RADIGALS OF PID'S AND DEDEKIND DOMAINS

R. E. PROPES

The purpose of this paper is to characterize the radical ideals of principal ideal domains and Dedekind domains. We show that if T is a radical class and R is a PID, then $T(R)$ is an intersection of prime ideals of R. More specifically, if

$$
\{0\} \not \ni T(R) \not \ni R,
$$

then $T(R)=\left(p_{1} p_{2} \ldots p_{k}\right)$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, and where ($p_{1} p_{2} \ldots p_{k}$) denotes the principal ideal of R generated by $p_{1} p_{2} \ldots p_{k}$. We also characterize the radical ideals of commutative principal ideal rings. For radical ideals of Dedekind domains we obtain a characterization similar to the one given for PID's.

In what follows we are working in some universal (homomorphically closed and hereditary) class of associative rings. Also, if R is a ring and $x \in R$, then (x) denotes the principal ideal of R generated by the element x.

Lemma 1. Let R be a PID, and let T be a radical class. If p is a prime element of R, then $T(R) \neq\left(p^{k}\right)$ for $k>1$.

Proof. If $\left(p^{k}\right) \in T$, then $\left(p^{k}\right) /\left(p^{k+1}\right) \in T$. Now define

$$
f:\left(p^{k-1}\right) /\left(p^{k}\right) \rightarrow\left(p^{k}\right) /\left(p^{k+1}\right)
$$

by

$$
f\left(x p^{k-1}+\left(p^{k}\right)\right)=x p^{k}+\left(p^{k+1}\right) .
$$

Since $x p^{k-1}-y p^{k-1} \in\left(p^{k}\right)$ if and only if $x p^{k}-y p^{k} \in\left(p^{k+1}\right), f$ is well-defined and injective. Also, f is clearly surjective and is an additive homomorphism. Since each of $\left(p^{k-1}\right) /\left(p^{k}\right)$ and $\left(p^{k}\right) /\left(p^{k+1}\right)$ is a zero-ring (a ring with trivial multiplication), f is a ring homomorphism and hence a ring isomorphism. Thus

$$
\left(p^{k-1}\right) /\left(p^{k}\right) \cong\left(p^{k}\right) /\left(p^{k+1}\right)
$$

By similar arguments we obtain

$$
(p) /\left(p^{2}\right) \cong\left(p^{2}\right) /\left(p^{3}\right) \cong \ldots \cong\left(p^{k-1}\right) /\left(p^{k}\right) \cong\left(p^{k}\right) /\left(p^{k+1}\right)
$$

Since $\left(p^{k}\right) /\left(p^{k+1}\right) \in T$ and $\left(p^{k}\right) \in T$, we have $\left(p^{k-1}\right) \in T$ and finally, $(p) \in T$. Thus $T(R) \supseteq(p)$.

Received June 15, 1971 and in revised form, October 5, 1971.

Lemma 2. Let R be a PID, and let T be a radical class. Let $x \in R(x \neq 0$ and x a non-unit), and let

$$
x=p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \cdots p_{k}{ }^{e_{k}}
$$

be the prime factorization of x into distinct primes, with $e_{i}>0$ for $i=1, \ldots, k$. If $e_{i}>1$ for some i, then $T(R) \neq(x)$.

Proof. By way of contradiction assume $(x) \in T$, and without loss of generality assume $e_{k}>1$. Then, as in Lemma 1,

$$
\begin{aligned}
\left(p_{1}{ }^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}{ }^{e_{k-1}}\right) /\left(p_{1}{ }^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}{ }^{e_{k}}\right) & \cong \\
& \left(p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \cdots p_{k}{ }^{e_{k}}\right) /\left(p_{1}{ }_{1}^{e_{1}} p_{2}{ }^{e_{2}} \cdots p_{k}^{e_{k+1}}\right) \in T
\end{aligned}
$$

so that $\left(p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \ldots p_{k}{ }^{e_{k}-1}\right) \in T$. Continuing in this way we arrive at $\left(p_{1} p_{2} \ldots p_{k}\right) /\left(p_{1}^{2} p_{2} \ldots p_{2}\right) \in T$ and $\left(p_{1}^{2} p_{2} \ldots p_{k}\right) \in T$. Whence, $\left(p_{1} p_{2} \ldots p_{k}\right) \in T$.

