{\mathfrak{F}} \times G_{\mathfrak{F}}\right)\left\langle\left(g^{-1}, g\right) \mid g \in G\right\rangle\right\}$ due to [5].
$D:=\left\langle\left(g^{-1}, g\right) \mid g \in G\right\rangle$ is a subgroup of $(G \times G)_{\mathfrak{F}} \in \mathfrak{X}$ and therefore $D \in \mathfrak{X}$. The projection π from D onto its second component is an epimorphism from D onto G. Hence $G \cong D / \operatorname{Ker}(\pi) \in \mathfrak{X}$.

In this paper we obtain two Lockett sections of Fitting subclasses of \mathfrak{U}, the one of \mathfrak{U} itself and the Lockett section of a minimal nonnilpotent subclass \mathfrak{W} of \mathfrak{U}. \mathfrak{U} turns out to be a Lockett class but not to coincide with its lower star, whereas the Lockett section of \mathfrak{W} has only one member.

All groups will be finite and soluble. $\mathfrak{F}(G)$ denotes the Fitting class generated by G. The notations and properties of Lockett's "star"-operators can be found in [5].

2. A Lockett section with two members

Notation. Let p be prime, $p \equiv 1 \bmod 3, n$ a primitive 3 rd unit root in $G F(p)$.

$$
\begin{aligned}
& T:=\left\langle a, b \mid a^{p}=b^{p}=[a, b, a, a]=[a, b, a, b]=[a, b, b, b]=1\right\rangle \\
& U:=\left\langle T, s \mid s^{3}=1, a^{*}=a^{n}, b^{*}=b^{n}\right\rangle
\end{aligned}
$$

Received 27th May, 1993.
This article arises from the author's dissertation written at the University of Würzburg in 1992 under the direction of Professor Dr. H. Heineken.

Then T is free with respect to the properties (nilpotent of class three, exponent p, two generators), $|T|=p^{5}$ and $Z(U)=Z(T) \cong C_{p} \times C_{p}$.
G is called a central product of normal subgroups G_{1}, \ldots, G_{m} if $G=G_{1} \cdot \ldots \cdot G_{m}$ and $\left[G_{i}, G_{j}\right]=1 \quad$ for $i \neq j$.

Let now \mathscr{U}_{0} be the class of all finite groups $G=X Y$ with
(i) $X:=O_{p}(G)$ is a central product of groups $T_{i} \cong T$ (the empty product, that is, $O_{p}(G)=1$, being admitted).
(ii) $Y \in S y l_{3}(G), \forall i:\left[Y / C_{Y}\left(T_{i}\right) \cong C_{3}\right.$ and $\left.T_{i} \rtimes\left(Y / C_{Y}\left(T_{i}\right)\right) \cong U\right]$.

Further let

$$
\begin{aligned}
G \in \mathfrak{U}: & \Longleftrightarrow G=O_{p}(G) \cdot O^{p}(G) \text { and } O^{p}(G) \in \mathfrak{U}_{0} \\
& \Longleftrightarrow G \in \mathfrak{S}_{p} \mathfrak{S}_{3} \text { and } O^{p}(G) \in \mathfrak{U}_{0}
\end{aligned}
$$

where $O^{p}(G)$ is the largest p-perfect normal subgroup of G. Then $\mathfrak{U}=\mathfrak{F}(U)$, and \mathfrak{U} is supersoluble according to $[6,(4.1)$ and (4.2)].

Lemma 2.1.
(a) Let $G \in \mathfrak{S}_{p} \mathfrak{S}_{3}$. Then $G \in \mathfrak{U} \Longleftrightarrow G / O_{3}(G) \in \mathfrak{U}$.
(b) $\mathfrak{U}=\mathfrak{H}:=\left\{G \in \mathfrak{S}_{p} \mathfrak{S}_{3} \mid O^{p}\left(G / O_{3}(G)\right) \in \mathfrak{U}_{0}\right\}$.

Proof: Set $\bar{G}:=G / O_{3}(G)$. Since $O_{p}\left(O^{p}(G)\right) \cong O_{p}\left(O^{p}(\bar{G})\right)$, we have to check only the operations induced on the central factors of $O_{p}\left(O^{p}(G)\right)$ and $O_{p}\left(O^{p}(\bar{G})\right)$ by the 3-elements of G and \bar{G}. By assumption $G \in \mathfrak{S}_{p} \mathfrak{S}_{3}$, so $O_{3}(G)$ centralises all p elements of G and the assertion (a) is clear. Let $G \in \mathfrak{H} . G / O_{3}(G)=O_{p}\left(G / O_{3}(G)\right)$. $O^{p}\left(G / O_{3}(G)\right)$ and $O^{p}\left(G / O_{3}(G)\right) \in \mathfrak{U}_{0}$, so $G / O_{3}(G) \in \mathfrak{U}$ and therefore $G \in \mathfrak{U}$. The converse direction is clear because of (a).

