RADICALS OF PID'S AND DEDEKIND DOMAINS

R. E. PROPES

The purpose of this paper is to characterize the radical ideals of principal ideal domains and Dedekind domains. We show that if T is a radical class and R is a PID, then T(R) is an intersection of prime ideals of R. More specifically, if

$$\{0\} \stackrel{\bigcirc}{\neq} T(R) \stackrel{\bigcirc}{\neq} R,$$

then $T(R) = (p_1p_2 \dots p_k)$, where p_1, p_2, \dots, p_k are distinct primes, and where $(p_1p_2 \dots p_k)$ denotes the principal ideal of R generated by $p_1p_2 \dots p_k$. We also characterize the radical ideals of commutative principal ideal rings. For radical ideals of Dedekind domains we obtain a characterization similar to the one given for PID's.

In what follows we are working in some universal (homomorphically closed and hereditary) class of associative rings. Also, if R is a ring and $x \in R$, then (x) denotes the principal ideal of R generated by the element x.

LEMMA 1. Let R be a PID, and let T be a radical class. If p is a prime element of R, then $T(R) \neq (p^k)$ for k > 1.

Proof. If $(p^k) \in T$, then $(p^k)/(p^{k+1}) \in T$. Now define

$$f: (p^{k-1})/(p^k) \to (p^k)/(p^{k+1})$$

by

$$f(xp^{k-1} + (p^k)) = xp^k + (p^{k+1}).$$

Since $xp^{k-1} - yp^{k-1} \in (p^k)$ if and only if $xp^k - yp^k \in (p^{k+1})$, f is well-defined and injective. Also, f is clearly surjective and is an additive homomorphism. Since each of $(p^{k-1})/(p^k)$ and $(p^k)/(p^{k+1})$ is a zero-ring (a ring with trivial multiplication), f is a ring homomorphism and hence a ring isomorphism. Thus

$$(p^{k-1})/(p^k) \cong (p^k)/(p^{k+1}).$$

By similar arguments we obtain

$$(p)/(p^2) \cong (p^2)/(p^3) \cong \ldots \cong (p^{k-1})/(p^k) \cong (p^k)/(p^{k+1}).$$

Since $(p^k)/(p^{k+1}) \in T$ and $(p^k) \in T$, we have $(p^{k-1}) \in T$ and finally, $(p) \in T$. Thus $T(R) \supseteq (p)$.

Received June 15, 1971 and in revised form, October 5, 1971.

LEMMA 2. Let R be a PID, and let T be a radical class. Let $x \in R$ ($x \neq 0$ and x a non-unit), and let

$$x = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

be the prime factorization of x into distinct primes, with $e_i > 0$ for i = 1, ..., k. If $e_i > 1$ for some i, then $T(R) \neq (x)$.

Proof. By way of contradiction assume $(x) \in T$, and without loss of generality assume $e_k > 1$. Then, as in Lemma 1,

$$\frac{(p_1^{e_1}p_2^{e_2}\dots p_k^{e_k-1})/(p_1^{e_1}p_2^{e_2}\dots p_k^{e_k})}{(p_1^{e_1}p_2^{e_2}\dots p_k^{e_k})/(p_1^{e_1}p_2^{e_2}\dots p_k^{e_{k+1}})} \in T$$

so that $(p_1^{e_1}p_2^{e_2}\ldots p_k^{e_{k-1}}) \in T$. Continuing in this way we arrive at $(p_1p_2\ldots p_k)/(p_1^2p_2\ldots p_2) \in T$ and $(p_1^2p_2\ldots p_k) \in T$. Whence, $(p_1p_2\ldots p_k) \in T$.

THEOREM 1. Let R be a PID, and let T be a radical class. Then T(R) is a prime ideal of R, or T(R) is the intersection of a finite number of prime ideals of R. (The proper prime ideals of R are, of course, maximal ideals of R.)

Proof. If T(R) = R or $T(R) = \{0\}$, then T(R) is a prime ideal of R. If $\{0\} \neq T(R) \neq R$, then T(R) = (x), where $x = p_1 p_2 \dots p_k$, $1 \leq k$, and where the p_i are distinct primes. This follows from Lemma 2. In this case,

$$T(R) = \bigcap_{i=1}^{k} (p_i).$$

Remark. In any case, T(R) is the intersection (finite or infinite) of prime ideals of R.

COROLLARY. Let R be a PID, and let T be a radical class. If $\{0\} \neq T(R) \neq R$, then R/T(R) is the direct sum of a finite number of fields.

Proof. This follows immediately from Theorem 1 and the Chinese Remainder Theorem [3].