Theorem 1. Let R be a PID, and let T be a radical class. Then $T(R)$ is a prime ideal of R, or $T(R)$ is the intersection of a finite number of prime ideals of R. (The proper prime ideals of R are, of course, maximal ideals of R.)

Proof. If $T(R)=R$ or $T(R)=\{0\}$, then $T(R)$ is a prime ideal of R. If $\{0\} \neq T(R) \neq R$, then $T(R)=(x)$, where $x=p_{1} p_{2} \ldots p_{k}, 1 \leqq k$, and where the p_{i} are distinct primes. This follows from Lemma 2. In this case,

$$
T(R)=\bigcap_{i=1}^{k}\left(p_{i}\right) .
$$

Remark. In any case, $T(R)$ is the intersection (finite or infinite) of prime ideals of R.

Corollary. Let R be a PID, and let T be a radical class. If $\{0\} \neq T(R) \neq R$, then $R / T(R)$ is the direct sum of a finite number of fields.

Proof. This follows immediately from Theorem 1 and the Chinese Remainder Theorem [3].

For our next observations we use Yu-Lee Lee's characterization of the lower radical. Let \mathscr{A} be a class of rings, and let $L(\mathscr{A})$ denote the lower radical class determined by \mathscr{A}. In [4], Yu-Lee Lee showed that $L(\mathscr{A})$ may be constructed in the following manner: Let $H(\mathscr{A})$ be the class of all homomorphic images of rings in \mathscr{A}. For each ring R, let $D_{1}(R)$ be the set of all ideals of R, and by induction define $D_{n+1}(R)$ to be the family of all rings which are ideals of rings in $D_{n}(R)$ and set

$$
D(R)=\cup\left\{D_{n}(R): n=1,2, \ldots\right\} .
$$

A ring R is called an $L(\mathscr{A})$-ring if $D(R / I)$ contains a non-zero ring which is isomorphic to a ring in $H(\mathscr{A})$ for each ideal I of R such that $I \neq R$. The class of $L(\mathscr{A})$-rings coincides with the lower radical determined by \mathscr{A}. In
[5], Yu-Lee Lee proved that any class \mathscr{B} of rings determines an upper radical $U(\mathscr{B})$.

The following question naturally arises. Given a PID R and a prime ideal (p) of R, does there exist a radical class T for which $T(R)=(p)$? The following proposition sheds some light on this question.

Proposition 1. Let R be a PID and (p) a prime ideal of R. If there exists an ideal I of the ring (p) for which $(p) / I$ is ring-isomorphic to $R /(p)$, then $T(R) \neq(p)$ for each radical class T.

Proof. If $T(R)=(p)$, and $(p) / I \cong R /(p)$, then $(p) / I$ is both T-semisimple and T-radical.

Example [S. Bronn, private communication]. Let K be a field, and let $K[x]$ denote the PID of polynomials over K in an indeterminant x. Then $(x) /\left(x^{2}-x\right) \cong K[x] /(x)$.

Proposition 2. Let R be a PID and (p) a prime ideal of R. If (p)/I is not ring-isomorphic to $R /(p)$ for each ideal I of the ring (p), then $T(R)=(p)$ for some radical class T.

Proof. Let $\mathscr{A}=\{(p)\}$ and $\mathscr{B}=\{R /(p)\}$. If $T=L(\mathscr{A})$ or $T=U(\mathscr{B})$, then $T(R)=(p)$.

Proposition 3. Let T_{1} and T_{2} be radical classes in some universal class W of rings, and define $T(R)=T_{1}(R) \cap T_{2}(R)$ and set $T=\{R \in W: T(R)=R\}$. Then $T=T_{1} \cap T_{2}$.

Proof. $R \in T \Leftrightarrow R=T(R)=T_{1}(R) \cap T_{2}(R)$,

$$
\Leftrightarrow R=T_{1}(R)=T_{2}(R),
$$

$$
\Leftrightarrow R \in T_{1} \cap T_{2}
$$

Corollary. Let $T_{1}, T_{2} \ldots, T_{n}$ be radical classes in some universal class W of rings, and define

$$
T(R)=T_{1}(R) \cap T_{2}(R) \cap \ldots \cap T_{n}(R)
$$

and set $T=\{R \in W: T(R)=R\}$. Then $T=T_{1} \cap T_{2} \cap \ldots \cap T_{n}$.
Theorem 2. Let R be a PID, and let $\left(p_{1}\right),\left(p_{2}\right), \ldots,\left(p_{k}\right)$ be distinct prime ideals of R such that there is no non-zero epimorphism of $\left(p_{i}\right)$ to $R /\left(p_{i}\right)$ for $i=1,2, \ldots, k$. Then there is a radical class T for which $T(R)=\left(p_{1} p_{2} \ldots p_{k}\right)$.