Part (b) of the preceeding lemma shows that the class \mathfrak{U} has a structure similar to that of the metanilpotent Fitting classes constructed by Hawkes [3], although item d of hypothesis 5.1 is not fulfilled. In fact $\mathfrak{U}=\mathfrak{F}\left(3^{\prime}, p^{\prime}, \mathfrak{U}_{0}\right) \cap \mathfrak{S}_{p} \mathfrak{S}_{3}$ in the notation of Hawkes. Now we can use Brison's proof almost verbatim to show that the supersoluble Fitting class \mathfrak{U} is a Lockett class, too. In order to avoid the rewriting, the reader is referred to [3] and [2] for the necessary parts of the cited proofs.

Lemma 2.2. \mathfrak{U} is a Lockett class.
Proof: Using the notation of [3] and [2] it remains only to show that $C_{S}\left(Q_{j}\right) \cong C_{3}$ and $S / C_{S}\left(Q_{j}\right)$ operates on Q_{j} / Q_{j}^{\prime} by a power automorphism. Let $j \in \mathcal{S}_{\boldsymbol{i}}$. It is already known that $S=A C_{i}$ and $\left[Q_{j}, C_{i}\right] \leqslant\left[F_{i}, C_{i}\right]=1$, so $C_{S}\left(Q_{j}\right) \geqslant C_{i}$. Let $y:=\left(g^{-1}, g\right)$ be the generating element of A. By hypothesis y raises the elements of $P_{j} / P_{j}^{\prime}=P_{j} / Q_{j}^{\prime}$ to the power of n. Let $\{a, b\}$ be a generating system of Q_{j}. Since $Q_{j} \leqslant P_{j} H_{i}$, there are elements $a^{\prime}, b^{\prime} \in P_{j}$ and $h_{1}, h_{2} \in H_{i}$ with $a=a^{\prime} h_{1}, b=b^{\prime} h_{2} . H_{i} \leqslant K^{\prime}$, hence
a^{\prime} and b^{\prime} are not elements of P_{j}^{\prime}. Therefore we have $z_{1}, z_{2} \in K^{\prime}$ with $\left(a^{\prime}\right)^{y}=\left(a^{\prime}\right)^{n} z_{1}$ and $\left(b^{\prime}\right)^{y}=\left(b^{\prime}\right)^{n} z_{2}$. Now $a^{y}=\left(a^{\prime}\right)^{y} h_{1}^{y}=\left(a^{\prime}\right)^{n} z_{1} h_{1}^{y}$ and $z_{1} h_{1}^{y} \in K^{\prime} \cap Q_{j}=Q_{j}^{\prime}$. That means: y raises a modulo Q_{j}^{\prime} to the n-th power. The same holds for b. Moreover $|S|=3^{2}$ and $|A|=3$ so $C_{i}=C_{S}\left(Q_{j}\right)$ and $S / C_{i} \cong C_{3}$.

Theorem 2.3. Blessenohl and Gaschütz [1, Satz 3.3]. Let p be a prime, S a subgroup of the multiplicative subgroup $G F(p)^{*}$ of $G F(p)$. Let G be a soluble group, $g \in G$. Fix a principal series of G and denote by \mathcal{P} the set of the p-factors of this series. Then there is (uniquely determined up to similarity) a matrix $M(g ; H / K)$, that describes the operation of g on the p-chief factor H / K. Define further a mapping $w_{G}: G \longrightarrow G F(p)^{*}$ by

$$
g \longmapsto \prod_{H / K \in \mathcal{P}} \operatorname{det}(M(g ; H / K))
$$

Then $\mathfrak{G}_{p}(S):=\left\{G \in \mathfrak{S} \mid \forall g \in G: w_{G}(g) \in S\right\}$ is a normal Fitting class.
Definition 2.4: $\mathfrak{V}:=\mathfrak{U} \cap \mathfrak{G}_{p}(1) ; \quad G_{m}:=\left(T_{1} \times \ldots \times T_{m}\right) \times\langle s\rangle$, where all the T_{i} are normal in G_{m} and isomorphic to $T,\langle s\rangle \cong C_{3}$, and s raises the elements of T_{i} / T_{i}^{\prime} to the n-th power.

Since \mathfrak{V} contains the nonnilpotent group G_{3} but not the group U, \mathfrak{V} lies strictly between $\mathfrak{S}_{p} \mathfrak{S}_{3} \cap \mathfrak{N}$ and \mathfrak{U}. Moreover it is the lower bound of the Lockett section of \mathfrak{U} (Lemma 2.5).

In the following proofs automorphisms α are considered which raise the elements of the commutator factor group T_{i} / T_{i}^{\prime} of a central product $T_{1} \cdot \ldots \cdot T_{m}$ to some power $n^{\lambda_{i}}$. Such automorphisms will be denoted briefly by ($n^{\lambda_{1}}, \ldots, n^{\lambda_{m}}$).

Lemma 2.5. $\mathfrak{V}=\mathfrak{F}\left(G_{3}\right)=\mathfrak{U}_{*}$
Proof:
(i) We have to show that all groups $G \in \mathfrak{U}$ with "trivial determinant" are contained in $\mathfrak{F}\left(G_{3}\right)$. Because $G=O_{p}(G) \cdot O^{p}(G)$, it is sufficient to prove that the p-perfect \mathfrak{V} groups are in $\mathfrak{F}\left(G_{3}\right)$. Moreover the problem can be reduced to the following case: $G=X\langle s\rangle, X=T_{1} \cdot \ldots \cdot T_{m}$ is a central product of $T_{i} \cong T,\langle s\rangle \cong C_{3}$, and s operates on X as $\left(n^{\lambda_{1}}, \ldots, n^{\lambda_{m}}\right)$ with $\lambda_{i} \neq 0$.
(ii) Set $W:=\left(T_{1} \times T_{2}\right) \times\langle s\rangle$, where s acts as $\left(n, n^{2}\right)$. In order to prove $W \in \mathfrak{F}\left(G_{3}\right)$, we consider the extension of a direct product $P:=T_{1} \times T_{2} \times T_{3} \times T_{4}$ of four copies of T by automorphisms $\alpha=(n, n, n, 1)$ and $\beta=\left(n^{2}, n^{2}, 1, n^{2}\right) .\langle P, \alpha, \beta\rangle$ is a normal product of $\left\langle T_{1}, T_{2}, T_{3}, \alpha\right\rangle \cong G_{3}$ and $\left\langle T_{1}, T_{2}, T_{4}, \beta\right\rangle \cong G_{3}$ and possesses a subnormal subgroup $\left\langle T_{3}, T_{4}, \alpha \beta\right\rangle \cong W$.
(iii) Now (ii) will be generalised to groups $H:=\left(T_{1} \cdot T_{2}\right) \rtimes\langle s\rangle$, where $T_{1} \cdot T_{2}$ is a central product of the T_{i} : Take a third copy T_{3} of T and form the direct product $P:=\left(T_{1} \cdot T_{2}\right) \times T_{3}$. Then there exist automorphisms $\alpha=\left(n, 1, n^{2}\right)$ and $\beta=\left(1, n^{2}, n\right)$.
$\langle P, \alpha, \beta\rangle$ is a normal product of $\left\langle T_{1}, T_{3}, \alpha\right\rangle \cong W$ and $\left\langle T_{2}, T_{3}, \beta\right\rangle \cong W$, so it is contained in $\mathfrak{F}\left(G_{3}\right)$ by (ii). Moreover $\left(T_{1}, T_{2}, \alpha \beta\right\rangle$ is a subnormal subgroup of $\langle P, \alpha, \beta\rangle$ and isomorphic to H. Hence $H \in \mathfrak{F}\left(G_{3}\right)$.
(iv) Using the same method as in (iii) one obtains $H:=\left(T_{1} \cdot T_{2} \cdot T_{3}\right) \times\langle s\rangle \in \mathfrak{F}\left(G_{3}\right)$, where $T_{1} \cdot T_{2} \cdot T_{3}$ is a central product and all factors T_{i} / T_{i}^{\prime} are raised to the n-th power by s.
(v) In the general case the group G can be built by the prototypes constructed in (iii) and (iv): Imagine the factors T_{i} numbered in such a way that s raises T_{1}, \ldots, T_{k} modulo the respective commutator subgroups to the power of n and T_{k+1}, \ldots, T_{m} to the power of n^{2}. Without loss of generality $k \geqslant 1$. Setting $l:=m-k$ one obtains $w_{G}(s)=n^{k+2 l} \equiv 1 \bmod 3$; that means $k \equiv l \bmod 3$. There are integers κ, λ and μ with $k=3 \kappa+\mu, l=3 \lambda+\mu$. Hence G is isomorphic to a normal product of $\kappa+\lambda$ groups of type (iv) and μ groups of type (iii).
(vi) $\mathfrak{U}=\mathfrak{F}(U), \exp \left(U / U^{\prime}\right)=3$ and $G_{\mathbf{3}}$ is isomorphic to the group $U(3)$ defined in [4]. According to [4, Satz 1.3,b] we get therefore $\mathfrak{U}_{*}=\mathfrak{F}\left(G_{3}\right)=\mathfrak{V}$.