For our next observations we use Yu-Lee Lee's characterization of the lower radical. Let \mathscr{A} be a class of rings, and let $L(\mathscr{A})$ denote the lower radical class determined by \mathscr{A} . In [4], Yu-Lee Lee showed that $L(\mathscr{A})$ may be constructed in the following manner: Let $H(\mathscr{A})$ be the class of all homomorphic images of rings in \mathscr{A} . For each ring R, let $D_1(R)$ be the set of all ideals of R, and by induction define $D_{n+1}(R)$ to be the family of all rings which are ideals of rings in $D_n(R)$ and set

$$D(R) = \bigcup \{D_n(R): n = 1, 2, ... \}.$$

A ring R is called an $L(\mathscr{A})$ -ring if D(R/I) contains a non-zero ring which is isomorphic to a ring in $H(\mathscr{A})$ for each ideal I of R such that $I \neq R$. The class of $L(\mathscr{A})$ -rings coincides with the lower radical determined by \mathscr{A} . In [5], Yu-Lee Lee proved that any class \mathscr{B} of rings determines an upper radical $U(\mathscr{B})$.

The following question naturally arises. Given a PID R and a prime ideal (p) of R, does there exist a radical class T for which T(R) = (p)? The following proposition sheds some light on this question.

PROPOSITION 1. Let R be a PID and (p) a prime ideal of R. If there exists an ideal I of the ring (p) for which (p)/I is ring-isomorphic to R/(p), then $T(R) \neq (p)$ for each radical class T.

Proof. If T(R) = (p), and $(p)/I \cong R/(p)$, then (p)/I is both T-semisimple and T-radical.

Example [S. Bronn, private communication]. Let K be a field, and let K[x] denote the PID of polynomials over K in an indeterminant x. Then $(x)/(x^2 - x) \cong K[x]/(x)$.

PROPOSITION 2. Let R be a PID and (p) a prime ideal of R. If (p)/I is not ring-isomorphic to R/(p) for each ideal I of the ring (p), then T(R) = (p) for some radical class T.

Proof. Let $\mathscr{A} = \{(p)\}$ and $\mathscr{B} = \{R/(p)\}$. If $T = L(\mathscr{A})$ or $T = U(\mathscr{B})$, then T(R) = (p).

PROPOSITION 3. Let T_1 and T_2 be radical classes in some universal class W of rings, and define $T(R) = T_1(R) \cap T_2(R)$ and set $T = \{R \in W: T(R) = R\}$. Then $T = T_1 \cap T_2$.

Proof.
$$R \in T \Leftrightarrow R = T(R) = T_1(R) \cap T_2(R)$$
,
 $\Leftrightarrow R = T_1(R) = T_2(R)$,
 $\Leftrightarrow R \in T_1 \cap T_2$.

COROLLARY. Let T_1, T_2, \ldots, T_n be radical classes in some universal class W of rings, and define

$$T(R) = T_1(R) \cap T_2(R) \cap \ldots \cap T_n(R)$$

and set $T = \{R \in W: T(R) = R\}$. Then $T = T_1 \cap T_2 \cap \ldots \cap T_n$.

THEOREM 2. Let R be a PID, and let $(p_1), (p_2), \ldots, (p_k)$ be distinct prime ideals of R such that there is no non-zero epimorphism of (p_i) to $R/(p_i)$ for $i = 1, 2, \ldots, k$. Then there is a radical class T for which $T(R) = (p_1p_2 \ldots p_k)$.

Proof. Set $T = T_1 \cap T_2 \cap \ldots \cap T_k$, where $T_i = L(\{(p_i)\})$ or $T_i = U(\{R/(p_i)\})$ for $i = 1, 2, \ldots, k$.

Problem. Characterize the PID's and Dedekind domains R with the following property. If P_1, P_2, \ldots, P_k are distinct prime ideals of R, then there exists a radical class T for which $T(R) = P_1P_2 \ldots P_k$.

https://doi.org/10.4153/CJM-1972-050-2 Published online by Cambridge University Press

Definition. A principal ideal ring (PIR) is a commutative ring with identity in which every ideal is principal.

Definition. A principal ideal ring R is called *special* if it has only one prime ideal $P \neq R$ and if P is nilpotent.

THEOREM 3 [6]. A direct sum of PIR's is itself a PIR. Every PIR is a finite direct sum of PID's and of special PIR's.

THEOREM 4. Let R be special PIR with P its unique maximal prime ideal. If T is a radical, then T(R) = P or T(R) = R or $T(R) = \{0\}$.