Proof. Set $T=T_{1} \cap T_{2} \cap \ldots \cap T_{k}$, where $T_{i}=L\left(\left\{\left(p_{i}\right)\right\}\right)$ or $T_{i}=$ $U\left(\left\{R /\left(p_{i}\right)\right\}\right)$ for $i=1,2, \ldots, k$.

Problem. Characterize the PID's and Dedekind domains R with the following property. If $P_{1}, P_{2}, \ldots, P_{k}$ are distinct prime ideals of R, then there exists a radical class T for which $T(R)=P_{1} P_{2} \ldots P_{k}$.

Definition. A principal ideal ring (PIR) is a commutative ring with identity in which every ideal is principal.

Definition. A principal ideal ring R is called special if it has only one prime ideal $P \neq R$ and if P is nilpotent.

Theorem 3 [6]. A direct sum of PIR's is itself a PIR. Every PIR is a finite direct sum of PID's and of special PIR's.

Theorem 4. Let R be special PIR with P its unique maximal prime ideal. If T is a radical, then $T(R)=P$ or $T(R)=R$ or $T(R)=\{0\}$.

Proof. Let m denote the index of nilpotency of $P=(p)$. By [6], the ideals of R are given in the chain

$$
R \supsetneqq(p) \supsetneqq\left(p^{2}\right) \supsetneqq \ldots \supsetneqq\left(p^{m}\right)=\{0\} .
$$

Moreover, each non-zero $x \in R$ has a representation as $x=e p^{k}, 0 \leqq k \leqq m-1$ and e is a unit. Furthermore, the integer k in this representation is unique, and the unit e is unique modulo $\left(p^{m-k}\right)$. Assume now that $\{0\} \neq T(R) \neq R$. Then $\left(p^{k}\right) \in T$ for some $k, 1 \leqq k \leqq m-1$. If $k=1$, there is nothing to prove. Hence assume $1<k \leqq m-1$. Then define a mapping

$$
\left(p^{k-1}\right) /\left(p^{k}\right) \rightarrow\left(p^{k}\right) /\left(p^{k+1}\right)
$$

by

$$
e p^{k-1}+\left(p^{k}\right) \rightarrow e p^{k}+\left(p^{k+1}\right) .
$$

Since $e p^{k-1}-u p^{k-1} \in\left(p^{k}\right)$ implies $e p^{k}-u p^{k} \in\left(p^{k+1}\right)$ the mapping is a welldefined function. Our function is clearly an additive homomorphism, and thus a ring homomorphism, since both $\left(p^{k-1}\right) /\left(p^{k}\right)$ and $\left(p^{k}\right) /\left(p^{k+1}\right)$ are zerorings. Also, the function is obviously surjective. To see that we have an injective function, observe that $e p^{k} \in\left(p^{k+1}\right)$ implies that $e p^{k}=u p^{k+l}$ for $l \geqq 1$ and u some unit. But then either $k+l \geqq m$ or (by uniqueness) $k=k+l$. If $k+l \geqq m$, then $0=u p^{k+l}=e p^{k}$ which is impossible, since $k \leqq m-1$ and $e p^{k}=0$ imply that

$$
p^{k}=e^{-1} e p^{k}=e^{-1} 0=0
$$

If $k=k+l$, then $l=0$; but this contradicts $l \geqq 1$. Thus our function is injective. Hence we have an isomorphism; i.e., $\left(p^{k-1}\right) /\left(p^{k}\right) \cong\left(p^{k}\right) /\left(p^{k+1}\right)$. It follows as in the proof of Lemma 1 that $\left(p^{k-1}\right) \in T$. Continuing in this manner we obtain $(p) \in T$.

Corollary. Let R be a PIR, and let T be a radical class. In order to compute $T(R)$ it suffices to compute the T-radicals of the PID and special PIR components of R.