Lemma 2.6. Let $G \in \mathfrak{U}, O_{p}\left(O^{p}(G)\right)$ be a direct product of copies T_{i} of T. $G \in \mathfrak{U} \backslash \mathfrak{V} \Longleftrightarrow \mathfrak{F}(G)=\mathfrak{U}$ and $G \in \mathfrak{V} \backslash \mathfrak{N} \Longleftrightarrow \mathfrak{F}(G)=\mathfrak{V}$. Therefore $\mathfrak{F}\left(G_{m}\right)=\mathfrak{U}$ if $m \not \equiv 0 \bmod 3$, and $\mathfrak{F}\left(G_{m}\right)=\mathfrak{V}$ if $m \equiv 0 \bmod 3$.

Proof: $G \in \mathfrak{U} \backslash \mathfrak{V}\left(\mathfrak{V}\right.$ respectively) if and only if $O^{P}(G) \in \mathfrak{U} \backslash \mathfrak{V}(\mathfrak{V}$ respectively). Hence G can be reduced to the following form: $G:=X \times\langle s\rangle, X=T_{1} \times \ldots \times T_{m}$ all $T_{i} \triangleleft$ G and $T_{i} \cong T,\langle s\rangle \cong C_{3}, s$ acts on X like ($n, \ldots, n, n^{2}, \ldots, n^{2}$), the number of entries " n " being k. Set $l:=m-k$ and assume without loss of generality $1 \leqslant l \leqslant k$. $G \in \mathfrak{V} \Longleftrightarrow w_{G}(s)=1 \Longleftrightarrow k-l \equiv 0 \bmod 3 . \mathfrak{F}(G)$ also contains the extension of X by $\alpha:=(\underbrace{n^{2}, \ldots, n^{2}}_{l}, \underbrace{n, \ldots, n}_{k})$ and $\beta:=(n, \underbrace{n^{2}, \ldots, n^{2}}_{l-1}, \underbrace{n, \ldots, n, n^{2}}_{k-1})$ and therefore the extension of $T_{1} \times T_{2}$ by (n, n^{2}). Anyway G_{3} can be found in $\mathfrak{F}(G)$ and subsequently we get $\mathfrak{V} \subseteq \mathfrak{F}(G)$. If $G \notin \mathfrak{V}$ then $k-l \not \equiv 0 \bmod 3$ and $\mathfrak{F}(G)$ contains a group isomorphic to G_{k-l} and then the group $G_{1} \cong U$ or the group G_{2}. Since $G_{3} \in \mathfrak{F}(G), G_{2} \in \mathfrak{F}(G)$ implies $G_{1} \in \mathfrak{F}(G)$ and finally $\mathfrak{F}(G)=\mathfrak{U}$.

Lemma 2.7. Let $T_{1} \cdot T_{2}$ be a central product of two copies of T and $G:=$ $\left(T_{1} T_{2}\right) \rtimes\langle s\rangle$ with $\langle s\rangle \cong C_{3}$, where s raises the elements of T_{i} / T_{i}^{\prime} to the power of $n^{\lambda_{i}}$.
(a) If $\lambda_{1}=\lambda_{2} \neq 0$, then $\mathfrak{F}(G)=\mathfrak{U}$.
(b) If $\lambda_{1}=1, \lambda_{2}=2$ and $\left|T_{1} \cap T_{2}\right|=p$, then $\mathfrak{F}(G)=\mathfrak{V}$.

Proof:

(a) We can assume $\lambda_{1}=1$. The case $T_{1} \cap T_{2}=1$ is done in (2.6), so there remain two cases:

CASE 1. $\left|T_{1} \cap T_{2}\right|=p$. Let X be a central product of four copies of T with the fol-
lowing intersections: $\left|T_{1} \cap T_{2}\right|=\left|T_{2} \cap T_{3}\right|=\left|T_{3} \cap T_{4}\right|=p ; \quad T_{1} \cap T_{4}=1 ; \quad\left(T_{1} \cap T_{2}\right) \times$ $\left(T_{2} \cap T_{3}\right)=Z\left(T_{2}\right) ; \quad\left(T_{2} \cap T_{3}\right) \times\left(T_{3} \cap T_{4}\right)=Z\left(T_{3}\right)$. Then $\mathfrak{F}(G)$ contains the extensions $H_{1}:=\langle X, \alpha\rangle, H_{2}:=\langle X, \beta\rangle$ and $H_{3}:=\langle X, \gamma\rangle$ with $\alpha:=(n, n, 1,1), \beta:=(1,1, n, n)$ and $\gamma:=\left(1, n^{2}, n^{2}, 1\right) . \alpha \beta \gamma=(n, 1,1, n)$, and $H:=\langle X, \alpha \beta \gamma\rangle$ possesses a normal subgroup $N \cong G_{2}$. According to (2.6) we get $\mathfrak{F}(G)=\mathfrak{U}$.

Case 2. $\left|T_{1} \cap T_{2}\right|=p^{2}$. Let again X be a central product of four copies of T, but now $Z\left(T_{1}\right)=T_{i} \cap T_{j}$ for all $i, j \in\{1, \ldots, 4\} . \mathfrak{F}(G)$ contains the extensions of X by $\alpha:=(n, n, 1,1), \quad \beta:=\left(1,1, n^{2}, n^{2}\right), \quad \gamma:=(n, 1,1, n)$ and $\varepsilon:=(n, 1, n, 1)$, and therefore with $\alpha \beta \gamma \varepsilon=(1, n, 1,1)$ and at last a group isomorphic to U.
(b) There exists a central product $P=T_{1} \cdot T_{2} \cdot T_{3}$ of three copies of T with $T_{2} \cdot T_{3} \cong$ $T_{1} \cdot T_{2}$ and $T_{1} \cap T_{3}=1$. Set $\sigma:=\left(n, n^{2}, 1\right)$ and $\tau:=\left(1, n, n^{2}\right)$. Hence $\langle P, \sigma, \tau\rangle$ is a normal product of two copies of G and has a subnormal subgroup $N=\left\langle T_{1} \times T_{3}, \sigma \tau\right\rangle$ with $\mathfrak{F}(N)=\mathfrak{V}$ according to (2.6).

Finally the Lockett section of \mathfrak{U} is found, and it turns out that \mathfrak{U} fulfills the Lockett conjecture:

Theorem 2.8. The Lockett section of \mathfrak{U} is $\{\mathfrak{V}, \mathfrak{U}\}$.
Proof: Let \mathfrak{X} be a Fitting class with $\mathfrak{U}_{*}=\mathfrak{V} \subseteq \mathfrak{X} \subseteq \mathfrak{U}$. \mathfrak{X} contains a group $G \in \mathfrak{U}_{0} \backslash \mathfrak{V}$ constructed analogously to the group G in the proof of (2.6) with the only alteration that $X=T_{1} \cdot \ldots \cdot T_{m}$ is now a central (eventually not a direct) product. Define k, m, l as in (2.6). Now $k-l \not \equiv 0 \bmod 3$. Let further α_{j} be the automorphism of X which centralises T_{1}, \ldots, T_{j} and operates on the remaining factors T_{i} in the same way as s. One obtains $X \rtimes\left\langle\alpha_{1}\right\rangle \in \mathfrak{V}$ if $k-l \equiv 1 \bmod 3$, and $X \rtimes\left\langle\alpha_{2}\right\rangle \in \mathfrak{V}$ if $k-l \equiv 2 \bmod 3$. In the first case $X \times\left\langle s \alpha_{1}^{-1}\right\rangle \in \mathfrak{X}$ has a normal subgroup isomorphic to U, and $\mathfrak{X}=\mathfrak{U}$. In the second case $X \rtimes\left\langle s \alpha_{2}^{-1}\right\rangle \in \mathfrak{X}$ has a normal subgroup that fulfills the hypothesis of (2.7), and again $\mathfrak{X}=\mathfrak{U}$.