Proof. Let *m* denote the index of nilpotency of P = (p). By [6], the ideals of *R* are given in the chain

$$R \stackrel{\supset}{\neq} (p) \stackrel{\supset}{\neq} (p^2) \stackrel{\supset}{\neq} \dots \stackrel{\supset}{\neq} (p^m) = \{0\}.$$

Moreover, each non-zero $x \in R$ has a representation as $x = ep^k$, $0 \le k \le m-1$ and e is a unit. Furthermore, the integer k in this representation is unique, and the unit e is unique modulo (p^{m-k}) . Assume now that $\{0\} \ne T(R) \ne R$. Then $(p^k) \in T$ for some $k, 1 \le k \le m-1$. If k = 1, there is nothing to prove. Hence assume $1 < k \le m-1$. Then define a mapping

$$(p^{k-1})/(p^k) \rightarrow (p^k)/(p^{k+1})$$

by

$$ep^{k-1} + (p^k) \rightarrow ep^k + (p^{k+1}).$$

Since $ep^{k-1} - up^{k-1} \in (p^k)$ implies $ep^k - up^k \in (p^{k+1})$ the mapping is a welldefined function. Our function is clearly an additive homomorphism, and thus a ring homomorphism, since both $(p^{k-1})/(p^k)$ and $(p^k)/(p^{k+1})$ are zerorings. Also, the function is obviously surjective. To see that we have an injective function, observe that $ep^k \in (p^{k+1})$ implies that $ep^k = up^{k+l}$ for $l \ge 1$ and usome unit. But then either $k + l \ge m$ or (by uniqueness) k = k + l. If $k + l \ge m$, then $0 = up^{k+l} = ep^k$ which is impossible, since $k \le m - 1$ and $ep^k = 0$ imply that

$$p^k = e^{-1}ep^k = e^{-1}0 = 0.$$

If k = k + l, then l = 0; but this contradicts $l \ge 1$. Thus our function is injective. Hence we have an isomorphism; i.e., $(p^{k-1})/(p^k) \cong (p^k)/(p^{k+1})$. It follows as in the proof of Lemma 1 that $(p^{k-1}) \in T$. Continuing in this manner we obtain $(p) \in T$.

COROLLARY. Let R be a PIR, and let T be a radical class. In order to compute T(R) it suffices to compute the T-radicals of the PID and special PIR components of R.

Proof. By Theorem 3,

$$R\cong R_1\oplus R_2\oplus\ldots\oplus R_n,$$

where R_i is either a PID or a special PIR. By a theorem of Hoffman [2],

 $T(R_1 \oplus R_2 \oplus \ldots \oplus R_n) = T(R_1) \oplus T(R_2) \oplus \ldots \oplus T(R_n).$

COROLLARY. Let R be a PIR, and let $R_1 \oplus R_2 \oplus \ldots \oplus R_n$ be its representation as a direct sum of PID's and special PIR's. If $\{0\} \neq T(R_i) \neq R_i$ for $i = 1, 2, \ldots, n$, then R/T(R) is a direct sum of fields.

Proof. Merely observe that

$$R_1 \oplus R_2 \oplus \ldots \oplus R_n/T(R_1) \oplus T(R_2) \oplus \ldots \oplus T(R_n) \cong R_1/T(R_1) \oplus R_2/T(R_2) \oplus \ldots \oplus R_n/T(R_n).$$

Definition. A ring R is said to be a Dedekind domain if it is an integral domain and if every ideal in R is a product of prime ideals.

We need the following results concerning commutative rings.

PROPOSITION 4 [6]. In a Dedekind domain R, every proper prime ideal is inventible and maximal.

PROPOSITION 5 [6]. Let R be a ring with identity, and let D and P be ideals in R such that

(a) $D \subseteq P$, (b) if $l \in P$, the limit D f

(b) if $b \in P$, then $b^m \in D$ for some m,

(c) P is a maximal ideal.

Then D is primary and P is its radical.

PROPOSITION 6 [6]. Let D and P be ideals in a ring R. Then D is primary and P is its radical if and only if the following conditions are satisfied:

(a') $D \subseteq P$.

(b') If $b \in P$, then $b^m \in D$ for some m (m may depend on b).

(c') If $ab \in D$ and $a \notin D$, then $b \in P$.

PROPOSITION 7 [6]. A residue class ring R/A of a Dedekind domain R by a proper ideal A is a PIR.

PROPOSITION 8 [1]. If P_1, P_2, \ldots, P_k are proper prime ideals of a Dedekind domain and n_1, n_2, \ldots, n_k are positive integers, then

 $P_1^{n_1}P_2^{n_2}\dots P_k^{n_k} = P_1^{n_1} \cap P_2^{n_2} \cap \dots \cap P_k^{n_k}.$

PROPOSITION 9 [1]. Let R be a Dedekind domain and A a proper ideal of R with factorization $P_1^{n_1}P_2^{n_2}\ldots P_k^{n_k}$. Then R/A is isomorphic to

$$R/P_1^{n_1} \oplus R/P_2^{n_2} \oplus \ldots \oplus R/P_k^{n_k}.$$

LEMMA 3. Let R be a Dedekind domain, and let P be a proper prime ideal of R. If T is a radical class, then $T(R) \neq P^k$ for k > 1.

