A FUNCTIONAL ANALYTIC DESCRIPTION OF NORMAL SPACES

E. BINZ AND W. FELDMAN

Throughout the paper, X will denote a completely regular (Hausdorff) topological space and C(X) the **R**-algebra of all real-valued continuous functions on X. When this algebra carries the continuous convergence structure [1], we write $C_{\mathfrak{c}}(X)$. We note that $C_{\mathfrak{c}}(X)$ is a complete [5] convergence **R**-algebra [1].

Our description of normality reads as follows. A completely regular topological space X is normal if and only if $C_c(X)/J$ (endowed with the obvious quotient structure; see § 1) is complete for every closed ideal $J \subset C_c(X)$.

1. Residue class algebras. For a closed non-empty subset $A \subset X$, let I(A) denote the ideal in C(X) consisting of all functions in C(X) vanishing on A. Since the kernel of the restriction map

$$r: C(X) \to C(A),$$

sending each $f \in C(X)$ into its restriction f|A, is I(A), we have the following commutative diagram of **R**-algebra homomorphisms:

(I)

$$C(X) \xrightarrow{r} C(A)$$

$$\downarrow^{\pi} \xrightarrow{r}$$

$$C(X)/I(A)$$

where π is the natural projection map and \bar{r} the unique map factoring r. A filter θ converges to zero in $C_{\mathfrak{c}}(X)$ if and only if, for each point $p \in X$ and each positive real number ϵ , there is an element F in θ and a neighborhood U of p with

$$|f(x)| \leq \epsilon$$
,

for every $x \in U$ and every $f \in F$. With $C_{\mathfrak{c}}(X)/I(A)$ we denote C(X)/I(A)endowed with the natural quotient structure (in the category of convergence spaces) of $C_{\mathfrak{c}}(X)$ with respect to π . This means that a filter converges to zero in $C_{\mathfrak{c}}(X)/I(A)$ if and only if it is finer than the image (under π) of a filter converging to zero in $C_{\mathfrak{c}}(X)$. Endowing C(X) and C(A) with the continuous convergence structure, all the maps in diagram (I) are continuous.

PROPOSITION 1. The **R**-algebra monomorphism \bar{r} is a homeomorphism from $C_{\mathfrak{c}}(X)/I(A)$ onto a subspace of $C_{\mathfrak{c}}(A)$.

Received May 7, 1971 and in revised form, September 21, 1971.

Proof. All we have to show is that a filter $\overline{\theta}$ on C(X)/I(A) for which $\overline{r}(\overline{\theta})$ converges to zero in $C_{\mathfrak{c}}(A)$ also converges to zero in $C_{\mathfrak{c}}(X)/I(A)$. That is, we must construct a filter θ on $C_{\mathfrak{c}}(X)$ converging to zero with the property that $\pi(\theta)$ is coarser than $\overline{\theta}$.

Let $\bar{\theta}$ be a filter on C(X)/I(A) with $\bar{r}(\bar{\theta})$ convergent to zero in $C_c(A)$. Hence, for each $p \in A$ and each positive real number ϵ , there is a neighborhood $U_{p,\epsilon}$ of pin X and an $F'_{p,\epsilon} \in \bar{r}(\bar{\theta})$ contained in r(C(X)) with

 $|f'(q)| \leq \epsilon,$

for all $f' \in F'_{p,\epsilon}$ and all $q \in U_{p,\epsilon} \cap A$. Without loss of generality, we can assume that each $U_{p,\epsilon}$ is a cozero-set in X. To facilitate the construction of our filter, we choose inside of each $U_{p,\epsilon}$ a zero-set neighborhood $\tilde{U}_{p,\epsilon}$ in X of p. Furthermore, to each y in $X \setminus A$ there exists, disjoint from A, a cozero-set neighborhood V_y of y in X inside of which we fix a zero-set neighborhood \tilde{V}_y of yin X. We intend to show that all the sets of the form

(*)
$$F_{p,y,\epsilon} = \{ f \in C(X) : f | A \in F'_{p,\epsilon}, f(\tilde{U}_{p,\epsilon}) \subset [-2\epsilon, 2\epsilon],$$

and $f(\tilde{V}_y) = \{0\} \},$

for $p \in A$, $y \in X \setminus A$, and ϵ a real number greater than 0, generate the desired filter. We first demonstrate that

(**)
$$r\left(\bigcap_{i=1}^{n} F_{p_{i},y_{i};\epsilon_{i}}\right) \supset \bigcap_{i=1}^{n} F'_{p_{i},\epsilon_{i}},$$

where p_i , y_i , and ϵ_i are as above. To this end, let

$$f' \in \bigcap_{i=1}^{n} F'_{p_i,\epsilon_i}$$

and j be a fixed integer between 1 and n. We now choose an element $f \in C(X)$ for which r(f) = f' and associate to this function the sets

$$P_{j} = \{ q \in \tilde{U}_{p_{j},\epsilon_{j}} \colon |f(q)| \ge 2\epsilon_{j} \}, \text{ and} \\ Q_{j} = \{ q \in X \colon |f(q)| \le \epsilon_{j} \} \cup (X \setminus U_{p_{j},\epsilon_{j}}).$$

It is clear that $Q_j \supset A$ and, furthermore, that P_j and Q_j are disjoint zero-sets in X. Hence, there is a function $h_j \in C(X)$ separating P_j and Q_j ; that is,

$$h_j(q) = 0$$
 for all $q \in P_j$, and
 $h_j(q) = 1$ for all $q \in Q_j$.

Without loss of generality, we may assume that $h_j(X) \subset [-1, 1]$. Similarly, we pick a function $k_j \in C(X)$ with the property that

$$k_j(q) = 0$$
 for all $q \in V_{y_j}$, and
 $k_j(q) = 1$ for all $q \in X \setminus V_{y_j}$,

and $k_j(X) \subset [-1, 1)$. The function $g = f \cdot h_1 \cdot h_2 \cdot \ldots \cdot h_n \cdot k_1 \cdot \ldots \cdot k_n$ is an

NORMAL SPACES

element of $\bigcap_{i=1}^{n} F_{p_i, y_i, \epsilon_i}$ and extends f'. Now the filter θ generated on C(X) by all the sets of the form (*) obviously converges to zero in $C_c(X)$. Because (**) is satisfied, $\pi(\theta)$ is coarser than $\overline{\theta}$, and thus the proof is complete.

Next, we will investigate the universal representation [2] of $C_c(X)/I(A)$, i.e., the **R**-algebra $C_c(Hom_c C_c(X)/I(A))$ and the **R**-algebra homomorphism

$$d: C_{c}(X)/I(A) \to C_{c}(Hom_{c} C_{c}(X)/I(A)),$$

where $Hom_c C_c(X)/I(A)$ denotes the space of all continuous **R**-algebra homomorphisms from $C_c(X)/I(A)$ onto **R** together with the continuous convergence structure. The map d sends each element $\tilde{f} \in C_c(X)/I(A)$ to the function defined by $d(\tilde{f})(h) = h(\tilde{f})$, for each $h \in Hom_c C_c(X)/I(A)$.

We intend to establish a relationship between $Hom_c C_c(X)/I(A)$ and A. The homomorphism π induces a continuous map

$$\pi^*$$
: Hom _c C_c(X)/I(A) \rightarrow Hom _c C_c(X),

sending each $h \in Hom_c C_c(X)/I(A)$ to $h \circ \pi$. By $Hom_c C_c(X)$ we mean the collection of all continuous **R**-algebra homomorphisms from $C_c(X)$ onto **R** together with the continuous convergence structure. As pointed out in [3], the map

$$i_X: X \to Hom_c C_c(X),$$

defined by the relation $i_{\mathbf{X}}(p)(f) = f(p)$, for all $f \in C(X)$ and all $p \in X$, is a homeomorphism. Hence, the map $i_{\mathbf{X}}^{-1} \circ \pi^*$ maps $Hom_c C_c(X)/I(A)$ continuously into X. In fact, the range of this map is in A, since $(i_{\mathbf{X}}^{-1} \circ \pi^*)(h)$ for any $h \in Hom_c C_c(X)/I(A)$, is sent to zero by all the functions in I(A), and A is a closed subset of a completely regular space. Next, we show that $i_{\mathbf{X}}^{-1} \circ \pi^*$ is actually a bijection onto A. Because π is surjective, the map $i_{\mathbf{X}}^{-1} \circ \pi^*$ is clearly injective. For the surjectivity, choose a point $p \in A$. The homomorphism $i_{\mathbf{X}}(p): C_c(X) \to \mathbf{R}$ annihilates all the functions in I(A), and therefore can be factored to a continuous homomorphism h on $C_c(X)/I(A)$. It is clear that $(i_{\mathbf{X}}^{-1} \circ \pi^*)(h) = p$.

PROPOSITION 2. The map

$$i_X^{-1} \circ \pi^* : Hom_c C_c(X)/I(A) \to A$$

is a homeomorphism.

Proof. Since $i_x^{-1} \circ \pi^*$ is a continuous bijection, it remains to verify that $(i_x^{-1} \circ \pi^*)^{-1}$ is also continuous. We have the commutative diagram

where \bar{r}^* sends each $h \in Hom_c C_c(A)$ to $h \circ \bar{r}$. Since both i_A and \bar{r}^* are continuous, the proposition is established.

2. Closed *C*-embedded subsets. A closed non-empty subset *A* of a space *X* is said to be *C*-embedded if every continuous real-valued function defined on *A* has a continuous extension to *X*, that is to say

$$r: C(X) \to C(A)$$

is surjective. For example, every compact subset of X is C-embedded.

THEOREM 1. A closed non-empty subset A of a completely regular topological space X is C-embedded if and only if $C_c(X)/I(A)$ is complete.

Proof. If A is a C-embedded subset of X, then the map \bar{r} is surjective. Since $C_{\mathfrak{c}}(A)$ is complete and \bar{r} is a homeomorphism (see Proposition 1), $C_{\mathfrak{c}}(X)/I(A)$ is complete. Conversely, assume that $C_{\mathfrak{c}}(X)/I(A)$ is complete. Proposition 1 implies that $\bar{r}(C_{\mathfrak{c}}(X)/I(A))$ is a closed subalgebra of $C_{\mathfrak{c}}(A)$. By a type of Stone-Weierstrass theorem proved in [5], which states that a closed subalgebra of $C_{\mathfrak{c}}(Y)$ that contains the constant functions and determines the topology (see [6, p. 39]) of the completely regular topological space Y is all of C(Y), we conclude that the map \bar{r} is surjective. Thus, A is C-embedded.

PROPOSITION 3. A closed non-empty subset A of a completely regular topological space X is compact if and only if $C_c(X)/I(A)$ is normable.

Proof. For A compact, $C_{c}(A)$ is a normed algebra under the supremum norm (this can be verified directly from the definition of the continuous convergence structure). It follows from Proposition 1 that $C_{c}(X)/I(A)$ is normable. On the other hand, if $C_{c}(X)/I(A)$ is normable, then $Hom_{c} C_{c}(X)/I(A)$ is a compact topological space (see [7]) and, hence, A is compact by Proposition 2.

COROLLARY. Let A be a closed non-empty subset of a completely regular topological space X. If $C_c(X)/I(A)$ is normable, then it is complete.

3. Normal spaces. A completely regular topological space is normal if and only if every non-empty closed subset is *C*-embedded (see [6, p. 48]). In view of Theorem 1, we know that the space X is normal if and only if $C_{e}(X)/I(A)$ is complete for every non-empty closed subset $A \subset X$. Since every closed ideal in $C_{e}(X)$ is of the form I(A) for a non-empty closed subset A of X (see [4]), we state

THEOREM 2. A completely regular topological space X is normal if and only if $C_{\mathfrak{c}}(X)/J$ is complete for every closed ideal $J \subset C_{\mathfrak{c}}(X)$.

References

 E. Binz and H. H. Keller, Funktionenräume in der Kategorie der Limesräume, Ann. Acad. Sci. Fenn. Ser. AI 383 (1966), 1–21.

NORMAL SPACES

- 2. E. Binz, Bemerkungen zu limitierten Funktionenalgebren, Math. Ann. 175 (1968), 169-184.
- 3. ----- Zu den Beziehungen zwischen c-einbettbaren Limesräumen und ihren limitierten Funktionenalgebren, Math. Ann. 181 (1969), 45-52.
- 4. —— On closed ideals in convergence function algebras, Math. Ann. 182 (1969), 145–153.
 5. —— Notes on a characterization of function algebras, Math. Ann. 186 (1970), 314–326.
- 6. L. Gillman and M. Jerison, Rings of continuous functions (Van Nostrand, Princeton, N.J. 1960).
- 7. M. Schroder, Continuous convergence in a Gelfand theory for topological algebras, Ph.D. thesis, Queen's University, Kingston, Ontario, 1971.

Universität Mannheim, Mannheim, West Germany; Queen's University, Kingston, Ontario