Proof. By Theorem 3,

$$
R \cong R_{1} \oplus R_{2} \oplus \ldots \oplus R_{n}
$$

where R_{i} is either a PID or a special PIR. By a theorem of Hoffman [2],

$$
T\left(R_{1} \oplus R_{2} \oplus \ldots \oplus R_{n}\right)=T\left(R_{1}\right) \oplus T\left(R_{2}\right) \oplus \ldots \oplus T\left(R_{n}\right)
$$

Corollary. Let R be a PIR, and let $R_{1} \oplus R_{2} \oplus \ldots \oplus R_{n}$ be its representation as a direct sum of PID's and special PIR's. If $\{0\} \neq T\left(R_{i}\right) \neq R_{i}$ for $i=1,2, \ldots, n$, then $R / T(R)$ is a direct sum of fields.
Proof. Merely observe that

$$
\begin{array}{rl}
R_{1} \oplus R_{2} \oplus \ldots \oplus R_{n} / T\left(R_{1}\right) \oplus T & T\left(R_{2}\right) \oplus \ldots \oplus T\left(R_{n}\right) \cong \\
& R_{1} / T\left(R_{1}\right) \oplus R_{2} / T\left(R_{2}\right) \oplus \ldots \oplus R_{n} / T\left(R_{n}\right) .
\end{array}
$$

Definition. A ring R is said to be a Dedekind domain if it is an integral domain and if every ideal in R is a product of prime ideals.

We need the following results concerning commutative rings.
Proposition 4 [6]. In a Dedekind domain R, every proper prime ideal is inventible and maximal.

Proposition 5 [6]. Let R be a ring with identity, and let D and P be ideals in R such that
(a) $D \subseteq P$,
(b) if $b \in P$, then $b^{m} \in D$ for some m,
(c) P is a maximal ideal.

Then D is primary and P is its radical.
Proposition 6 [6]. Let D and P be ideals in a ring R. Then D is primary and P is its radical if and only if the following conditions are satisfied:
(a') $D \subseteq P$.
(b') If $b \in P$, then $b^{m} \in D$ for some m (m may depend on b).
(c^{\prime}) If $a b \in D$ and $a \notin D$, then $b \in P$.
Proposition 7 [6]. A residue class ring R / A of a Dedekind domain R by a proper ideal A is a PIR.

Proposition 8 [1]. If $P_{1}, P_{2}, \ldots, P_{k}$ are proper prime ideals of a Dedekind domain and $n_{1}, n_{2}, \ldots, n_{k}$ are positive integers, then

$$
P_{1}{ }^{n_{1}} P_{2}{ }^{n_{2}} \ldots P_{k}{ }^{n_{k}}=P_{1}{ }^{n_{1}} \cap P_{2}{ }^{n_{2}} \cap \ldots \cap P_{k}{ }_{k}^{n_{k}} .
$$

Proposition 9 [1]. Let R be a Dedekind domain and A a proper ideal of R with factorization $P_{1}{ }^{n_{1}} P_{2}{ }^{n_{2}} \ldots P_{k}{ }^{n_{k}}$. Then R / A is isomorphic to

$$
R / P_{1}^{n_{1}} \oplus R / P_{2}^{n_{2}} \oplus \ldots \oplus R / P_{k}^{n_{k}}
$$

Lemma 3. Let R be a Dedekind domain, and let P be a proper prime ideal of R. If T is a radical class, then $T(R) \neq P^{k}$ for $k>1$.

Proof. By Proposition 2, P is a maximal ideal of R. By Proposition 5, P^{n} is primary for each positive integer n. By Proposition 7, R / P^{n} is a PIR for each
positive integer n. Since R / P^{k+1} and R / P^{k} are PIR's, let $P^{k} / P^{k+1}=\left(a+P^{k+1}\right)$ and $P^{k-1} / P^{k}=\left(b+P^{k}\right)$, where $a \in P^{k}, a \notin P^{k+1}$ and $b \in P^{k-1}, b \notin P^{k}$. Now suppose that $P^{k} \in T$. Then $P^{k} / P^{k+1} \in T$. Define a mapping

$$
P^{k} / P^{k+1} \rightarrow P^{k-1} / P^{k}
$$

by

$$
a r+P^{k+1} \rightarrow b r+P^{k}
$$

Now by Proposition 6, $a(r-s)=a r-a s \in P^{k+1}$ implies $r-s \in P$; and this implies that $b(r-s) \in P^{k}$. Thus the mapping is a well-defined function. The mapping is clearly an additive homomorphism and is surjective. Since both P^{k} / P^{k+1} and P^{k-1} / P^{k} are zero-rings, the function is a ring homomorphism. Thus $P^{k-1} / P^{k} \in T$. This together with $P^{k} \in T$ implies $P^{k-1} \in T$. Continuing in this way we obtain $P \in T$.