Proof. By Proposition 2, P is a maximal ideal of R. By Proposition 5, P^n is primary for each positive integer n. By Proposition 7, R/P^n is a PIR for each

570

positive integer *n*. Since R/P^{k+1} and R/P^k are PIR's, let $P^k/P^{k+1} = (a + P^{k+1})$ and $P^{k-1}/P^k = (b + P^k)$, where $a \in P^k$, $a \notin P^{k+1}$ and $b \in P^{k-1}$, $b \notin P^k$. Now suppose that $P^k \in T$. Then $P^k/P^{k+1} \in T$. Define a mapping

$$P^k/P^{k+1} \rightarrow P^{k-1}/P^k$$

by

$$ar + P^{k+1} \to br + P^k.$$

Now by Proposition 6, $a(r-s) = ar - as \in P^{k+1}$ implies $r - s \in P$; and this implies that $b(r - s) \in P^k$. Thus the mapping is a well-defined function. The mapping is clearly an additive homomorphism and is surjective. Since both P^k/P^{k+1} and P^{k-1}/P^k are zero-rings, the function is a ring homomorphism. Thus $P^{k-1}/P^k \in T$. This together with $P^k \in T$ implies $P^{k-1} \in T$. Continuing in this way we obtain $P \in T$.

LEMMA 4. Let R be a Dedekind domain, and let T be a radical class. Let P_1, P_2, \ldots, P_k be distinct proper prime ideals of R, and let e_1, e_2, \ldots, e_k be positive integers. If $e_i > 1$ for some i, then

$$T(R) \neq P_1^{e_1} P_2^{e_2} \dots P_k^{e_k}.$$

Proof. Assume that $P_1^{e_1}P_2^{e_2}\ldots P_k^{e_k} \in T$ and, without loss of generality, assume $e_k > 1$. Using the technique of Lemma 3, define a mapping

$$P_1^{e_1}P_2^{e_2}\dots P_k^{e_k}/P_1^{e_1}P_2^{e_2}\dots P_k^{e_{k+1}} \to P_1^{e_1}P_2^{e_2}\dots P_k^{e_{k-1}}/P_1^{e_1}P_2^{e_2}\dots P_k^{e_k}$$

by

$$ar + P_1^{e_1}P_2^{e_2} \dots P_k^{e_{k+1}} \to br + P_1^{e_1}P_2^{e_2} \dots P_k^{e_k}$$

We use Proposition 6 to prove that the mapping is a well-defined function. For this,

$$a(r-s) = ar - as \in P_1^{e_1} P_2^{e_2} \dots P_k^{e_k} = P_1^{e_1} \cap P_2^{e_2} \cap \dots \cap P_k^{e_{k+1}}$$

and $a \notin P_k^{e_{k+1}}$ imply $r - s \in P_k$. This in turn implies that

$$b(r-s) \in P_1^{e_1}P_2^{e_2}\ldots P_k^{e_k}.$$

Hence the mapping is a well-defined function and is clearly surjective. Also it is easy to see that the function is an additive homomorphism. Since both rings are zero-rings, the function is a ring homomorphism. Thus, as in the proof of Lemma 3, $P_1^{e_1}P_2^{e_2} \ldots P_k^{e_k-1} \in T$. Continuing in this way we obtain $P_1P_2 \ldots P_k \in T$.

THEOREM 5. Let R be a Dedekind domain, and let T be a radical class. If $\{0\} \neq T(R) \neq R$, then T(R) is the product of a finite number of distinct prime ideals.

Proof. This is an immediate consequence of Lemma 4.

COROLLARY. If the radical T(R) of the Dedekind domain R is a proper ideal of R, then R/T(R) is the direct sum of a finite number of fields.

Proof. By Theorem 5, $T(R) = P_1 P_2 \dots P_k$, where the P_i are distinct prime (hence maximal) ideals of R. By Proposition 9,

$$R/T(R) \cong R/P_1 \oplus R/P_2 \oplus \ldots \oplus R/P_k.$$

References

- 1. A. Clark, Elements of abstract algebra (Wadsworth, Belmont, Calif., 1971).
- 2. A. Hoffman, Direct sum closure properties of radicals, J. Natur. Sci. and Math. 10 (1970), 53-58.
- 3. I. Kaplansky, Fields and rings (University of Chicago Press, Chicago, 1970).
- 4. Y. L. Lee, On the construction of lower radical properties, Pacific J. Math. 28 (1969), 393-395.
- 5. On the construction of upper radical properties, Proc. Amer. Math. Soc. 19 (1968), 1165–1166.
- 6. O. Zariski and P. Samuel, Commutative algebra, Vol. 1 (Van Nostrand, New York 1958).

The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin