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Comprehensive experimental and computational investigations have revealed possible
mechanisms underlying low-frequency unsteadiness observed in spanwise homogeneous
shock-wave/turbulent-boundary-layer interactions (STBLI). In the present work, we
extend this understanding by examining the dynamic linear response of a moderately
separated Mach 2.3 STBLI to small perturbations. The statistically stationary linear
response is analysed to identify potential time-local and time-mean linear tendencies
present in the unsteady base flow: these provide insight into the selective amplification
properties of the flow at various points in the limit cycle, as well as asymmetry and
restoring mechanisms in the dynamics of the separation bubble. The numerical
technique uses the synchronized large-eddy simulation method, previously developed
for free shear flows, significantly extended to include a linear constraint necessary
for wall-bounded flows. The results demonstrate that the STBLI fosters a global
absolute linear instability corresponding to a time-mean linear tendency for upstream
shock motion. The absolute instability is maintained through constructive feedback of
perturbations through the recirculation: it is self-sustaining and insensitive to external
forcing. The dynamics are characterized for key frequency bands corresponding
to high–mid-frequency Kelvin–Helmholtz shedding along the separated shear layer
(StL ∼ 0.5), low–mid-frequency oscillations of the separation bubble (StL ∼ 0.1)
and low-frequency large-scale bubble breathing and shock motion (StL ∼ 0.03),
where the Strouhal number is based on the nominal length of the separation bubble,
L: StL = fL/U∞. A band-pass filtering decomposition isolates the dynamic flow
features and linear responses associated with these mechanisms. For example,
in the low-frequency band, extreme shock displacements are shown to correlate
with time-local linear tendencies toward more moderate displacements, indicating a
restoring mechanism in the linear dynamics. However, a disparity between the linearly
stable shock position and the mean shock position leads to an observed asymmetry in
the low-frequency shock motion cycle, in which upstream motion occurs more rapidly
than downstream motion. This is explained through competing linear and nonlinear
(mass depletion through shedding) mechanisms and discussed in the context of an
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oscillator model. The analysis successfully illustrates how time-local linear dynamics
sustain several key unsteady broadband flow features in a causal manner.

Key words: absolute/convective instability, shock waves, turbulent boundary layers

1. Introduction
1.1. General overview

Shock-wave/turbulent-boundary-layer interactions (STBLI) occur in many high-speed
applications such as air intakes, control surfaces and over-expanded nozzles. If the
interaction is strong enough, the flow separates, resulting in a highly unsteady flow. Of
particular interest are low-frequency components, i.e. phenomena with pertinent time
scales much larger than those associated with the incoming turbulence. The associated
dynamics, including unsteady thermo-mechanical loading and density fluctuations, can
excite adverse structural responses, lead to loss of control authority, result in inefficient
or even catastrophic inlet dynamics and exacerbate aero-optical distortion. Reviews by
Dolling (2001) and more recently Gaitonde (2015) discuss progress in STBLI research
and the challenges that lie ahead. Both emphasize low-frequency unsteady aspects as
areas of major concern, requiring control techniques for their moderation. However,
characterizing the dynamics of these phenomena, especially distinguishing causation
from correlation, remains a challenging task – this has inhibited the development of
an optimal strategy for flow control.

Recent representative experimental (Dupont, Haddad & Debiève 2006; Dupont
et al. 2008; Ganapathisubramani, Clemens & Dolling 2009; Piponniau et al. 2009;
Souverein et al. 2010) and computational (Pirozzoli & Grasso 2006; Touber &
Sandham 2009; Agostini et al. 2012; Grilli et al. 2012; Priebe & Martín 2012;
Aubard, Gloerfelt & Robinet 2013; Morgan et al. 2013; Priebe et al. 2016) efforts
have explored various aspects of STBLIs and several physical mechanisms have been
proposed to explain the observed unsteadiness. These may be broadly classified into
two main categories. The first underscores the upstream influence of the incoming
turbulent boundary layer. For instance, Ganapathisubramani et al. (2009) demonstrated
a correlation between the low-frequency response of the surrogate separation point
and large-scale, low- and high-speed regions in the incoming turbulent boundary
layer. The second considers downstream influence via coupling between the boundary
layer, recirculation region and shock. In particular, Piponniau et al. (2009) built
upon the analysis of Dupont et al. (2006) to propose a model which explains
breathing of the separation bubble and low-frequency shock motion in terms of
fluid entrainment in the mixing layer, whereby fluid from the separation bubble is
continuously entrained in the mixing layer, shed downstream and must be replenished
at a time scale corresponding to the low-frequency shock oscillations. This second
class of mechanisms has been demonstrated to exist even when the boundary layer
is statistically free from noise near the low frequency of interest (Touber & Sandham
2009). It is generally accepted that while both classes of mechanisms contribute to the
low-frequency shock dynamics, the second class becomes more dominant as the size
of the time-mean recirculation region increases (Souverein et al. 2010; Clemens &
Narayanaswamy 2014). Morgan et al. (2013) have recently evaluated the validity of
many of these mechanisms through examination of an extensive large-eddy simulation
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(LES) database. Although these and subsequent studies find a correlation between
the size of the ‘turbulent separation bubble’ and the longitudinal shock location, the
driving mechanisms and a causal description of the low-frequency dynamics of the
separation bubble remain unclear.

Additional theoretical and numerical tools, including stability analyses, have also
been deployed to understand the physical origin of low-frequency shock unsteadiness.
Concerning laminar interactions, Robinet (2007) found a three-dimensional global
instability through BiGlobal linear-stability analysis that led to self-sustained
low-frequency oscillations when the incident shock exceeded a critical angle. Recently,
Guiho, Alizard & Robinet (2016) demonstrated that laminar SBLIs are globally stable
to two-dimensional perturbations over a wide parameter space, behaving as globally
stable selective amplifiers as opposed to unstable oscillators. Sansica, Sandham &
Hu (2014) investigated the low-frequency response of a laminar SBLI to white-noise
forcing through the solution to a non-modal initial value problem (IVP), rather than
a modal eigenvalue problem (EVP) (as distinguished by Theofilis (2011)), exciting
a mid-frequency Kelvin–Helmholtz (K–H) response as well as a low-frequency
broadband response. This work was a natural extension of an earlier effort by Touber
& Sandham (2009), who perturbed the time-mean flow obtained from an LES of a
turbulent SBLI using white noise to find an unstable, two-dimensional, global mode
with a growth time scale similar to that observed in low-frequency bubble breathing.
IVP perturbation analyses of the time-mean turbulent flow were also conducted
by Pirozzoli et al. (2010), who observed a similar unstable global mode. They
corroborated their findings with a BiGlobal linear-stability analysis of the time-mean
turbulent flow, which, in addition to an unstable non-oscillatory (zero-frequency)
global mode, identified several weakly damped oscillatory modes resembling bubble
breathing extracted from low-pass filtered LES flow fields. This analysis was extended
by Nichols et al. (2017) who describe the STBLI as a weakly damped oscillator,
sustained by forcing, with a non-oscillatory unstable global mode. Notably, Sartor
et al. (2015) did not observe this non-oscillatory unstable global mode in the analysis
of a transonic STBLI, and they found the least stable eigenvalues unrelatable to
observed experimental unsteadiness. These observations are reconcilable with the
previous studies, since the Reynolds averaged Navier–Stokes (RANS) equations, not
the Navier–Stokes equations, were linearized about the turbulent mean, itself obtained
from a RANS calculation that converged to a steady solution. As Nichols et al.
(2017) identified: the linearization of the RANS equations for such a solution should
be globally stable. However, the same cannot be said for linearizing the RANS
equations about a steady base flow that does not satisfy the steady RANS equations,
which may give rise to unstable global modes (Sartor, Mettot & Sipp 2014). A unified
theoretical basis for linearizing propagation equations about a steady base flow that
is not a steady solution to the given propagation equations remains to be developed.

1.2. Current contribution
The present study seeks to build on this understanding of the steady, laminar or
turbulent-mean, base flow (also referred to as the basic state) by applying, for the first
time, a perturbation analysis to the evolving, unsteady STBLI. The goal is to examine
the dynamic linear response (DLR) of the flow to identify mechanisms that result in
the observed low-frequency dynamics. Specifically, we employ concepts developed
for the analysis of nonlinear dynamical systems (Khalil 1996), including those of
Lyapunov stability and Lyapunov exponents (Skokos 2010; Pikovsky & Politi 2016).
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The analysis is accomplished through calculation of the evolution of forced and
constrained linear perturbations of the time-resolved STBLI base flow. This technique
for analysing flow stability may be classified as global (Theofilis 2011), as opposed
to local (Huerre & Monkewitz 1990), and non-modal (Schmid 2007), as opposed
to modal (Schmid & Henningson 2001), following terminology described in the
aforementioned references; it considers the global influence of the flow, and no
ansatz of frequency-isolated modes is assumed, since intermodal frequency mixing
will generally occur for linear perturbations of an unsteady base flow; such an
occurrence may arise without any nonlinear interactions.

1.3. Dynamic linear response
In this framework, the base flow is the evolving, unsteady STBLI, as obtained
from an LES of the Navier–Stokes equations in suitable fashion; the approach
employed in this work is discussed in § 2. The dynamic linear response is then
the statistical-ensemble description, including time-local, time-mean and spectral
components, of the linear-perturbations evolving around the unsteady base flow
subject to forcing; considerations concerning the extraction of coherent features of
the turbulent flow and ensemble averaging are addressed by Hussain (1986) and
Jeong et al. (1997), respectively. Details of all aspects of the technique employed
are presented in § 3. The dynamic linear response (§ 3.1) provides insight into the
tendency of the evolving flow at different points in the low-frequency cycle, in turn
aiding in the determination of causal mechanisms in the STBLI. Furthermore, through
proper processing and interpretation of perturbation evolution, correlations between
features of unsteadiness in the low-, mid- and high-frequency ranges can be discerned,
as can the manner in which these linear tendencies contribute to the restoration (or
otherwise) of the flow to its time-mean state.

Requirements for admissibility of perturbations for the dynamic linear response are
similar to those for traditional stability analyses; they must satisfy the linearized
Navier–Stokes (LNS) equations subject to forcing with specified boundary and
initial conditions. With regard to the form of forcing, stability literature considers
time harmonic, impulsive and stochastic variants (Schmid 2007). Our strategies are
discussed in § 3.2 and include both band-limited white noise as well as ‘native’
forcing, which has the same spectral form as the local turbulent fluctuations. A
key distinction of the present effort from traditional analyses is that since the base
flow of interest is highly unsteady, the linearization must be performed about the
time-evolving turbulent flow. The numerical technique used solves the LNS equations
through a modification of the synchronized LES procedure (SLES) described by
Unnikrishnan & Gaitonde (2015, 2016), who developed it to track the evolution of
wave packets originating from turbulent fluctuations in the core of a jet, to understand
intermittent events in the acoustic near field. Like other IVP perturbation methods,
results from SLES must be processed as a statistical ensemble and do not directly
reveal modal information. However, given the prohibitive computational expense of
methods which analyse three-dimensional steady base flows, e.g. TriGlobal (EVP)
analyses (Theofilis 2011), IVP methods are perhaps the only suitable techniques by
which to probe time-dependent three-dimensional base flows.

Stability studies of time-dependent flows are relatively rare, and are generally
focused on the non-modal stability of laminar flows. Time-dependent non-modal
approaches may be generally classified as either examining the fundamental solution
operator (Schmid 2007) or the adjoint equations, which are reviewed by Luchini &
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Bottaro (2014). The success of these approaches in understanding time-dependent
laminar base flows is discussed by Schmid (2007). Briefly, the dynamic linear
response facilitates exploration of the nature of the fundamental solution operator
using an ensemble of IVPs, each corresponding to a specific realization of the base
flow and forcing. Generally, the fundamental solution operator can describe the
non-modal evolution of perturbations of steady or unsteady base flows, and it is
often referred to as the Green’s function (Luchini & Bottaro 2014) or the propagator
(Farrell & Ioannou 1996); it is analogous to a time-dependent resolvent operator
(McKeon & Sharma 2010) but is not restricted to harmonic behaviour in time.
Specifically, for the complex flow considered, the fundamental solution operator is
not explicitly calculated, as this would be prohibitive in an unsteady calculation with
O(108) discrete degrees of freedom. Rather, the linear response is determined from a
statistical-ensemble analysis of the propagated linear perturbations. That is, the linear
response is identified through analysis of many realizations of linear perturbations (the
evolution of which is specific to each forcing and base-flow realization) by invoking
flow ergodicity over long duration.

The application of synchronized LES analysis to the wall-bounded, turbulent,
separated flow encountered in STBLIs is not trivial since there are relatively large
reversed flow regions and thin, high-gradient, subsonic layers near the wall, the chaotic
nature of which leads to large perturbation growth rates. Perturbations growing to
nonlinear magnitudes indicate that the synchronized simulations (the perturbed and
base-flow realizations of the STBLI) decorrelate in time, as discussed in § 3.3. While
these realizations remain statistically similar, the instantaneous difference between the
two is no longer representative of the dynamic linear response of the STBLI. Since
the time scales of perturbation growth to nonlinear magnitudes are later shown to be
much shorter than the time scales of low-frequency mechanisms, a difficulty arises
in acquiring the dynamic linear response of low-frequency mechanisms associated
with the separation bubble and concomitant shock motion. To resolve this issue,
§ 3.3 introduces a procedure to linearly constrain perturbation growth and maintain
linearity with respect to the base flow, enabling sustained long-time acquisition of
the desired linear-perturbation data. This corresponds to the implicit addition of
a forcing term to the governing equations that highlights the time-local tendency
toward rapid linear growth, i.e. the influence of faster growing perturbations persists
in time, while the influence of slower growing perturbations attenuates. The overall
procedure of using two LES to extract the dynamic linear response is presented in
§ 3.4. When the linear constraint is applied, the SLES is then designated LC-SLES.
In the context of Lyapunov stability, the effect of this linear constraint amounts
to Lyapunov renormalization, which facilitates the identification of unstable linear
dynamics associated with the largest Lyapunov exponent of the flow, as discussed in
§ 3.5 (Skokos 2010; Pikovsky & Politi 2016).

1.4. Application to STBLI
The linearly constrained analysis is applied to the impinging STBLI, with emphasis
on understanding upstream influence, separation bubble dynamics, vortex shedding
and low-frequency shock motion. The specific problem considered is described
in § 4, which includes an assessment of the base flow. Briefly, we consider an
oblique shock wave generated by a 9◦ wedge impinging on a Mach 2.33 (momentum
thickness Reynolds number: Reθ = 2300) turbulent boundary layer, previously studied
computationally by Mullenix & Gaitonde (2013) and validated by comparison
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with experimental data obtained at The Ohio State University Gas Dynamics and
Turbulence Laboratory (Webb, Clifford & Samimy 2013). The effect of stronger
interaction strength is also addressed with an 11◦ wedge shock.

The results in § 5 first consider preliminary aspects of constrained and unconstrained
perturbation evolution and subsequently address the physics of the low-frequency
oscillations. For this, several cases are delineated in § 5.1, differing from each other
primarily in the nature, location and duration of forcing. In § 5.2, the transient
amplification without constraint is discussed to illustrate sensitivity of the chaotic
flow to initial conditions, the extent of the linear growth domain, and to motivate and
justify the constraining parameters chosen for subsequent work. Section 5.3 describes
the statistically stationary state of the linearly constrained perturbations. The path
by which the stationary state is achieved is first discussed in § 5.3.1, followed
by a demonstration that the constraining technique recovers linearity in § 5.3.2. The
response to different forcing parameters reveals the presence of self-sustaining linearly
constrained perturbations in § 5.3.3. These observations are connected to the concepts
of absolute and convective global instabilities discussed by Huerre & Monkewitz
(1990) and Chomaz (2005), which we observe in the STBLI and undisturbed turbulent
boundary layer, respectively; in response to forcing, absolutely unstable flows exhibit
self-sustained oscillations, whereas convectively unstable flows respond as selective
amplifiers. Additionally, these findings are related to the mean-flow stability results
of Touber & Sandham (2009), Pirozzoli et al. (2010) and Nichols et al. (2017),
in the context of shock motion asymmetry observed by Piponniau et al. (2009).
Again employing the terminology of stability theory, the ‘receptivity’ of the turbulent
flow is characterized in § 5.3.4 by examining the effect of forcing location on the
perturbation field, using wall-normal velocity as a sample variable; the insensitivity to
forcing facilitates confirmation of the absolute nature of the instability. We examine
and correlate the spectral content of both the base-flow and perturbation fields in
§ 5.3.5, including the attenuation factor, which linearly enforces the perturbation
constraint.

The final investigation in § 5.3.6 simultaneously decomposes the turbulent base-flow
and perturbation fields through band-pass temporal filtering to generate insight into
mechanisms that sustain coherent motion and low-frequency unsteadiness. Several
bands are considered, each motivated by prominent frequency ranges identified in
the literature, which collapse reasonably well when described by a Strouhal number
based on the nominal length of the separation bubble, L: StL = fL/U∞ (Dussauge,
Dupont & Debiève 2006). Commonly, the low-frequency dynamics (StL∼ 0.03) are of
most interest as this band corresponds to the relatively largest-scale coherent motion
of the reflected shock. High–mid-frequency Kelvin–Helmholtz shedding along the
separated shear layer (StL ∼ 0.5) has also been observed and discussed (Agostini
et al. 2012; Aubard et al. 2013). Additionally, we identify important dynamics at a
low–mid frequency (StL∼ 0.1), corresponding to oscillations of the separation bubble.
In fact, StL ∼ 0.1 content is found in the recirculation region power spectra of many
studies (Dupont et al. 2006; Touber & Sandham 2009; Aubard et al. 2013), but it
is often not discussed in detail. The high-frequency (StL & 1) response of the shock
to fine-scale boundary layer turbulence results in the least coherent (jittering) motion
and is not considered a primary concern for analysis or control efforts.

We also discuss in § 5.3.6 the band-isolated dynamics of the base flow and
perturbations in the context of a mass-depletion mechanism, e.g. the conceptual
model of Piponniau et al. (2009). Such a model is consistent with the low-frequency
dynamics; however, like Morgan et al. (2013) we find that the ‘turbulent separation
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bubble’ responds more significantly at higher frequencies (StL ∼ 0.1) than predicted
by the model (StL ∼ 0.03). We discuss these observations in conjunction with the
results of Kiya & Sasaki (1985), who observe higher-frequency (StL∼ 0.1) content in
low-speed separation bubbles.

Given the difficulty of trying to verify the causality of any single proposed
mechanism driving the low-frequency shock unsteadiness, several authors have
applied simpler stochastic models, describing the motion in terms of a first-order
stochastic ordinary differential equation (ODE). Plotkin (1975) first postulated that
the low-frequency motion could be described, assuming that the shock displaced
from its time-mean position would be subject to a linear restoring mechanism. This
model was later verified experimentally by Poggie & Smits (2001) and more recently
derived analytically with supporting assumptions validated through LES by Touber &
Sandham (2011). Sansica, Sandham & Hu (2016) also reproduced many of the key
features of the oscillation by suitably forcing a laminar SBLI, showing that broadband
low-frequency upstream content is not necessary to elicit a low-frequency response
at the separation point. Rather the response can result from ‘forcing’ via transition
downstream, which is then low-pass filtered by the interaction. To assess the accuracy
of the assumptions employed in development of simplified models for low-frequency
unsteadiness, § 5.3.6 also examines the perturbation dynamics at different phases of
the low-frequency shock motion cycle to identify linear tendencies for restoration
toward or departure from the mean state. We discuss the accuracy of the assumptions
of the ODE model with these band-isolated linear tendencies, identifying phases of
the low-frequency motion that exhibit behaviour consistent or inconsistent with the
model. The paper concludes by summarizing the key results in § 6.

2. Theoretical and numerical model
The compressible Navier–Stokes equations are solved in strong curvilinear

non-dimensional form using an LES method discussed extensively by Garmann
(2013). The scales used for non-dimensionalization include the free stream density,
ρ̃∞, the free stream velocity, Ũ∞, the reference boundary layer thickness, δ̃0, the
free stream temperature, T̃∞, and the free stream molecular viscosity, µ̃∞, which is
obtained from Sutherland’s law, µ=T3/2(1+C1/T +C1), where C1= 110.56 K/T̃∞ is
the non-dimensional Sutherland’s constant and dimensional quantities are denoted by
a tilde. The non-dimensional variables (time, velocity, density, pressure, temperature
and viscosity) are then:

τ =
t̃Ũ∞
δ̃0
, V =

Ṽ
Ũ∞

, ρ =
ρ̃

ρ̃∞
, p=

p̃

ρ̃∞Ũ2
∞

, T =
T̃

T̃∞
, µ=

µ̃

µ̃∞
. (2.1a−f )

The main non-dimensional parameters are the Reynolds number, Re∞= ρ̃∞Ũ∞δ̃0/µ̃∞,
and the Mach number, M∞ = Ũ∞/

√
γ p̃∞/ρ̃∞. The ratio of specific heats is taken

as constant, γ = 1.4, and the Prandtl number, Pr = µ̃C̃p/k̃, is assumed to be 0.72,
where C̃p is the specific heat capacity at constant pressure and k̃ is the thermal
conductivity. The thermodynamic variables are related through the perfect gas
equation, p= ρT/γM2

∞
.

The governing equations are transformed into curvilinear coordinates, ξ = ξ(x, y, z),
η = η(x, y, z) and ζ = ζ (x, y, z), with a transformation Jacobian, J = ∂(ξ, η, ζ , τ )/
∂(x, y, z, t), and can be expressed in strong curvilinear non-dimensional form

∂

∂τ

(
Φ

J

)
+
∂f
∂ξ
+
∂g
∂η
+
∂h
∂ζ
=

1
Re∞

[
∂f v

∂ξ
+
∂gv

∂η
+
∂hv

∂ζ

]
+Q, (2.2)
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where Φ is the conserved variable vector, Φ = [ρ, ρu, ρv, ρw, ρE]T, f etc. are the
inviscid flux vectors, f v etc. are the viscous flux vectors and Q is the source vector.
The flux vectors can be expressed as

f =
1
J


ρU

ρuU + ξxp
ρvU + ξyp
ρwU + ξzp

(ρE+ p)U − ξtp

 and f v
=

1
J


0

ξxiσi1

ξxiσi2

ξxiσi3

ξxi(ujσij −Θi)

 etc., (2.3a,b)

with contravariant velocity component, U = ξt + ξxu+ ξyv + ξzw, and specific energy
density

E=
T

γ (γ − 1)M2
∞

+
1
2
(u2
+ v2
+w2). (2.4)

The deviatoric stress tensor and heat flux vector are given by

σij =µ

(
∂ξk

∂xj

∂ui

∂ξk
+
∂ξk

∂xi

∂uj

∂ξk
−

2
3
∂ξl

∂xk

∂uk

∂ξl
δi j

)
(2.5)

and

Θi =−

[
1

(γ − 1)M2
∞

] ( µ
Pr

) ∂ξj

∂xi

∂T
∂ξj
, (2.6)

where Stokes’ hypothesis is assumed for the bulk viscosity coefficient, λ=−2/3µ.
Time is discretized using a variant of the implicit, approximately factored,

second-order method of Beam & Warming (1978) in the diagonalized form of
Pulliam & Chaussee (1981). In this work a non-dimensional time step of 1τ = 0.001
is used, and three Newton-like sub-iterations are performed in the implicit scheme,
at each time step, to recover accuracy due to errors introduced by linearization,
factorization and explicit updating of boundary conditions. The inviscid Roe fluxes
are calculated from a fifth-order, weighted essentially non-oscillatory (WENO)
reconstruction of characteristic variables. This WENO scheme includes a downwind
candidate stencil in the reconstruction to reduce the amount of numerical dissipation
introduced in shock-free regions (Pirozzoli 2011), compared to the original, fully
upwinded, WENO scheme (Jiang & Shu 1996), and improve the bandwidth resolution
relative to the original scheme, while maintaining fifth-order formal accuracy. The
scheme degenerates to a monotonic upwind scheme for conservation laws (MUSCL)
reconstruction at the second and first points from the block boundaries; however, at
block interfaces, a sufficient overlap is included to maintain high order. Further details
of the WENO scheme are discussed by Mullenix & Gaitonde (2011). The viscous
fluxes are calculated using a sixth-order, compact-central-difference, spectral-like
scheme (Lele 1992; Visbal & Gaitonde 2002).

No explicit subgrid-scale (SGS) turbulence model is employed. The rationale for
this is based on several points. The efforts of Kawai, Shankar & Lele (2010), show
that for well-resolved flows at low to moderate Reynolds number, such as the flow
under consideration, the addition of an SGS model is not beneficial, as it introduces
excessive artificial dissipation to the resolved turbulence. Similar observations for
low-speed stalled airfoils are presented by Garmann, Visbal & Orkwis (2013). Indeed,
Priebe & Martín (2012) designate results with a similar high-order WENO-based
approach as a direct numerical simulation (DNS). As noted by Spalart (2000), when
using implicit LES approaches, it is necessary to ensure that the near-wall region is
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sufficiently resolved, a condition that is facilitated by the choice of the low Reynolds
number and high-order numerical scheme.

3. Constrained linearization technique
Linearly constrained synchronized large-eddy simulation (LC-SLES) analysis can

most appropriately be interpreted as a constrained linearization about the unsteady
turbulent base flow. In this section we first discuss the concept of linearization about
a time-dependent base flow and the modifications to the linearized equations due to
forcing and constraining terms, before describing how this procedure is implemented
using two synchronized LES.

3.1. Governing equations of dynamic linear response
The discretized Navier–Stokes equations may be represented as

∂Φi

∂t
= Fi[Φ], (3.1)

where Φi denotes the conserved variable corresponding to the ith degree of freedom
of the discretized flow, Φ the complete flow state and Fi the Navier–Stokes spatial
operator applied to the ith degree of freedom. The total number of degrees of freedom
(time excluded) corresponds to the product of the spatial discretization count with the
five conserved flow variables. We seek a linearized solution, ΦL, where linearization is
performed in time about the evolving LES base-flow solution, ΦB, resulting in a linear
perturbation from the evolving base flow, ΦPL ≡ΦL

−ΦB. These solution vectors can
be obtained from

∂ΦB
i

∂t
= Fi[Φ

B
], (3.2)

∂ΦL
i

∂t
= Fi[Φ

B
] +

∂Fi[Φ
B
]

∂ΦB
j
(ΦL

j −Φ
B
j ), (3.3)

∂Φ
PL
i

∂t
=
∂Fi[Φ

B
]

∂ΦB
j
ΦPL

j , (3.4)

where the time derivative of the linearized conservative variable vector is represented
by a first-order expansion about the evolving base-flow Navier–Stokes operator, and
the base-flow linearization Jacobian,

Fij(t)≡
∂Fi[Φ

B
]

∂ΦB
j

∣∣∣∣
ΦB=ΦB(t)

, (3.5)

of the linearized system evolves in time nonlinearly as a function of the base-flow
solution. We emphasize that this method is a generalization of IVP perturbation
methods applied to the time-mean flow (Touber & Sandham 2009; Sansica et al. 2014;
Waindim, Bhaumik & Gaitonde 2016) in which the base-flow linearization Jacobian
is a time-dependent function of the evolving base flow instead of a time-independent
function of the steady time-mean flow.

As noted in the introduction, this method conceptually extends a common
non-modal technique for analysing the stability of time-dependent laminar flows
to the fully turbulent regime. The solution to a set of equations described by a
linear partial differential operator, such as those which govern the evolution of
discretized linear perturbations (3.4), can be written in terms of a fundamental
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solution operator. For example, considering a case with forcing, ΦPL(t) can be
written in terms of the fundamental solution operator, Gij(t, τ ), which satisfies
[∂/∂t − F(t)]ijGjk(t, τ ) ≡ δik(t − τ), where δ is the product of Dirac and Kronecker
deltas, such that

ΦPL
i (t)=

∫
Gij(t, τ )Sj[Φ

B(τ )] dτ . (3.6)

The integration can proceed with a supplied initial condition, ΦPL(t0), to give the
complete solution if the fundamental solution operator is explicitly known in the time
interval [t0, t]:

ΦPL
i (t)=Gij(t, t0)Φ

PL
j (t0)+

∫ t

t0

Gij(t, τ )Sj[Φ
B(τ )] dτ . (3.7)

Additionally, the fundamental solution operator satisfies dGij(t, τ )/dt = Fik(t)Gkj(t, τ )
in the interval [τ , t] with Gij(τ , τ ) = δij, where δij is the Kronecker delta. While
the fundamental solution operator can be calculated directly and subjected to further
analysis in the study of laminar flows (Schmid 2007), memory requirements render
this impractical for time-dependent turbulent flows with O(108) discrete degrees
of freedom. However, through ensemble observation of ΦPL(t) with a variety of
unique forcing and initial conditions, we can estimate the time-local properties of the
fundamental solution operator.

We now discuss two additional necessary components of the method, deferring
details to subsequent sections. First, to introduce perturbations, we adopt a forcing
approach which is continuous in time, represented by S. Alternatively, one could
examine a set of realizations, each with a perturbed initial condition; however, the
former approach is preferred in this work as it reduces the computational complexity
of analysing an unsteady flow. Second, for some cases, it is necessary to constrain
the growth of perturbations to enforce ‖ΦPL‖ � ‖ΦB

−ΦB‖ for linear evolution; i.e.
the perturbation magnitude remains much less than the magnitude of the base-flow
fluctuations. This is accomplished through inclusion of a linear attenuation factor, α.
The discretized forced and linearly constrained (attenuated) perturbation field then
evolves in the following way:

∂ΦL
i

∂t
= Fi[Φ

B
] +

(
∂Fi[Φ

B
]

∂ΦB
j
− αδij

)
(ΦL

j −Φ
B
j )+ Si[Φ

B,ΦL
],

∂Φ
PL
i

∂t
=

(
∂Fi[Φ

B
]

∂ΦB
j
− αδij

)
Φ

PL
j + Si[Φ

B,ΦPL],

 (3.8)

where δij represents the Kronecker delta.

3.2. Forcing term
Two independent forms of the forcing term S are considered:

Si =



Wi[x, t]
[
εi[x, t]

∂ΦB
i

∂t
+
∂εi[x, t]
∂t

(ΦB
i −Φ

B
i )

−

(
∂Fi[Φ

B
]

∂ΦB
j
− αδij

)
Φ

PL
j

] scaled native fluctuation,

Wi[x, t]εi[x, t]Φi random white-noise forcing.

(3.9)
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The first is a scaled-down turbulent fluctuation native to the base flow, where ΦB
i is

the time-mean base flow, while the second is white-noise forcing, where Φi random is a
random real variable distributed uniformly over [−1, 1]. In both cases Wi[x, t] ∈ {0, 1}
acts to window the source region in space and time, while εi[x, t] scales the source
magnitude. Generally, within the source window, the scaling function is bounded by
the target perturbation magnitude: εi[x, t]1τ . Φ

PL target
i . We note that scaled native

fluctuation forcing does not explicitly specify a source term for the perturbations.
Rather, it specifies the effect of an implicit source term in the chosen window.
Thus, where Wi[x, t] 6= 0, ΦPL

i = εi[x, t](ΦB
i − ΦB

i ); i.e. the turbulent fluctuation
native to the base flow is specified as the perturbation. The results of Unnikrishnan
& Gaitonde (2016) indicate that transients associated with the ramp-up of forcing
(whether infinitesimal or finite duration) wash out relatively quickly. Likewise, the
results are not sensitive to the details of the edges of the forcing regions, which can
be sharp or diffuse.

3.3. Constraining term
Perturbations can be linearly constrained by including a real attenuation factor, α ∈R,
which operates linearly on all system degrees of freedom to damp perturbation growth.
Mathematically, this reduction of perturbation growth rate coincides with lowering
the real component of the eigenspectrum of the base-flow linearization Jacobian (3.5)
by α. Attenuation allows for the statistical analysis of linear perturbations in the
unsteady environment which would otherwise grow too rapidly to be observed over
a statistically significant duration of time. Attenuation only permits the effects of
the most rapidly growing perturbations to persist in the unsteady flow; all weakly
growing perturbations are damped out. Several strategies for attenuation have been
examined and are distilled below.

The linear attenuation factor, α, can take one of three general forms:

α ≡


0 no attenuation,
0<αconst. < 1/1τ constant attenuation,

1−ΦPL target
α /ΦPL

α

1τ
≡

1−mini|Φ
PL target
i /Φ

PL
i |

1τ
variable attenuation.

(3.10)

The rationale for each is as follows.

(i) No attenuation of the perturbation field in time: the perturbations evolve linearly,
and their absolute growth rate is unaltered. This is the most natural case and
has been the method of choice for all simulations to date, which have focused
on free shear layers. The approach has the advantages of simplicity and ease of
interpretation, but post facto confirmation must be exercised to ensure that εi is
small enough to yield ‖ΦPL‖ � ‖ΦB

− ΦB‖ so it is reasonable to interpret the
perturbations as linear with respect to the base flow. The success of this approach
for supersonic jets is documented by Unnikrishnan & Gaitonde (2015, 2016).
For wall-bounded turbulence, however, this method is unsuitable in obtaining
a statistically stationary linear-perturbation field. Due to high sensitivity of the
turbulent boundary layer to perturbations, the perturbed flow and base flow
eventually decorrelate as they evolve in time with perturbations growing to
nonlinear magnitudes. However, as discussed in § 5.2, cases without attenuation
can still be used to examine non-stationary behaviour and short-time perturbation
growth.
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(ii) Constant attenuation of the perturbation field in time: in this case, the perturbat-
ions evolve linearly, their relative growth rate is unaltered, but their absolute
growth rate is changed through continuous constant attenuation; i.e. the absolute
growth rate is reduced through attenuation of perturbations, but the same
linear attenuation is applied to each degree of freedom, so the relative growth
rate of perturbations, compared with other degrees of freedom, is preserved.
Attenuation is applied linearly to the conserved quantities across all degrees of
freedom, so the procedure effectively represents volume forcing to the linearized
Navier–Stokes equations. This method is advantageous as no nonlinearities are
introduced through attenuation. However, this approach can also suffer from
decorrelation between the perturbed flow and base flow, albeit less dramatically
than with no attenuation. Furthermore, the alteration of absolute growth rate
requires special care in interpretation.

(iii) Variable attenuation of the perturbation field in time: this approach is introduced
in the current work to allow the perturbations to evolve pseudo-linearly in
time, with α = α(t) = α(‖ΦPL‖), i.e. α varies in time, dependent on the
perturbation field magnitude, introducing a weak nonlinearity; this nonlinearity is
negligible as discussed in § 5.3.2. The relative growth rate of perturbations
is unaltered, but their absolute growth rate is modulated. This method is
advantageous as the perturbation field can be evolved to a statistically stationary
state and statistics gathered over a long period of time without the potential
for decorrelation since the linearity constraint, ‖ΦPL‖ � ‖ΦB

− ΦB‖, is
continuously enforced. Statistically stationary perturbation fields in this work
are obtained with the variable attenuation factor taken as a simple function
of the global minimum ratio (across all degrees of freedom) of the specific
target perturbation magnitudes (ΦPL target

i ) and the linear perturbations (ΦPL
i ) as

described in (3.10), where ΦPL
α indicates the maximum norm of the perturbation

field across all degrees of freedom and Φ
PL target
α is the (general) perturbation

target magnitude. This attenuation method fixes the maximum norm of the
linear-perturbation field (ΦP

α ) near to the target perturbation magnitude (ΦPL target
α ).

For the method to be pseudo-linear, normalized results should be independent
of the magnitude of ΦPL target

i , provided Φ
PL target
i is small. Experience shows that

Φ
PL target
i ∈ [1 × 10−7, 1 × 10−5

], non-dimensionalized as in § 2, is an optimal
range for ensuring pseudo-linearity while maximizing decimal precision; i.e.
the perturbations are constrained, such that they remain five to seven orders
of magnitude smaller than the free stream conservative quantities. As with
constant attenuation, the alteration of absolute growth rate requires special care
in interpretation.

3.4. Synchronized LES
To solve (3.8) as posed would require recomputation of the base-flow linearization
Jacobian at each time step and the development of a new solution technique.
Furthermore, the effects of subgrid dissipation and discretization error would not
generally be consistent between the linearized and base-flow solutions. These
errors can rapidly compound in the chaotic base flow and can significantly limit
accuracy when computing solution sensitivity (the base-flow linearization Jacobian)
for high-fidelity simulations. Similar concerns are discussed in detail by Vishnampet,
Bodony & Freund (2015) in the context of adjoint-based optimization. Instead, it is
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more practical to calculate a second twin-flow LES, ΦT, using the same solution
technique as the base-flow LES to guarantee consistency, with the addition of forcing
and constraining terms. The twin-flow solution may be represented by the expansion:

∂ΦT
i

∂t
= Fi[Φ

T
] − α(ΦT

i −Φ
B
i )+ Si[Φ

B,ΦT
]

= Fi[Φ
B
] +

∂Fi[Φ
B
]

∂ΦB
j
(ΦT

j −Φ
B
j )+

1
2
∂2Fi[Φ

B
]

∂ΦB
j ∂Φ

B
k
(ΦT

j −Φ
B
j )(Φ

T
k −Φ

B
k )

+ higher-order terms− α(ΦT
i −Φ

B
i )+ Si[Φ

B,ΦT
]. (3.11)

When linearity is enforced as discussed above, the higher-order terms are negligible
with ΦT

≈ΦL, and the development of the method follows as above. The perturbation
field, ΦP

≡ΦT
−ΦB, is then calculated as the difference between the twin-flow and

base-flow solutions as they are advanced synchronously in time. The perturbations are
thus effectively propagated using the same high-fidelity numerical scheme employed
for the base-flow LES.

The synchronized LES solutions evolve in the following way:

∂ΦT
i

∂t
= Fi[Φ

T
] − α(ΦT

i −Φ
B
i )+ Si[Φ

B,ΦT
]

=
∂ΦL

i

∂t
+O(‖ΦT

−ΦB
‖

2), (3.12)

∂ΦP
i

∂t
= Fi[Φ

B
+ΦP

] − Fi[Φ
B
] − αΦP

i + Si[Φ
B,ΦP

]

=
∂Φ

PL
i

∂t
+O(‖ΦP

‖
2). (3.13)

The method ultimately requires (3.2) to be solved synchronously with (3.13), yielding
the evolution of the base flow (ΦB) and perturbations (ΦP) in time. With the
computation performed using non-dimensional variables, we have ‖ΦB

‖ ∼ O(1).
Applying variable attenuation with Φ

PL target
i = 10−6, we have ‖ΦP

‖ ∼ O(10−6) and
‖ΦP
‖

2
∼O(10−12) with ‖ΦB

‖� ‖ΦP
‖� ‖ΦP

‖
2, justifying a linearized interpretation

over approximately six digits of precision. This linearly constrained synchronized
large-eddy simulation (LC-SLES) method with variable attenuation provides a
reasonable approximation to the solution linearized and constrained around the
evolving base flow, in which discretization error is consistent between the linearized
and base-flow solutions. This allows for the study of perturbation evolution in fully
turbulent environments posed in terms of a non-modal initial value problem.

3.5. Relationship between constrained and unconstrained perturbations
To aid in understanding and interpreting constrained perturbations, we briefly discuss
their relation to unconstrained perturbations in the context of Lyapunov stability
(Khalil 1996; Skokos 2010; Pikovsky & Politi 2016). Consider the evolution,
without forcing, of an initial unconstrained perturbation impulse, Φu(t0), satisfying
‖Φu(t0)‖∞ =Φ

PL target
α . We may define a Lyapunov norm for the fundamental solution

operator that propagates this impulse, unconstrained, in time, as the ratio of
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max-norms of the perturbation at a future time relative to the initial perturbation
impulse:

‖Gu
(t, t0)‖LN:Φu(t0) ≡

‖Gu
ij(t, t0)Φ

u
j (t0)‖∞

‖Φu
k (t0)‖∞

=
‖Φu(t)‖∞
‖Φu(t0)‖∞

= exp
∫ t

t0

α(τ) dτ . (3.14)

The last equality includes the integrated attenuation factor, α(t), corresponding to the
same base-flow realization and initial perturbation impulse, but evolving subject to
constraint, with target perturbation magnitude ΦPL target

α . This equality holds, noting that
α(t) is defined to enforce ‖Φc(t)‖∞/Φ

PL target
α =1; i.e. the gain of the constrained system

is unity, and the gain of the corresponding unconstrained system (the Lyapunov norm)
grows exponentially with the time-integrated attenuation factor. Incidentally, the largest
Lyapunov exponent of the unconstrained system corresponding to this initial impulse
is

λΦu(t0) ≡ lim sup
t→∞

1
t− t0

∫ t

t0

α(τ) dτ = lim sup
t→∞

1
t− t0

log‖Gu
(t, t0)‖LN:Φu(t0). (3.15)

The fundamental solution operator of the constrained linear system can then be
related to that of the corresponding unconstrained system,

Gc
(t, t0)=

Gu
(t, t0)

‖Gu
(t, t0)‖LN:Φu(t0)

, (3.16)

so that the propagation of constrained perturbations can be described:

Φc
i (t)= Gc

ij(t, t0)Φ
c
j (t0)= Gu

ij(t, t0)
Φc

j (t0)

‖Gu
(t, t0)‖LN:Φu(t0)

≡ Gu
ij(t, t0)Φ

u
j (t, t0), (3.17)

where Φu(t, t0) describes the initial impulse of the unconstrained system that would
result in the same perturbation state (Φu(t)=Φc(t)) at time, t, as the initial impulse of
Φc(t0) in the constrained system. Notably, ‖Φu(t, t0)‖∞ = exp

∫ t
t0
−α(τ) dτ . Thus, the

constrained linear system faithfully reproduces the dynamics of the corresponding
unconstrained linear system, subject to the scaling factor of the unconstrained
Lyapunov norm. The process described in this section is commonly known as
Lyapunov renormalization (Wolf et al. 1985), through which the most rapidly growing
perturbations of the unconstrained system (those associated with the largest Lyapunov
exponent) manifest as constant magnitude perturbations in the constrained system,
and weakly growing perturbations in the unconstrained system are attenuated in
the constrained system. This process is a special case of repetitive Gram–Schmidt
orthonormalization, through which the entire Lyapunov spectrum may be obtained
(Benettin et al. 1980; Wolf et al. 1985; Geist, Parlitz & Lauterborn 1990; Skokos
2010).

The dynamic linear response (DLR), which elicits information about the linear
stability of a turbulent flow, or any time-dependent nonlinear dynamical system, may
draw connotative association with the common technique termed dynamic mode
decomposition (DMD) (Rowley et al. 2009; Schmid 2010); however, the two are
quite different methods. The former concerns the propagation of linear perturbations
about the unsteady turbulent flow and is necessarily an in situ analysis, while the
latter is a data-based post-processing technique, which has connections to discrete
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Property Experiment LES

M∞ 2.3 2.3
U∞ (m s−1) 556 556
P∞ (Pa) 23 511.12 2351.11
T0 (K) 295.6 295.6
Tw (K) 269.75 269.75
δ0 (m) 5.3× 10−3 5.3× 10−3

θ (m) 7.68× 10−4 7.68× 10−4

Reδ 175 202.06 17 520.21
Reθ 25 387.77 2538.78
θramp (deg.) 9 9

TABLE 1. Experimental and computational flow conditions.

Fourier modes, Koopman modes and linear global modes, in certain limiting cases.
Commonly, when DMD is performed on fluctuations of a statistically stationary
turbulent flow, Fourier modes result (Chen, Tu & Rowley 2012); when DMD is
performed on a linear system with a time-independent propagator, global modes
result, and the time-independent linear Koopman operator, not a linear projection, is
approximated (Schmid 2010). Notably, DMD could be applied to fluctuations of the
base flow to identify Fourier modes; however, as the base-flow propagator is nonlinear
and time-dependent, DMD modes have no realized connection to linear stability of
the turbulent base flow. Therefore, the information provided in the DLR of the base
flow, which can identify tendencies in the linear stability of flow trajectories, is
unique from that provided by the DMD of the base flow. The application of DMD
on the propagated linear perturbations will likely provide additional insight into the
DLR of the flow; however, this extension for analysing the perturbations is beyond
the scope of this work.

4. Description of STBLI base-flow simulation
The STBLI examined consists of an oblique shock, generated by a wedge of angle

θ = 9◦ in the far field, impinging on a flat plate turbulent boundary layer. The flow
conditions of the experiment (Webb et al. 2013) and LES are summarized in table 1.
For computational accessibility, the simulation Reynolds number is lowered by a factor
of 10 from the experimental Reynolds number, by reducing the free stream pressure,
while maintaining the free stream velocity, Mach number and boundary layer thickness.
This alteration does not contaminate the analysis of desired unsteady features, as also
observed in prior studies (Priebe & Martín 2012; Aubard et al. 2013; Morgan et al.
2013).

An equilibrium turbulent boundary layer is generated through bypass transition of an
incoming laminar boundary layer, which is tripped using a counter-flow body force, as
discussed by Waindim & Gaitonde (2016). The effect is introduced in the simulation
as a momentum source term in (2.2). The body force is taken to be uniform in time,
so as to avoid low-frequency contamination that can introduce long lasting spurious
signatures at the relatively low Reynolds numbers considered. Similarly, the force is
assumed homogeneous in the spanwise direction to avoid biasing the development of
any particular spanwise wavenumbers.

Concerning boundary conditions, in all cases, a no-slip, zero normal-pressure-
gradient wall is used for the wall boundary. The wall temperature is fixed at 1.95T∞ in
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Grid 1x+ ×1y+min −1y+ ×1z+ Span/δ0

A 16.4× 0.4− 2.4× 6.1 5
B 16.4× 0.4− 2.4× 6.1 2
C 23.5× 0.4− 4.0× 8.9 5
D 23.5× 0.4− 4.0× 8.9 2

TABLE 2. Computational grid properties.

the region of the counter-flow body force, to accelerate transition, before returning to
an adiabatic state downstream, in which zero normal temperature gradient conditions
are enforced, except in the simulations with spatial refinement discussed below,
wherein the wall remains adiabatic throughout. The inflow is a specified Blasius
boundary layer profile, which is tripped by the counter-flow body force. The shock
is imposed at the top boundary through direct specification of the Rankine–Hugoniot
conditions. Periodicity is assumed in the spanwise direction, and all other boundary
conditions are extrapolated, assuming zero boundary-normal gradients, from the
interior. Grid stretching to the downstream and free stream boundaries, in combination
with the non-oscillatory spatial scheme, provides for sufficient damping of fluctuations,
facilitating the application of these boundary conditions without spurious reflections.

We consider several computational grids (denoted A–D) to ensure that the size
of the spanwise domain as well as local grid resolution are adequate, by examining
convergence of both mean as well as fluctuating quantities. Details are summarized in
table 2. Noting that grid requirements depend on flow parameters as well as numerical
scheme resolution, we take our cue from recent published studies. The refined grids
(A and B) approach the DNS resolution of previous efforts (Priebe & Martín 2012),
while the standard grids (C and D) are comparable to those in the STBLI LES
efforts of Touber & Sandham (2009), Agostini et al. (2012), Aubard et al. (2013).
The grids employed are structured, and spacing in the interaction region is constant
in the streamwise (nominal, 1x+= 23.5; refined, 1x+= 16.4) and spanwise (nominal,
1z+ = 8.9; refined, 1z+ = 6.1) directions. In the wall-normal direction, hyperbolic
tangent growth is applied from the wall (nominal/refined, 1y+min= 0.4) to the height of
the incoming boundary layer (nominal, 1y+ = 4.0; refined, 1y+ = 2.4), above which
a power-law spacing is used; the superscript ‘+’ denotes normalization with respect
to the boundary layer inner variables. To explore the effect of spanwise domain size,
the width is varied between 2δo (B and D), commonly employed in prior studies
(Touber & Sandham 2009; Agostini et al. 2012; Priebe & Martín 2012), and 5δ0 (A
and C). As shown below, the results indicate that a spanwise domain size of 2δ0
is sufficient. The base flow and perturbations are therefore simulated primarily on
grids B and D respectively. It is also evident that the nominal grid (D) adequately
reproduces the unsteady characteristics. The longest duration simulations required to
analyse the frequency content were therefore performed on grid D.

Characteristics of the turbulent boundary layer are presented in figure 1. Turbulence
has fully developed by the streamwise region between x/δ0= 50 and x/δ0= 65, which
constitutes the interaction region for the STBLI. Figure 1(a) confirms agreement of
the Van Driest transformed velocities with the inner law and log law at various
streamwise locations. Note that a consequence of the choice of low Reynolds number
is the relative absence of a pronounced wake region (Pirozzoli & Bernardini 2013).
This is characteristic of several other efforts in numerical simulation of STBLI

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2018.70


Dynamic linear response of a shock/turbulent-boundary-layer interaction 307

5

 0

10

15

Inner
20

25

30

100 103102101
0

2

4

Perry & Li (1990)

6

8

10

12

101

100

10–1

10–2

10–3

10010–110–2 101

100 103102101

(a) (b)

(c)

FIGURE 1. (Colour online) Characteristics of the incoming turbulent boundary layer for
grids A and C in the region designated for shock impingement, but without the impinging
shock, indicate a fully turbulent boundary layer with no spurious low-frequency scales
introduced through the bypass transition process. (a) Van Driest transformed streamwise
velocity compared with the inner law and log law at x/δ0= 50 and x/δ0= 60. (b) Normal
Reynolds stresses at x/δ0 = 62.5 compared with analytical results. (c) Streamwise-normal
1-D energy spectra at x/δ0 = 62.5: components kx and kz, with reference decay rate.

(Pirozzoli & Bernardini 2011; Priebe & Martín 2012; Aubard et al. 2013; Morgan
et al. 2013) and, as shown below, has relatively little influence on the features of
the low-frequency phenomena of interest. Figure 1(b) validates the normal Reynolds
stresses with analytical results for the outer-scale normal Reynolds stresses given
by Perry & Li (1990). Results on grid A are closer to DNS resolution (Pirozzoli,
Grasso & Gatski 2004), and the deviation of the streamwise-normal Reynolds stress
with grids C and D is modest. Figure 1(c) presents the one-dimensional energy
spectra for streamwise velocity fluctuations near the end of the interaction region.
A suitable equilibrium turbulent boundary layer is observed with no low-frequency
tones. The spectra further demonstrate the anticipated theoretical rolloff ∝k−5/3 at high
wavenumber and plateau toward low wavenumber as anticipated for one-dimensional
(1-D) spectra. The reader is referred to Waindim & Gaitonde (2016) for further details
regarding properties of the incoming turbulent boundary layer.

A comparison of the time-mean computational and experimental (Webb et al. 2013)
flow fields is presented in figure 2. Figure 2(a,b) shows time-mean contours from the
fine grid (B), overlaid on filled contours from the nominal grid (D), to demonstrate
a reasonable degree of grid convergence, with the latter grid solution producing a
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FIGURE 2. (Colour online) Time-mean velocity comparison between LES (nominal and
refined solutions) and experiment (Webb et al. 2013). All plots use the same contour
set, and spatial coordinates (x–y plane) are scaled by reference boundary layer thickness,
δ0. (a) Computational streamwise velocity: refined grid solution (lines) superposed on
nominal grid solution (filled). (b) Computational vertical velocity: refined grid solution
(lines) superposed on nominal grid solution (filled). (c) Experimental streamwise velocity.
(d) Experimental vertical velocity.

slightly larger time-mean separation. Corresponding particle image velocimetry (PIV)
data in the same reference panel and colour map are shown in figure 2(c,d). The
boundary layer thickness, interaction length (Lint, the streamwise distance between the
wall-extrapolated reflected and impinging shocks), and point of shock impingement
are well matched between the PIV and LES. The experimental data have some
contamination due to surface oil flow measurements and an extraneous impinging
expansion fan downstream of the interaction. This expansion likely accounts for
the flow acceleration and thinner post-reattachment boundary layer observed in the
experiment compared with the simulation; the mean flow observed in the simulation
is more favourably comparable to studies without this expansion, including those by
Piponniau et al. (2009) and Morgan et al. (2013). Nonetheless, the key features of
the experiment are reproduced faithfully by the simulation. The form of the separated
region has a more asymmetric nature in simulation than in experiment. Similar
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FIGURE 3. (Colour online) STBLI base flow: separation, unsteadiness and comparison
with experiment. (a) Time-mean skin friction and wall pressure, with wall pressure point
probe locations indicated. (b) Comparison of pre-multiplied wall pressure power spectral
density (PSD) at various streamwise locations surrounding the interaction. (c) Comparison
of experimental schlieren with isosurface of LES density-gradient magnitude. (d) Reverse
flow probability, in coordinates scaled by separation length, demonstrates a moderate
degree of flow separation.

behaviour is observed and discussed by Touber & Sandham (2009), concerning a
validation study that compares results at identical Reynolds numbers.

The time-mean skin friction and surface pressure profiles in the interaction
region are shown in figure 3(a). The interaction region is defined as that between
the wall-extrapolated position of the time-mean reflected shock and the shock
impingement point, while the separation region is that with negative time-mean
streamwise skin friction. The surface pressure does not show a plateau region as is
suggested by Délery & Dussauge (2009), since this is a relatively weak interaction,
with large unsteady shock displacements compared to separation height. Similar
profiles have been reported in other LES (Touber & Sandham 2009) and DNS
(Pirozzoli & Grasso 2006). The trend of skin friction is also generally consistent with
the previously mentioned studies, though there is quantitative variability of reported
skin-friction values in the separation region (Aubard et al. 2013). Results of the
current study most closely resemble the DNS of Pirozzoli & Grasso (2006).

A comparison with experiment of pre-multiplied and normalized wall pressure
power spectral density (PSD) at locations described in table 3 and figure 3(a) is shown
in figure 3(b). All computational and experimental probe data exhibit low-frequency
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FIGURE 4. (Colour online) STBLI base flow: instantaneous isosurfaces of the Q-criterion
coloured by streamwise velocity highlight hairpin vortices. The shocks (in blue) and
background shading are indicated by an isosurface and contours of u · ∇p.

Probe (x− xinv. imp.)/Lsep x/δ0

1 −1.41 51.19
2 −1.19 52.58
3 −0.96 53.98
4 −0.73 55.47
5 −0.49 56.97
6 −0.04 59.76

TABLE 3. Surface probe streamwise locations, with normalization by mean separation
length (Lsep), offset by the location of inviscid shock impingement (xinv. imp.), and reference
incoming boundary layer thickness (δ0).

components. The peak frequency increases moving downstream of the separation
point. The most downstream probe is placed in the aft of the recirculation region,
where the peak frequency is StL ∼ 0.5, corresponding primarily to K–H dynamics.
Moving upstream, the peak frequency drops and becomes more indicative of the
low-frequency (StL ∼ 0.03) bubble breathing and shock motion. The simulations
reproduce the observed trend, with the quantitative agreement becoming better for
higher frequencies. Probe placement is exactly reproduced in the simulation with
respect to the impinging shock location and experimental probe displacements. As
such, discrepancies in comparison of point probe data are primarily due to the
difference in separation length between the experiment and simulation. Overall, the
results indicate clearly that the simulations capture the key unsteady phenomena
observed in the experiment. Comparison with experimental schlieren in figure 3(c)
also shows good agreement. Figure 3(d) illustrates the probability of reversed flow in
coordinates non-dimensionalized by the mean separation length (Lsep), with the mean
separation point (xsep) located at x∗ = 0: x∗ = (x − xsep)/Lsep. This metric compares
well with previous simulations by Agostini et al. (2012) and experiments by Dupont
et al. (2008). Finally, figure 4 shows a three-dimensional instantaneous rendering
of the base-flow interaction. In addition to the turbulent boundary layer, which is
visualized with an isosurface of the Q-criterion coloured by streamwise velocity,
the shocks and mid-plane shading are indicated by an isosurface and contours of
u · ∇p respectively. The mid-plane visualization connects the shock structure with the
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Case Grid Forcing εi1τ Location: r/δ0 Φ
PL target
i Duration: δ0/U∞

1 D Native 1× 10−6 (53.78, 0.79) N/A 10
2 D Native 1× 10−9 (53.78, 0.79) N/A 10
3 D Native 1× 10−12 (53.78, 0.79) N/A 10
4 D Native 1× 10−6 (50.89, 2.83) N/A 10
5 D Native 1× 10−6 (53.78, 0.79) 1× 10−6 400
6 D White 2× 10−6 (53.78, 0.79) 1× 10−5 1000
7 D White 2× 10−7 (53.78, 0.79) 1× 10−6 1000
8 D White 2× 10−8 (53.78, 0.79) 1× 10−7 1000
9 D White 5× 10−7 (50.89, 0.041) 1× 10−6 1000
10 D White 1× 10−7 (56.37, 0.041) 1× 10−6 1000
11 D None 0 N/A 1× 10−6 1000
12 B None 0 N/A 1× 10−6 500
13 B None 0 N/A 1× 10−6 500
14 D None 0 N/A 1× 10−3 100
15 D None 0 N/A 1× 10−4 100
16 D None 0 N/A 1× 10−5 100
17 D None 0 N/A 1× 10−6 100
18 D None 0 N/A 1× 10−7 100
19 D None 0 N/A 1× 10−8 100
20 D None 0 N/A 1× 10−9 100

TABLE 4. Forcing cases considered in the present study; case 13 considers a massively
separated STBLI with a far-field wedge of 11◦ to generate the impinging shock.

near-field wave pattern which proceeds periodically downstream from the reflected
shock, away from the interaction. The separated flow, the amplification of turbulence
through the interaction, and large-scale low-frequency coherent displacement of the
reflected shock are dominant features of the interaction.

5. Results
5.1. Forcing parameters and cases considered

Numerous simulations were performed to understand numerical and physical aspects
of the dynamic linear response of the time-resolved STBLI base flow, using different
forcing and constraining parameters as summarized in table 4. Forcing locations
are described in terms of their absolute position in the spanwise-normal plane and
are periodic in the spanwise direction, encompassing a single line of grid points.
However, the forcing itself is non-uniform in the spanwise direction, varying either
as a function of the base flow (native, i.e. based on local turbulent fluctuations in the
base flow) or randomly (white noise). Furthermore, forcing is applied to all pertinent
variables, including mass density, three components of momentum density and energy
density. Thus, no bias is introduced regarding two-dimensionality or obliqueness of
the perturbations. As indicated in table 4, cases 1–5 rely on native forcing, while
cases 6–10 use white-noise forcing, both of which were described earlier in the
context of (3.9). Previous work on noise source identification in a turbulent jet relied
on the use of native forcing, since the objective was to track existing fluctuations, not
to introduce foreign perturbations (Unnikrishnan & Gaitonde 2015, 2016). However,
in this study we observe the base flow to be selective, producing very similar linearly
constrained perturbation fields regardless of forcing type, so we choose also to apply
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FIGURE 5. (Colour online) Evolution of density perturbation field max-norm with time
for cases 1–4. A conservative estimate for the linearity threshold, which approximately
demarcates the ranges of linear and nonlinear perturbation growth, is indicated near
‖ΦP
‖∼O(10−5). Dashed lines representing exponential growth (A/A0= exp[10.3(τ − τ0)];

Lyapunov exponent ∼10.3U∞/δ0) are included for reference.

random white-noise forcing: this facilitates confirmation of the hypothesis that this
selectivity is due to the base flow and not the manner of forcing.

In cases 11–20, the white-noise forcing is turned off after a brief transient of
roughly τ = 5, and the simulations are allowed to proceed; this procedure effectively
introduces an impulse at τ = 5, from which the simulations proceed without forcing.
These cases are designed to highlight the self-sustaining constrained perturbation
field due to the presence of the STBLI: the recirculating flow admits much larger
perturbation growth rates than the downstream boundary layer, due to constructive
feedback through recirculation, and acts to anchor the perturbation field to the
interaction region. In contrast, as noted earlier, perturbations introduced in a turbulent
boundary layer, without an impinging shock, are convected out of the domain.

5.2. Analysis of transient amplification of unconstrained perturbation field
A study of flow sensitivity to different forcing magnitudes and locations with
unconstrained perturbations is performed, employing native forcing with no attenuation.
Several forcing locations are considered; the results are distilled with forcing in the
boundary layer: (x = 53.8, y = 0.79) (cases 1–3, which differ in forcing magnitude)
and free stream: (x= 50.9, y= 2.83) (case 4). Perturbations injected in the boundary
layer tend to rapidly decorrelate the base flow and twin flow. To quantify perturbation
growth, we discuss the max-norm of the density perturbation field. Figure 5 shows
that this norm grows at an exponential rate, regardless of the forcing magnitude. For
forcing locations in the boundary layer, this exponential growth begins immediately
and eventually plateaus after the perturbation field saturates, at which time the
decorrelation between the unperturbed and perturbed states is complete; i.e. the
perturbations grow to nonlinear magnitudes. For forcing locations in the free stream,
the growth is relatively small until the effects of the perturbation enter the boundary
layer, after which it behaves similarly to forcing in the boundary layer.
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This high sensitivity to perturbation demonstrates the chaotic nature of wall-bounded
turbulence. Notably, the exponential nature of non-modal perturbation growth observed
for the current unsteady turbulent base flow contrasts with the common observation of
non-modal perturbation growth for steady laminar base flows. For example, Matsubara
& Alfredsson (2001) discuss the algebraic growth associated with streamwise
elongated streaky structures in laminar boundary layers. For high levels of free
stream turbulence, this non-modal algebraic growth can occur rapidly and bypass
classical modal exponential growth (Tollmien–Schlichting waves), to dominate the
early stage of the transition process (Brandt, Schlatter & Henningson 2004). However,
as figure 5 demonstrates, the current non-modal analysis of the unsteady turbulent
environment suggests that exponential growth is naturally recovered in the turbulent
regime, consistent with an approximately constant leading Lyapunov exponent for the
dynamical system describing the time-resolved turbulent flow.

The growth rates are similar for all forcing scenarios, until the perturbation field
amplitude approaches the approximate linearity threshold, above which the assumption
that higher-order terms in the expansion of (3.11) are negligible becomes less valid.
The linearity threshold is approximate, not definite, and depends on the base flow.
For the boundary layer under consideration, nonlinear effects, which are evident
in the trajectories of figure 5 as departure from exponential growth, ensue in the
range ‖ΦP

‖ ∼ O(10−5, 10−3); a conservative estimate for the linearity threshold is
included near ‖ΦP

‖ ∼ O(10−5) to approximately demarcate the linear and nonlinear
ranges of perturbation growth. To ensure perturbations remain linear, the max-norm
of the perturbation field should remain much less than the magnitude of the linearity
threshold. This is facilitated in § 5.3, by constraining perturbation growth, with
Φ

PL target
i = 10−6 <O(10−5, 10−3).
Without constraint, as the perturbations grow larger than the linearity threshold, the

growth rate diminishes due to nonlinearity and the perturbation field loses significance,
since the twin flow and base flow are now different decorrelated realizations of
the STBLI. The two realizations remain statistically similar, but the instantaneous
correlation between the two tends toward zero, and the difference between the two
can no longer be reasonably interpreted as a perturbation quantity. However, as
with many other dynamical systems, the path to nonlinearity can yield useful insight.
Information regarding local sensitivity in the boundary layer and the interaction region
can be obtained by performing short duration [O(τ ∼ 1)] simulations which remain
in the linear regime.

Finally, we note that the time scale for perturbation growth to nonlinear magnitudes
in this STBLI is of order τ ∼ 1. In previous studies of a supersonic jet (Unnikrishnan
& Gaitonde 2016), nonlinear-perturbation magnitudes were not encountered in
simulations conducted for much longer duration, indicating the absence of strong
feedback mechanisms in the turbulent jet when perturbations are injected in the
supersonic flow.

5.3. Analysis of statistically stationary linearly constrained perturbation field
The relevant time scales for low-frequency unsteadiness in the STBLI range from
τ ∼O(10) for Kelvin–Helmholtz phenomena, to τ ∼O(200) for low-frequency bubble
breathing. Since the unconstrained perturbation field grows rapidly to a nonlinear state,
to study these time scales in a statistically significant manner we use the method
of § 3.3 to constrain the perturbation field to linear magnitudes. In this section we
consider cases 5–20, which employ variable attenuation and ensure linearity with
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FIGURE 6. (Colour online) Contours of the vertical velocity perturbation field (vP), on
a representative spanwise-normal (x–y) plane, as it evolves to a statistically stationary
state (e) in time, superposed with contours of the base-flow pressure field for reference.
Perturbations influenced by reflected shock motion and shedding structures in the
downstream boundary layer are evident (e). Spatial coordinates are scaled by boundary
layer thickness. (a) Shortly after initialization (τ = 0.05): perturbations localized to
forcing location. (b) Before perturbations pass through interaction (τ = 1.0): relatively
isotropic evolution. (c) Immediately after perturbations pass through interaction (τ = 3.0):
non-isotropic evolution. (d) Further in development (τ = 10): prominent acoustics in
near field, amplification begins in interaction. (e) Statistically stationary state (τ = 50):
perturbations highlight the reflected shock and shedding structures downstream of the
separation bubble.

respect to the base flow. As discussed in § 3, the interpretation of the constrained
perturbation field is not as intuitive, since it effectively results in volume forcing of
the linearized Navier–Stokes equations, in a manner that highlights the most dominant
growth modes.

5.3.1. Evolution of perturbation field to statistically stationary state
The evolution of the vertical velocity perturbation field (case 7) to a statistically

stationary state is depicted in figure 6; the base-flow unsteady pressure field is
superposed for reference. In the initial stages, the evolution is somewhat isotropic.
However, once the perturbations enter the separated region, their evolution becomes
more directional in the downstream direction. By panel (c), the outer envelope starts
to approximate the reflected shock location. After about 10τ , the perturbations have
filled the separated region, and waves with acoustic features are evident downstream.
These are also strongly directional, and do not permeate upstream of the reflected
shock. Figure 6(e) provides a typical representation of the instantaneous perturbation
field under statistically stationary conditions. While the base flow may take many
flow-through times to reach statistical stationarity, the perturbations reach stationarity
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quickly, since they are a very small deviation from the base flow, and their growth is
dominated by the absolute instability. The constrained perturbation field is localized to
the region just upstream of the reflected shock foot and follows the characteristic along
the reflected shock to the far field, demonstrating that with variable attenuation, the
perturbation field protrusion upstream is limited. In contrast, for an unconstrained case,
the perturbations travel everywhere, including upstream through the subsonic boundary
layer, as they grow to nonlinear magnitudes. However, linear-perturbation growth is
much stronger in the interaction region and farther downstream than upstream, so
these regions of dominant perturbation growth are highlighted when the perturbations
are constrained, since weakly growing upstream perturbations are damped relative
to strongly growing perturbations in the interaction region and downstream; the
magnitude of the latter remain approximately constant due to variable attenuation.

Key features of the statistically stationary perturbation field include convective
structures that are shed downstream from the separation region. Additional fine-scale
perturbation structures highlight vortices present in the base-flow post-reattachment
boundary layer, around which sharp gradients in the flow promote perturbation growth.
Also prominent are relatively large magnitude perturbations along the reflected shock
wave, demonstrating the influence of perturbation dynamics of the separation region on
the reflected shock. Generally, the constrained perturbation field evolves to highlight
turbulent features with high potential for linear growth, away from the base flow,
which is a novel way to visualize the instantaneous character of a turbulent flow.

5.3.2. Linearity of constrained perturbation field
Several of the following conclusions rely on the claim that the LC-SLES procedure

represents a reasonable approximation for the evolution of constrained linear
perturbations as discussed throughout § 3. Notably, any method for propagating
linear perturbations through a chaotic nonlinear flow incurs errors that accumulate
over time, due to sensitivity of the flow to initial conditions. In this section, we
quantify the magnitude of nonlinear errors introduced through the combined effects
of the basic SLES procedure (i.e. calculating the evolution of linear perturbations as
the difference between two evolving fully nonlinear systems), the variable attenuation
procedure, and finite decimal precision: the major contributing causes of nonlinearity.
For this purpose, we analyse cases 14–20 that are all initialized with a perturbation
impulse taken from a statistically stationary instant of case 11. Each of cases 14–20
proceeds with a distinct perturbation target magnitude, separated by an order of
magnitude as described in table 4; the initial impulse for these cases is also scaled
with the target perturbation magnitude relative to case 11. Through this premise,
linear perturbations would evolve identically in cases 14–20, subject to the relative
scaling of the target perturbation magnitude and initial impulse; thus, nonlinear effects
may be observed through divergence of the trajectories in time. These simulations
evolve for a duration of 100δ0/U∞, to observe the accumulation of nonlinearity over
a time scale corresponding to the order of low-frequency unsteadiness.

The effects of nonlinearity are described quantitatively in figure 7. Figure 7(a)
describes the evolution of pressure perturbations for cases 14–20, at a representative
location in the outer layer of the post-reattachment boundary layer; the greatest
perturbation magnitudes are observed in this vicinity. The trajectories remain similar
over the time window of interest, demonstrating that linearity of the method is
maintained. As time progresses, finer-scale features of the signal are distorted for
large magnitude perturbations due to accumulation of nonlinearity, as well as for the
smallest magnitude perturbation (ΦPL target

α = 1× 10−9) due to lack of decimal precision.
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FIGURE 7. (Colour online) Properties of normalized pressure perturbations at a
representative location in the post-reattachment boundary layer for different target
perturbation magnitudes (cases 14–20). The perturbations are normalized by ΦPL target

α such
that collapse of the trajectories demonstrates linearity. (a) Time history of normalized
pressure perturbation evolution. Magnified insets demonstrate the minimal cumulative
effect of nonlinear error on the trajectories at early and advanced times; this error
manifests through slight divergence of the trajectories. (b) Cumulative nonlinear error of
each of the trajectories compared to case 19 (ΦPL target

α = 1× 10−8). The error is low-pass
filtered to aid in discerning trends. The root-mean-square (r.m.s.) level of the normalized
pressure perturbations is included to provide perspective for the error magnitude.
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Figure 7(b) shows the level of accumulated nonlinear error with time for each case
with respect to case 19 (this case has the smallest target perturbation magnitude
for which errors due to lack of decimal precision are not evident and is therefore
considered to be the most accurate linear solution). The error is low-pass filtered
in time to aid in discerning trends between the level of error and the target
perturbation magnitude, and the root-mean-square (r.m.s.) level of the normalized
pressure perturbations is included to provide perspective for the error magnitude.
Concerning cases in which the lack of decimal precision does not introduce error, the
errors initially grow from machine precision, with faster growth rates corresponding
to larger perturbation target magnitudes, as anticipated. Near τ ≈ 35, an event is
encountered which introduces substantial nonlinearity into all perturbations, after
which the same trend in growth is recovered. Encouragingly, over the duration of
these simulations, the cumulative nonlinear error for the target perturbation magnitude
of 1 × 10−6 (employed in cases 5, 7, 9–13, 17) remains less than ≈ 10 % of the
r.m.s. pressure perturbations. Maintaining linearity at this level of precision over such
long duration in a chaotic system is not trivial, and these observations attest to the
effectiveness of the LC-SLES method.

5.3.3. Time-mean perturbation field and global absolute linear instability
We now discuss the behaviour of the linearly constrained perturbations in the

context of a global absolute linear instability. The self-sustaining nature of the
perturbations (cases 11–20) indicates the existence of constructive feedback through
the recirculation region. This results in large perturbation growth rates in the
recirculation region that overwhelm convective growth downstream as well as
any additional forcing of the interaction, as discussed further in § 5.3.4. This is
consistent with the presence of a global absolute linear instability, as discussed by
Chomaz (2005). Discussion in this section focuses on the time-mean behaviour of
this absolute instability, but it is relevant to note that the time-local behaviour of
this absolute instability is not always consistent with its time-mean behaviour, as
addressed in § 5.3.6.

The conclusion that self-sustaining constrained perturbations are indicative of a
global absolute instability can be confirmed using the framework discussed by Huerre
& Monkewitz (1990) and Schmid & Henningson (2001) for classifying the nature
of instability based on properties of the fundamental solution operator (referred to,
in these works, in a less general form: a Green’s function). Since our method is
global (Theofilis 2011) and non-modal (Schmid 2007), including effects from the
entire domain, with no restriction on perturbation form, apart from the requirement
that they remain linear with respect to the expansion in (3.11), instabilities identified
through this method are global and non-modal in nature; the fundamental solution
operator propagates the complete global state space (discrete) or global phase space
(continuous) in time.

For time-dependent base flows, we generalize the classification of instabilities
as follows. Consider the discretized form of (3.7), without forcing and without
constraining, which propagates linear perturbations through the flow:

ΦPL
i (t)= Gij(t, t0)Φ

PL
j (t0). (5.1)

A flow is classified as globally unstable if

lim sup
t→∞

‖G(t, t0)‖LN→∞ for some t0, (5.2)
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where ‖G(t, t0)‖LN is the Lyapunov norm maximized over all initial impulses;
conceptually, this is the maximum possible gain of the system represented by (5.1).
A globally unstable flow is additionally classified as absolutely unstable if

lim sup
t→∞

‖Gi0j0(t, t0)‖∞

‖G(t, t0)‖LN
∈ (0, 1] for some, finite, non-boundary set of i0, j0, t0. (5.3)

A globally unstable flow is additionally classified as convectively unstable if

lim sup
t→∞

‖Gi0j0(t, t0)‖∞

‖G(t, t0)‖LN
= 0 for all, finite, non-boundary sets of i0, j0, t0, (5.4)

where i0 and j0 represent time-independent indices for the considered degree of
freedom, non-boundary sets do not include i0 on the spatial domain boundary when
considering finite domains and t0 represents the initial time of impulse perturbation to
the base flow, which is arbitrary and independent of the other variables; ‖Gi0j0(t, t0)‖∞
represents the max-norm of the fundamental solution operator as a function of the
current, t, and impulse, t0, times, over the finite set of i0 and j0. Naturally, the finite,
non-boundary sets of degrees of freedom discussed in (5.3)–(5.4) represent spatially
localized regions of the flow. In this sense, equation (5.3) states that the flow is
absolutely unstable if the location of maximum perturbation growth is confined to
a single local region of the flow. Similarly, equation (5.4) states that the flow is
convectively unstable if the location of maximum perturbation growth is not confined
to any single local region of the flow. The above use of ‘local’ does not imply the use
of any local profile in the analysis, since the full, spatially three-dimensional, ‘global’
flow is analysed. In this context, when perturbation forcing is turned off after an
initial impulse, self-sustaining constrained perturbations arise in the STBLI interaction
region: the perturbations are perpetually growing, hence the need for constraint,
which indicates that the condition, lim supt→∞‖G(t, t0)‖LN→∞, is satisfied for some
t0, consistent with a global instability. Furthermore, the constrained perturbations,
which reveal the most rapid non-modal growth, remain concentrated in the interaction
region, which indicates that the condition lim supt→∞‖Gi0j0(t, t0)‖∞/‖G(t, t0)‖LN ∈ (0, 1]
is satisfied for some non-boundary set of i0, j0, t0, in which the i0 correspond
to degrees of freedom in the interaction region, consistent with a global absolute
instability. (Alternatively, for a turbulent boundary layer, the constrained perturbations
are not self-sustaining and convect downstream, indicating that the condition
lim supt→∞‖Gi0j0(t, t0)‖∞/‖G(t, t0)‖LN = 0 is satisfied, for all non-boundary sets of
i0, j0, t0, consistent with a global convective instability.)

We can quantify the effect of this global absolute instability in the STBLI by
examining the time mean of the self-sustaining linearly constrained perturbation
field, ΦP, which we designate as the time-mean linear tendency of the base flow.
We interpret the non-zero time-mean linear tendency as the time-mean behaviour of
the absolute instability in the unsteady environment. This is clarified by noting
that the time mean of the perturbation field between two statistically identical
turbulent realizations (twin and base) will tend toward zero with time. However,
for this STBLI, the absolute instability present in the base flow manifests as a
time-mean linearly constrained perturbation field that does not tend toward zero
with time, since the instability biases linear-perturbation growth in the unsteady
environment. Indeed, as noted earlier, the constraints of § 3.3 effectively highlight
this absolute instability at the expense of other more weakly growing (convective)
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FIGURE 8. (Colour online) Filled contours of the time-mean linearly constrained
streamwise velocity perturbation superposed with contours of the time-mean base-flow
pressure field for reference. The time-mean perturbation field is consistent with a
time-mean linear tendency (time-mean behaviour of the absolute instability in the unsteady
environment) for upstream motion of the reflected shock. All plots have the same
contour levels and spatial coordinates (x–y plane) scaled by boundary layer thickness.
(a) Case 11: nominal grid (D) with 9◦ shock generator, moderately separated interaction.
(b) Case 12: refined grid (B), spanwise averaged, with 9◦ shock generator, moderately
separated interaction. (c) Case 13: refined grid (B), spanwise averaged, with 11◦ shock
generator, massively separated interaction. (d) Schematic describing how the time-mean
perturbations indicate a time-mean linear tendency for upstream motion of reflected shock.
Notably, the distinction between the twin-flow and base-flow shocks in the mean is
spatially diffuse due to base-flow unsteadiness.

instabilities, which are damped. Since the twin-flow simulation solves the forced and
linearly constrained Navier–Stokes equations, it represents a linear departure from
the base-flow simulation. As such, their time means (twin and base) can be slightly
different – the magnitude of the difference being determined by the perturbation target
magnitude (ΦPL target

α ) – and is reflective of the time-mean behaviour of the underlying
absolute instability. The underlying bias in linear-perturbation growth in the unsteady
environment, leading to a non-zero time-mean linear tendency, can be thought of as
analogous to an unstable zero-frequency (non-oscillatory) mode, which can be found
in global IVP and EVP analyses of steady base flows that do not satisfy the steady
Navier–Stokes equations, including time-mean STBLIs (Touber & Sandham 2009;
Pirozzoli et al. 2010; Waindim et al. 2016; Nichols et al. 2017).

The time-mean linear tendency is described in figure 8, visualized by the time-mean
streamwise velocity perturbation, for cases 11–13, in panels (a–c) respectively. We
note that the mean perturbation field converges at a much slower rate than the
mean base flow, since the range of the perturbation field extends several orders of
magnitude. Thus, convergence of the mean is sensitive to the behaviour of large
magnitude perturbations. As such, discrepancies between the nominal (a) and refined
(b) grids are expected and observed, and they are attributable not only to differences
in spatial refinement, but also to differences in initial STBLI realizations between
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different cases. Sensitivity to averaging duration can also occur, even with sufficiently
long duration simulations which allow for accurate convergence of the time-mean flow
field; results on the nominal grid (a) are best converged in this sense, since case 11
has the longest simulation duration. This comparison also provides an indication of
the level of uncertainty in the time-mean perturbation quantities and sensitivity of
these quantities to the base flow. Nonetheless, all cases, including the interaction with
stronger separation (c, case 13), exhibit similar time-mean linear tendencies, with
equivalent physical significance.

The time-mean behaviour of the absolute instability depicted in figure 8 is clarified
by noting that, for all cases, in the time-mean sense, the reflected shock position
observed in the linearly constrained twin flow is upstream from its position in the
base flow. This results in a negative time-mean streamwise velocity perturbation
in the region of the reflected shock as illustrated in figure 8(d); i.e. the mean
linearized shock position is not coincident with the mean shock position, but is
rather located slightly upstream. Notably, the unsteadiness of the base flow inhibits
a sharp indication of the position of the linearized and base-flow shocks in the
mean, since the difference in position between the shocks, at any given instant, is
determined by the perturbation target magnitude, O(10−6), which is certainly much
less than the magnitude of unsteady shock displacement in the base flow, O(1);
however, the spatially diffuse negative time-mean streamwise velocity perturbation in
the region of the spatially diffuse time-mean reflected shock reveals this behaviour.
In conjunction with the time-local analysis of § 5.3.6, we can furthermore conclude,
regarding low-frequency motion, that when the reflected shock is located near its
mean position, the corresponding time-local linear tendency promotes upstream shock
motion, increasing the size of the separation region, consistent with the observed
time-mean linear tendency of the interaction. These findings are not inconsistent with
those of Touber & Sandham (2009), Pirozzoli et al. (2010) and Nichols et al. (2017),
who employ the time-mean base flow to describe a linearly unstable non-oscillatory
global mode. However, the current analysis shows that the tendency for upstream
motion is definite; there is not an arbitrary nature to the sign (direction) of the
absolute instability, it is not symmetric as suggested in previous modal mean-flow
analyses, and this observation has physical significance. Indeed, the current findings
are consistent with the asymmetry of shock motion discussed by Piponniau et al.
(2009), in which upstream motion occurs more rapidly than downstream motion.
We discuss this in detail in § 5.3.5, followed by an analysis of how this absolute
instability interacts with the nonlinear nature of the base flow in § 5.3.6.

We conclude this section by postulating that for any flow admitting a global
absolute linear instability, the time-mean linear tendency of the unsteady turbulent
base flow should be qualitatively consistent with traditional stability analyses applied
to the time-mean turbulent flow. This postulate is confirmed in the current case of the
STBLI, since the time-mean linear tendency is consistent with the behaviour of the
absolutely unstable, non-oscillatory, global mode of the time-mean STBLI. Compared
to stability analyses of the time-mean turbulent flow, however, the dynamic linear
response yields additional insight into the underlying mechanisms that sustain the
unsteadiness, particularly in addressing time-local perturbation dynamics, as discussed
in § 5.3.6.

5.3.4. Effects of stochastic forcing on perturbation field
The linearly constrained perturbation field of the STBLI shows relatively small

sensitivity to the specific nature of forcing, as anticipated given the absolute nature
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FIGURE 9. (Colour online) Contours of root-mean-square vertical velocity perturbations
(vP

rms) for cases 7 and 9–11, subject to external forcing at different locations, superposed
with mean pressure contours of the base flow for reference. All plots have the same
contour levels and spatial coordinates (x–y plane) scaled by boundary layer thickness.
(a) Case 7: stochastic forcing in separated shear layer; location, (53.78, 0.79). (b) Case 9:
stochastic forcing in upstream subsonic boundary layer; location, (50.89, 0.041).
(c) Case 10: stochastic forcing in recirculation region; location, (56.37,0.041). (d) Case 11:
self-sustaining with no forcing; most similar to forcing in recirculation region (case 10).

of the instability. Results with stochastic forcing are therefore similar to those shown
earlier. This is consistent with the discussion by Chomaz (2005): in absolutely
unstable flows, the internal growth of perturbations overshadows the response to
external forcing. On the other hand, the linearly constrained perturbation field of the
turbulent boundary layer, without an impinging shock, requires continuous stochastic
forcing to sustain its convectively unstable perturbation field, consistent with the
common understanding (Chomaz 2005).

To demonstrate the selective nature of the STBLI perturbation field, the effects of
forcing location on the root-mean-square (r.m.s.) vertical velocity perturbation fields
are displayed in figure 9. Apart from a local area of influence around each forcing
location, the character of the perturbation field is very similar between the different
cases. For instance in case 9, the forcing location provides a perturbation source
upstream, but these perturbations are attenuated relatively quickly, and the major area
of perturbation activity remains in the separation region and downstream boundary
layer. Likewise, for case 7, the forcing effects are localized to the separated shear
layer. For case 10, in which a perturbation source is added in the recirculation region,
the results are quite similar to case 11, containing no forcing. This suggests that the
self-sustaining perturbation field of case 11 is akin to a perturbation source originating
in the recirculation region; i.e. the absolute instability is sustained by internal
perturbation growth within the recirculation region. Additionally, it demonstrates
that the STBLI is more sensitive to perturbations in the recirculation region than
the upstream region; i.e. all attempts to stochastically force perturbations outside
of the recirculation region are overshadowed by unforced perturbation growth in
the recirculation region. These observations support the finding that the absolute
instability is sustained by constructive feedback through the recirculation region and
is not receptive to external forcing. The self-sustaining perturbation field, driven by
the absolute instability, is the most natural perturbation field to analyse, since it

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2018.70


322 M. C. Adler and D. V. Gaitonde

removes any arbitrariness due to the presence of forcing, and is therefore the subject
of much of the analysis below.

5.3.5. Spectral content of base-flow and perturbation fields
We now analyse the unsteady dynamics of the base-flow and perturbation fields

using several different time series. These series are chosen to describe a variety
of unsteady features: the shock footprint indicated by wall pressure fluctuations,
indicators of the size of the separation bubble, as well as the near-field shock
location. Observations of the base flow are first summarized to provide a foundation
for the subsequent discussion of the accompanying perturbation dynamics. Overall,
the dynamics of the base flow agrees well with those described in the literature,
providing a measure of base-flow validation necessary for the perturbation analysis.
The discussion focuses on several prominent frequency bands, each described
qualitatively with a corresponding physical process: low-frequency content (StL∼0.03),
corresponding to separation bubble breathing and large-scale shock motion, low–
mid-frequency content (StL ∼ 0.1), corresponding to bubble oscillations, high–mid-
frequency content (StL∼ 0.5), corresponding to Kelvin–Helmholtz induced shear layer
phenomena, including shedding and flapping of the reflected shock and high-frequency
(StL & 1) jitter, corresponding to the passage of fine-scale turbulent fluctuations.

In all cases, the time series are sampled at intervals of 20δ0/U∞, and the power
spectral density (PSD) is obtained using Welch’s windowed overlapping segments
estimator method, by splitting the signal into eight segments with 50 % overlap
and windowing with the Hamming function. The PSD is pre-multiplied by the
corresponding Strouhal number, based on the time-mean separation length, to
effectively represent the power distribution on a logarithmic scale. Further, the
PSD is normalized, such that the integral of pre-multiplied power over all resolved
frequencies is unity. In some cases, the PSD is filtered using Konno–Ohmachi (KO)
smoothing, which ensures constant bandwidth smoothing on a logarithmic scale
(Konno & Ohmachi 1998). The base-flow and perturbation fields were evaluated,
in multiple simulations, for over five cycles of the low-frequency (StL ∼ 0.03)
unsteadiness. For the former, adequacy was established by comparing with the known
spectra from well-documented results for this configuration (Dupont et al. 2006;
Touber & Sandham 2009; Aubard et al. 2013). With regard to the perturbations,
these reach statistical stationarity quickly, and short duration simulations are observed
to be adequate to describe their time-local behaviour. For example, in principle,
the band-isolation study (§ 5.3.6) only requires one cycle of the low-frequency
unsteadiness; results were nonetheless confirmed by comparing with the full data set.
Therefore, the resolution of low-frequency unsteadiness is reasonable to support the
conclusions drawn in this work.

Notably, asymmetry is observed in the shock motion, whereby large-displacement
upstream motion occurs relatively quickly, followed by slower, less coherent,
downstream motion, at intervals representative of the low-frequency (StL ∼ 0.03)
cycle. This is evident in the base-flow near-field reflected shock location signal
(figure 10a), which describes the streamwise location of the maximum value of
velocity dotted with pressure gradient (constrained to the near-field region of the
reflected shock), at a height of y = 4δ0, in the spanwise centre of the domain. As
noted earlier, this asymmetry is consistent with the experimental observations of
Piponniau et al. (2009). Further analysis of the genesis of this asymmetry is provided
in § 5.3.6.
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FIGURE 10. (Colour online) Base-flow reflected shock location, reverse flow mass-per-
span and separation bubble mass-per-span signals, with corresponding power spectral
densities. (a) Base flow: reflected shock location signal, with evident asymmetry.
Positive location corresponds to upstream displacement from the time-mean position.
Displacement is normalized by the time-mean separation length. (b) Base flow: reverse
flow mass-per-span signal, with time-mean subtracted. (c) Base flow: separation bubble
mass-per-span signal, for flow satisfying u < 0.15u∞, with time-mean subtracted. (d)
Pre-multiplied and normalized power spectral densities comparing base-flow shock
location, reverse flow and separation bubble mass-per-span signals.

Two additional signals are analysed to elucidate the dynamics of the separation
region. A reverse flow mass-per-span signal, comprising the total fluid mass per span
in the reversed flow region, is presented in figure 10(b), and a separation bubble mass-
per-span signal, of the total fluid mass per span satisfying u < 0.15u∞, is presented
in figure 10(c). The reverse flow mass-per-span signal (figure 10b) is dominated by
StL ∼ 0.1 content, corresponding to bubble oscillations, with a minor side lobe at
StL ∼ 0.03, corresponding to low-frequency bubble breathing. On the other hand, the
separation bubble mass-per-span signal: u < 0.15u∞ (figure 10c) shows a smaller
contribution from StL ∼ 0.1 content, and a larger contribution from StL ∼ 0.03
content, resulting in a better indication of shock displacement. This trend holds
across other thresholds defining the ‘turbulent separation bubble’: larger thresholds
on streamwise velocity result in a better indication of low-frequency (StL ∼ 0.03)
large-scale shock motion, while smaller thresholds result in a better indication of
low–mid-frequency (StL ∼ 0.1) bubble oscillation dynamics. As § 5.3.6 elaborates, the
dynamics in these separate frequency bands can be described relatively independently.
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FIGURE 11. Comparison of base flow and perturbation wall pressure power spectral
densities at streamwise locations surrounding the interaction region. The Strouhal number
is based on the incoming free stream velocity and the mean separation length. Streamwise
distance has been normalized by the mean separation length, and the mean separation
point is located at x∗ = 0. Spectrum normalization is performed independently at each
streamwise location. (a) Base-flow wall pressure pre-multiplied and normalized power
spectral density. (b) Perturbation wall pressure pre-multiplied and normalized power
spectral density.

Priebe & Martín (2012) similarly observe significant StL ∼ 0.1 content corresponding
to streamwise oscillation of the low-pass filtered separation point in the DNS of
a Mach 2.9 compression ramp STBLI. In fact, StL ∼ 0.1 content is found in the
separation region power spectra of many studies (Dupont et al. 2006; Touber &
Sandham 2009; Aubard et al. 2013), but it is often not discussed in detail.

We also observe a significant lagged correlation between the reflected shock motion
and the dynamics of the separation bubble. The maximum correlation coefficient
between the shock location and the reverse flow mass-per-span signals is 0.38 with a
lag of 18τ . A stronger instantaneous correlation of 0.53 is found with a lag of 15τ ,
when correlating the shock location and separation bubble mass-per-span: u< 0.15u∞
signals. These correlations of shock motion with the size of the separation, in which
the shock motion lags in response to changes in separation, are consistent with
previous observations by Morgan et al. (2013), confirming that a causal relationship
could exist, whereby large-scale shock motion responds primarily to growth or
contraction of the separation bubble. This causal relationship (sign of the lag) is
independent of the height at which the correlation with the reflected shock is taken,
though the magnitude of the correlation and lag vary.

In figure 11, the base flow and perturbation wall pressure PSDs are compared at
streamwise locations around the interaction region. The PSD at each streamwise
location is normalized, such that the integral of pre-multiplied power over all
resolvable frequencies is unity. The base-flow wall pressure dynamics agree well
with previous studies (Dupont et al. 2006; Touber & Sandham 2009; Agostini et al.
2012; Aubard et al. 2013). Low-frequency content (StL ∼ 0.03), corresponding to
shock motion and bubble breathing, is prominent near the time-mean separation
and reattachment locations; normalizing the PSD independently at each streamwise
location facilitates the identification of prominent low-frequency dynamics at
reattachment; these fluctuations are less intense than the low-frequency fluctuations

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2018.70


Dynamic linear response of a shock/turbulent-boundary-layer interaction 325

at separation, but they are intense compared to the pressure fluctuations across the
full spectrum at reattachment. Low–mid-frequency content (StL ∼ 0.1), corresponding
to bubble oscillations, is present near the separation and reattachment points, as
well as downstream of the interaction region. High–mid-frequency content (StL∼ 0.5),
corresponding to Kelvin–Helmholtz shedding, is present downstream of the interaction
region. High-frequency content (StL & 1), typical of fine-scale features in a turbulent
boundary layer, is prominent upstream of the interaction region; it persists throughout
the interaction, reducing in frequency as its convective speed slows and its outer scale
increases, eventually being overtaken in amplitude by a dominant contribution from
(StL ∼ 0.5) shed structures downstream of the interaction.

Necessarily, the unsteady dynamics in each of these frequency bands will not
collapse with StL = fL/U∞ for all flow conditions. Rather, StL is chosen to describe
the unsteadiness since the prominent low-frequency unsteadiness collapses with this
Strouhal number for a variety of flow conditions (Dussauge et al. 2006), providing
a unified scale on which to compare all of the described bands with respect to
the low-frequency unsteadiness for these particular flow conditions. Indeed, the
high-frequency band associated with fine-scale turbulent fluctuations of the incoming
boundary layer must collapse with Stδ = f δ0/U∞ = 1, independent of the STBLI
separation length. It is still to be determined for which Strouhal numbers the two
described mid-frequency bands might collapse, since these frequency bands have not
been characterized in as extensive detail in many studies.

The wall pressure PSD for the perturbation field is calculated in the same manner
as for the base flow. Downstream of the interaction, high frequencies typical of a
turbulent boundary layer (StL & 1) are identified, consistent with the observation
that the perturbation field highlights regions of high-potential linear growth of the
base-flow turbulent structures. Mid-frequency (StL ∼ 0.06− 0.1) content is found near
the time-mean separation point, corresponding to perturbations of the reflected shock.
This suggests that changes in the linear tendency of the reflected shock are more
significantly influenced by mid-frequency mechanisms than low-frequency mechanisms.
The wall pressure perturbation PSD upstream of the time-mean separation point
requires special care in its interpretation, since the perturbation field does not
always penetrate much upstream of the time-mean separation point. For instance,
if a particular upstream low-frequency motion of the reflected shock does not
reach its greatest upstream extent, the perturbation field will also not be carried
farther upstream. The effect of this is to skew the PSD toward higher frequencies.
Nonetheless, this analysis illustrates that while the perturbation field is a strong
function of the base flow, there are significant differences in the spectral properties
of the base-flow and perturbation fields.

To demonstrate the linearity of forcing and attenuation on perturbation field spectral
content, wall pressure spectra are presented in figure 12, for cases 6–8, in which
forcing and attenuation are applied with different magnitudes, separated by one order
of magnitude, as described in table 4. In these spectra, the PSD is normalized by
(Φ

PL target
α )2, under which the spectra should collapse if linearity is maintained. KO

smoothing has been applied to reduce noise at higher frequencies. At the time-mean
separation point (a), cases 7 and 8 collapse, while case 6 undershoots the peak. The
collapse of cases 7 and 8 is anticipated; however, the deviation of case 6 appears to
demonstrate nonlinearity in the scaling of forcing and attenuation target magnitudes
between cases. This apparent nonlinearity can result from differences in the specific
realization of stochastic forcing, which is unique to each case; it is not indicative
that higher-order terms in the expansion of (3.11) are non-negligible, since the results
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FIGURE 12. (Colour online) Wall pressure perturbation power spectral densities
demonstrating the linearity of forcing and attenuation for cases 6–8. The PSDs have
been normalized by (Φ

PL target
α )2 to demonstrate collapse of the spectra. (a) Wall pressure

perturbation power spectral density at the time-mean separation point. (b) Wall pressure
perturbation power spectral density downstream of the reattachment point (x∗ = 1.1).

§ 5.3.2 demonstrate that the scaling of attenuation alone is linear. Similarly, the
results of Unnikrishnan & Gaitonde (2016) demonstrate that the method is linear with
respect to scaling of deterministic forcing. Regardless, at the downstream location (b),
all cases collapse indicating linearity. The results presented herein regarding the
self-sustaining linearly constrained perturbation field are obtained with the attenuation
factor of case 7, reaffirming that the perturbations remain linear with respect to the
base flow.

The attenuation factor is related to the enforcement of linearity and thus provides
insight into the dynamics of the interaction, since it distinguishes instances in
time where perturbation growth is more prominent from those where it is less so.
Characteristics of the variable attenuation factor for the self-sustaining perturbation
field (case 11) are presented in figure 13. The attenuation-factor PSD is characterized
by two peaks at approximately StL ∼ 1, corresponding to the passage of convecting
fine-scale turbulent structures, and StL ∼ 200, corresponding to the changing location
of the maximum norm of the perturbation field (ΦP

α ) with the fine-scale features
of convecting structures; recall, the perturbation field evolves to highlight turbulent
features with high potential for linear growth. Scrutiny of animations of the evolving
perturbation and base-flow fields indicates that the maximum norm of the perturbation
field (ΦP

α ) is often associated with a hairpin-like structure downstream of the
interaction region. Since the attenuation factor, α, is directly dependent on ΦP

α ,
it varies with the coherence time of these turbulent structures, explaining the
low-frequency peak. Additionally, the band of frequencies comprising this peak
indicates that high-frequency (StL ∼ 1) turbulent content and high–mid-frequency
(StL ∼ 0.1–0.5) content have a much stronger tendency for linear growth in the
base-flow turbulent environment than low-frequency (StL ∼ 0.03) content. It follows
that any mechanism for instability acting over low-frequency scales must have a
much smaller growth rate than its higher-frequency (StL ∼ 0.1–2) counterparts. The
high-frequency (StL ∼ 200) peak corresponds to variation of ΦP

α with short-time
evolution of fine-scale features on a passing coherent structure. Since the turbulent
structure evolves throughout its time of coherence, the spatial location at which
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FIGURE 13. Discrete variable attenuation-factor signal and power spectral density for
the self-sustaining perturbations of case 11. (a) Discrete variable attenuation-factor signal:
1 − α1τ . (b) Pre-multiplied and normalized power spectral density of discrete variable
attenuation factor.

ΦP
α is found will vary with the evolution of that turbulent structure as the location

for maximum potential growth changes. The attenuation factor is smoothly resolved
by the chosen time step, with the high-frequency variation of ΦP

α being resolved
by O(10) time steps. Note that the discrete attenuation factor (1 − α1τ) exceeds
unity in some instances, leading to brief amplification of the perturbation field.
On average, however, the discrete attenuation factor takes a value of 0.860, with
a standard deviation of 0.084. It follows that, on average, the absolute instability
of the STBLI corresponds to a Lyapunov exponent of approximately 140U∞/δ0,
significantly larger than the Lyapunov exponent of 10.3U∞/δ0 identified earlier for
the shock-free turbulent boundary layer; i.e. the STBLI absolute instability results in
an exponential rate of perturbation amplification that is an order of magnitude larger
than the shock-free, convectively unstable, turbulent boundary layer.

5.3.6. Band isolation of base-flow and perturbation fields
In this section, we isolate the flow characteristics associated with the prominent

frequency bands observed in the spectral analysis of § 5.3.5. For this purpose, a
series of low-pass finite-impulse-response (FIR) window-based filters are applied.
Since the low-frequency dynamics are broadband, a sharp cutoff is neither necessary
nor desirable. They are therefore implemented through a time domain moving
average filter, to optimize smoothing characteristics in the time domain, albeit with
a wider transition band. The first low-pass cutoff is chosen at StL = 0.06, to isolate
low-frequency unsteadiness of bubble breathing around StL ∼ 0.03. The low-pass
content is then subtracted from the instantaneous signal, and a second low-pass
filter is applied with a cutoff at StL = 0.2, to isolate the low–mid-frequency bubble
oscillations around StL ∼ 0.1. The first two modes are then subtracted from the
instantaneous signal, and a third filter with low-pass cutoff frequency of StL = 0.7 is
applied, to isolate high–mid-frequency Kelvin–Helmholtz shedding around StL ∼ 0.5.
The residual contains higher frequencies, typical of convecting fine-scale turbulent
structures, discussed earlier in the context of figure 13. This procedure results in a
set of band-pass filtered modes that form a complete basis for the time-resolved flow.
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This technique allows for band isolation of the flow similar to previous analyses of
STBLIs. Several efforts (Pirozzoli et al. 2010; Aubard et al. 2013; Priebe et al. 2016;
Nichols et al. 2017) have accomplished this by applying a Fourier decomposition,
or DMD, to fluctuations of a stationary flow; the latter approach is equivalent to
the former under these conditions (Chen et al. 2012). Others (Pirozzoli et al. 2010;
Priebe & Martín 2012) have similarly employed filtering techniques for this purpose.
As anticipated, band-isolated modes of the STBLI agree qualitatively well, regardless
of the technique used to generate them. For this application, in which the frequencies
of interest are broadband (figure 11a), we employ the filtering approach, from which
a single mode reproduces the time-local dynamics more faithfully. The band-isolated
modes of the base flow agree well with the trends observed in these previous studies;
the low-frequency (StL ∼ 0.03) and high–mid-frequency (StL ∼ 0.5) modes have been
well documented and compare favourably. We emphasize that the primary insight
provided in this section is not to validate the observed band-isolated behaviour of the
base flow, but rather to band isolate the base flow and perturbations simultaneously,
drawing insight from how the band-isolated perturbations are correlated with the base
flow at certain phases of each band-isolated cycle. This analysis provides unique
information about linear tendencies, which was not available to the aforementioned
efforts that analysed the band-isolated base flow.

Figures 14, 16 and 17 display a representative cycle of the band-pass filtered results
corresponding to each of these frequency bands. In each, the left column shows the
band-pass filtered streamwise velocity base-flow component, with the time-mean
streamwise velocity added to aid in visualization, while the right column shows the
band-pass filtered streamwise velocity perturbation component. Each cycle is described
by snapshots taken at evenly spaced intervals. Contour levels are consistent through
each column in all figures, and the spatial coordinates (x–y plane) are normalized by
the time-mean separation length with the streamwise origin located at the time-mean
separation point.

Just as the time-mean linearly constrained perturbation quantities represent the
time-mean linear tendency of the base flow, the filtered (short-time-mean) linearly
constrained perturbation quantities represent the time-local linear tendency of the base
flow in the corresponding frequency band. This ability to probe the time-local linear
tendency of the base flow is one of the primary advantages of the LC-SLES method
over perturbation analyses of the time-mean flow. Provided the filter cutoff frequency
is moderately lower than any turbulent noise (i.e. ensuring the flow evolves long
enough for ergodic averaging to smooth out turbulent noise), the resulting time-local
linear tendencies can provide relatively clean indications of the time-local character of
flow stability. For instance, one may examine the time-local linear tendency associated
with the base-flow reflected shock at an upstream position and infer, at that instant,
the direction in which linear mechanisms are driving the base-flow reflected shock.
In higher-frequency bands, the time-local linear tendencies are somewhat more
contaminated by high-frequency turbulence due to a limited duration for ergodic
averaging, as well as flow history effects (i.e. due to the hyperbolic – wave-like –
nature of the perturbations in time, the past history of the perturbations becomes more
significant, and the observed linear tendencies will lag behind the causal mechanisms
in the base flow at higher frequencies), which must be factored into the analysis.

Breathing of separation bubble (StL ∼ 0.03). Snapshots from the low-pass filtered
(StL<0.06) flow field are shown in figure 14. The results are discussed by considering
four phases of the breathing cycle at frequency StL ∼ 0.03.
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FIGURE 14. (Colour online) Low-pass filtered low-frequency separation bubble breathing
and shock motion: StL < 0.06, f < 1.1 kHz. (a,c,e,g) Streamwise velocity base flow with
arrows indicating base-flow motion. (b,d, f,h) Streamwise velocity perturbation with arrows
indicating time-local linear tendency. Black lines are included for separation size reference.
(a) u phase 0: bubble at neutral extent, contracting. (b) uP phase 0: bubble at neutral
extent, contracting. (c) u phase π/2: bubble at smallest extent. (d) uP phase π/2: bubble
at smallest extent. (e) u phase π: bubble at neutral extent, growing. ( f ) uP phase π: bubble
at neutral extent, growing. (g) u phase 3π/2: bubble at largest extent. (h) uP phase 3π/2:
bubble at largest extent.

Phase= 0: The bubble volume is at a neutral extent and in the depletion phase of
the low-frequency cycle. Negative uP perturbations along the separated shear
layer and in the region of the reflected shock indicate the linear tendency
for retardation of the flow, upstream motion of the shear layer/shock and
bubble growth. Nonetheless, the bubble continues to contract due to nonlinear
mass-depletion mechanisms discussed below.

Phase=π/2: The bubble volume is at its smallest extent. Like phase 0, negative uP

perturbations indicate the linear tendency for bubble growth, and the magnitude
of (negative) uP in this phase is larger than for phase 0, suggesting a greater
potential for growth than before. The bubble now begins to grow.
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Phase=π: The bubble volume is at a neutral extent and in the growth phase of
the low-frequency cycle. Negative uP perturbations similarly indicate the linear
tendency for growth, and the bubble continues to grow.

Phase= 3π/2: The bubble volume is at its largest extent. Now positive uP perturbations
are prominent along the separated shear layer and in the region of the reflected
shock, indicating the linear tendency for acceleration of the flow, downstream
motion of the shear layer/shock, and bubble depletion. The bubble begins to
contract.

The linear-perturbation state (figure 14b,d, f,h) is consistent with the observed
motion of the separation bubble and reflected shock in the base flow (figure 14a,c,e,g)
at phases π/2, π, and 3π/2. This suggests that at these times, the bubble/shock
system is responding to the time-local linear tendency of the base flow. However,
at phase 0, the perturbation state is contrary to the motion of the bubble, and the
bubble continues to contract, while the perturbations indicate that it should grow. This
suggests that a nonlinear mechanism is responsible for bubble contraction at this time.
This nonlinear depletion process could be due to the mass entrainment mechanism
proposed by Piponniau et al. (2009), in which fluid shedding from the recirculation
region accounts for the nonlinear dynamics driving bubble contraction. We further
note that while this low-frequency bubble/shock motion occurs at approximately
periodic intervals throughout the simulation, it is not generally distributed uniformly
throughout each cycle. In fact, the observed motion is similar to the experimental
observations of Piponniau et al. (2009), in that the bubble remains at a small or
moderate size through most of the cycle, followed by rapid growth, then a moderate
rate of bubble depletion accompanied by the corresponding shock motion. The cycle
asymmetry is not necessarily evident in the low-pass phase diagrams, as the sudden
growth is smeared from phase 3π/2 into phase π, resulting in a larger bubble at
phase π than would typically be observed in the instantaneous flow. However, the
linear-tendency trends represented in this cycle are informative in describing the
origin of cycle asymmetry.

In fact, the observed behaviour is consistent with interplay between the base-flow
linear tendency and mass-depletion (nonlinear) responses of the bubble. In the initial
phases of the cycle, the linear tendency of the base flow promotes bubble growth,
while mass depletion promotes contraction. As such, the bubble is suspended in a
state of near equilibrium for a time, as mass depletion gradually reduces the bubble
size through phases π/2–π. At this point, mass depletion from the bubble nears
completion, so nonlinear forcing promoting bubble contraction diminishes, and the
base-flow linear tendency promoting growth overcomes the contraction effect of
mass depletion. The bubble then grows rapidly to phase 3π/2; i.e. the imbalance,
resulting from the reduction in downstream nonlinear forcing relative to upstream
linear tendency, allows for the sudden and intense upstream mass flux in the reverse
direction, during which the bubble grows to the state observed at phase 3π/2.
However, the growth is abruptly slowed once the character of the base-flow linear
tendency changes as shown at phase 3π/2, at which point the bubble is so large that
the base-flow linear tendency now promotes contraction. The upstream motion of the
reflected shock is reversed, and the bubble quickly relaxes to a more moderate state.
The cycle then resets, and the bubble is suspended in a state of near equilibrium
due to the competing linear-tendency and mass-depletion mechanisms. While the
essential components of this mechanism have been proposed previously (Plotkin
1975; Piponniau et al. 2009), the current dynamic linear response, obtained using
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Schematic: shock displacement not to scale

FIGURE 15. (Colour online) Schematic indicating the linear restoring tendencies of
the reflected shock at extreme upstream (phase π/2) and downstream (phase 3π/2)
displacements. The ‘time-mean shock position’ (which has a linear tendency for upstream
motion) does not coincide with the ‘time-mean linearly stable shock position’ as first
indicated in figure 8.

the LC-SLES technique, suggests a synthesis of these concepts, providing the first
demonstration of causal dynamics embedded in the time-local linear tendency of
the base-flow low-frequency band. It also facilitates the description of a possible
mechanism capable of explaining asymmetry in the shock motion cycle, of which
the key component is found in the (phase 0) competing mechanisms of base-flow
linear tendency and (nonlinear) mass depletion. Notably, the above description may be
extended, in the case of an STBLI configuration with different base-flow properties, to
explain the opposite asymmetrical bias; e.g. if the base-flow time-mean linear tendency
described a downstream tendency for shock motion, yet the interaction retained linear
restoring tendencies at extreme shock displacements, then the above explanation may
be applied, with inverted directional bias, leading to rapid downstream shock motion
and contraction of the separation bubble, followed by moderate upstream shock
motion and bubble growth; however, such behaviour is not observed in any of the
cases investigated in this work.

This analysis also suggests that the STBLI permits a time-mean linearly stable
configuration, in which the reflected shock is slightly upstream from the time-mean
location. At the extremes of the low-frequency cycle (phases π/2 and 3π/2), the
bubble and shock motion are consistent with a linear tendency for restoration to a
more moderate configuration; previously it was demonstrated that the time-mean base
flow is linearly unstable, with a time-mean linear tendency for upstream reflected
shock motion, similar to the linearly unstable non-oscillatory mode found in the IVP
calculations of Touber & Sandham (2009) and the IVP/EVP calculations of Pirozzoli
et al. (2010) and Nichols et al. (2017). Hence, the linearly stable configuration
would consist of a separation bubble slightly larger than the time-mean size and
a reflected shock slightly upstream from the time-mean location, as indicated in
figure 15. Low-frequency unsteadiness could then be described in terms of nonlinear
mechanisms forcing the reflected shock, which at extreme displacements experiences
a linear tendency for restoration to more moderate displacements, as is the premise of
the ODE model proposed by Plotkin (1975) and derived by Touber & Sandham (2011).
However, we find that the ‘time-mean linearly stable shock position’ and the
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FIGURE 16. (Colour online) Band-pass filtered mid-frequency separation bubble
oscillation: 0.06 < StL < 0.2, 1.1 kHz < f < 3.6 kHz. (a,c,e,g,i,k) Streamwise velocity
base flow with time mean added and arrows indicating base-flow motion. (b,d, f,h,j,l)
Streamwise velocity perturbation with arrows indicating time-local linear tendency
along the wall and along the separated shear layer. (a) u phase 0: bubble downstream
(0.7, 0.02) moving upstream. (b) uP phase 0: bubble downstream (0.7, 0.02) moving
upstream. (c) u phase π/3: bubble midstream (0.5, 0.02) moving upstream. (e) uP phase
π/3: bubble midstream (0.5, 0.02) moving upstream. (e) u phase 2π/3: bubble upstream
(0.2, 0.02); fluid sheds. ( f ) uP phase 2π/3: bubble upstream (0.2, 0.02); fluid sheds. (g)
u phase π: bubble moves quickly downstream with shed fluid (0.7, 0.02). (h) uP phase π:
bubble moves quickly downstream with shed fluid (0.7, 0.02). (i) u phase 4π/3: bubble
(0.9, 0.02) and shed fluid move downstream. ( j) uP phase 4π/3: bubble (0.9, 0.02) and
shed fluid move downstream. (k) u phase 5π/3: bubble downstream (1.0, 0.02); fluid
accelerated out of interaction. (l) uP phase 5π/3: bubble downstream (1.0, 0.02); fluid
accelerated out of interaction.

‘time-mean shock position’ do not coincide, contrary to the assumption of this
ODE model, a correction for which could lead to an improved model. We suggest
implementing such a correction in the form of a damped and driven harmonic
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oscillator model, as opposed to the Langevin model that is currently employed;
necessarily, to reproduce the shock motion asymmetry with such a model, the
stochastic forcing that drives the oscillator should have a functional dependence on the
position and velocity of the shock, reflecting contributions from internal mechanisms;
e.g. the downstream forcing, resulting from bubble mass depletion, must diminish as
the bubble contracts. It follows that, in addition to common techniques which reduce
the size of the separation, concepts for control that reduce the discrepancy between
the ‘time-mean’ and ‘time-mean linearly stable’ shock positions may prove effective
at muting low-frequency unsteadiness.
Oscillation of separation bubble (StL ∼ 0.1). Figure 16 shows snapshots of the band-
pass filtered (0.06 < StL < 0.2) flow field highlighting oscillation of the separation
bubble at frequency StL ∼ 0.1. In this band, six phases are employed to describe the
cycle.

Phase= 0: The bubble (white oval) is downstream (position (0.7, 0.02)) moving
upstream. The separated shear layer linearly tends to retard upstream motion
(indicated by positive uP), but along the wall (position (0.5, 0.02)), there is
a linear tendency for upstream acceleration of bubble motion (indicated by
negative uP upstream of the current bubble location).

Phase=π/3: The bubble is midstream (position (0.5, 0.02)) moving upstream. The
shear layer linearly tends to retard upstream motion, but along the wall (position
(0.5, 0.02)), there is a linear tendency for acceleration of upstream bubble
motion (more extreme than during phase 0).

Phase= 2π/3: The bubble is upstream (position (0.2, 0.02)), and accelerated by the
linear tendency along the wall (position (0.2,0.02)), but decelerated by the linear
tendency away from the wall (position (0.2,0.1)). The bubble splits: low velocity
fluid (pink oval) moves away from wall and is shed downstream, accelerated by
the shear layer linear tendency (position (0.2, 0.1)). The shed fluid continues
moving downstream.

Phase=π: The bubble moves relatively quickly downstream with the shed fluid
(position (0.7, 0.02)). This motion is retarded by the shear layer linear tendency.

Phase= 4π/3: The bubble (position (0.9, 0.02)) and shed fluid continue to move
downstream. This downstream motion continues to be retarded by the shear
layer linear tendency.

Phase= 5π/3: The bubble reaches its farthest downstream extent (position (1.0,0.02)).
The bubble and shed fluid are now accelerated downstream, out of interaction
region, in accordance with the observed linear tendency. Separation size achieves
a minimum. A new near-wall kernel with linear tendency promoting bubble
growth and upstream motion appears (position (0.4, 0.02)).

This cycle demonstrates the oscillatory dynamics of the separation bubble at
StL ∼ 0.1. At phase 0, a small negative uP kernel appears near the midpoint of the
interaction region. The bubble emerges near this position and has a linear tendency
to be driven upstream, along the wall, in the initial phases 0–π, as demonstrated by
the local region of negative uP upstream of the current bubble position. During this
upstream bubble motion, the linear tendency of the shear layer opposes upstream
motion, except in the near-wall, near-bubble region, as demonstrated by a positive
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region of uP. After traversing upstream to near the time-mean separation point, the
bubble splits, and some low velocity fluid moves away from the wall entering the
off-wall region of faster moving flow (phase 2π/3). The bubble then quickly moves
downstream accompanying the shed fluid (phases π–4π/3). The shear layer linearly
tends to oppose this downstream motion, as indicated by a broad region of negative
uP. Finally, after traversing downstream to near the time-mean reattachment point, the
shed fluid now linearly tends to be accelerated out of the interaction region (indicated
by a region of positive uP), and the bubble contracts. A new kernel of negative uP

appears near the interaction region midpoint, and the cycle repeats.
This behaviour is qualitatively similar to several weakly damped oscillatory modes

described by Pirozzoli et al. (2010) and Nichols et al. (2017) in their BiGlobal
stability analyses of time-mean STBLI flow fields. Specifically, Nichols et al.
(2017) describes several weakly damped oscillatory modes (0.06 < StL < 0.13) for a
Mach 2.28 STBLI, with an impinging shock generated by a 10.7◦ far-field wedge.
These modes depict periodic oscillations of the separation bubble and reflected
shock, similar to our observations of the band-pass filtered (StL ∼ 0.1) flow fields.
The ‘type II’ modes of Nichols et al. (2017), in which the ‘reflected shock plays
a more passive role’, are particularly similar to the phases of the separation bubble
described in figure 16. Additionally, (StL ∼ 0.1) content is found in the reflected
shock signal (figure 10d), consistent with the ‘type I’ modes, of the BiGlobal
analysis, which primarily depict periodic reflected shock motion. However, we
suggest a new interpretation of these observations, in conjunction with our recent
observations of the dynamic linear response of the time-resolved STBLI: associating
the zero-frequency (non-oscillatory) unstable mode with low-frequency (StL ∼ 0.03)
unsteadiness, as discussed in the context of § 5.3.3 and figure 14, and associating the
weakly damped oscillatory modes with low–mid-frequency (StL ∼ 0.1) unsteadiness,
as discussed in the context of figure 16. Nonetheless, qualitative agreement between
the observed oscillatory behaviour in the LES and BiGlobal stability analyses confirm
this mechanism to be an important aspect of low–mid-frequency (StL ∼ 0.1) STBLI
dynamics.

The band-isolated dynamics of the base flow and perturbations are consistent
with the action of a mass-depletion mechanism, such as in the conceptual model of
Piponniau et al. (2009); the competition of the accompanying nonlinear downstream
forcing and upstream linear tendency are necessary to describe the low-frequency
dynamics. However, like Morgan et al. (2013) we find that the ‘turbulent separation
bubble’ (§ 5.3.5) responds more significantly at higher frequencies (StL ∼ 0.1) than
predicted by the model (StL ∼ 0.03). Higher-frequency (StL ∼ 0.1) content is also
prominent in the dynamics of subsonic separation unsteadiness (Kiya & Sasaki 1985),
and it is not entirely clear that the difference in mixing layer spreading rate, between
the low- and high-speed separated flows, fully accounts for the lower frequency
(StL∼ 0.03) content in the STBLI, without additional considerations of shock-induced
effects. Indeed, Agostini, Larchevêque & Dupont (2015) discuss the significance of
the recirculation bubble, with effects unique to this STBLI configuration, in governing
both low- and mid-frequency shock dynamics for moderately to massively separated
interactions, drawing comparison with aspects of incompressible separated flows.

Furthermore, the prominence of this frequency band in our reverse flow and
separation bubble spectra suggests that the accompanying dynamics (figure 16) may
be the dominant mechanism for mass transport from the recirculation region to the
boundary layer. However, this does not eliminate the possibility for entrainment
associated with Kelvin–Helmholtz (StL∼ 0.5) shedding to contribute to mass transport
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from the recirculation region; ultimately, all of these processes are nonlinearly coupled.
Notably, this oscillatory mechanism may also be responsible for the ‘low-frequency’
unsteadiness observed by Kiya & Sasaki (1985). As discussed previously, a potential
mechanism for low-frequency (StL ∼ 0.03) unsteadiness in the STBLI relies on
interplay between the linear tendency of the STBLI base flow and nonlinear forcing
associated with this oscillatory (StL ∼ 0.1) mass-depletion mechanism. In the case
of Kiya & Sasaki (1985), there is no shock and thus no interplay to produce
unsteadiness at StL ∼ 0.03, in which case oscillatory bubble mass changes near the
frequency StL ∼ 0.1 are the lowest-frequency unsteady features present in that flow.
That is, the linear component (figure 14) of the mechanism proposed to describe
STBLI unsteadiness at StL ∼ 0.03 only pertains to flows with a similar time-mean
linear tendency to the STBLI, and may not pertain to incompressible separated flows,
since the separation is not shock induced. For these cases, the linear oscillatory
mechanism (figure 16) proposed to describe STBLI unsteadiness at StL ∼ 0.1 may be
the primary mechanism of ‘low-frequency’ unsteadiness.

Kelvin–Helmholtz (K–H) shedding (StL ∼ 0.5). Figure 17 shows snapshots from
the band-pass filtered (0.2 < StL < 0.7) flow field highlighting K–H phenomena at
frequency StL ∼ 0.5. The base flow clearly demonstrates wave-like motion through
the recirculation region, which corresponds to flapping of the reflected shock foot.
K–H waves in this frequency band contribute to the origin of shed structures, leading
to dominant mid-frequency (StL ∼ 0.5) content in the post-interaction wall pressure
spectra of figure 11(a). We note, however, as shown in the reverse flow and separation
bubble spectra of figure 10(d), that the mass of fluid in the recirculation region does
not respond significantly at this frequency, and instead simply rides the waves. This
suggests that while K–H (StL ∼ 0.5) waves originate in the separation region and
account for the increase in convective content around StL ∼ 0.5 downstream of
the interaction, it is insufficient to describe the mid-frequency separation bubble
dynamics without noting both the oscillatory behaviour in the StL∼ 0.1 band, as well
as wave-like behaviour in the StL ∼ 0.5 band.

Since this band approaches higher frequencies (StL ∼ 1) associated with convecting
fine-scale turbulence, we observe more significant contamination from turbulence
and flow history effects in the corresponding band-pass filtered perturbation field
than in previous lower-frequency bands. Still, periodic changes in the perturbation
field character near the time-mean separation point and along the separated shear
layer coincide with the genesis frequency and convection of K–H waves, suggesting
that these may also be driven by a periodic linear mechanism acting throughout the
interaction; the separation bubbles are approximately driven along the major gradients
of high to low (red to blue) streamwise velocity perturbation, consistent with the
observed linear tendency. The clarity of the band-pass filtered perturbation field in
this higher-frequency band could be improved through a conditional analysis, but is
not considered in the current work.

This sequential low-pass filtering analysis thus aids in understanding the dynamic
relation between the base-flow and linearly constrained perturbation fields in different
frequency bands. In each frequency band, and at specific phases, it allows for the
identification of whether the STBLI is responding consistently with the time-local
linear mechanisms identified in the evolving flow, or responding contrary to the
identified linear mechanisms, suggesting the increased importance of nonlinear
mechanisms. We anticipate that these linear mechanisms are an essential source
of unsteadiness in all similar STBLIs, including those that are influenced by
low-frequency coherent fluctuations of the incoming flow, though such coherent
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FIGURE 17. (Colour online) Band-pass filtered mid-frequency Kelvin–Helmholtz shedding:
0.2 < StL < 0.7, 3.6 kHz < f < 12.7 kHz. (a,c,e,g,i) Streamwise velocity base flow with
time mean added and arrows indicating base-flow motion. (b,d, f,h,j) Streamwise velocity
perturbation with arrows indicating time-local linear tendency. (a) u phase 0: pink wave
crest peak. (b) uP phase 0: pink wave crest peak. (c) u phase π/2: white grows, pink
recedes. (d) uP phase π/2: white grows, pink recedes. (e) u phase π: white grows, pink
recedes. ( f ) uP phase π: white grows, pink recedes. (g) u phase 3π/2: white grows, pink
recedes. (h) uP phase 3π/2: white grows, pink recedes. (i) u phase 0: white wave crest
peak. ( j) uP phase 0: white wave crest peak.

fluctuations are not observed in the present study; the relative significance of internal
to external mechanisms as sources of unsteadiness remain flow-specific questions.
Although this analysis does not demonstrate a statistically robust measure of the
dynamical behaviour in each frequency band, it does identify clear trends associated
with each frequency band that are qualitatively similar throughout many realizations.
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As such, it successfully illustrates several key unsteady broadband features present
in the STBLI and aids in identifying potential linear mechanisms which may sustain
these features in the unsteady turbulent environment.

6. Conclusions

A Mach 2.3 shock/turbulent-boundary-layer interaction is studied through small
amplitude (linear) forcing of the unsteady separated flow. The response to this forcing
is obtained by solving a constrained linearization about the time-evolving turbulent
flow. For this purpose, a synchronized pair of large-eddy simulations is employed,
in which the two simulations are advanced synchronously in time, with the second
simulation constrained linearly to the first. The two solutions are processed to yield
the evolution of linear perturbations of the fully turbulent STBLI. Ensemble statistics
of the linear perturbations constitute the dynamic linear response of the flow, analysis
of which allows for the inference of both the time-mean as well as the time-local
linear tendencies of the unsteady turbulent flow. In limiting cases, these tendencies
are analogous to and qualitatively consistent with traditional stability analyses applied
to the steady time-mean base flow.

The dynamic linear response demonstrates that the STBLI fosters a global absolute
linear instability corresponding to a linear tendency for upstream shock motion
and enlargement of the separation bubble. The absolute instability is maintained
through constructive feedback of perturbations through the recirculation; it is
self-sustaining and insensitive to external forcing. In contrast, this phenomenon
is not observed in similarly perturbed turbulent boundary layers, in which linearly
constrained perturbation growth is convective in nature and sustained only through
continuous external forcing. The self-sustaining perturbation field of the STBLI is
similar in character to the perturbation field forced at a location inside the time-mean
recirculation region, indicating that perturbations originating in the recirculation
region have a more significant influence on STBLI dynamics than those originating
upstream. The perturbation field remains anchored to the interaction region and
exhibits a time-mean linear tendency for upstream motion of the reflected shock.
This non-zero time-mean linear tendency quantifies the nature of the global absolute
linear instability, and its bias for upstream motion is inherently coupled to observed
asymmetry in the low-frequency shock motion cycle, in which upstream shock motion
occurs rapidly followed by slower downstream motion.

Significant dynamic features of the STBLI are identified and delineated by key
frequency bands: StL ∼ 0.5 corresponding to high–mid-frequency Kelvin–Helmholtz
shedding along the separated shear layer, StL ∼ 0.1 corresponding to low–mid-
frequency oscillations of the separation bubble, and StL ∼ 0.03 corresponding to
low-frequency large-scale bubble breathing and shock motion. Informed by observation
of these frequencies in the STBLI, a band-pass filtering decomposition is applied to
the STBLI base-flow and perturbation fields to isolate these broadband features and
identify how the time-local linear tendencies of the STBLI contribute to mid-frequency
and low-frequency dynamics.

The low-frequency (StL∼0.03) breathing of the separation bubble and corresponding
shock motion can be explained in the context of competing linear and nonlinear
mechanisms; linear mechanisms are identified from the dynamic linear response, and
nonlinear mechanisms include mass depletion from the recirculation region through
shedding during bubble contraction. This proposed explanation also accounts for the
observed asymmetry in the low-frequency cycle. Furthermore, this analysis confirms
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the presence of linear restoring tendencies in the STBLI; when the reflected shock
is located at an extreme upstream or downstream displacement from its time-mean
position, a linear tendency for restoration to a more moderate position is observed.
However, this moderate position (a linearly stable position in the time-mean sense)
does not correspond with the time-mean shock position, but rather is located upstream
from the time-mean shock position. This observation that the ‘time-mean linearly
stable position’ and the ‘time-mean position’ do not coincide supports the assertion
that the low-frequency unsteadiness is an intrinsic property of the system, which
could potentially be mitigated through control by altering the interaction in a way
such that the two positions are more closely coincident.

The separation bubble is found to oscillate at mid-frequency (StL ∼ 0.1) in
accordance with the linear tendency of the STBLI, and the mass budget of the
recirculation region is also affected prominently at this frequency, suggesting that mass
depletion of the recirculation region may be due to shedding observed during this
oscillatory cycle. The separation bubble exhibits wave-like behaviour in the StL ∼ 0.5
band, consistent with Kelvin–Helmholtz shedding, which is identified downstream
of the interaction region in wall pressure spectra. However, the mass budget of the
reverse flow region does not indicate significant dynamics at this frequency, and rather
it is observed that the bubble simply rides the waves. While it is more challenging
to draw conclusions at this higher frequency regarding how the Kelvin–Helmholtz
shedding is influenced by linear mechanisms due to a greater degree of contamination
from high-frequency turbulence, the results are not inconsistent with the possibility
that this shedding is also sustained by linear mechanisms evident throughout the
interaction.
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