3. A Lockett section with one member

The Fitting class \mathfrak{V} arose from intersecting \mathfrak{U} with the normal Fitting class $\mathfrak{G}_{\boldsymbol{p}}(1)$. Since all intersections of \mathfrak{U} with normal Fitting classes will appear in the Lockett section of \mathfrak{U}, there is no hope for finding more subclasses of \mathfrak{U} by constructing such intersections. However there is at least one other nonnilpotent subclass of \mathfrak{U}, and that class coincides with its upper and lower star. The Fitting classes generated by the groups G_{m} can be determined easily because the central factors T_{i} of $O_{p}\left(G_{m}\right)$ intersect trivially. A similar situation arises when these intersections are as great as possible.

Definition 3.1:
(a) Let $H_{m}:=\left(T_{1} \cdot \ldots \cdot T_{m}\right) \times\langle s\rangle$ fulfill the following hypothesis:
(i) $T_{1} \cdot \ldots \cdot T_{m}$ is a central product of normal subgroups $T_{i} \cong T$ of H_{m}.
(ii) For all $i, j \in\{1, \ldots, m\}: T_{i} \cap T_{j}=Z\left(T_{i}\right)=Z\left(T_{j}\right)$.
(iii) $\langle s\rangle \cong C_{3}$ and s raises the elements of T_{i} / T_{i}^{\prime} to the power of n.
(b) Let $K:=\left(T_{1} \cdot T_{2}\right) \rtimes\langle s\rangle$ fulfill hypotheses (i) and (ii) of (a), $\langle s\rangle \cong C_{3}$ and s operating on $T_{1} T_{2}$ as $\left(n, n^{2}\right)$.

Analogously to (2.6) one easily obtains:
Lemma 3.2. $\mathfrak{F}\left(H_{m}\right)=\mathfrak{U}$ if $m \not \equiv 0 \bmod 3$ and $\mathfrak{F}\left(H_{m}\right)=\mathfrak{F}\left(H_{3}\right)=\mathfrak{F}(K)$ if $m \equiv 0 \bmod 3$.

Definition 3.3: Let \mathcal{M} be the class of all central products of copies T_{i} of T with $T_{i} \cap T_{j}=Z\left(T_{i}\right)=Z\left(T_{j}\right)$ for all i and j and \mathfrak{W} be the class of all $G \in \mathfrak{U}$ such that $O_{p}\left(O^{p}(G)\right)$ is a central product of maximal \mathcal{M}-groups M_{1}, \ldots, M_{m} with the additional property that $\left\langle M_{i}, s\right\rangle \in \mathfrak{V}$ for all $i \in\{1, \ldots, m\}$ and all 3-elements $s \in G$.

The case $m=0$, that means $O^{p}(G) \in \mathfrak{S}_{3}$, is admitted. In accordance with [6 , 3.5], the factors M_{i} are uniquely determined up to permutation.

Proposition 3.4. \mathfrak{W} is a Fitting class, and $\mathfrak{W}=\mathfrak{F}\left(H_{3}\right) \subsetneq \mathfrak{V}$.
Proof:
(i) Let $G_{1} \cdot G_{2}$ be a normal product of groups $G_{i} \in \mathfrak{W}$. Without loss of generality we can assume $G_{1}, G_{2} \in \mathscr{U}_{0}$. If at least one of the two factors G_{i} is a 3-group, then $G_{1} G_{2} \in \mathfrak{W}$ is clear. Let be $O_{p}\left(G_{1}\right)=M_{1} \cdot \ldots \cdot M_{m}, \quad O_{p}\left(G_{2}\right)=L_{1} \cdot \ldots \cdot L_{l}, m, l \geqslant 1$, as in (3.3).
(1) For all $i \in\{1, \ldots, m\}, j \in\{1, \ldots, l\}$, either $M_{i} L_{j}$ is a maximal \mathcal{M} normal subgroup of $G_{1} G_{2}$, or M_{i} and L_{j} are situated in different maximal \mathcal{M}-normal subgroups of $G_{1} G_{2}$. The first case arises if and only if in the decomposition of L_{j} into its factors $T_{k} \cong T$ there is a factor $T_{k_{0}}$ with $T_{k_{0}} \cap$ $M_{i}=Z\left(M_{i}\right)$. Then this equation is valid also for all the other factors $T_{k_{i}}$ of L_{j}, because $L_{j} \in \mathcal{M}$.
(2) By (1) $O_{p}\left(G_{1} G_{2}\right)$ is a central product of maximal \mathcal{M}-groups K_{1}, \ldots, K_{k}, where K_{i} satisfies one of the following conditions:
(I) $K_{i}=M_{i}$ and $K_{i} \cap G_{2} \subseteq Z\left(G_{2}\right)$,
(II) there is a $j \in\{1, \ldots, l\}$ with $K_{i}=L_{j}$ and $K_{i} \cap G_{1} \subseteq Z\left(G_{1}\right)$,
(III) there is a $j \in\{1, \ldots, l\}$ with $K_{i}=M_{i} L_{j}$.
(3) It remains to check the determinant of the operation induced by a 3-element $s \in G_{1} G_{2}$ on K_{i}. Since $Y \in S y l_{3}\left(G_{1} G_{2}\right)$ is a product of Y_{1} and Y_{2} with $Y_{i} \in S y l_{3}\left(G_{i}\right)$, it suffices to consider $s \in Y_{1}$ and $t \in Y_{2}$.

Case I. For $s \in G_{1}$ the assertion is clear. According to [6, 3.7.c], $t \in G_{2}$ centralises K_{i}.

Case II. This case is analogous to case I.
Case III. Let $L_{j}=T_{1} \ldots \ldots \cdot T_{r}$ be the decomposition of L_{j}, uniquely up to permutation. Again in consequence of [6, 3.7.c], a factor T_{ν} is either identical to some central factor of M_{i} or it is centralised by $s \in G_{1}$. Hence $\left\langle M_{i} L_{j}, s\right\rangle$ and $\left\langle M_{i} L_{j}, t\right\rangle$ are contained in \mathfrak{V}.
(ii) Let be $G \in \mathfrak{W}$ and let N be a normal subgroup of $G . O_{p}\left(O^{p}(N)\right)$ is a central product of normal subgroups T_{1}, \ldots, T_{m}, isomorphic to T, and $\left\{T_{1}, \ldots, T_{m}\right\}$ is a subset of the set of the central factors T_{i} of $O_{p}\left(O^{p}(G)\right)$. Fix a maximal \mathcal{M}-factor M_{i} of $O_{p}\left(O^{p}(G)\right)$. Passing from G to N, due to $\left[6,3.8\right.$. a] only factors $T_{j} \leqslant M_{i}$ that are centralised by all 3 -elements $s \in N$ can disappear. So $M_{i} \cap N$ is a \mathcal{M}-group with $\left\langle M_{i} \cap N, s\right\rangle \in \mathfrak{V}$ for all 3-elements $s \in N$. Moreover $M_{i} \cap N$ is a maximal \mathcal{M}-factor of N. Since $O_{p}\left(O^{p}(N)\right)=\left(M_{1} \cap N\right) \cdot \ldots\left(M_{m} \cap N\right)$, we get $N \in \mathfrak{W}$.
(iii) $H_{3} \in \mathfrak{W}$, and $G_{3} \notin \mathfrak{W}$. Therefore $\mathfrak{N} \subsetneq \mathfrak{F}\left(H_{3}\right) \subseteq \mathfrak{W} \subsetneq \mathfrak{V}$. Suppose now $M \in$ \mathcal{M} and $\langle s\rangle \cong C_{3}$ with $\langle M, s\rangle \in \mathfrak{V}$. Since $\mathfrak{F}\left(H_{3}\right)=\mathfrak{F}(K)$, one gets $\langle M, s\rangle \in \mathfrak{F}\left(H_{3}\right)$ using the same method as in part (v) of (2.5). Analogously to [6, 3.3] this leads to $\mathfrak{W} \subseteq \mathfrak{F}\left(\boldsymbol{H}_{3}\right)$.

Proposition 3.5. \mathfrak{W} is the only minimal nonnilpotent Fitting subclass of \mathfrak{U}.

Proof: We fix $G \in \mathfrak{U} \backslash \mathfrak{N}$ and show $\mathfrak{W} \subseteq \mathfrak{F}(G)$. Let G fulfill the usual hypothesis (see (2.6)), the operation of s being described by ($n^{\lambda_{1}}, \ldots, n^{\lambda_{m}}$), $\lambda_{i} \neq 0$. Let \boldsymbol{F} be free with respect to the properties (nilpotent of class 3 , exponent p, $2(m+1)$ generators). It is possible to find a normal subgroup $N \leqslant Z(F)$ such that $P:=F / N$ is a central product of copies $T_{1}, \ldots, T_{m}, T_{m+1}$ of T obeying the condition $T_{1} \cdot \ldots \cdot T_{m} \cong T_{2} \cdot \ldots \cdot T_{m+1} \cong O_{p}(G)$. Now take $\sigma, \tau \in A u t(P)$ defined by $\sigma=\left(n^{\lambda_{1}}, \ldots, n^{\lambda_{m}}, 1\right)$ and $\tau=\left(1, n^{-\lambda_{2}}, \ldots, n^{-\lambda_{m}}, n^{-\lambda_{1}}\right)$. Hence $\langle P, \sigma, \tau\rangle$ is a normal product of two copies of G and has a subnormal subgroup $L=\left\langle T_{1} \cdot T_{m+1}, \sigma \tau\right\rangle$, where $\sigma \tau$ operates as $\left(n^{\lambda_{1}}, n^{-\lambda_{1}}\right)$. If $\left|T_{1} \cap T_{m+1}\right|=p^{2}$, then $L \cong K$ and $\mathfrak{F}(L)=\mathfrak{W}$. Otherwise $\mathfrak{F}(L)=\mathfrak{V}$ due to (2.6) and (2.7.b).

Theorem 3.6. $\mathfrak{W}_{*}=\mathfrak{W}=\mathfrak{W}^{*}$
Proof: $\mathfrak{W}_{*}=\mathfrak{W}$ is clear by (3.5). $\mathfrak{W}=\mathfrak{W}^{*}:$ Since $\mathfrak{W}^{*} \subseteq \mathfrak{U}^{*}=\mathfrak{U}$, it suffices to show that $(G \times H)_{\mathfrak{W}}=G_{\mathfrak{W}} \times H_{\mathfrak{W}}$ for all $G, H \in \mathfrak{U}$. Further $O^{p}(G \times H)=O^{p}(G) \times$ $O^{p}(H)$, so we can assume G and H to be p-perfect. $G, H \in \mathfrak{U}$, so $O_{p}(G)=T_{1} \cdot \ldots \cdot T_{l}$ and $O_{p}(H)=U_{1} \ldots . U_{k}$ are central products of factors isomorphic to T with the usual operation of the 3 -elements. Since $G \cap H=1, O_{p}(G \times H)=T_{1} \cdot \ldots \cdot T_{l} \cdot U_{1} \cdot \ldots \cdot U_{k}$
is the corresponding decomposition of $O_{p}(G \times H)$. Let M_{1}, \ldots, M_{m} be the maximal \mathcal{M}-normal subgroups of $O_{p}(G \times H)$. Each factor M_{i} is contained in G or in H. $(G \times H)_{\mathfrak{W}} \geqslant O_{p}(G \times H)$. Moreover M_{i} is either contained in $O^{p}\left((G \times H)_{\mathfrak{W}}\right)$ or is centralised by all 3 -elements $s \in(G \times H)_{\mathfrak{W}}$. Each 3-element $s \in G \times H$ is a product of 3-elements $s_{1} \in G$ and $s_{2} \in H . s=s_{1} s_{2}$ is an element of $(G \times H)_{\mathfrak{W}}$ if and only if it induces on every factor M_{i} an automorphism with "determinant" 1 . In this case s_{1} and s_{2} have this property, too: If $M_{i} \leqslant G, s_{2}$ centralises M_{i}. If $M_{i} \leqslant H, s_{1}$ centralises M_{i}. Hence $s_{1} \in G_{\mathfrak{W}}$ and $s_{2} \in H_{\mathfrak{W}}$. Together we get $(G \times H)_{\mathfrak{W}}=G_{\mathfrak{W}} \times H_{\mathfrak{W}}$.

References

[1] D. Blessenohl and W. Gaschütz, 'Über normale Schunck- und Fittingklassen', Math. Z. 118 (1970), 1-8.
[2] O. Brison, 'On a Fitting class of Hawkes', J. Algebra 68 (1981), 28-30.
[3] T. Hawkes, 'On metanilpotent Fitting classes', J. Algebra 63 (1980), 459-483.
[4] K. Johnsen and H. Laue, 'Über endlich erzeugte Fittingklassen', Arch. Math. (Basel) 30 (1978), 350-360.
[5] F.P. Lockett, 'The Fitting class \mathfrak{F}^{*}, Math. Z. 137 (1974), 131-136.
[6] M. Menth, 'A Family of Fitting classes of supersoluble groups', (submitted).

[^0]
[^0]: Mathematisches Institut
 Universitāt Würzburg
 Am Hubland
 D-W-8700 (D-97074) Würzburg
 Germany