Lemma 4. Let R be a Dedekind domain, and let T be a radical class. Let $P_{1}, P_{2}, \ldots, P_{k}$ be distinct proper prime ideals of R, and let $e_{1}, e_{2}, \ldots, e_{k}$ be positive integers. If $e_{i}>1$ for some i, then

$$
T(R) \neq P_{1}{ }^{e_{1}} P_{2}{ }_{2}^{e_{2}} \ldots P_{k}{ }^{e_{k}} .
$$

Proof. Assume that $P_{1}{ }_{1}{ }_{1} P_{2} e_{2} \ldots P_{k}{ }^{e_{k}} \in T$ and, without loss of generality, assume $e_{k}>1$. Using the technique of Lemma 3, define a mapping

$$
P_{1}{ }^{e_{1}} P_{2} e^{e_{2}} \ldots P_{k}^{e_{k}} / P_{1}^{e_{1}} P_{2}^{e_{2}} \ldots P_{k}^{e_{k}+1} \rightarrow P_{1} e_{1} P_{2} e^{e_{2}} \ldots P_{k}^{e_{k}-1} / P_{1}{ }^{e_{1}} P_{2}{ }^{e_{2}} \ldots P_{k}^{e_{k}}
$$

by

$$
a r+P_{1}{ }^{e_{1}} P_{2}{ }_{2}^{e_{2}} \ldots P_{k}{ }^{e_{k}+1} \rightarrow b r+P_{1}{ }_{1}^{e_{1}} P_{2}{ }^{e_{2}} \ldots P_{k}{ }_{k}^{e_{k}} .
$$

We use Proposition 6 to prove that the mapping is a well-defined function. For this,

$$
a(r-s)=a r-a s \in P_{1}^{e_{1}} P_{2}{ }^{e_{2}} \ldots P_{k}^{e_{k}}=P_{1}^{e_{1}} \cap P_{2}^{e_{2}} \cap \ldots \cap P_{k}^{e_{k+1}}
$$

and $a \notin P_{k}{ }^{e_{k+1}}$ imply $r-s \in P_{k}$. This in turn implies that

$$
b(r-s) \in P_{1}{ }_{1}^{e_{1}} P_{2}^{e_{2}} \ldots P_{r}^{e_{k}} .
$$

Hence the mapping is a well-defined function and is clearly surjective. Also it is easy to see that the function is an additive homomorphism. Since both rings are zero-rings, the function is a ring homomorphism. Thus, as in the proof of Lemma 3, $P_{1}{ }^{e_{1}} P_{2}{ }^{e_{2}} \ldots P_{k}{ }^{e_{k}-1} \in T$. Continuing in this way we obtain $P_{1} P_{2} \ldots P_{k} \in T$.

Theorem 5. Let R be a Dedekind domain, and let T be a radical class. If $\{0\} \neq T(R) \neq R$, then $T(R)$ is the product of a finite number of distinct prime ideals.

Proof. This is an immediate consequence of Lemma 4.
Corollary. If the radical $T(R)$ of the Dedekind domain R is a proper ideal of R, then $R / T(R)$ is the direct sum of a finite number of fields.

Proof. By Theorem 5,T(R)= $P_{1} P_{2} \ldots P_{k}$, where the P_{i} are distinct prime (hence maximal) ideals of R. By Proposition 9,

$$
R / T(R) \cong R / P_{1} \oplus R / P_{2} \oplus \ldots \oplus R / P_{k}
$$

References

1. A. Clark, Elements of abstract algebra (Wadsworth, Belmont, Calif., 1971).
2. A. Hoffman, Direct sum closure properties of radicals, J. Natur. Sci. and Math. 10 (1970), 53-58.
3. I. Kaplansky, Fields and rings (University of Chicago Press, Chicago, 1970).
4. Y. L. Lee, On the construction of lower radical properties, Pacific J. Math. 28 (1969), 393-395.
5. - On the construction of upper radical properties, Proc. Amer. Math. Soc. 19 (1968), 1165-1166.
6. O. Zariski and P. Samuel, Commutative algebra, Vol. 1 (Van Nostrand, New York 1958).

The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin

